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A B S T R A C T

Generating learning-friendly representations for points in space is a fundamental and long-standing problem
in machine learning. Recently, multi-scale encoding schemes (such as Space2Vec and NeRF) were proposed to
directly encode any point in 2D or 3D Euclidean space as a high-dimensional vector, and has been successfully
applied to various (geo)spatial prediction and generative tasks. However, all current 2D and 3D location
encoders are designed to model point distances in Euclidean space. So when applied to large-scale real-world
GPS coordinate datasets (e.g., species or satellite images taken all over the world), which require distance
metric learning on the spherical surface, both types of models can fail due to the map projection distortion
problem (2D) and the spherical-to-Euclidean distance approximation error (3D). To solve these problems, we
propose a multi-scale location encoder called Sphere2Vec which can preserve spherical distances when encoding
point coordinates on a spherical surface. We developed a unified view of distance-reserving encoding on spheres
based on the Double Fourier Sphere (DFS). We also provide theoretical proof that the Sphere2Vec encoding
preserves the spherical surface distance between any two points, while existing encoding schemes such as
Space2Vec and NeRF do not. Experiments on 20 synthetic datasets show that Sphere2Vec can outperform all
baseline models including the state-of-the-art (SOTA) 2D location encoder (i.e., Space2Vec) and 3D encoder
NeRF on all these datasets with up to 30.8% error rate reduction. We then apply Sphere2Vec to three geo-aware
image classification tasks - fine-grained species recognition, Flickr image recognition, and remote sensing image
classification. Results on 7 real-world datasets show the superiority of Sphere2Vec over multiple 2D and 3D
location encoders on all three tasks. Further analysis shows that Sphere2Vec outperforms other location encoder
models, especially in the polar regions and data-sparse areas because of its nature for spherical surface distance
preservation. Code and data of this work are available at https://gengchenmai.github.io/sphere2vec-website/.

1. Introduction

The fact that the Earth is round but not planar should surprise
nobody (Chrisman, 2017). However, studying geospatial problems on
a flat map with the plane analytical geometry (Boyer, 2012) is still
the common practice adopted by most of the geospatial community
and well supported by all the softwares and technology of geographic
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information systems (GIS). Moreover, over the years, certain program-
mers and researchers have blurred the distinction between a (spherical)
geographic coordinate system and a (planar) projected coordinate sys-
tem (Chrisman, 2017), and directly treated latitude–longitude pairs as
2D Cartesian coordinates for analytical purpose. This distorted pseudo-
projection results, so-called Plate Carrée, although remaining mean-
ingless, have been unconsciously used in many scientific work across
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Fig. 1. Applying Sphere2Vec to geo-aware image classification task. Here, we use the fine-grained species recognition and remote sensing (RS) image classification as examples.
Given a species image I, it is very difficult to decide whether it is an Arctic fox or a gray fox just based on the appearance information. However, if we know this image is taken
from the Arctic area, then we have more confidence to say this is an Arctic fox. Similarly, an overhead remote sensing image of factories and multi-unit residential buildings
might look similar. However, they locate in different neighborhoods with different land use types which can be estimated as geographic priors by a location encoder. So the idea
of geo-aware image classification is to combine (the red box) the predictions from an image encoder (the orange box) and a location encoder (the blue box). The image encoder
(the orange box) can be a pretrained model such as an InceptionV3 network (Mac Aodha et al., 2019) for species recognition or a MoCo-V2+TP (Ayush et al., 2020) for the RS
image classification. We can append a separated image classifier Q at the end of the image encoder F() and supervised fine-tune the whole image classification model on the
corresponding training dataset to obtain the probability distribution of image labels for a given image I, i.e., P (yI). The location encoder (the blue box) can be Sphere2Vec or any
other inductive location encoders (Chu et al., 2019; Mac Aodha et al., 2019; Mai et al., 2020b; Mildenhall et al., 2020). Supervised training of the location encoder Enc() together
with a location classifier T can yield the geographic prior distributions of image labels P (yx). The predictions from both components are combined (multiplied) to make the final
prediction (the red box). The dotted lines indicates that there is no back-propagation through these lines. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

different disciplines. This blindness to the obvious round Earth and
ignorance of the distortion brought by various map projections have
led to tremendous negative effects and major mistakes. For example,
typical mistakes brought by the Mercator projection are that it leads
people to believe that Greenland is in the same size of Africa or
Alaska looms larger than Mexico (Sokol, 2021). In fact, Greenland is
no bigger than the Democratic Republic of Congo (Morlin-Yron, 2017)
and Alaska is smaller than Mexico. A more extreme case about France
was documented by Harmel (2009) during the period of the single
area payment. After converting from the old national coordinate system
(a Lambert conformal conic projection) to the new coordinate system
(RGF 93), subsidies to the agriculture sector were reduced by 17 million
euros because of the reduced scale error in the map projection.

Subsequently, this practice of ignoring the round Earth has been
adopted by many recent geospatial artificial intelligence (GeoAI) (Hu
et al., 2019; Janowicz et al., 2020) research on problems such as
climate extremes forecasting (Ham et al., 2019), species distribution
modeling (Berg et al., 2014), location representation learning (Mai
et al., 2020b), and trajectory prediction (Rao et al., 2020). Due to the
lack of interpretability of these deep neural network models, this issue
has not attracted much attentions by the whole geospatial community.

It is acceptable that the projection errors might be neglectable in
small-scale (e.g., neighborhood-level or city-level) geospatial studies.
However, they become non-negligible when we conduct research at a
country scale or even global scale. Meanwhile, demand on representa-
tion and prediction learning at a global scale grows dramatically due
to emerging global scale issues, such as the transition path of the latest
pandemic (Chinazzi et al., 2020), long lasting issue for malaria (Cami-
nade et al., 2014), under threaten global biodiversity (Di Marco et al.,
2019; Ceballos et al., 2020), and numerous ecosystem and social system
responses for climate change (Hansen and Cramer, 2015). This trend
urgently calls for GeoAI models that can avoid map projection errors
and directly perform calculation on a round planet (Chrisman, 2017).
To achieve this goal, we need a representation learning model which

can directly encode point coordinates on a spherical surface into the
embedding space such that the resulting location embeddings preserve
the spherical distances (e.g., great circle distance2) between two points.
With such a representation, existing neural network architectures can
operate on spherical-distance-kept location embeddings to enable the
ability of calculating on a round planet.

In fact, such location representation learning models are usually
termed location encoders which were originally developed to handle
2D or 3D Cartesian coordinates (Chu et al., 2019; Mac Aodha et al.,
2019; Mai et al., 2020b; Zhong et al., 2020; Mai et al., 2022c; Milden-
hall et al., 2021; Schwarz et al., 2020; Niemeyer and Geiger, 2021;
Barron et al., 2021; Marí et al., 2022; Xiangli et al., 2022). Location
encoders represent a point in a 2D or 3D Euclidean space (Zhong
et al., 2020; Mildenhall et al., 2021; Schwarz et al., 2020; Niemeyer
and Geiger, 2021) into a high dimensional embedding such that the
representations are more learning-friendly for downstream machine
learning models. For example, Space2Vec (Mai et al., 2020b,a) was
developed for POI type classification, geo-aware image classification,
and geographic question answering which can accurately model point
distributions in a 2D Euclidean space. Recently, several popular lo-
cation/position encoders widely used in the computer vision domain
are also called neural implicit functions (Anokhin et al., 2021; He
et al., 2021; Chen et al., 2021; Niemeyer and Geiger, 2021) which
follow the idea of Neural Radiance Fields (NeRF) (Mildenhall et al.,
2020) to map a 2D or 3D point coordinates to visual signals via a
Fourier input mapping (Tancik et al., 2020; Anokhin et al., 2021; He
et al., 2021), or so-called Fourier position encoding (Mildenhall et al.,
2020; Schwarz et al., 2020; Niemeyer and Geiger, 2021), followed
by a Multi-Layer Perception (MLP). Until now, those 2D/3D Eu-
clidean location encoders have already shown promising performances
on multiple tasks across different domains including geo-aware image

2 https://en.wikipedia.org/wiki/Great-circle_distance
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Fig. 2. Applying location encoders to differentiate two visually similar species ((a)–(j)) or two visually similar land use types ((k)–(t)). Arctic fox and bat-eared fox might look
very similar visually as shown in (a) and (f). However, they have different spatial distributions. (b) and (g) show their distinct patterns in species image locations. (c)–(e): The
predicted distributions of Arctic fox from different location encoders (without images as input). (h)–(j): The predicted distributions of bat-eared fox. Similarly, it might be hard
to differentiate factories/powerplants from multi-unit residential buildings only based on their overhead satellite imageries as shown in (k) and (p). However, as shown in (l) and
(q), they have very different global spatial distributions. (m)–(o) and (r)–(t) show the predicted spatial distributions of factories/powerplants and multi-unit residential buildings
from different location encoders. We can see that while wrap (Mac Aodha et al., 2019) produces a over-generalized spatial distribution, sphereC+ and dfs (our model) produces
more compact and fine-grained distributions on the polar region and in data sparse areas such as Africa (See Figs. 2(g)–2(j)). grid (Mai et al., 2020b) is between the two. For
more examples, please see Figs. 13 and 14. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

classification (Chu et al., 2019; Mac Aodha et al., 2019; Mai et al.,
2020b), POI classification (Mai et al., 2020b), trajectory prediction (Xu
et al., 2018), geographic question answering (Mai et al., 2020a), 2D
image superresolution (Anokhin et al., 2021; Chen et al., 2021; He
et al., 2021), 3D protein structure reconstruction (Zhong et al., 2020),
3D scenes representation for view synthesis (Mildenhall et al., 2020;
Barron et al., 2021; Tancik et al., 2022; Marí et al., 2022; Xiangli
et al., 2022) and novel image/view generation (Schwarz et al., 2020;
Niemeyer and Geiger, 2021). However, similarly to above mentioned
France case, when applying the state-of-the-art (SOTA) 2D Euclidean
location encoders (Mac Aodha et al., 2019; Mai et al., 2020b) to large-
scale real-world GPS coordinate datasets such as remote sensing images
taken all over the world which require distance metric learning on the
spherical surface, a map projection distortion problem (Williamson
and Browning, 1973; Chrisman, 2017) emerges, especially in the po-
lar areas. On the other hand, the NeRF-style 3D Euclidean location
encoders (Mildenhall et al., 2020; Schwarz et al., 2020; Niemeyer
and Geiger, 2021) are commonly used to model point distances in
the 3D Euclidean space, but not capable of accurately modeling the
distances on a complex manifold such as spherical surfaces. Directly
applying NeRF-style models on these datasets means these models have
to approximate the spherical distances with 3D Euclidean distances
which leads to a distance metric approximation error. This highlights
the necessity of such a spherical location encoder discussed above.

In this work, we propose a multi-scale spherical location encoder,
Sphere2Vec, which can directly encode spherical coordinates while
avoiding the map projection distortion and spherical-to-Euclidean dis-
tance approximation error. The multi-scale encoding method utilizes
2D Discrete Fourier Transform3 basis (O(S2) terms) or a subset (O(S)
terms) of it while still being able to correctly measure the spheri-
cal distance. Following previous work we use location encoding to
learn the geographic prior distribution of different image labels so
that given an image and its associated location, we can combine the

3 http://fourier.eng.hmc.edu/e101/lectures/Image_Processing/node6.html

prediction of the location encoder and that from the state-of-the-art
image classification models, e.g., inception V3 (Szegedy et al., 2016),
to improve the image classification accuracy. Fig. 1 illustrates the
whole architecture. We demonstrate the effectiveness of Sphere2Vec
on geo-aware image classification tasks including fine-grained species
recognition (Chu et al., 2019; Mac Aodha et al., 2019; Mai et al.,
2020b), Flickr image recognition (Tang et al., 2015; Mac Aodha et al.,
2019), and remote sensing image classification (Christie et al., 2018;
Ayush et al., 2020). Figs. 2(c)–2(e) and 2(h)–2(j) show the predicted
species distributions of Arctic fox and bat-eared fox from three different
models. Figs. 2(m)–2(o) and 2(r)–2(t) show the predicted land use
distributions of factory or powerplant and multi-unit residential building
from three different models. In summary, the contributions of our
work are:

1. We propose a spherical location encoder, Sphere2Vec, which,
as far as we know, is the first inductive embedding encoding
scheme which aims at preserving spherical distance. We also
developed a unified view of distant reserving encoding methods
on spheres based on Double Fourier Sphere (DFS) (Merilees,
1973; Orszag, 1974).

2. We provide theoretical proof that Sphere2Vec encodings can
preserve spherical surface distances between points. As a com-
parison, we also prove that the 2D location encoders (Gao
et al., 2019; Mai et al., 2020b, 2023c) model latitude and
longitude differences separately, and NeRF-style 3D location en-
coders (Mildenhall et al., 2020; Schwarz et al., 2020; Niemeyer
and Geiger, 2021) model axis-wise differences between two
points in 3D Euclidean space separately — none of them can
correctly model spherical distances.

3. We first conduct experiments on 20 synthetic datasets generated
based on the mixture of von Mises–Fisher distribution (MvMF).
We show that Sphere2Vec is able to outperform all baselines
including the state-of-the-art (SOTA) 2D location encoders and
NeRF-style 3D location encoders on all 20 synthetic datasets
with an up to 30.8% error rate reduction. Results show that

http://fourier.eng.hmc.edu/e101/lectures/Image_Processing/node6.html
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Fig. 3. An illustration for map projection distortion: (a)–(d): Tissot indicatrices for four projections. The equal area circles are putted in different locations to show how the map
distortion affect its shape.

2D location encoders are more powerful than NeRF-style 3D
location encoders on all synthetic datasets. And compared with
those 2D location encoders, Sphere2Vec is more effective when
the dataset has a large data bias towards the polar area.

4. We also conduct extensive experiments on seven real-world
datasets for three geo-aware image classification tasks. Results
show that due to its spherical distance preserving ability,
Sphere2Vec outperforms both the SOTA 2D location encoder
models and NeRF-style 3D location encoders.

5. Further analysis shows that compared with 2D location en-
coders, Sphere2Vec is able to produce finer-grained and compact
spatial distributions, and does significantly better in the polar
regions and areas with sparse training samples.

The rest of this paper is structured as follows. In Section 2, we moti-
vate our work by highlighting the importance of the idea of calculating
on the round planet. Then, we provide a formal problem formulation of
spherical location representation learning in Section 3. Next, we briefly
summarize the related work in Section 4. The main contribution —
Sphere2Vec— is detailed discussed in Section 5. Then, Section 6 lists all
baseline models we consider in this work. The theoretical limitations of
2D location encoder grid as well as NeRF style 3D location encoders are
discussed in Section 7. Section 8 presents the experimental results on
the synthetic datasets. Then, Section 9 presents our experimental results
on 7 real-world datasets for geo-aware image classification. Finally,
we conclude this paper in Section 10. Code and data of this work are
available at https://gengchenmai.github.io/sphere2vec-website/.

2. Calculating on a round planet

The blindness to the round Earth or the inappropriate usage of map
projections can lead to tremendous and unexpected effects especially
when we study a global scale problem since map projection distortion is
unavoidable when projecting spherical coordinates into 2D space.

There are no map projection can preserve distances at all direction.
The so-called equidistant projection can only preserve distance on one
direction, e.g., the longitude direction for the equirectangular projec-
tion (See Fig. 3(d)), while the conformal map projections (See Fig. 3(a))
can preserve directions while resulting in a large distance distortion.
For a comprehensive overview of map projections and their distortions,
see Mulcahy and Clarke (2001).

When we estimate probability distributions at a global scale
(e.g., species distributions or land use types over the world) with a
neural network architecture, using 2D Euclidean-based GeoAI models
with projected spatial data instead of directly modeling these distribu-
tions on a spherical surface will lead to unavoidable map projection
distortions and suboptimal results. This highlights the importance of
calculating on a round planet (Chrisman, 2017) and necessity of a
spherical distance-kept location encoder.

3. Problem formulation

Distributed representation of point-features on the spherical surface can
be formulated as follows. Given a set of points P = {xi} on the surface
of a sphere S2, e.g., locations of remote sensing images taken all over
the world, where xi = (�i,�i) À S2 indicates a point with longitude
�i À [*⇡,⇡) and latitude �i À [*⇡_2,⇡_2]. Define a function EncP ,✓(x) :
S2 ô Rd , which is parameterized by ✓ and maps any coordinate x in a
spherical surface S2 to a vector representation of d dimension. In the
following, we use Enc(x) as an abbreviation for EncP ,✓(x).

Let Enc(x) = NN(PES (x)) where NN() is a learnable multi-layer per-
ceptron with h hidden layers and k neurons per layer. We want to find
a position encoding function PES (x) which does a one-to-one mapping
from each point xi = (�i,�i) À S2 to a multi-scale representation with
S be the total number of scales.

We expect to find a function PES (x) such that the resulting multi-
scale representation of x preserves the spherical surface distance while
it is more learning-friendly for the downstream neuron network model
NN(). More concretely, we had like to use position encoding functions
which satisfy the following requirement:

ÍPES (x1),PES (x2)Î = f (�D),≈x1, x2 À S2, (1)

where Í�, �Î is the cosine similarity function between two embeddings.
�D À [0,⇡R] is the spherical surface distance between x1, x2, R is the
radius of this sphere, and f (x) is a strictly monotonically decreasing
function for x À [0,⇡R].

4. Related work

4.1. Neural implicit functions and NeRF

As an increasingly popular family of models in the computer vision
domain, neural implicit functions (Anokhin et al., 2021; He et al., 2021;
Chen et al., 2021; Niemeyer and Geiger, 2021) refer to the neural
network architectures that directly map a 2D or 3D coordinates into
visual signals via a Fourier input mapping/position encoding (Tancik
et al., 2020; Anokhin et al., 2021; He et al., 2021; Mildenhall et al.,
2020; Schwarz et al., 2020; Niemeyer and Geiger, 2021), followed by
a Multi-Layer Perception (MLP).

A good example is Neural Radiance Fields (NeRF) (Mildenhall et al.,
2020), which combines neural implicit functions and volume ren-
dering for novel view synthesis for 3D complex scenes. The idea of
NeRF becomes very popular and many follow-up works have been done
to revise the NeRF model in order to achieve more accurate view
synthesis. For example, NeRF in the Wild (NeRF-W) (Martin-Brualla
et al., 2021) was proposed to learn separate transient phenomena from
each static scene to make the model robust to radiometric variation
and transient objects. Shadow NeRF (S-NeRF) (Derksen and Izzo, 2021)
was proposed to exploit the direction of solar rays to obtain a more

https://gengchenmai.github.io/sphere2vec-website/
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realistic view synthesis on multi-view satellite photogrammetry. Sim-
ilarly, Satellite NeRF (Sat-NeRF) (Marí et al., 2022) combines NeRF
with native satellite camera models to achieve robustness to transient
phenomena that cannot be explained by the position of the sun to solve
the same task. A more noticeable example is GIRAFFE (Niemeyer and
Geiger, 2021) which is a NeRF-based deep generative model which
achieves a more controllable image synthesis. All these NeRF variations
mentioned above use the same NeRF Fourier position encoding. And
they all use this position encoding in the same generative task — novel
image synthesis. Moreover, although S-NeRF and Sat-NeRF work on
geospatial data, i.e., satellite images, they focus on rather small geospa-
tial scales, e.g., city scales, in which map projection distortion can be
ignored. In contrast, we investigate the advantages and drawbacks of
various location encoders in large-scale (e.g., global-scale) geospatial
prediction tasks which are discriminative tasks. We use NeRF position
encoding as one of our baselines.

Several works also discussed the possibility to revise NeRF position
encoding. The original encoding method takes a single 3D point as
input which ignores both the relative footprint of the corresponding
image pixel and the length of the interval along the ray which leads
to aliasing artifacts when rendering novel camera trajectories (Tancik
et al., 2022). To fix this issue, Mip-NeRF (Barron et al., 2021) proposed
a new Fourier position encoding called integrated positional encoding
(IPE). Instead of encoding one single 3D point, IPE encodes 3D conical
frustums approximated by multivariate Gaussian distributions which
are sampled along the ray based on the projected pixel footprints.
Block-NeRF (Tancik et al., 2022) adopted the IPE idea and showed how
to scale NeRF to render city-scale scenes. Similarly, BungeeNeRF (Xi-
angli et al., 2022) also used the IPE model to develop a progressive
NeRF that can do multi-scale rendering for satellite images in different
spatial scales. In this work, we focus on encoding a single point on the
spherical surface, not a 3D conical frustums. So IPE is not considered
as one of the baselines.

Neural implicit functions are also popular for other computer vision
tasks such as image superresolution (Anokhin et al., 2021; Chen et al.,
2021; He et al., 2021) and image compression (Dupont et al.; Strümpler
et al., 2022).

4.2. Location encoder

Location encoders (Chu et al., 2019; Mac Aodha et al., 2019; Mai
et al., 2020b; Zhong et al., 2020; Mai et al., 2023c) are neural net-
work architectures which encode points in low-dimensional (2D or
3D) spaces (Zhong et al., 2020)) into high dimensional embeddings.
There has been much research on developing inductive learning-based
location encoders. Most of them directly apply Multi-Layer Perceptron
(MLP) to 2D coordinates to get a high dimensional location embedding
for downstream tasks such as pedestrian trajectory prediction (Xu et al.,
2018) and geo-aware image classification (Chu et al., 2019). Recently,
Mac Aodha et al. (2019) apply sinusoid functions to encode the latitude
and longitude of each image before feeding into MLPs. All of the above
approaches deploy location encoding at a single-scale.

Inspired by the position encoder in Transformer (Vaswani et al.,
2017) and Neuroscience research on grid cells (Banino et al., 2018;
Cueva and Wei, 2018) of mammals, Mai et al. (2020b) proposed to
apply multi-scale sinusoid functions to encode locations in 2D Eu-
clidean space before feeding into MLPs. The multi-scale representations
have advantage of capturing spatial feature distributions with different
characteristics. Similarly, Zhong et al. (2020) utilized a multi-scale
location encoder for the position of proteins’ atoms in 3D Euclidean
space for protein structure reconstruction with great success. Location
encoders can be incorporated into the state-of-art models for many
tasks to make them spatially explicit (Yan et al., 2019b; Janowicz et al.,
2020; Mai et al., 2022b, 2023c).

Compared with well-established kernel-based approaches
(Schölkopf, 2001; Xu et al., 2018) such as Radius Based Function

(RBF) which requires memorizing the training examples as the kernel
centers for a robust prediction, inductive-learning-based location en-
coders (Chu et al., 2019; Mac Aodha et al., 2019; Mai et al., 2020b;
Zhong et al., 2020) have many advantages: (1) They are more memory
efficient since they do not need to memorize training samples; (2)
Unlike RBF, the performance on unseen locations does not depend on
the number and distribution of kernels. Moreover, Gao et al. (2019)
have shown that grid-like periodic representation of locations can
preserve absolute position information, relative distance, and direction
information in 2D Euclidean space. Mai et al. (2020b) further show
that it benefits the generalizability of down-stream models. For a
comprehensive survey of different location encoders, please refer to Mai
et al. (2022c).

Despite all these successes in location encoding research, none of
them consider location representation learning on a spherical surface
which is in fact critical for a global scale geospatial study. Our work
aims at filling this gap.

4.3. Machine learning models on spheres

Recently, there has been an increasing amount of work on designing
machine learning models for prediction tasks on spherical surfaces. For
the omnidirectional image classification task, both Cohen et al. (2018)
and Coors et al. (2018) designed different spherical versions of the tra-
ditional convolutional neural network (CNN) models in which the CNN
filters explicitly consider map projection distortion. In terms of image
geolocalization (Izbicki et al., 2019a) and text geolocalization (Izbicki
et al., 2019b), a loss function based on the mixture of von Mises–Fisher
distributions (MvMF) — a spherical analog of the Gaussian mixture
model (GMM) — is used to replace the traditional cross-entropy loss
for geolocalization models (Izbicki et al., 2019a,b). All these works are
closely related to geometric deep learning (Bronstein et al., 2017). They
show the importance to consider the spherical geometry instead of pro-
jecting it back to a 2D plane, yet none of them considers representation
learning of spherical coordinates in the embedding space.

4.4. Spatially explicit artificial intelligence

There has been much work in improving the performance of current
state-of-the-art artificial intelligence and machine learning models by using
spatial features or spatial inductive bias— so-called spatially explicit arti-
ficial intelligence (Yan et al., 2017; Mai et al., 2019; Yan et al., 2019b,a;
Janowicz et al., 2020; Li et al., 2021; Zhu et al., 2021; Janowicz et al.,
2022; Liu and Biljecki, 2022; Zhu et al., 2022; Mai et al., 2022b, 2023b;
Huang et al., 2023), or SpEx-AI. The spatial inductive bias in these
models includes: spatial dependency (Kejriwal and Szekely, 2017; Yan
et al., 2019b), spatial heterogeneity (Berg et al., 2014; Chu et al., 2019;
Mac Aodha et al., 2019; Mai et al., 2020b; Zhu et al., 2021; Gupta et al.,
2021; Xie et al., 2021), map projection (Cohen et al., 2018; Coors et al.,
2018; Izbicki et al., 2019a,b), scale effect (Weyand et al., 2016; Mai
et al., 2020b), and so on.

4.5. Pseudospectral methods on spheres

Multiple studies have been focused on the numerical solutions
on spheres, for example, in weather prediction (Orszag, 1972, 1974;
Merilees, 1973). The main idea is so-called pseudospectral methods
which leverage truncated discrete Fourier transformation on spheres
to achieve computation efficiency while avoiding the error caused by
map projection distortion. The particular set of basis functions to be
used depends on the particular problem. However, they do not aim
at learning good representations in machine learning models. In this
study, we try to make connections to these approaches and explore how
their insights can be realized in a deep learning model.
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Fig. 4. Patterns of different encoders, blue points at (�(m) ,�(n)) mean interaction terms of trigonometric functions of �
(m) and �

(n) are included in the encoder, � and � axis
correspond to single terms with no interactions.

5. Method

Our main contribution — the design of spherical distance-kept
location encoder Enc(x), Sphere2Vec will be presented in Section 5.1.
We developed a unified view of distance-reserving encoding on spheres
based on Double Fourier Sphere (DFS) (Merilees, 1973; Orszag, 1974).
The resulting location embedding p[x] = Enc(x) is a general-purpose
embedding which can be utilized in different decoder architectures
for various tasks. In Section 5.2, we briefly show how to utilize the
proposed Enc(x) in the geo-aware image classification task.

5.1. Sphere2Vec

The multi-scale location encoder defined in Section 3 is in the form
of Enc(x) = NN(PES (x)). PES (x) is a concatenation of multi-scale
spherical spatial features of S levels. In the following, we call Enc(x)
location encoder and its component PES (x) position encoder.

dfs. Double Fourier Sphere (DFS) (Merilees, 1973; Orszag, 1974) is a
simple yet successful pseudospectral method, which is computationally
efficient and have been applied to analysis of large scale phenomenons
such as weather (Sun et al., 2014) and blackholes (Bartnik and Norton,
2000). Our first intuition is to use the base functions of DFS, which
preserve periodicity in both the longitude and latitude directions, to
help decompose x = (�,�) into a high dimensional vector:

PE
dfs

S
(x) =

S*1Õ
n=0

[sin�(n)
, cos�(n)] ‰

S*1Õ
m=0

[sin �(m), cos �(m)]‰

S*1Õ
n=0

S*1Õ
m=0

[cos�(n) cos �(m), cos�(n) sin �(m),

sin�(n) cos �(m), sin�(n) sin �(m)],

(2)

where �
(m) = �

r(m)
, �(n) = �

r(n)
. r(m) and r

(n) are scaling factors con-
trolled by the current scale m and n. Let rmin, rmax be the minimum
and maximum scaling factor, and g = rmax

rmin

.4 r
(s) = rmin � gs_(S*1)

where s is either m or n. ‰ means vector concatenation and
∑S*1

s=0
indicates vector concatenation through different scales. It basically lets
all the S scales of � terms interact with all the S scales of � terms
in the encoder. This would introduce a position encoder with a O(S2)
dimension output which increases the memory burden in training and
hurts generalization. See Fig. 4(a) for an illustration of the used O(S2)
terms. An encoder might achieve better results by only using a subset
of these terms.

In comparison, the state-of-the-art grid (Mai et al., 2020b) encoder
defines its position encoder as:

PE
grid

S
(x) =

S*1Õ
s=0

[sin�(s)
, cos�(s)

, sin �(s), cos �(s)]. (3)

Here, �(s) and �
(s) have similar definitions as �(m) and �

(n) in Eq. (2).
Fig. 4(b) illustrates the used terms of grid. We can see that grid

employs a subset of terms from dfs. However, as we explained earlier,

4 In practice we fix r
max

= 1 meaning no scaling of �,�.

grid performs poorly at a global scale due to its inability to preserve
spherical distances.

In the following we explore different subsets of DFS terms while
achieving two goals: (1) efficient representation with O(S) dimensions
(2) preserving distance measures on a spherical surface.

sphereC. Inspired by the fact that any point (x, y, z) in 3D Cartesian co-
ordinate can be expressed by sin and cos basis of spherical coordinates
(�, � plus radius),5 we define the basic form of Sphere2Vec, namely
sphereC encoder:

PE
sphereC

S
(x) =

S*1Õ
s=0

[sin�(s)
, cos�(s) cos �(s), cos�(s) sin �(s)]. (4)

Fig. 4(c) illustrates the used terms of sphereC. To illustrate that
sphereC is good at capturing spherical distance, we take a close look
at its basic case S = 1. When S = 1 and rmax = 1, there is only one
scale s = S * 1 = 0 and we define r

(s) = rmin � gs_(S*1) = rmax = 1. The
multi-scale encoder degenerates to

PE
sphereC

1 (x) = [sin(�), cos(�) cos(�), cos(�) sin(�)]. (5)

These three terms are included in the multi-scale version (S > 1)
and serve as the main terms at the largest scale and also the lowest
frequency (when s = S * 1). The high frequency terms are added to
help the downstream neuron network to learn the point-feature more
efficiently (Tancik et al., 2020). Interestingly, PEsphereC

1 captures the
spherical distance in a very explicit way:

Theorem 1. Let x1, x2 be two points on the same sphere S2 with radius R,
then

ÍPEsphereC

1 (x1),PE
sphereC

1 (x2)Î = cos(�D
R

), (6)

where �D is the great circle distance between x1 and x2. Under this metric,

ÒPEsphereC

1 (x1) * PE
sphereC

1 (x2)Ò = 2 sin(�D2R ). (7)

Moreover, ÒPEsphereC

1 (x1)* PE
sphereC

1 (x2)Ò ˘ �D

R
, when �D is small w.r.t.

R.

See the proof in Appendix A.1.
Since the central angle �� = �D

R
À [0,⇡] and cos(x) is strictly mono-

tonically decrease for x À [0,⇡], Theorem 1 shows that PEsphereC

1 (x)
directly satisfies our expectation in Eq. (1) where f (x) = cos( x

R
).

sphereM . Considering the fact that many geographical patterns are
more sensitive to either latitude (e.g., temperature, sunshine duration)
or longitude (e.g., timezones, geopolitical borderlines), we might want
to focus on increasing the resolution of either � or � while holding the
other relatively at a large scale. Therefore, we introduce a multi-scale
position encoder sphereM , where interaction terms between � and �

always have one of them fixed at the top scale:

PE
sphereM

S
(x) =

S*1Õ
s=0

[sin�(s)
, cos�(s) cos �, cos� cos �(s),

cos�(s) sin �, cos� sin �(s)].
(8)

5 https://en.wikipedia.org/wiki/Spherical_coordinate_system

https://en.wikipedia.org/wiki/Spherical_coordinate_system
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This new encoder ensures that the � term interact with all the scales
of � terms (i.e., �(s) terms) and � term interact with all the scales of
� terms (i.e., �(s) terms). See Fig. 4(e) for the used terms of sphereM .
Both PE

sphereC

S
and PE

sphereM

S
are multi-scale versions of a spherical

distance-kept encoder (See Eq. (5)) and keep that as the main term in
their multi-scale representations.

sphereC+ And sphereM+. From the above analysis of the two pro-
posed position encoders and the SOTA grid encoders, we know that
grid pays more attention to the sum of cos difference of latitudes and
longitudes, while our proposed encoders pay more attention to the
spherical distances. In order to capture both information, we consider
merging grid with each proposed encoders to get more powerful models
that encode geographical information from different angles.

PE
sphereC+
S

(x) = PE
sphereC

S
(x) ‰ PE

grid

S
(x), (9)

PE
sphereM+
S

(x) = PE
sphereM

S
(x) ‰ PE

grid

S
(x). (10)

We hypothesize that encoding these terms in the multi-scale represen-
tation would make the training of the encoder easier and the order of
output dimension is still O(S). See Figs. 4(d) and 4(f) for the used terms
of sphereC+ and sphereM+.

In location encoding, the uniqueness of the encoding results (i.e., no
two different points on a sphere having the same position encoding)
is very important. PES (x) in the five proposed methods are by design
one-to-one mapping.

Theorem 2. ≈ <À {dfs, sphereC , sphereC+, sphereM ,
sphereM+}, PE<

S
(x) is an injective function.

See the proof in Appendix A.2.

5.2. Applying Sphere2Vec to geo-aware image classification

Follow the practice of Mac Aodha et al. (2019) and Mai et al.
(2020b), we formulate the geo-aware image classification task (Chu et al.,
2019; Mac Aodha et al., 2019) as follow: Given an image I taken from
location/point x, we estimate which category y it belongs to. If we
assume that I and x are independent given y and an even-prior P (y),
then we have

P (yI, x) = P (I, xy)P (y)
P (I, x) = P (Iy)P (xy) P (y)

P (I, x) (11)

= P (yI)P (I)
P (y)

P (yx)P (x)
P (y)

P (y)
P (I, x) (12)

= P (yx)P (yI) P (I)P (x)
P (y)P (I, x) ◊ P (yx)P (yI) (13)

P (yI) can be obtained by fine-tuning the state-of-the-art image classi-
fication model for a specific task, such as a pretrained InceptionV3
network (Mac Aodha et al., 2019) for species recognition, or a pre-
trained MoCo-V2+TP (Ayush et al., 2020) for RS image classification.
To be more specific, we use a pretrained image encoder F() to extract
the embedding for each input image, i.e., F(I). Then in order to compute
P (yI), we can either (1) fine-tune an image classifier Q based on these
frozen image embeddings, or (2) fine-tune the whole image encoder
architecture Q(F(I)). Here, Q is a multilayer perceptron (MLP) followed
by a softmax activation function. Both Mac Aodha et al. (2019) and Mai
et al. (2020b) adopted the second approach which fine-tunes the whole
image classification architecture. We also adopt the second approach to
have a fair comparison with all these previous methods. Please refer to
Section 9.4.3 for an ablation study on this. The idea is illustrated in
the orange box in Fig. 1.

In this work, we focus on the second component — estimating the
geographic prior distribution of image label y over the spherical surface
P (yx) (the blue box in Fig. 1). This probability distribution can be
estimated by using a location encoder Enc(). We can use either our
proposed Sphere2Vec or some existing 2D (Mai et al., 2020b; Mac Aodha
et al., 2019; Chu et al., 2019) or 3D (Marí et al., 2022; Martin-Brualla

et al., 2021) Euclidean location encoders. More concretely, we have
P (yx) ◊ �(Enc(x)T:,y) where �() is a sigmoid activation function.
T À Rdùc is a class embedding matrix (the location classifier in Fig. 1)
where the yth column T:,y À Rd indicates the class embedding for class
y. d indicates the dimension of location embedding p[x] = Enc(x) and
c is the total number of image classes.

The major objective is to learn P (yx) ◊ �(Enc(x)T:,y) such that
all observed species occurrences (all image locations x as well as their
associated species class y) have maximum probabilities. Mac Aodha
et al. (2019) used a loss function which is based on maximum likelihood
estimation (MLE). Given a set of training samples — data points and
their associated class labels X = {(x, y)}, the loss function Limage(X) is
defined as:

Limage(X) =
…

(x,y)ÀX

…

x*ÀN (x)

⇠
� log(�(Enc(x)T:,y))

+
c…

i=1,iëy
log(1 * �(Enc(x)T:,i))

+
c…

i=1
log(1 * �(Enc(x*)T:,i))

⇡
(14)

Here, � is a hyperparameter to increase the weight of positive
samples. N (x) represents the negative sample set of point x in which
x* À N (x) is a negative sample uniformly generated from the spherical
surface given each data point x. Eq. (14) can be seen as a modified
version of the cross-entropy loss used in binary classification. The first
term is the positive sample term weighted by �. The second term is
the normal negative term used in cross-entropy loss. The third term is
added to consider uniformly sampled locations as negative samples.

Fig. 1 illustrates the whole workflow. During training time, the
image classification module (the orange box) and location classification
module (the blue box) are supervised trained separately. During the
inference time, the probabilities P (yI) and P (yx) computed from these
two modules are multiplied to yield the final prediction.

6. Baselines

In order to understand the advantage of spherical-distance-kept
location encoders, we compare different versions of Sphere2Vec with
multiple baselines:

• tile divides the study area A (e.g., the earth’s surface) into grids
with equal intervals along the latitude and longitude direction.
Each grid has an embedding to be used as the encoding for every
location x fall into this grid. This is a common practice adopted
by many previous works when dealing with coordinate data (Berg
et al., 2014; Adams et al., 2015; Tang et al., 2015).

• wrap is a location encoder model introduced by Mac Aodha et al.
(2019). Given a location x = (�,�), it uses a coordinate wrap
mechanism to convert each dimension of x into 2 numbers :

PE
wrap

1 (x) = [sin(�), cos(�), sin(2�), cos(2�)]. (15)

Then the results are passed through a multi-layered fully con-
nected neural network NNwrap() which consists of an initial fully
connected layer, followed by a series of h residual blocks, each
consisting of two fully connected layers (k hidden neurons)
with a dropout layer in between. We adopt the official code
of Mac Aodha et al. (2019)6 for this implementation. We can see
that wrap still follows our general definition of location encoders
Enc(x) = NN(PES (x)) where S = 1.

6 http://www.vision.caltech.edu/~macaodha/projects/geopriors/

http://www.vision.caltech.edu/~macaodha/projects/geopriors/
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• wrap + ffn is similar to wrap except that it replaces NNwrap()
with NNffn(), a simple learnable multi-layer perceptron with h

hidden layers and k neurons per layer as that Sphere2Vec has.
wrap + ffn is used to exclude the effect of different NN() on the
performance of location encoders. In the following, all location
encoder baselines use NNffn() as the learnable neural network
component so that we can directly compare the effect of different
position encoding PE

<
S
on the model performance.

• xyz first converts xi = (�i,�i) À S2 into 3D Cartesian coordinates
(x, y, z) centered at the sphere center by following Eq. (16) before
feeding into a multilayer perceptron NN(). Here, we let (x, y, z) to
locate on a unit sphere with radius R = 1. As we can see, xyz is
just a special case of sphereC when S = 1, i.e., PEsphereC

1 .

PE
xyz

S
(x) = [z, x, y] = PE

sphereC

1
= [sin�, cos� cos �, cos� sin �]

(16)

• rbf randomly samples M points from the training dataset as RBF
anchor points {xanchor

m
,m = 1…M}, and use Gaussian kernels

exp
�
*
Òxi * xanchor

m
Ò2

2�2
�
on each anchor points, where � is the

kernel size. Each input point xi is encoded as aM-dimension RBF
feature vector, i.e., PErbf

M
, which is fed into NNffn() to obtain

the location embedding. This is a strong baseline for representing
floating number features in machine learning models used by Mai
et al. (2020b).

• rff , i.e., Random Fourier Features (Rahimi and Recht, 2008;
Nguyen et al., 2017), first encodes location x into a D dimension
vector — PE

rff

D
(x) = '(x) =

˘
2˘
D

∑D

i=1[cos (!T

i
x + bi)] where

!i

i.i.dÌ N (0, �2I) is a direction vector whose each dimension is
independently sampled from a normal distribution. bi is uniformly
sampled from [0, 2⇡]. I is an identity matrix. Each component of
'(x) first projects x into a random direction !i and makes a shift
by bi. Then it wraps this line onto the unit cirle in R2 with the
cosine function. Rahimi and Recht (2008) show that '(x)T '(x®)
is an unbiased estimator of the Gaussian kernal K(x, x®). '(x)
is consist of D different estimates to produce an approximation
with a further lower variance. To make rff comparable to other
baselines, we feed '(x) into NNffn() to produce the final location
embedding.

• grid is a multi-scale location encoder on 2D Euclidean space
proposed by Mai et al. (2020b). Here, we simply treat x = (�,�)
as 2D coordinate. It first use PEgrid

S
(x) shown in Eq. (3) to encode

location x into a multi-scale representation and then feed it into
NNffn() to produce the final location embedding.

• theory is another multi-scale location encoder on 2D Euclidean
space proposed by Mai et al. (2020b). It use a position encoder
PE

theory

S
(x) shown in Eq. (17). Here, x(s) = [�(s),�(s)] = [ �

r(s)
,

�

r(s)
]

and a1 = [1, 0]T , a2 = [*1_2,
˘
3_2]T , a3 = [*1_2,*

˘
3_2]T À R2

are three unit vectors which orient 2⇡_3 apart from each other.
The encoding results are feed into NNffn() to produce the final
location embedding.

PE
theory

S
(x) =

S*1Õ
s=0

3Õ
j=1

[sin(Íx(s), ajÎ), cos(Íx(s), ajÎ)]. (17)

• NeRF indicates a multiscale location encoder adapted from the
positional encoder PE

NeRF

S
(x) used by Neural Radiance Fields

(NeRF) (Mildenhall et al., 2020) and many NeRF variations such
as NeRF-W (Martin-Brualla et al., 2021), S-NeRF (Derksen and
Izzo, 2021), Sat-NeRF (Marí et al., 2022), GIRAFFE (Niemeyer
and Geiger, 2021), etc., which was proposed for novel view
synthesis for 3D scenes. Here, NeRF can be treated as a mul-
tiscale version of xyz. It first converts x = (�,�) À S2 into 3D
Cartesian coordinates (x, y, z) centered at the unit sphere center.

Here, (x, y, z) are normalized to lie in [*1, 1], i.e., R = 1. Differ-
ent from xyz, it uses NeRF-style positional encoder PE

NeRF

S
(x)

in Eq. (18) to process (x, y, z) into a multiscale representation. To
make it comparable with other location encoders, we further feed
PE

NeRF

S
(x) into NNffn() to get the final location embedding.

PE
NeRF

S
(x) =

S*1Õ
s=0

Õ
pÀ{z,x,y}

[sin(2s⇡p), cos(2s⇡p)],

where [z, x, y] = [sin�, cos� cos �, cos� sin �].

(18)

All types of Sphere2Vec as well as all baseline models we compared
except tile share the same model set up — Enc(x) = NN(PES (x)).
The main difference is the position encoder PES (x) used in different
models. PES (x) used by grid, theory, NeRF , and different types of
Sphere2Vec encode the input coordinates in a multi-scale fashion by
using different sinusoidal functions with different frequencies. Many
previous work call this practice ‘‘Fourier input mapping’’ (Rahaman
et al., 2019; Tancik et al., 2020; Basri et al., 2020; Anokhin et al., 2021).
The difference is that grid and theory use the Fourier features from 2D
Euclidean space, NeRF uses the predefined Fourier scales to directly
encode the points in 3D Euclidean space, while our Sphere2Vec uses all
or the subset of Double Fourier Sphere Features to take into account
the spherical geometry and the distance distortion it brings.

All models are implemented in PyTorch. We use the original imple-
mentation of wrap from Mac Aodha et al. (2019) and the implemen-
tation of grid and theory from Mai et al. (2020b). Since the original
implementation of NeRF7 (Mildenhall et al., 2020) is in TensorFlow, we
reimplement NeRF in PyTorch Framework by following their codes.
We train and evaluate each model on a Ubuntu machine with 2 GeForce
GTX Nvidia GPU cores, each of which has 10 GB memory.

7. Theoretical limitations of grid and NeRF

7.1. Theoretical limitations of grid

We first provide mathematic proofs to demonstrate why grid is not
suitable to model spherical distances.

Theorem 3. Let x1, x2 be two points on the same sphere S2 with radius R,
then we have

ÍPEgrid

S
(x1),PE

grid

S
(x2)Î

=
S*1…
s=0

⇠
cos(�(s)

1 * �
(s)
2 ) + cos(�(s)1 * �

(s)
2 )

⇡

=
S*1…
s=0

⇠
cos(

�1 * �2
r(s)

) + cos(
�1 * �2
r(s)

)
⇡
,

(19)

When S = 1, we have

ÍPEgrid

1 (x1),PE
grid

1 (x2)Î = cos(�1 * �2) + cos(�1 * �2), (20)

Theorem 3 is very easy to prove based on the angle difference
formula, so we skip its proof. This result indicates that grid models
the latitude and longitude differences of x1 and x2 independently
rather than spherical distance. This introduces problems when encoding
locations in the polar area. Let us consider data pairs x1 = (�1,�) and
x2 = (�2,�), the distance between them in output space of PEgrid

S
is:

ÒPEgrid

S
(x1) * PE

grid

S
(x2)Ò2

= ÒPEgrid

S
(x1)Ò2 + ÒPEgrid

S
(x2)Ò2

* 2ÍPEgrid

S
(x1),PE

grid

S
(x2)Î

= 2 * 2
S*1…
s=0

cos(
�1 * �2
r(s)

)

(21)

7 https://github.com/bmild/nerf

https://github.com/bmild/nerf
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This distance stays as a constant for any values of �. However, when
� varies from * ⇡

2 to
⇡

2 , the actual spherical distance changes in a wide
range, e.g., the actual distance between the data pair at � = * ⇡

2 (South
Pole) is 0 while the distance between the data pair at � = 0 (Equator),
gets the maximum value. This problem in measuring distances also
has a negative impact on grid’s ability to model distributions in areas
with sparse sample points because it is hard to learn the true spherical
distances.

In fact, in our experiments (S > 1), we observe that grid reaches
peak performance at much smaller rmin than that of Sphere2Vec en-
codings. Moreover, sphereC outperforms grid near polar regions where
grid produces large distances though the spherical distances are small
(A, B in Fig. 1).

7.2. Theoretical limitations of NeRF

Since NeRF is widely used for 3D representation learning (Milden-
hall et al., 2020; Niemeyer and Geiger, 2021), a natural question is why
not just use NeRF for the geographic prediction tasks on the spherical
surface, which can be embedded in the 3D space. In this section, we
discuss the theoretical limitations of NeRF 3D multiscale encoding in
the scenario of spherical encoding.

Theorem 4. Let x1, x2 À S2 be two points on the spherical surface. Given
their 3D Euclidean representations, i.e., x1 = (z1, x1, y1), x2 = (z2, x2, y2),
we define �x = x1 * x2 = [z1 * z2, x1 * x2, y1 * y2] = [�xz,�xx,�xy] as the
difference between them in the 3D Euclidean space. Under NeRF encoding
(Eq. (18)), the distance between them satisfies

ÒPENeRF

S
(x1) * PE

NeRF

S
(x2)Ò2

=
S*1…
s=0

⇠
4 sin2(2s*1⇡�xz) + 4 sin2(2s*1⇡�xx)

+ 4 sin2(2s*1⇡�xy)
⇡

=
S*1…
s=0

4ÒYsÒ2,

(22)

where Ys = [sin(2s*1⇡�xz), sin(2s*1⇡�xx), sin(2s*1⇡�xy)].

See the proof in Appendix A.2.

Theorem 5. NeRF is not an injective function.

Theorem 5 is very easy to prove based on Theorem 4. Since NeRF

requires R = 1, when x1 = (1, 0, 0) and x2 = (*1, 0, 0), i.e., they are the
north and south pole, we have �x = [2, 0, 0]. The distance between their
multiscale NeRF encoding is,

ÒPENeRF

S
(x1) * PE

NeRF

S
(x2)Ò2 =

S*1…
s=0

4 sin2(2s⇡) = 0, (23)

Since Eq. (22) is symmetrical for the x, y, and z axis, we will have the
same problems when x1 = (0, 1, 0), x2 = (0,*1, 0) or x1 = (0, 0, 1), x2 =
(0, 0,*1). This indicates that even though these three pairs of points
have the largest spherical distances, they have identical NeRF mul-
tiscale representations. This illustrates that NeRF is not an injective
function.

Theorem 4 shows that, unlike Sphere2Vec, the distance between
two NeRF location embedding is not a monotonic increasing function
of �D, but a non-monotonic function of the coordinates of �x, the axis-
wise differences between two points in 3D Euclidean space. So NeRF

does not preserve spherical distance for spherical points, but rather
models �xz,�xx,�xy separately.

8. Experiments with synthetic datasets

Theorems 1 and 2 provide theoretical guarantees of Sphere2Vec for
spherical distance preservation. To empirically verify the effectiveness
of Sphere2Vec in a controlled setting, we construct a set of synthetic
datasets and evaluate our Sphere2Vec and all baseline models on these
datasets. To make a simpler task, different from the setting shown in
Fig. 1, we skip the image encoder component and only focus on the
location encoder training and evaluation. For each synthetic dataset,
we simulate a set of spherical coordinates as the geo-locations of images
to train different location encoders. And in the evaluation step, the
performances of different models are computed directly based on P (yx)
only, but not P (yx)P (yI).

8.1. Synthetic dataset generation

We utilize the von Mises–Fisher distribution (vMF ) (Izbicki et al.,
2019a), an analogy of the 2D Gaussian distribution on the spherical
surface S2 to generate synthetic data points.8 The probability density
function of vMF is defined as

vMF (x;�, ) = 

2⇡ sinh() exp(�
T
�(x)) (24)

where �(x) = [x, y, z] = [cos� cos �, cos� sin �, sin�], which converts x
into a coordinates in the 3D Euclidean space on the surface of a unit
sphere. A vMF distribution is controlled by two parameters – the mean
direction � À R3 and concentration parameter  À R+. � indicates the
center of a vMF distribution which is a 3D unit vector.  is a positive
real number which controls the concentration of vMF . A higher 

indicates more compact vMF distribution, while  = 1 correspond to
a vMF distribution with standard deviation covering half of the unit
sphere.

To simulate multi-modal distributions, we generate spherical coor-
dinates based on a mixture of von Mises–Fisher distributions (MvMF).
We assume C classes with even prior, and each classes follows a vMF

distribution. To create a dataset we first sample C sets of parameters
{(�i, i)} (C = 50). Then we draw SP samples, i.e., spherical coordi-
nates, for each class (SP = 100). So in total, each generated synthetic
dataset has 5000 data points for 50 balanced classes.

The concentration parameter i is sampled by first drawing r from
an uniform distribution U (min, max), and then take the square r

2.
The square helps to avoid sampling many large i which yield very
concentrated vMF distributions that are rather easy to be classified.
We fix min = 1 and vary max in [16, 32, 64, 128].

For the center parameter �i we adopt two sampling approaches:

1. Uniform Sampling: We uniformly sample C centers (�i) from
the surface of a unit sphere. We generate four synthetic datasets
(for different values of max) and indicate them as U1, U2, U3,
U4. See Table 1 for the parameters we use to generate these
datasets.

2. Stratified Sampling: We first evenly divide the latitude range
[*⇡_2,⇡_2] into N� intervals. Then we uniformly sample C�
centers (�i) from the spherical surface defined by each lati-
tude interval. Since the latitude intervals in polar regions have
smaller spherical surface area, this stratified sampling method
has higher density in the polar regions. We keepN�ùC� = C = 50
fixed and varies N� in [5, 10, 25, 50]. Combined with the 4 max

choices, this procedure yields 16 different synthetic datasets. We
denote them as Si.j. See Table 1 for the parameters we use to
generate these datasets.

8 https://www.tensorflow.org/probability/api_docs/python/tfp/
distributions/VonMisesFisher#sample

https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/VonMisesFisher#sample
https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/VonMisesFisher#sample
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Fig. 5. The data distributions of four synthetic datasets (U1, U2, U3, and U4) generated from the uniform sampling method. (e) shows the U4 dataset in a 3D Euclidean space. We
can see that if we treat these datasets as 2D data points as grid and theory, the vMF distributions in the polar areas will be stretched and look like 2D anisotropic multivariate
Gaussian distributions. However, this kind of systematic bias can be avoided if we use a spherical location encoder as Sphere2V ec. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Figs. 5(a)–5(d) visualize the data point distributions of U1, U2, U3,
U4 which derived from the uniform sampling method in 2D space.
Fig. 5(e) visualized the U4 dataset in a 3D Euclidean space. We can see
that when max is larger, the variation of point density among different
vMF distributions becomes larger. Some vMF are very concentrated
and the resulting data points are easier to be classified. Moreover,
if we treat these datasets as 2D data points as grid and theory do,

vMF distributions in the polar areas will be stretched to very extended
shapes making model learning more difficult. However, this kind of
systematic bias can be avoided if we use a spherical location encoder
as Sphere2Vec.

Fig. 6 visualizes the data distributions of four synthetic datasets
with stratified sampling method. They have different N� but the same
max. We can see that when N� increases, a more fine-grain stratified
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Fig. 6. The data distributions of four synthetic datasets (S1.3, S2.3, S3.3, and S4.3) generated from the stratified sampling method with 
max

= 64. We can see that when N
�

increases, a more fine-grain stratified sampling is carried out. The resulting dataset has a larger data bias towards the polar areas. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

sampling is carried out. The resulting dataset has a larger data bias
towards the polar areas.

8.2. Synthetic dataset evaluation results

We evaluate all baseline models as well as sphereM+ on those
generated 20 synthetic datasets as described above. For each model,
we do grid search on their hyperparameters for each dataset including
supervised learning rate lr, the number of scales S, the minimum
scaling factor rmin, the number of hidden layers and number of neurons
used in NNffn(�) – h and k. The best performance of each model is
reported in Table 1. We use Top1 as the evaluation metric. The Topk
classification accuracy is defined as follow

TOPk = 1
M

M…
i=1

1(Rank(xi, yi) Œ k) (25)

whereM = {(xi, yi)} is a set of location xi and label yi tuples which indi-
cates the whole validation or testing set. M denotes the total number
of samples in M. Rank(xi, yi) indicates the rank of the ground truth
label yi in the ranked listed of all classes based on the probability score
P (yixi) given by a specific location encoder. A lower rank indicates a
better model prediction. 1(<) is a function return 1 when the condition
< is true and 0 otherwise. A higher Topk indicates a better performance.

Some observations can be made from Table 1:

1. sphereM+ is able to outperform all baselines on all 20 synthetic
datasets. The absolute Top1 improvement can go up to 2% and

the error rate deduction can go up to 30.8%. This shows the
robustness of sphereM+.

2. When the dataset is fairly easy to classify (i.e., all baseline
models can produce 95+% Top1 accuracy), sphereM+ is still
able to further improve the performance and gives a very large
error rate reduction (up to 30.8%). This indicates that sphereM+
is very robust and reliable for datasets with different distribution
characteristics.

3. Comparing the error rate of different stratified sampling gener-
ated datasets (S1.j–S4.j) we can see that when we keep max fixed
and increase N� , the relative error reduction ER become larger.
Increasing N� means we do a more fine-grain stratified sampling.
The resulting datasets should sample more vMF distributions
in the polar regions. This phenomenon shows that when the
dataset has a larger data bias towards the polar area, we
expect sphereM+ to be more effective.

4. From Table 1, we can also see that among all the baseline
methods, grid achieves the best performances on most datasets
(12 out of 20), followed by theory (5 out of 20). This observation
aligns the experiment results from Mai et al. (2020b) which
shows the advantages of multiscale location representation ver-
sus single-scale representations.

5. It is interesting to see that although NeRF is also a multi-
scale location encoding approach, it underperforms grid and
theory on all synthetic datasets. We guess the reasons are (1)
NeRF treats geo-coordinates as 3D Euclidean coordinates and
ignores the fact that they are all on the spherical surface which
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Table 1
Compare sphereM+ to baselines on synthetic datasets. We use Top1 as the evaluation metric. U1–U4 indicate 4 synthetic datasets generated based on the uniform sampling
approach (see Section 8.1). S1.1–S4.4 indicate 16 synthetic datasets generated based on the stratified sampling approach. For all datasets have C = 50 and SP = 100. For each
model, we perform grid search on its hyperparameters for each dataset and report the best Top1 accuracy. The �T op1 column shows the absolute performance improvement of
sphereM+ over the best baseline model (bolded) for each dataset. The ER column shows the relative reduction of error compared to the best baseline model (bolded). We can
see that sphereM+ can outperform all other baseline models on all of these 20 synthetic datasets. The absolute Top1 accuracy improvement can be as much as 2.0% for datasets
with lower precisions, and the error rate deduction can be as much as 30.8% for datasets with high precisions.
ID Method N

�
C
�


min


max

xyz wrap wrap+ffn rff rbf grid theory NeRF sphereM+ �T op1 ER

U1

uniform – – 1

16 67.2 67.0 66.9 66.8 46.6 68.6 67.8 62.7 69.2 0.6 *1.9
U2 32 73.1 75.1 73.9 72.3 58.4 76.2 76.5 72.5 77.4 0.9 *3.8
U3 64 86.1 90.1 88.3 89.0 91.7 92.3 92.7 90.1 93.3 0.6 *8.2
U4 128 91.8 94.9 92.3 92.5 97.4 97.5 97.7 95.7 98.0 0.3 *13.0

S1.1

stratified

5 10 1

16 68.7 69.7 68.8 68.6 70.5 69.5 69.4 66.5 72.3 1.8 *6.1
S1.2 32 76.7 79.1 78.1 78.4 81.1 81.2 79.2 76.1 82.9 1.7 *9.0
S1.3 64 91.2 92.5 92.9 92.6 94.7 94.8 94.9 92.1 95.4 0.5 *9.8
S1.4 128 86.5 91.6 88.3 92.4 93.5 95.2 94.9 92.4 96.1 0.9 *18.7

S2.1

10 5 1

16 70.5 71.3 70.7 70.4 46.6 72.0 70.7 67.0 74.0 2.0 *7.1
S2.2 32 76.1 79.7 78.2 78.6 61.2 80.9 80.5 77.6 82.3 1.4 *7.3
S2.3 64 88.0 89.9 88.2 88.5 80.0 92.5 91.9 89.0 93.3 0.8 *10.7
S2.4 128 94.4 96.6 96.7 95.5 94.0 97.6 97.6 96.2 98.1 0.5 *20.8

S3.1

25 2 1

16 66.2 66.3 64.7 65.6 67.1 66.7 66.7 61.3 68.3 1.2 *3.6
S3.2 32 80 82.5 80.7 81.6 83.4 84.5 82.1 80.3 85.9 1.4 *9.0
S3.3 64 85.4 86.0 85.7 86.2 89.1 89.6 88.6 86.1 91.0 1.4 *13.5
S3.4 128 93.2 96.0 94.8 95.7 97.2 97.3 97.4 96.7 98.0 0.6 *23.1

S4.1

50 1 1

16 64.8 67.4 66.0 66.3 66.9 67.1 64.5 62.9 68.4 1 *3.1
S4.2 32 75.6 78.2 77.4 77.4 78.4 80.1 78.3 75.7 81.0 0.9 *4.5
S4.3 64 91.3 93.9 93.7 93.8 95.0 95.2 94.0 92.5 96.1 0.9 *18.7
S4.4 128 94.3 95.5 94.4 94.7 95.4 97.4 96.5 95.2 98.2 0.8 *30.8

Table 2
Dataset statistics on different geo-aware image classification datasets. ‘‘Train’’, ‘‘Val’’,
and ‘‘Test’’ column indicates the number of data samples in each dataset. ‘‘#Class’’
column indicates the total number of classes for each dataset.
Task Dataset Train Val Test #Class

Species Recog.

BirdSnap 19133 443 443 500
BirdSnap† 42490 980 980 500
NABirds† 22599 1100 1100 555
iNat2017 569465 93622 – 5089
iNat2018 436063 24343 – 8142

Flickr YFCC 66739 4449 4449 100

RS fMoW 363570 53040 – 62

yields more modeling freedom and makes it more difficult
for NNffn to learn; (2) NeRF uses predefined Fourier scales,
i.e., {20, 21,… , 2s,… , 2S*1}, while grid, theory, and Sphere2V ec

are more flexible in terms of Fourier scale choices which are
controlled by rmax and rmin.

9. Experiment with geo-aware image classification

Next, we empirically evaluate the performances of our Sphere2Vec
as well as all 9 baseline methods on 7 real-world datasets for the
geo-aware image classification task.

9.1. Dataset

More specifically, we test the performances of different location
encoders on seven datasets from three different problems: fine-grained
species recognition, Flickr image recognition, and remote sensing im-
age classification. The statistics of these seven datasets are shown in
Table 2. Figs. 7 and 8 show the spatial distributions of the training,
validation/testing data of these datasets.

Fine-grained species recognition. We use five widely used fine-grained
species recognition image datasets in which each data sample is a tuple
of an image I, a location x, and its ground truth class y:

1. BirdSnap: An image dataset about bird species based on Bird-
Snap dataset (Berg et al., 2014) which consists of 500 bird

species that are commonly found in the North America. The
original BirdSnap dataset (Berg et al., 2014) did not provided
the location metadata. Mac Aodha et al. (2019) recollected the
images and location data based on the original image URLs.

2. BirdSnap†: An enriched BirdSnap dataset constructed
by Mac Aodha et al. (2019) by simulating locations, dates, and
photographers from the eBrid dataset (Sullivan et al., 2009).

3. NABirds†: Another image dataset about North American bird
species constructed by Mac Aodha et al. (2019) based on the
NABirds dataset (Van Horn et al., 2015) in which the location
metadata were also simulated from the eBrid dataset (Sullivan
et al., 2009).

4. iNat2017: The species recognition dataset used in the iNaturalist
2017 challenges9 (Van Horn et al., 2018) with 5089 unique
categories.

5. iNat2018: The species recognition dataset used in the iNaturalist
2018 challenges10 (Van Horn et al., 2018) with 8142 unique
categories.

Flickr image classification. We use the Yahoo Flickr Creative Commons
100M dataset11 (YFCC100M-GEO100 dataset) which is a set of geo-
tagged Flickr photos collected by Yahoo! Research. Here, we denote
this dataset as YFCC. YFCC has been used in Tang et al. (2015)
and Mac Aodha et al. (2019) for geo-aware image classification. See
Figs. 8(a) and 8(b) for the spatial distributions of the training and test
dataset of YFCC.

Remote sensing image classification. We use the Functional Map of the
World dataset (denoted as fMoW) (Klocek et al., 2019) as one repre-
sentative remote sensing (RS) image classification dataset. The fMoW
dataset contains about 363K training and 53K validation remote sens-
ing images which are classfied into 62 different land use types. They
are 4-band or 8-band multispectral remote sensing images. 4-band
images are collected from the QuickBird-2 or GeoEye-1 satellite systems
while 8-band images are from WorldView-2 or WorldView-3. We use

9 https://github.com/visipedia/inat_comp/tree/master/2017
10 https://github.com/visipedia/inat_comp/tree/master/2018
11 https://yahooresearch.tumblr.com/post/89783581601/one-hundred-
million-creative-commons-flickr-images

https://github.com/visipedia/inat_comp/tree/master/2017
https://github.com/visipedia/inat_comp/tree/master/2018
https://yahooresearch.tumblr.com/post/89783581601/one-hundred-million-creative-commons-flickr-images
https://yahooresearch.tumblr.com/post/89783581601/one-hundred-million-creative-commons-flickr-images
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Fig. 7. Training, validation/testing locations of different fine-grained species recognition datasets. Different datasets use either validation or testing dataset to evaluate model
performance. So we plot their corresponding image geographic distributions.

Fig. 8. Training and validation/testing locations of Flickr image recognition (YFCC) and RS image classification (fMoW).

the fMoW-rgb version of fMoW dataset which are JPEG compressed
version of these remote sensing images with only the RGB bands. The
reason we pick fMoM is that (1) the fMoW dataset contains RS images
with diverse land use types collected all over the world (see Figs. 8(c)
and 8(d)); (2) it is a large RS image dataset with location metadata
available. In contrast, the UC Merced dataset (Yang and Newsam, 2010)
consist of RS images collected from only 20 US cities. The EuroSAT
dataset (Helber et al., 2019) contained RS images collected from 30
European countries. And the location metadata of the RS images from
these two datasets are not publicly available. Global coverage of the
RS images is important in our experiment since we focus on studying
how the map projection distortion problem and spherical-to-Euclidean
distance approximation error can be solved by Sphere2Vec on a global
scale geospatial problem. The reason we use the RGB version is that
this dataset version has an existing pretrained image encoder — MoCo-
V2+TP (Ayush et al., 2020) available to use. We do not need to train
our own remote sensing image encoder.

9.2. Geo-aware image classification

To test the effectiveness of Sphere2Vec, we conduct geo-aware image
classification experiments on seven large-scale real-world datasets as
we described in Section 9.1.

Beside the baselines described in Section 6, we also consider
No Prior, which represents an full supervised trained image classifier
without using any location information, i.e., predicting image labels
purely based on image information P (yI).

Table 3 compares the Top1 classification accuracy of five variants
of Sphere2Vec models against those of nine baseline models as we
discussed in Section 6.

Similar to Eq. (25), the Topk classification accuracy on geo-aware
image classification task is defined as follow

TOPk = 1
M

M…
i=1

1(Rank(xi, Ii, yi) Œ k) (26)

where M = {(xi, Ii, yi)} is a set of location xi, image Ii, and label yi
tuples which indicates the whole validation or testing set. M denotes
the total number of samples in M. Rank(xi, Ii, yi) indicates the rank of
the ground truth label yi in the ranked listed of all classes based on the
probability score P (yixi)P (yiIi) given by a specific geo-aware image
classification model. 1(<) is defined the same as that in Eq. (25).

From Table 3, we can see that the Sphere2Vec models outperform
baselines on all seven datasets, and the variants with linear number

of DFS terms (sphereC, sphereC+, sphereM , and sphereM+) works as
well as or even better than dfs. This clearly show the advantages
of Sphere2Vec to handle large-scale geographic datasets. On the five
species recognition datasets, sphereM+ achieves the best performance
while sphereM and dfs achieve the best performance on YFCC and
fMoW correspondingly. Similar to our findings in the synthetic dataset
experiments, grid and theory also outperform or are comparable to
NeRF on all 7 real-world datasets.

9.3. Hyperparameter analysis

In order to find the best hyperparameter combinations for each
model on each dataset, we use grid search to do hyperparameter tuning
including supervised training learning rate lr = [0.01, 0.005, 0.002, 0.001,
0.0005, 0.00005], the number of scales S = [16, 32, 64], the minimum
scaling factor rmin = [0.10.050.020.010.0050.0010.0001], the number of
hidden layers and number of neurons used in NNffn(�) – h = [1, 2, 3, 4]
and k = [256, 512, 1024], the dropout rate in NNffn(�) – dropout =
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]. We also test multiple options for the non-
linear function used for NNffn(�) including ReLU, LeakyReLU, and
Sigmoid. The maximum scaling factor rmax can be determined based
on the range of latitude � and longitude �. For grid and theory, we
use rmax = 360 and for all Sphere2Vec, we use rmax = 1. As for rbf

and rff , we also tune their hyperparameters including kernel size
� = [0.5, 1, 2, 10] as well as the number of kernels M = [100, 200, 500].

Based on hyperparameter tuning, we find out using 0.5 as the
dropout rate and ReLU as the nonlinear activation function for NNffn(�)
works best for every location encoder. Moreover, we find out lr and
rmin are the most important hyperparameters. Table 4 shows the best
hyperparameter combinations of different Sphere2Vec models on differ-
ent geo-aware image classification datasets. We use a smaller S for dfs
since it has O(S2) terms while the other models have O(S) terms. dfs
with S = 8 yield a similar number of terms to the other models with
S = 32 (see Table 5). Interestingly, all five Sphere2Vec models (sphereC,
sphereC+, sphereM , sphereM+, and dfs) show the best performance
on the first six datasets with the same hyperparameter combinations.
On the fMoW dataset, five Sphere2Vec achieve the best performances
with different rmin but sharing other hyperparameters. This indicates
that the proposed Sphere2Vec models show similar performance over
different hyperparameter combinations.

We also find out that using a deeper MLP as NNffn(�), i.e., a larger
h does not necessarily lead to better classification accuracy. In many
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Table 3
The Top1 classification accuracy of different geo-aware image classification models over three tasks: species recognition, Flickr image classification (YFCC), and remote sensing
(RS) image classification (fMOW (Christie et al., 2018)). See Section 6 for the description of each baseline. tile indicates the results reported by Mac Aodha et al. (2019). wrap <
indicates the original results reported by Mac Aodha et al. (2019) while wrap is the best results we obtained by rerunning their code. Since the test sets for iNat2017, iNat2018,
and fMoW are not open-sourced, we report results on validation sets. The best performance of the baseline models and Sphere2Vec are highlighted as bold. All compared models
use location only while ignoring time. The original result reported by Ayush et al. (2020) for No Prior on fMOW is 69.05. We obtain 69.84 by retraining their implementation.
‘‘Avg’’ column indicates the average performance of each model on all five species recognition datasets. See Section 9.3 for hyperparameter tuning details.
Task Species Recognition Flickr RS

Dataset BirdSnap BirdSnap† NABirds† iNat2017 iNat2018 Avg YFCC fMOW

P(yx) - Prior Type Test Test Test Val Val – Test Val

No Prior (i.e. image model) 70.07 70.07 76.08 63.27 60.20 67.94 50.15 69.84
tile (Tang et al., 2015) 70.16 72.33 77.34 66.15 65.61 70.32 50.43 –
xyz 71.85 78.97 81.20 69.39 71.75 74.63 50.75 70.18
wrap < (Mac Aodha et al., 2019) 71.66 78.65 81.15 69.34 72.41 74.64 50.70 –
wrap 71.87 79.06 81.62 69.22 72.92 74.94 50.90 70.29
wrap + ffn 71.99 79.21 81.36 69.40 71.95 74.78 50.76 70.28
rbf (Mai et al., 2020b) 71.78 79.40 81.32 68.52 71.35 74.47 51.09 70.65
rff (Rahimi et al., 2007) 71.92 79.16 81.30 69.36 71.80 74.71 50.67 70.27
Space2Vec-grid (Mai et al., 2020b) 71.70 79.72 81.24 69.46 73.02 75.03 51.18 70.80
Space2Vec-theory (Mai et al., 2020b) 71.88 79.75 81.30 69.47 73.03 75.09 51.16 70.81
NeRF (Mildenhall et al., 2020) 71.66 79.66 81.32 69.45 73.00 75.02 50.97 70.64

Sphere2Vec-sphereC 72.11 79.80 81.88 69.68 73.29 75.35 51.34 71.00
Sphere2Vec-sphereC+ 72.41 80.11 81.97 69.75 73.31 75.51 51.28 71.03
Sphere2Vec-sphereM 72.06 79.84 81.94 69.72 73.25 75.36 51.35 70.99
Sphere2Vec-sphereM+ 72.24 80.57 81.94 69.67 73.80 75.64 51.24 71.10
Sphere2Vec-dfs 71.75 79.18 81.39 69.65 73.24 75.04 51.15 71.46

Table 4
The best hyperparameter combinations of Sphere2Vec models on different geo-aware
image classification datasets. The best S is 8 for dfs and 32 for all others; and we fix
the maximum scale r

max
as 1. Here, r

min
indicates the minimum scale. h and k are the

number of hidden layers and the number of neurons in NN() respectively.
Dataset Model lr r

min
k

BirdSnap All 0.001 10*6 512
BirdSnap† All 0.001 10*4 1024
NABirds† All 0.001 10*4 1024
iNat2017 All 0.0001 10*2 1024
iNat2018 All 0.0005 10*3 1024

YFCC All 0.001 5 ù 10*3 512

fMoW

sphereC

0.01

10*3

512
sphereC+ 10*4
sphereM 10*3
sphereM+ 5 ù 10*4
dfs 10*4

Table 5
Dimension of position encoding for different models in terms of total scales S.
Model sphereC sphereC+ sphereM sphereM+ dfs

Dim. 3S 6S 5S 8S 4S2 + 4S

cases, one hidden layer – h = 1 achieves the best performance for many
kinds of location encoders. We discuss this in detail in Section 9.4.2.

Based on the hyperparameter tuning, the best hyperparameter com-
binations are selected for different models on different datasets. The
best results are reported in Table 3. Note that each model has been
running for 5 times and its mean Top1 score is reported. Due to the limit
of space, the standard deviation of each model’s performance on each
dataset is not included in Table 3. However, we report the standard
deviations of all models’ performance on three datasets in Section 9.4.2.

9.4. Model performance sensitivity analysis

9.4.1. Model performance distribution comparison
To have a better understanding of the performance difference be-

tween Sphere2Vec and all baseline models, we visualize the distri-
butions/histograms of Top1 accuracy scores of different models on
the BirdSnap†, NABirds†, iNat2018, and YFCC dataset under different

hyperparameter combinations. More specifically, after the hyperpa-
rameter tuning process described in Section 9.3, for each location
encoder and each dataset we get a collection of trained models with
different hyperparameter combinations. They correspond to a distri-
bution/histograms of Top1 accuracy scores for this model on the re-
spective dataset. Fig. 9 compares the histogram of sphereM+ and all
baseline models on four datasets. We can see that the histogram of
sphereM+ is clearly above those of all baselines. This further demon-
strates the superiority of Sphere2Vec over all baselines.

9.4.2. Performance sensitivity to the depth of MLP
To further understand how the performances of different loca-

tion encoders vary according to the depth of the multi-layer percep-
tron NNffn(), we conduct a performance sensitivity analysis. Table 6
is a complementary of Table 3 which compares the performance of
sphereM+ with all baseline models on the geo-aware image classifi-
cation task. The results on three datasets are shown here including
BirdSnap†, NABirds†, and iNat2018. For each model, we vary the depth
of its NNffn(), i.e., h = [1, 2, 3, 4]. The best evaluation results with each
h are reported. Moreover, we run each model with one specific h 5
times and report the standard deviation of the Top1 accuracy, indicated
in ‘‘()’’. Several observations can be made based on Table 6:

1. Although the absolute performance improvement between
sphereM+ and the best baseline model is not very large —
0.91%, 0.62%, and 0.77% for three datasets respectively, these
performance improvements are statistically significant
given the standard deviations of these Top1 scores.

2. These performance improvements are comparable to those
from the previous studies on the same tasks. In other words,
the small margin is due to the nature of these datasets. For ex-
ample, Mai et al. (2020b) showed that grid or theory has 0.79%,
0.44% absolute Top1 accuracy improvement on BirdSnap† and
NABirds† dataset respectively. Mac Aodha et al. (2019) showed
that wrap has 0.09%, 0%, 0.04% absolute Top1 accuracy im-
provement on BirdSnap, BirdSnap† and NABirds† dataset. Here,
we only consider the results of wrap that only uses location
information, but not temporal information. Although Mac Aodha
et al. (2019) showed that compared with tile and nearest neigh-
bor methods, wrap has 3.19% and 3.71% performance improve-
ment on iNat2017 and iNat2018 dataset, these large margins are
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Fig. 9. The model performance (Top1 accuracy) distributions/histograms of different models under different hyperparameter combinations on (a) the BirdSnap† dataset, (b) the
NABirds† dataset, (c) the iNat2018 dataset, and (d) the YFCC dataset. X axis: the Top1 accuracy scores of the respective model; Y axis: the frequency of different hyperparameter
combinations of the same model falling in the same Top1 Accuracy bin. In all four plots, each color indicate a Top1 accuracy histogram of one specific model on a specific dataset.
This histogram shows the model’s sensitivity towards different hyperparameter combinations. We can see that in all four plots, the histogram of sphereM+ (the blue histogram)
are clearly different from all baseline models’ histograms. This shows the clear advantage of sphereM+ over all baselines. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

mainly because the baselines they used are rather weak. When
we consider the typical rbf and rff (Rahimi et al., 2007) used in
our study, their performance improvements are down to *0.02%
and 0.61%.

3. By comparing the performances of the same model with differ-
ent depths of its NNffn(), i.e., h, we can see that the model
performance is not sensitive to h. In fact, in most cases, one
layer NNffn() achieves the best result. This indicates that the
depth of the MLP does not significantly affect the model
performance and a deeper MLP does not necessarily lead
to a better performance. In other words, the systematic bias
(i.e., distance distortion) introduced by grid, theory, and
NeRF cannot later be compensated by a deep MLP. It shows
the importance of designing a spherical-distance-aware location
encoder.

9.4.3. Ablation studies on approaches for image and location fusion
In Section 5.2, we discuss how we fusion the predictions from the

image encoder and location encoder together for the final model pre-
diction. However, there are other ways to fuse the image and location
information. In this section, we conduct ablation studies on different
image and location fusion approaches:

• Post Fusion is the method we adopt from Mac Aodha et al. (2019)
which is illustrated in Fig. 1. The image encoder F(�) and location
encoder Enc(�) are trained separately and their final predictions
are combined.

• Concat (Img. Finetune) indicates a method in which the image
embedding F(I) and the location embedding Enc(x) are con-
catenated together and fed into a softmax layer for the final
prediction. The whole architecture is trained end-to-end.
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Table 6
The impact of the depth h of multi-layer perceptrons NNffn() on Top1 accuracy for
various models. The numbers in ‘‘()’’ indicates the standard deviations estimated from 5
independent train/test runs. We find that the model performances are not very sensitive
to NNffn(), and, in most cases, one layer NNffn() achieve the best result. In other words,
the larger performance gaps in fact come from different PE

S
(�) we use. Moreover, given

the performance variance of each model, we can see that sphereM+ outperforms other
baseline models on all these three datasets and the margins are statistically significant.
The same conclusion can be drawn based on our experiments on other datasets. Here,
we only show results on three datasets as an illustrative example.
Dataset BirdSnap† NABirds† iNat2018

h Test Test Val

xyz

1 78.81 (0.10) 81.08 (0.05) 71.60 (0.08)
2 78.83 (0.10) 81.20 (0.09) 71.70 (0.02)
3 78.97 (0.06) 81.11 (0.06) 71.75 (0.04)
4 78.84 (0.09) 81.02 (0.03) 71.71 (0.03)

wrap

1 79.04 (0.13) 81.60 (0.04) 72.89 (0.08)
2 78.94 (0.13) 81.62 (0.04) 72.84 (0.07)
3 79.08 (0.15) 81.53 (0.02) 72.92 (0.05)
4 79.06 (0.11) 81.51 (0.09) 72.77 (0.06)

wrap + ffn

1 78.97 (0.09) 81.23 (0.06) 71.90 (0.05)
2 79.02 (0.15) 81.36 (0.04) 71.95 (0.05)
3 79.21 (0.14) 81.35 (0.05) 71.94 (0.04)
4 79.06 (0.09) 81.27 (0.13) 71.93 (0.04)

rbf

1 79.40 (0.13) 81.32 (0.08) 71.02 (0.18)
2 79.38 (0.12) 81.22 (0.11) 71.29 (0.20)
3 79.40 (0.04) 81.31 (0.07) 71.35 (0.21)
4 79.25 (0.05) 81.30 (0.07) 71.21 (0.19)

rff

1 78.96 (0.18) 81.27 (0.07) 71.76 (0.06)
2 78.97 (0.04) 81.28 (0.05) 71.71 (0.09)
3 79.07 (0.12) 81.30 (0.11) 71.80 (0.04)
4 79.16 (0.13) 81.22 (0.11) 71.46 (0.05)

grid

1 79.72 (0.07) 81.24 (0.06) 73.02 (0.02)
2 79.05 (0.06) 81.09 (0.07) 72.87 (0.05)
3 79.23 (0.12) 80.95 (0.14) 72.69 (0.05)
4 78.97 (0.10) 80.71 (0.10) 72.51 (0.07)

theory

1 79.75 (0.17) 81.23 (0.02) 73.03 (0.09)
2 79.08 (0.20) 81.30 (0.11) 72.70 (0.02)
3 78.94 (0.19) 81.00 (0.09) 72.49 (0.08)
4 79.07 (0.14) 80.64 (0.14) 72.35 (0.07)

NeRF

1 79.66 (0.00) 81.27 (0.00) 73.00 (0.01)
2 79.65 (0.02) 81.29 (0.00) 72.97 (0.03)
3 79.40 (0.05) 81.32 (0.01) 72.88 (0.02)
4 79.24 (0.04) 81.23 (0.00) 72.80 (0.02)

sphereM+

1 80.57 (0.08) 81.87 (0.02) 73.80 (0.05)
2 79.82 (0.14) 81.83 (0.04) 73.42 (0.06)
3 80.03 (0.08) 81.94 (0.04) 73.40 (0.05)
4 79.90 (0.15) 81.84 (0.09) 73.20 (0.04)

Table 7
Ablation Studies on different ways to combine image and location information on the
iNat2018 dataset. ‘‘Model’’ row indicates different methods to fuse image and location
information. ‘‘F(�)’’ and ‘‘Enc(�)’’ indicates the type of image encoder and location
encoder used for each model. ‘‘F(�) Train’’ denotes different ways to train the image
encoder. ‘‘Frozen’’ means we use an InceptionV3 network pre-trained on ImageNet as
an image feature extractor and freeze its learnable parameters while only finetuning
the last softmax layer. ‘‘Finetune’’ means we finetune the whole image encoder F(�).
Model Concat (Frozen) Concat (Finetune) Post Fusion

F(�) InceptionV3 InceptionV3 InceptionV3
F(�) Train Frozen Finetune Finetune
Enc(�) sphereM+ sphereM+ sphereM+
Top1 48.74 73.35 73.72

• Concat (Img. Frozen) indicates the same model architecture
as Concat (Img. Finetune). The only difference is that F(�) is
initialized by a pretrained weight and its learnable parameters
are frozen during the image and location join training.

We conduct experiments on iNat2018 dataset and the results are
shown in Table 7. We can see that:

• Post Fusion, the method we adopt in our study, achieves the best
Top1 score and outperforms both Concat approaches. This result
is aligned with the results of Chu et al. (2019).

• Concat (Img. Frozen) shows a significantly lower performance
than Concat (Img. Finetune). This is understandable and consistent
with the existing literature (Ayush et al., 2020) since the linear
probing method, Concat (Img. Frozen), usually underperforms a
fully fine-tuning method, Concat (Img. Finetune).

• Although Post Fusion only shows a small margin over Concat (Img.
Finetune), the training process of Post Fusion is much easier since
we can separate the training process of the image encoder F(�) and
location encoder Enc(�). In contrast, Concat (Img. Finetune) has to
train a large network which is hard to do hyperparameter tuning.

9.5. Understand the superiority of Sphere2Vec

Based on the theoretical analysis of Sphere2Vec in Section 7, we
make two hypotheses to explain the superiority of Sphere2Vec over 2D
Euclidean location encoders such as theory, grid:

A: Our spherical-distance-kept Sphere2Vec have a significant advan-
tage over 2D location encoders in the polar area where we expect
a large map projection distortion.

B: Sphere2Vec outperforms 2D location encoders in areas with sparse
sample points because it is difficult for grid and theory to learn
spherical distances in these areas with less samples but Sphere2Vec
can handle it due to its theoretical guarantee for spherical dis-
tance preservation.

To validate these two hypotheses, we use iNat2017 and fMoW to
conduct multiple empirical analyses. Table 3 uses Top1 classification
accuracy as the evaluation metric to be aligned with several previous
works (Mac Aodha et al., 2019; Mai et al., 2020b; Ayush et al., 2020).
However, Top1 only considers the samples whose ground truth labels
are top-ranked while ignoring all the other samples’ ranks. In contrast,
mean reciprocal rank (MRR) considers the ranks of all samples. Eq. (27)
shows the definition of MRR:

MRR = 1
M

M…
i=1

1
Rank(xi, Ii, yi)

. (27)

where M and Rank(xi, Ii, yi) have the same definition as those
in Eq. (26). A higher MRR indicates better model performance. Because
of the advantage of MRR, we use MRR as the evaluation metric to
compare different models.

9.5.1. Analysis on the iNat2017 dataset
Figs. 10 and 11 show the analysis results on the iNat2017 dataset.

Fig. 10(a) shows the image locations in the iNat2017 validation dataset.
We split this dataset into different latitude bands as indicated by the
black lines in Fig. 10(a). The numbers of samples in each latitude band
for the training and validation dataset of iNat2017 are visualized in
Fig. 10(b). We can see that more samples are available in the North
hemisphere, especially when � > 10˝.

We compare the MRR scores of different models in different geo-
graphic regions to see how the differences in MRR change across space.
We compute MRR difference between sphereC+ to grid, i.e., �MRR =
MRR(sphereC+)*MRR(grid), in different latitude–longitude cell and
visualize them in Fig. 10(c). Here, the color of cells is proportional to
�MRR. Red and blue color indicates positive and negative �MRR and
white color indicates nearly zero MRR. Darker color corresponds to a
high absolute �MRR value. Numbers in cells indicate the total number
of validation samples in this cell. We can see that sphereC+ outperforms
grid in almost all cells near the North Pole since all these cells are in red
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Fig. 10. The data distribution of the iNat2017 dataset and model performance comparison on it: (a) Sample locations for validation set of the iNat2017 dataset where the
dashed and solid lines indicates latitudes; (b) The number of training and validation samples in different latitude intervals. (c) �MRR = MRR(sphereC+) *MRR(grid) for each
latitude–longitude cell. Red and blue color indicates positive and negative �MRR while darker color means high absolute value. The number on each cell indicates the number
of validation data points while ‘‘1K+’’ means there are more than 1K points in a cell. (d) �MRR between a model and baseline grid on the validation dataset in different latitude
bands. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. The number of sample v.s. the model performance improvements on the iNat2017 dataset: (a) The number of validation samples v.s. �MRR = MRR(sphereC+)*MRR(grid)
per latitude–longitude cell defined in Fig. 10(c). The orange dots represent moving averages. (b) The number of validation samples v.s. �MRR per latitude band defined in Fig. 10(d).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

color. This observation confirms our Hypothesis A. However, we also
see two blue cells at the South Pole. But given the fact that these cells
only contain 5 and 7 samples, we assume these two blue cells attributed
to the stochasticity involved during the neural network training.

To further validate Hypothesis A, we compute MRR scores of dif-
ferent models in different latitude bands. The �MRR between each
model to grid in different latitude bands are visualized in Fig. 10(d).

We can clearly see that 4 Sphere2Vec models have larger �MRR near
the North Pole which validates Hypothesis A. Moreover, Sphere2Vec has
advantages on bands with less data samples, e.g. � À [*30˝,*20˝). This
observation also confirms Hypothesis B.

To further understand the relation between the model performance
and the number of data samples in different geographic regions, we
contrast the number of samples with �MRR. Fig. 11(a) contrasts the
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Fig. 12. The data distribution of the fMoW dataset and model performance comparison on it: (a) Sample locations for validation set of the fMoW dataset; (b) The number of
training and validation samples in different latitude intervals. (c) �MRR = MRR(dfs) * MRR(grid) for each latitude–longitude cell. Red and blue color indicates positive and
negative �MRR while darker color means high absolute value. The number on each cell indicates the number of validation data points while ‘‘1K+’’ means there are more than
1K points in a cell. (d) �MRR between a model and baseline grid on the validation dataset in different latitude bands. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

number of samples per cell with the �MRR = MRR(sphereC+) *
MRR(grid) per cell (denoted as blues dots). We classify latitude–
longitude cells into different groups based on the number of samples
and an average MRR is computed for each group (denoted as the yellow
dots). We can see sphereC+ has more advantages over grid on cells
with fewer data samples. This shows the robustness of sphereC+ on
data sparse area. Similarly, Fig. 11(b) contrasts the number of samples
in each latitude band with �MRR between different models and grid

per band. We can see that 4 Sphere2Vec show advantages over grid in
bands with fewer samples. rbf is particularly bad in data sparse bands
which is a typical drawback for kernel-based methods. The observations
from Figs. 11(a) and 11(b) confirm our Hypothesis B.

9.5.2. Analysis on the fMoW dataset
Following the same practice of Fig. 10, Fig. 12 shows similar anal-

ysis results on the fMoW dataset. Fig. 12(a) visualizes the sample
locations in the fMoW validation dataset and Fig. 12(b) shows the
numbers of training and validation samples in each latitude band.
Similar to the iNat2017 dataset, we can see that for the fMoW dataset
more samples are available in the North hemisphere, especially when
� > 20˝.

Similar to Fig. 10(c), Fig. 12(c) shows the �MRR = MRR(dfs) *
MRR(grid) for each latitude–longitude cell. Red and blue color indi-
cates positive and negative �MRR. Similar observations can be seen
from Fig. 10(c). dfs has advantages over grid in most cells near the
North pole and South Pole. grid only wins in a few pole cells with small
numbers of samples. This observation confirms our Hypothesis A.

Similar to Fig. 10(d), Fig. 12(d) visualizes the �MRR between each
model to grid in different latitude bands on the fMoW dataset. We
can see that all Sphere2Vec models can outperform grid on all latitude
bands. dfs has a clear advantage over all the other models on all bands.
Moreover, all Sphere2Vec models have clear advantages over grid near
the North pole and South pole which further confirms our Hypothesis
A. In latitude band � À [0˝, 10˝) where we have fewer training samples
(see Fig. 12(b)), dfs has clear advantages over other models which
confirms our Hypothesis B.

9.6. Visualize estimated spatial distributions

To have a better understanding of how well different location
encoders model the geographic prior distributions of different image
labels, we use iNat2018 and fMoW data as examples and plot the
predicted spatial distributions of different example species/land use
types from different location encoders, and compare them with the
training sample locations of the corresponding species or land use types
(see Figs. 13 and 14).

9.6.1. Predicted species distribution for iNat2018
From Fig. 13, we can see that wrap (Mac Aodha et al., 2019)

produces rather over-generalized species distributions due to the fact
that it is a single-scale location encoder. sphereC+ (our model) pro-
duces a more compact and fine-grained distribution in each geographic
region, especially in the polar region and in data-sparse areas such as
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Fig. 13. Comparison of the predicted spatial distributions of example species in the iNat2018 dataset from different location encoders. Each row indicates one specific species.
We show one marine polychaete worm species, two bird species, two fox species, and two butterfly species. The first and second figure of each row show an example figure as
well as the data points of this species from iNat2018 training data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Africa and Asia. The distributions produced by grid (Mai et al., 2020b)
are between these two. However, grid has limited spatial distribution
modeling ability in the polar area (e.g., Figs. 13(d) and 13(s)) as well
as data-sparse regions.

For example, in the white-browed wagtail example, wrap produces
an over-generalized spatial distribution which covers India, East Saudi
Arabia, and the Southwest of China (See Fig. 13(m)). However, accord-
ing to the training sample locations (Fig. 13(l)), white-browed wagtails
only occur in India. grid is better than wrap but still produces a dis-
tribution covering the Southwest of China. sphereC+ produces the best
compact distribution estimation. Similarly, for the red-striped leafwing,
the sample locations are clustered in a small region in West Africa while
wrap produces an over-generalized distribution (see Fig. 13(ab)). grid
produces a better distribution estimation (see Fig. 13(ac)) but it still has
a over-generalized issue. Our sphereC+ produces the best estimation
among these three models – a compact distribution estimation covering
the exact West Africa region (See Fig. 13(ad)).

9.6.2. Predicted land use distribution for fMoW

Similar visualizations are made for some example land use types
in the fMoW dataset, i.e., Fig. 14. Factories/powerplants (Fig. 14(b))
might look similar to multi-unit residential buildings (Fig. 14(f)) from
overhead satellite imageries. But they have very different geographic
distributions (Figs. 14(b) and 14(g)). A similarly situation can be seen
for parks (Figs. 14(k) and 14(l)) and archeological sites (Figs. 14(p) and
14(q)).

The estimated spatial distributions of these four land use types from
three location encoders, i.e., wrap, grid, and dfs are visualized. Just
like what we see from Fig. 13, similar observations can be made. wrap

usually produces over-generalized distributions. dfs generates more
compact and accurate distributions while grid is between these two.
We also find out that grid will generate some grid-like patterns due to
the use of sinusoidal functions. dfs suffers less from it and produces
more accurate distributions.
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Fig. 14. Comparison of the predicted spatial distributions of example land use types in the fMoW dataset from different location encoders. Each row indicates one specific land
use type. The first and second figure of each row show an example figure as well as the data points of this land use types from the fMoW training data. As shown in Figs. (a)
and (f), although factories or powerplants and multi-unit residential type look very similar from overhead satellite imageries, they have very distinct spatial distribution (Figs. (b)
and (g)). Similarly, parks and archaeological sites look similar from satellites imageries (Figs. (k) and (p)) which are usually covered by vegetation. However, they have very
distinct spatial distribution (Figs. (l) and (q)). We compare the predicted spatial distribution of each land use type from three different location encoders: wrap, grid, and dfs.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Embedding clusterings of different location encoders trained on the iNat2017 dataset. (a) wrap < with 4 hidden ReLU layers of 256 neurons; (d) rbf with the best kernel
size � = 1 and number of anchor points m = 200; (b)(c)(e)(f) are Space2V ec models (Mai et al., 2020b) with different min scale r

min
= {10*6 , 10*2}a. (g) is NeRF with r

min
= 32,

and 1 hidden ReLU layer of 512 neurons.b
a They share the same best hyperparameters: S = 64, r

max
= 1, and 1 hidden ReLU layer of 512 neurons.

bThey share the same best hyperparameters: S = 32, r
max

= 1, and 1 hidden ReLU layers of 1024 neurons. (h)–(m) are different Sphere2Vec models. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Embedding clusterings of different location encoders trained on the iNat2018 dataset. (a) wrap with 4 hidden ReLU layers of 256 neurons; (d) rbf with the best kernel
size � = 1 and number of anchor points m = 200; (b)(c)(e)(f) are Space2Vec models (Mai et al., 2020b) with different min scale r

min
= {10*6 , 10*3}.a (g) is NeRF with r

min
= 32,

and 1 hidden ReLU layer of 512 neurons. (h)–(m) are Sphere2Vec models with different min scale r
min
.b

a They share the same best hyperparameters: S = 64, r
max

= 1, and 1 hidden ReLU layer of 512 neurons.
bThey share the same best hyperparameters: S = 32, r

max
= 1, and 1 hidden ReLU layers of 1024 neurons. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

9.7. Location embedding clustering

To show how the trained location encoders learn the image label
distributions, we divide the globe into small latitude–longitude cells
and use a location encoder (e.g., Sphere2Vec or other baseline location
encoders) trained on the iNat2017 or iNat2018 dataset to produce a
location embedding for the center of each cell. Then we do agglomera-
tive clustering12 on all these embeddings to produce a clustering map.
Figs. 15 and 16 show the clustering results for different models with
different hyperparameters on the iNat2017 and iNat2018 datasets.

From Fig. 15, we can see that:

1. In all these clustering maps, nearby locations are clustered to-
gether which indicates their location embeddings are similar to
each other. This confirms that the learned location encoder can
preserve distance information.

2. In the rbf clustering map shown in Fig. 15(d), except North
America, almost all the other regions are in the same cluster.
This is because compared with North America, all other regions
have fewer training samples. This indicates that rbf cannot
generate a reliable spatial distribution estimation in data-sparse
regions.

3. The clustering maps of grid (Figs. 15(b) and 15(c)) show hor-
izontal strip-like clusters. More specifically, in Fig. 15(c), the
boundaries of many clusters are parallel to the longitude and
latitude lines. We hypothesize that these kinds of artifacts are
created because grid measures the latitude and longitude dif-
ferences separately (see Theorem 3) which cannot measure the
spherical distance correctly.

4. wrap (Fig. 15(a)), sphereM (Fig. 15(h), sphereC (Fig. 15(j)),
sphereC+ (Fig. 15(k)), sphereM+ (Fig. 15(l)), and
dfs (Fig. 15(m)) show reasonable geographic clustering maps.

12 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
AgglomerativeClustering.html

Each cluster has rather naturally looked curvilinear bound-
aries rather than linear boundaries. We think this reflects the
true mixture of different species distributions. However, as we
showed in Section 9.6, the single-scale wrap produces over-
generalized distribution while Sphere2Vec can produce more
compact distribution estimation.

Similar conclusions can be drawn from Fig. 16. We believe those
figures visually demonstrate the superiority of Sphere2Vec.

10. Conclusion

In this work, we propose a general-purpose multi-scale spherical
location encoder — Sphere2Vec which can encode any location on the
spherical surface into a high dimensional vector which is learning-
friendly for downstream neuron network models. We provide theo-
retical proof that Sphere2Vec is able to preserve the spherical surface
distance between points. As a comparison, we also prove that the 2D
location encoders such as grid (Gao et al., 2019; Mai et al., 2020b)
model the latitude and longitude difference of two points separately.
And NeRF-style 3D location encoders (Mildenhall et al., 2020; Schwarz
et al., 2020; Niemeyer and Geiger, 2021) model the axis-wise differ-
ences between two points in 3D Euclidean space separately. Both of
them cannot model the true spherical distance. To verify the superi-
ority of Sphere2Vec in a controlled setting, we generate 20 synthetic
datasets and evaluate Sphere2Vec and all baselines on them. Results
show that Sphere2Vec can outperform all baselines on all 20 sythetic
datasets and the error rate reduction can go up to 30.8%. The results
indicate that when the underlying dataset has a larger data bias to-
wards the polar area, we expect a bigger performance improvement
of Sphere2Vec. We further conduct experiments on three geo-aware
image classification tasks with 7 large-scale real-world datasets. Results
shows that Sphere2Vec can outperform the state-of-the-art 2D location
encoders on all 7 datasets. Further analysis shows that Sphere2Vec is
especially excel at polar regions as well data-sparse areas.

Encoding point-features on a spherical surface is a fundamen-
tal problem, especially in geoinformatics, geography, meteorology,

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
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oceanography, geoscience, and environmental science. Our proposed
Sphere2Vec is a general-purpose spherical-distance-reserving encoding
which realizes our idea of directly calculating on the round planet. It
can be utilized in a wide range of geospatial prediction tasks. In this
work, we only conduct experiments on geo-aware image classification
and spatial distribution estimation. Except for the tasks we discussed
above, the potential applications include areas like public health,
epidemiology, agriculture, economy, ecology, and environmental engi-
neering, and researches like large-scale human mobility and trajectory
prediction (Xu et al., 2018), geographic question answering (Mai et al.,
2020a), global biodiversity hotspot prediction (Myers et al., 2000;
Di Marco et al., 2019; Ceballos et al., 2020), weather forecasting and
climate change (Dupont et al., 2021; Ham et al., 2019), global pan-
demic study and its relation to air pollution (Wu et al., 2020), and so
on. In general, we expect our proposed Sphere2Vec will benefit various
AI for social goods13 applications which involve predictive modeling at
global scales. Moreover, Sphere2Vec can also contribute to the idea of
developing a foundation model for geospatial artificial intelligence (Mai
et al., 2022a, 2023a) in general.
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