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Abstract

For more than two decades, there has been increasing interest in developing frameworks for the accelerated discovery and design of novel materi-
als that could enable promising and transformative technologies. The Integrated Computational Materials Engineering (ICME) program called for
integrating computational tools to establish linkages along process—structure—property—performance chains. The Materials Genome Initiative called
for integrating experiments and computations within data science frameworks as a strategy to accelerate the materials development cycle. While
these frameworks and paradigms have been quite influential, traditional ICME or data science-based approaches tend to have some limitations,
mainly when querying the materials space is costly and very little information is available. Bayesian methods are more suitable in this context due
to their efficiency gains. To this end, the materials discovery problem is framed as a Bayesian optimization (BO). Different examples in which BO has
been applied to solve materials discovery problems are presented. The methods/examples discussed include BO under model uncertainty, multi-
information source BO, multi-objective and multi-constraint BO, and batch BO. Bayesian Materials Discovery is a promising area of research that is
likely to become more influential as more attention is put on autonomous materials discovery platforms. Therefore, a discussion is provided on the
potential development of such methods to increase the ability of existing platforms in materials discovery. The ultimate goal is to pave the way to

autonomous materials discovery.

Introduction
Until well into the twentieth century, the materials discovery/
development cycle was mostly carried out using highly heuris-
tic approaches lacking well-defined frameworks. The lack of a
systematic approach to materials design meant that very little
could be learned/transferred from successful materials develop-
ment programs. To address this issue, Olson!!! extended Cyril
Stanley Smith’s ideas on materials as hierarchical (multi-scale)
systems?! and proposed that materials systems were amena-
ble to design using engineering design principles informed by
scientific understanding. In that work, Olson recognized the
importance of developing process—structure—property—perfor-
mance (PSPP) relationships to establish causal connections
between processing conditions and materials performance.
Such links could then be used to understand how a given mate-
rial could be modified to optimize its performance.

Olson’s idea to use computational tools to establish such
linkages was embraced as the underlying framework guiding
Integrated Computational Materials Engineering (ICME),™) as

an approach to accelerate the insertion of new materials into
technological applications. Provided such linkages could be
transformed into quantitative relationships, PSPPs could, in
turn, be inverted to optimize the materials to meet specific per-
formance goals. Having established quantitative PSPP relation-
ships, the actual optimization over a given materials design space
could be carried out with a number of algorithmic optimization
schemes.[* Unfortunately, simulation-driven materials design
requires solving many significant challenges, such as effectively
linking different simulation tools!®! and addressing the considera-
ble uncertainties in the models, model parameters, and the exper-
iments used to validate them.!”! This problem is compounded
by the high computational cost of many of the most precise and
predictive tools at the disposal of ICME practitioners.

While the ICME’s focus was on linking computational PSPP
model chains, the Materials Genome Initiative (MGI)®! put
forward an aspirational program to accelerate the materials
development cycle through the tight integration of computa-
tions and experiments through data analytics techniques. MGI
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has been embraced by almost every single community within
the materials science discipline, and the field is undergoing an
exponential expansion in the number of efforts taking place
around the world involving the leveraging of data science,
machine learning (ML), and artificial intelligence (Al) to accel-
erate our understanding of materials spaces. While many types
of problems are being addressed using these tools, much work
under the MGI paradigm requires a significant amount of data.
Consequently, some of the most prominent applications of MGI
principles to materials discovery have exploited extensive data,
either obtained from experimental combinatorial synthesis of
material libraries! or high-throughput (HTP) computations.!"]

ICME- and MGl-inspired approaches have resulted in numer-
ous successful cases of materials discovery and design. However,
such approaches tend to be limited, particularly considering that
typical materials development efforts are always carried out
under stringent resource constraints. ICME methods,!"!?] for
example, (i) build and exploit process—structure—property—per-
formance (PSPP) relationships!”! at a considerable computational
expense; (ii) do not readily incorporate data from experiments
within their framework; and (iii) are sequential, which means that
they tend to be deployed by evaluating materials design choices
one at a time. Traditional HTP combinatorial computational''’!
and experimental!>'* approaches, on the other hand, are (i)
incapable of dealing with the high dimensionality and complex-
ity of typical materials design spaces and (ii) are ‘one-shot’ or
‘open-loop’ schemes without a built-in iterative framework and
are unable to prescribe future actions given the current state of
knowledge.'! Moreover, traditional ICME and HTP approaches
are suboptimal in resource utilization, as they do not guarantee
that each proposed choice is optimal.

The limitations described above can potentially be overcome
using inherently resource-aware frameworks that provide a prin-
cipled way to augment our knowledge of the state of a mate-
rials design space iteratively. Because of this, one of the best
approaches to accelerate the design of a materials space is to
frame this problem as an optimal experimental design task within
a Bayesian Optimization (BO) setting.!'®2!1 As a result, the num-
ber of works that deploy BO in materials optimization tasks is
growing rapidly.?>=% Yet, most of the works published thus far
have focused on translating the materials discovery problem
into a single black box optimization challenge. Here, we revisit
some recent work in which traditional BO frameworks have been
modified for them to be better adapted to solving problems in
materials science, mainly when one can get access to multiple
tools/models/experiments to query the material space and one
(potentially) has access to experimental or computational plat-
forms capable of operating in batch/parallel mode.

A short tutorial on Bayesian
optimization

Any Bayesian methods rely on the deployment of the Bayes
theorem to update our prior knowledge (beliefs) about a sys-
tem once new information has been acquired.?!! Bayesian
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optimization (BO) is a sequential design strategy for increas-
ing (optimizing) the system’s performance or augmenting
our knowledge about it. It relies on Bayesian updates of prior
beliefs through acquiring new information. BO methods tend
to be most effective when confronted with functions that are
costly to compute, are not analytical (are ‘black boxes’), cannot
be evaluated precisely due to intrinsic noise, and/or provide
no facilities for estimating their gradients. We note that many
resources explain in great detail what BO is, and the reader is
kindly directed to some of these sources?3%331 if they want to
understand these frameworks at a deeper level.

BO methods have many essential features that make them a
highly effective optimization scheme. As a consequence of the
sequential exploration of a design space, BO methods construct
a statistical model of the ground truth being explored that is
orders of magnitude cheaper to query than the ground truth
itself. The primary ingredients of any BO algorithm are (1) a
statistical (surrogate) model used to predict the outcomes of
experiments yet to be carried out; (2) a policy that prescribes in
a deterministic, principled, and unambiguous manner the best
action to take to meet a given (set of) objective(s) given our
current state of knowledge of the system.*¥] Given an initial
dataset, D, a typical sequential BO scheme would then follow
the following general algorithm (see also Fig. 1).

input: initial dataset D
repeat
x <« POLICY (D)
y « OBSERVE(x)
D« DU{(x,y)}
until termination condition reached
return D
Algorithm 1: General Bayesian Optimization algorithm [32].

While, in principle, many types of statistical models can be
used to simulate a given experimental space, the overwhelming
majority of BO approaches use Gaussian processes (GPs).[>7)
A GP is a nonparametric statistical model for the objective
function, £, defined as a stochastic process p(f) = GP(f; u,K)
with a mean function, u, and a covariance function (or kernel)
K. The reason why GPs are used in BO is because of their
mathematical properties (including smoothness and controlla-
ble modeled correlation among observed points). Besides their
intrinsic capability to predict uncertainty in our knowledge of
the objective function over the design space, the critical charac-
teristic of GPs is the notion of a measure of the degree of corre-
lation between observations: observations that are close tend to
yield similar values of the objective function. The degree (and
type) of correlation is encoded by the kernel, K. The latter can
take a wide range of forms (as long as it has some appropri-
ate mathematical properties) depending on the nature of the
system being optimized.

The second ingredient of BO is the policy (or utility func-
tion) used to make optimal sequential decisions on the queries.
The policy for decision-making is constructed from the poste-
rior distribution of the surrogate model for the design space.
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Figure 1. Schematic illustration of Bayesian Optimization (BO): from a limited number of observations on a system (blue solid line), a sto-
chastic model (dashed blue line and shaded area) is built. The following observation is determined by accounting for the tradeoff between
the exploitation of the current knowledge and the exploration of the unknown regions of the design domain x. In this case, Expected
Improvement (El) is the metric used and thus the policy falls within the Efficient Global Optimization (EGO) framework.*¥ Reproduced

from Talapatra et al.[?8

Over the past decades, dozens of policies or acquisition func-
tions have been developed and deployed in BO frameworks.
Yet, all acquisition functions address the tension between
exploitation (querying the design space in locations predicted to
be optimal by the surrogate model) and exploration (querying
the design space where there is uncertainty about the surrogate
model). These acquisition functions are much cheaper to evalu-
ate than the ground truth/objective function. When GPs are used
as the surrogate function, many acquisition functions can be
computed as analytical functions of the properties of the GPs,
such as the mean response and its variance.['®2%32 Examples of
such acquisition functions include expected improvement (EI),
probability of improvement (PI), and upper confidence bound
(UCB). Unfortunately, the effectiveness of different policies is
highly problem dependent, and it is thus impossible to know a
priori the optimal policy for a given problem.

Several approaches have employed BO in a materials sci-
ence context, for example, in molecular design and discovery
and smart and additive manufacturing design optimization of
materials, such as piezoelectric materials, catalysts, and struc-
tural materials.[2%3%38-4% They have shown dramatic improve-
ments in the efficiency with which experimental/computational
resources are utilized to find materials with optimal properties/
performance, even within exclusively experimentally-based
frameworks.[*!] Yet, most approaches to materials discovery
that deploy BO-based frameworks are still limited. BO-based
materials discovery has been based on translating existing
methods to optimize general ‘black box’ functions. Yet, in
materials science, one typically has multiple ways of querying
a design space. Most approaches tend to deploy BO to solve
single-objective optimization problems when realistic materials
development efforts require optimality across many dimensions
of the performance space while satisfying several constraints.
Moreover, most BO-based materials discovery approaches
developed to date do not take advantage of the quickly evolv-
ing high-throughput experimental and computational platforms.

As will be seen below, there are many opportunities to tailor
BO methods to materials discovery.

Bayesian optimization under feature
importance uncertainty

In typical realistic materials discovery challenges, there is typi-
cally little to no prior knowledge of the behavior of the objec-
tive function to explore. For example, we may not know the
‘shape’ of the (potentially multi-objective) materials response
space. Thus, it may not be possible to develop a realistic model
for the correlation (or distance) between points in the design
space, encoded in a GP as the covariance function, K. Further-
more, in many cases, there may not be sufficient information
to gauge which features are most correlated with the optimi-
zation objective(s). This lack of knowledge stems from cost
limitations on doing enough experiments due to the complexity
of the objective(s) or the involvement of many features. For
example, initially, we may not know which features of a given
material are the most correlated with a particular property or
performance metric that we want to optimize. In some early
examples of BO applied to materials science, feature selection
(or feature engineering) was proposed as a preliminary step
before initiating a BO optimization loop. Unfortunately, in most
practical applications, the feature and/or model selection step
is highly uncertain due to the sparseness in the data available.
This inability to narrow down the feature space compromises
the ability of BO to optimally sample a given design space
since the performance of BO methods tends to degrade as the
dimensionality of the problem increases.[*

In recent work,[*®#3 it has been shown that it is possible
to carry out feature selection while carrying out an optimal
sequential experimental design. In that setting, the feature
space was partitioned into feature subspaces that, together
with specific covariance functions, K, constitute different mod-
els describing the objective space. To account for this model
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Figure 2. Bayesian Optimization under Model Uncertainty (BOMU): (a) performance of different models during a sequential BO task. By
partitioning features into six different subsets, six different models are created to estimate the same quantity of interest (Qol). (b) Compari-
son between the best and the worst models and two effective models estimated through Bayesian Model Averaging (BMA). (c) Evolution
of the model probability during the sequential experimental campaign. As more data are added to the system, model probability, and
importance change. (d) Benchmarking results of using each model to learn and predict the bulk modulus of a set of samples. The red
square shows the largest bulk modulus found in DFT calculations of queried samples in the optimization process, and the dashed red line

shows the largest value ever seen.l%®!

uncertainty, it is possible to weigh all the possible models by
their probability of being the true model. When the weighing is
based on the Bayesian model evidence, such model assembly
is known as Bayesian model averaging (BMA).[*l By incor-
porating BMA within BO, Bayesian optimization under model
uncertainty (BOMU) can simultaneously carry out feature
selection and BO. In BOMU (see Fig. 2), the feature space
available for exploration is partitioned into subsets correspond-
ing to different hypotheses as to what features most correlate
with the objective. Each feature set-kernel/covariance function
combination is treated as an individual model, and each mem-
ber of the model set { M - - - My} would vary in their ability
to predict the outcome of the observations that have yet to be
made over the design space.

To take action (or query/observation), the policy or utility
of observing every yet-to-be-queried point is evaluated as the
weighed experiment utility, using the probability of a given
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model being the correct model as the weights. After an observa-
tion is made, the updated dataset is used to evaluate the prob-
ability of the models and a new cycle begins. As a consequence
of this model selection step, models would change their prob-
ability or weight based on how good they are at predicting the
augmented dataset. An interesting aspect of BOMU is that it
has been observed that the model probabilities (Fig. 2) tend
to evolve in a non-monotonic manner, with the importance
of some models decreasing and increasing in importance as a
function of the stage of an experimental campaign. BOMU is
also capable of immediately detecting uninformative feature
sets, reducing their probability to close to zero early in the
experimental campaign.

While BOMU carries out feature selection by evaluat-
ing the posterior probabilities of competing models, there are
other approaches to BO with automated model selection. Hav-
ing a feature space, the framework described by Malkomes and
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Figure 3. Implementation of adaptive active subspace method within a Bayesian optimization (BO) framework. The basic idea is to find
the active subspace, i.e., the directions in the material design space that give the most significant variation in the target property, using
the available data at every stage of the optimization task. Next, the design space is mapped to the active subspace, and the first step

of the BO framework is applied to find the ‘next best point’ to evaluate within the active subspace. The ‘next best point’ is then mapped
back to the original design space by implementing a second BO step. Finally, the design space is evaluated at this best point. This new
data is added to the framework for the next iteration. In the example shown inside the BO framework window, the objective function f(x)
is represented as g(z) in the active subspace. Thus, instead of variables x4 and x,, the objective function is estimated on a 1-dimensional
active subspace space of z. This figure summarizes the implementation of the active subspace method for designing dual-phase steels in

the presence of multiple information sources estimating the same property at different levels of fidelity.

collaborators!*®**] will be capable of dynamically selecting opti-
mal models (with different covariance functions/kernels) through
the use of Bayesian optimization over the model space using the
concept of ‘kernel of kernels,” which can be used to measure the
distance between the covariance functions (kernels) of Gaussian
Process regression models. The framework generates arbitrary
candidate kernel functions by utilizing the concept of ‘kernel
grammars.’!*”) We note that BOMU can potentially explore the
feature and model space and the policy used. In practice, differ-
ent feature set-model-policy tuples would be evaluated, and their
weight would be modified depending on their effectiveness.

BOMU is a practical approach when there is uncertainty in
the feature space. However, a significant limitation is that the
partitioning of the feature space is done in an ad hoc manner.
Thus there is always a risk of not capturing the truly important
features/degrees of freedom. An alternative approach is the active
subspace method,*® which is a technique to identify the direc-
tions in a given design space that have the most significant change
relative to a given objective, effectively reducing the dimension
of the problem. Once a subspace has been identified, an acquisi-
tion function/policy is used to evaluate the best point within this
lower-dimensional space. Finally, an observation is prescribed in
the actual higher-dimensional design space by inverse mapping
from the lower to the higher-dimensional spaces (Fig. 3).

[49]

Compared to other approaches for automated feature selec-
tion within BO, an advantage of the active subspace method is
the ability to dynamically change the effective dimensionality
of the problem as the experimental campaign progresses. An
extensive evaluation of the active subspace method found that
the effective dimension of a given materials design problem
did not exceed two for most sequential experimental cam-
paigns.[*! Crucially, the effective dimensions of the problem
changed continuously through the design sequence, pointing
to the fact that attempting to carry out feature selection before
the BO stage of a materials design task may not be a robust
strategy. The dynamic nature of the feature importance found
in this work is in line with what was found in BOMU, where
the weight of some models changed dramatically as the BO
sequence progressed. These observations imply that in materi-
als design/optimization problems, only a few features/degrees
of freedom are active at any given time.

Multi-information source Bayesian
optimization

While mapping a materials discovery task to a ‘black box’
optimization can significantly accelerate the materials dis-
covery process, such a simplistic approach does not take
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advantage of a crucial aspect of materials research. For
example, ‘black box’ BO approaches do not account for
the fact that it is always possible to use several methods to
query a particular materials space. Such methods include, for
example, different models (with different cost and fidelity)
connecting different linkages along PSPP relationships or
experiments measuring different attributes of the material to
be investigated. As such, ‘black box’ BO is not tailored to
materials design tasks. On the other hand, traditional ICME-
based approaches rely on quantitative PSPP chains, whose
linkages can be evaluated using computational models. A
significant challenge for these approaches is that they tend to
consider a single model per chain—i.e., they ignore the pos-
sibility of combining the predictive power of different models
simultaneously. A further limitation is that most typical ICME
approaches are not capable of combining experiments and
simulations since they use experimental information only as
a way to verify or validate the models used. Integrating mul-
tiple information sources into a materials discovery task could
provide significant advantages.

Other fields in science and engineering have already devel-
oped sophisticated approaches to combine multiple informa-
tion sources within optimization schemes. In these approaches,
multiple information sources may be used to approximate the
behavior of an expensive-to-query ‘ground truth.’ In such
multi-fidelity approaches,!!! it is possible to combine multi-
ple information sources to have better information about the
‘ground truth,’ at a reduced cost. Figure 4 shows how one can
transfer knowledge among information sources to enhance
learning through Bayesian information fusion. Practically, such
knowledge transfer is constructed by learning and exploiting
the statistical correlations among the different information
sources. The underlying assumption of this type of information
fusion is the existence of correlation among different informa-
tion sources and between a given information source and the
ground truth. In materials science, we can assume that such
an assumption is warranted, given that all information sources
for a given materials design task predict different aspects of
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the material’s behavior and are thus causally correlated. The
common goal in any application using multi-information source
approaches is reducing associated costs. By collecting informa-
tion from different sources, which are usually lower in fidelity
but cheaper to evaluate, it is possible to obtain information
about the ground truth (highest fidelity model) via the correla-
tion between the models and the ground truth. Consequently, it
allows for a cheaper learning process and prevents conducting
expensive experiments, in contrast to single model approaches
which have no choice but to perform costly experiments to
learn an objective function.

In many materials design applications, collecting experi-
mental data is considered the most accurate way of estimat-
ing a material’s property of interest. However, this comes at
the expense of substantial experimental costs (money, time,
computational resources, etc.), which makes it almost impos-
sible to complete sufficient numbers of experiments to make
any conclusions about the optimal design, particularly in high-
dimensional feature spaces. In such cases, using less accurate
approaches (exploiting lower fidelity computational models, for
example) to estimate a quantity of interest (Qol) and correlating
it to the ground truth (highest fidelity model or experimental
data) can be beneficial, cost-wise. It is often the case that a set
of Qols can be estimated through different kinds of experi-
ments varying in cost and accuracy (fidelity), yielding different
results. It is also usually the case that computational models are
exploited to estimate a set of Qols to avoid the challenges of
collecting expensive experimental data. Computational models
representing the same system of materials are also different in
cost and fidelity since different assumptions and mathematical
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the Qols, collecting this information from several lower fidelity
models helps to reduce the overall design costs. Another point
is that the fidelity of information sources may vary through
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Recently, such a multi-information source framework was
used to predict the crystallization tendency of polymers. In work
by Venkatram and collaborators,* it was argued that predicting
a new polymer crystallinity is not trivial due to experimental
challenges, such as having the necessary infrastructure and sam-
ple preparation. On the other hand, group contribution methods
are less accurate but much cheaper to obtain. Thus, they fused
data from group contribution methods and fewer experimental
data available from the literature, obtaining a more accurate
model without performing any expensive experiments. Another
recent application was the work by Pilania et al. on the bandgap
prediction of solids using multi-fidelity approaches.l In that
work, a larger number of samples from a cheap model (PBE) and
fewer samples from a more expensive model (HSE06) are used
to obtain a fused model and make predictions. The work by Tran
and collaborators!'® present an application in optimizing the bulk
modulus in a ternary composition space using multi-information
source BO. A similar work employed multi-information source
BO in geometry optimization of CO via employing different DFT
functionals as information sources.!**!

A general multi-information source BO framework has been
proposed and deployed to optimize normalized strain harden-
ing rate in designing dual-phase steels—the framework can
easily be extended to a wide range of materials discovery/
design problems.>>% In this framework, one first constructs
intermediate surrogate models (GPs for convenience due to
their mathematical properties) for each available information
source. For example, these information sources could be dif-
ferent models connecting materials design inputs and outputs
to varying levels of fidelity and physical rigor. Then, using a
so-called reification™” procedure, a fused model is constructed
from all information sources by learning the statistical correla-
tion among all the sources, including the ‘ground truth.” The
fused model, described as a GP, GP(f; i, K) is then used to
evaluate the value of the acquisition function on each candi-
date point in the experimental space yet to be queried. Having
established the best point to query, the multi-information source
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Bayesian optimization (MISBO) framework then selects the
next information source to query, given an information source
fidelity, uncertainty, and cost.

MISBO is much more efficient at solving materials optimi-
zation problems!® than even state-of-the-art BO methods that
only query the ground truth—see Fig. 5. Since every informa-
tion source is mapped to a GP, it has been shown that MISBO
can be used in problems in which explicit PSPP connections
can be exploited by mapping different linkages along the PSPP
chain to GPs and then connecting the inputs and outputs of the
different GPs along a model chain using simple statistical cor-
relations. As such, MISBO can be mapped directly to ICME
frameworks, %! the advantage being a much more efficient uti-
lization of the available information. An additional benefit of
MISBO is that it is possible to account explicitly for the cost
of a given information source, which is crucial when there are
stringent budget constraints.[*® Other groups®®®! have presented
similar approaches. Pilania et al.,l>*) for example, have shown
how it is possible to combine low-fidelity approximate pre-
dictions for materials properties to supplement high-fidelity,
expensive computational simulations, arriving at accurate pre-
dictive models at a relatively low cost. MISBO differs from
other multi-fidelity approaches in that it does not assume the
existence of a hierarchy among the different models as they are
all simultaneously fused to predict the behavior of the ‘ground
truth.’

Bayesian optimization under multiple
objectives and constraints

By far, most approaches to BO have focused on deploying
acquisition functions tailored to balance the exploration and
exploitation of single-objective design spaces. The reason
for this is that in single-objective optimization problems, the
objective of the decision-making process is clear to optimize
the value of a target system response. However, in materials
science, it is often the case that a materials design task has

25
o true
—Our Proposed Approach
20 —Knowledge Gradient on the True Model
16.77
15
10

2 4 6 8 10 12
Number of Samples Queried from the True Model (RVE)

Figure 5. (Left) Number of samples queried from the true model and the information sources in each iteration. (Right) The optimal solution
was obtained by the proposed approach and by applying the knowledge gradient on a GP of only the true data for different numbers of

samples queried from the true model.’®
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multiple objectives to optimize. For example, one would like
materials to be strong and ductile or materials with higher
energy storage capacity and very short charging times. In many
cases, these objectives compete against each other, resulting in
performance tradeoffs: strong materials are not necessarily the
most ductile, for example.

A multi-objective optimization problem can thus be solved
in two different ways:

One strategy is to construct a single utility function from
different objectives.>® Such a utility function is built based
on the preferences of the decision-maker(s) and thus has some
degree of subjectivity. Once this single-objective function has
been constructed, the optimization is carried out in the usual
way, using BO or non-BO methods. Building a single utility
function implies that (subjective) preferences do not change
as more information is acquired about the system. If the util-
ity function changes because of changes in the preferences for
different objectives, the optimization would have to be carried
out from scratch.

An alternative approach is to not establish any subjective
preference for the different individual objectives and instead
try to discover the Pareto front in the multi-objective space.[®"]
The Pareto front is the set of non-dominated solutions being
optimal along with one of the directions in the objective space.
Once a Pareto front is discovered, a preference model (or utility
function) could be constructed from the Pareto set—any utility
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function constructed with dominated solutions (i.e., solutions
enclosed by the Pareto front) would always be suboptimal.
While discovering the Pareto front allows more flexibility in
the decision-making process, the discovery of the Pareto set is
challenging, particularly in high-dimensional spaces.

In the context of BO, the problem is paradoxical: on the one
hand, one is interested in discovering the Pareto front. On the
other hand, however, sequential BO policies always propose
a single action to take at any given time. Therefore, one must
construct a scalar function that measures the utility of carrying
out an experiment at a point in the design space, regardless of
the number of objectives. There are not as many acquisition
functions in multi-objective BO as in single-objective BO. One
of the most widely used metrics in multi-objective BO is the
Expected HyperVolume Improvement (EHVT).[®!! This metric
measures the expected change in the Pareto front (toward the
direction of non-domination) when a query is made at a given
point. Under this policy, the optimizer can identify the Pareto
front under resource constraints. This approach has been used
before in multi-objective materials optimization—see Fig. 6.1°%
The efficiency of multi-objective BO methods tend to outper-
form other optimization approaches, particularly when the
number of objectives increases.

While the ability to solve multi-objective problems in a
Bayesian optimal setting brings materials discovery to a more
realistic setting, one must consider many problems in materials
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Figure 6. (a) and (b) Multi-objective space in the optimization of chemical composition and precipitate volume fraction to optimize the per-
formance of a precipitation-strengthened shape memory alloy (SMA). (c) Pareto front identified using an optimal Bayesian policy. (d) Opti-
mal BO approaches outperform other policies and can discover a larger fraction of the Pareto front with fewer queries to the system.®?
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Figure 7. (a) A multi-objective, multi-constraint optimization problem consists of identifying regions in an alloy space that satisfy some
minimal performance requirements (i.e., meet performance constraints) while simultaneously optimizing a set of intrinsic properties. (b)
Operations performed during the design process are categorized as either classification or optimization depending on querying constraint
models or objective functions. (c) As more iterations are completed in the optimization loop, better non-dominated designs are found.
Hypervolume is a metric to measure the quality of discovered non-dominated designs and its improvements are directly related to discov-
ering a better Pareto front. (d) Queried samples and non-dominated designs were queried during the process of optimizing the Pugh Ratio
and Cauchy pressure as an indication of the ductility of an alloy. The colormap is used to illustrate the order of queries.[®*l

science in which the performance requirements are so stringent
that the discovery process is constraint-dominated.[*] When
there is insufficient information about the materials design
space, one needs to allocate resources to identify the feasible
space (i.e., the region in the design space with solutions that
satisfy all the performance constraints) and find the Pareto set.
In some cases, the constraints can be evaluated in terms of easy
and fast-to-evaluate analytical models constructed as a function
of the design variables. However, in many cases, assessing the
constraints constitutes a costly endeavor. For example, evalu-
ating whether an alloy is resistant to oxidation may involve a
complex experimental protocol lasting 24—100 h.

The identification of the feasible space can be mapped to a
Bayesian Classification (BC) task, in which the boundary sepa-
rating the feasible and infeasible regions in the materials design
space is found in the least number of queries possible. Ideally,
such a BC task would be set up using multiple information
sources, as in MISBO.3-%] In recent work, it has been shown
how it is possible to combine multi-information source BO with
multi-information source BC to solve classification/optimiza-
tion materials design problems—see Fig. 7. While the results of

this approach are promising, there are significant opportunities
for further development. For example, it is unclear how to opti-
mally divide resources between optimization and classification
in a principled, algorithmic manner. One approach could be first
identifying the feasible space and then allocating all the remaining
resources to identify the Pareto set. However, this approach may
be too risky when resources are limited, as the total (experimental/
computational) budget could be spent well before the exploration
of the Pareto set begins. Other approaches may switch between
classification and optimization as the campaign progresses,
resulting in suboptimal performance. Perhaps building criteria
for uncertainty measures in the feasible/unfeasible boundary and
the Pareto set could be constructed to optimize the process.

Bayesian optimization

over high-throughput parallel
computational/experimental settings
One of the significant drawbacks of ICME and modern BO-
based materials optimization approaches is their sequential
nature and their inability to make use of high-throughput
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workflows pervasive in HPC environments,%>% as well as
modern synthesist®”%8! and characterization!® " facilities. In
addition, traditional ICME approaches suffer from their non-
optimality already, so in the context of materials design, provid-
ing BO with the ability to make multiple optimal decisions at
once is perhaps the only viable approach toward parallelizing
a design framework.l”?)

The approach for Batch BO by Joy and collaborators!’?!
is among the most promising thus far. Their method is based
on the premise that when only a few data points are avail-
able, it is impossible to have much confidence in the covari-
ance structure of the GP models describing the correlations
between data. A pragmatic solution is to make no assump-
tion regarding the shape (e.g., smoothness) of the response
surface but instead assume that any possible covariance
structure, within bounds, is possible. The hyperparameters
describing the model of the observations are sampled as
extensively as possible and then multiple recommenda-
tions for the next point to explore are elicited. To generate
the batch of recommendations, the possible recommenda-
tions found are clustered using a k-medoids[’* clustering
approach. The number of clusters matches the size of the
batch of recommendations required. This approach provides
excellent flexibility and is relatively easy to integrate with
any method that already uses Gaussian Process functions to
model the objective function. Figure 8 shows a demonstration
of Batch BO and an example in which Batch BO schemes
have been integrated with a multi-information source fusion
framework developed previously to accelerate the design of
dual-phase steels.’>7#] The preliminary results show that
using batch queries, it is possible to dramatically improve
the rate of convergence toward a global optimum and reduce
the uncertainty of (and increase confidence in) the optimiza-
tion framework.
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Conclusions and outlook

When resources are limited, it is clear that Bayesian methods
offer the best approach to identifying optimal and feasible
regions of a materials design space. While off-the-shelf BO
approaches can, in principle, be applied to materials discovery
and design, very few materials problems can be mapped to the
optimization of ‘black box’ functions. In this short overview, it
has been shown that there are modifications to BO that are bet-
ter suited to materials science problems. Combining multiple
information sources with high-throughput (HTP) experimen-
tal and/or computational platforms could be deployed to solve
materials discovery problems with multiple objectives and con-
straints. While promising, there is much more opportunity for
further development.

The performance of BO depends on the adopted surrogate
models approximating underlying objective functions, for
which Gaussian Processes (GPs) are typically used. However,
in many materials discovery applications, the inherent smooth
assumptions of GPs may not always hold. Therefore, more
adaptive and flexible Bayesian surrogate models in BO may
need to be developed to overcome the weaknesses of widely
used GP-based methods when faced with relatively high-
dimensional design space or non-smooth patterns of objective
functions. Recently, it has been shown that Bayesian Multivari-
ate Adaptive Regression Splines (BMARS)!® and Bayesian
Additive Regression Trees (BART)!"”) are flexible stochastic
surrogate ML models that can provide better performance when
applying BO to complex materials spaces. ”®]

In the case of multi-objective BO, it is not uncommon for
the different objectives to exhibit some degree of correlation.
In the case of materials optimization, this makes sense because
other properties or performance metrics of a given material
are ultimately connected since they most likely share the same
underlying process—structure (PS) relationships. Unfortunately,
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in traditional multi-objective BO, each objective is modeled
individually and such correlations are not considered when
making predictions using GPs. Recently, Deep Gaussian Pro-
cesses (DGP) have been proposed as ML surrogate models
that can be used to build multivariate surrogates to catch this
correlation and improve the prediction ability of GPs.[” 811 A
DGP uses multiple layers of GPs to map from a set of features
to latent spaces layer by layer to reach a target objective space.
This can potentially be useful in representing different objec-
tives in materials discovery as it is probable that a set of proper-
ties in a given material system to be correlated to some degree.

Another challenge in the deployment of Bayesian optimiza-
tion approaches is the ability to handle qualitative data. In real
materials discovery tasks, quantitative and qualitative design
variables are required to fully define the materials systems.
Existing BO approaches mostly work with quantitative data
and cannot involve categorical data or catch the correlation
between qualitative and quantitative design variables. Recently,
some works have proposed employing Latent variable Gauss-
ian Process (LVGP) models to map categorical variables into
continuous variable latent spaces.®?! Developing mixed vari-
able BO frameworks has been a subject of recent research!®* -8l
and more platforms capable of handling both types of design
variables are expected to be developed in the coming years.

A natural extension of the mathematical frameworks pre-
sented here is the deployment of automated, closed-loop mate-
rials discovery platforms.[*”) While somewhat limited, the first
examples of automated scientific discovery platforms consist
of integrated robotic platforms that execute actions that are,
in turn, selected using either BO or Reinforcement Learning
(RL) approaches. The field of autonomous experimentation is
evolving in a highly accelerated manner and such platforms
have already been deployed to solve problems involving a wide
range of materials classes and applications.[**?]

Further developments in autonomous materials discovery
will likely arise from advances in the decision support tools—
BO being one of the dominant paradigms due to its flexibility
and applicability in the sparse data regime—used to guide the
platform toward a particular objective. Currently, for exam-
ple, human intuition is seldom incorporated into these plat-
forms. Yet, expert human intuition may be highly valuable in
guiding the discovery process. A significant challenge, in this
case, would be how to algorithmically introduce human expert
opinion within a formal closed-loop BO framework. In other
contexts, human-in-the-loop BO (HITL-BO) has been imple-
mented by eliciting human experts to express their preference
among BO-generated choices.!”’! Similar approaches could
potentially be used in the context of BO-assisted materials dis-
covery. However, there is no work (to the best of the authors’
knowledge) that has exploited such ideas as of this writing.

Another critical issue is that human-driven materials discov-
ery tends to be a very dynamic and flexible process. Yet, the
BO policies, actions, and experiments to query the materials
design space are hard coded. A further limitation is that tradi-
tional BO approaches tend to operate under the assumption that

the problem itself (i.e., the definition of objectives, constraints,
degrees of freedom) is fixed. However, it is conceivable that a
non-trivial material’s discovery loop requires significantly more
flexibility when defining the problem space itself. For example,
performance metrics that were initially considered to be objec-
tives may be more suitable to be considered as constraints, con-
straints may need to be softened or hardened, or new degrees
of freedom may need to be incorporated into the design space.

While there are many more limitations to current BO-based
materials discovery platforms, solutions that provide enhanced
flexibility and functionality will likely be gradually deployed
as the community pursues further autonomy. It is thus likely
that future platforms will be able to gather information, develop
new knowledge, and evolve into fully autonomous systems.
In the near future, further advancements to these autonomous
materials discovery platforms will involve innovations in the
BO space, robotics, and data integration. While progress has
been slow, advancement is accelerating dramatically, and
autonomous experimentation in materials science is likely to
become the dominant paradigm for exploring complex, multi-
objective, and multi-dimensional materials design spaces in
the decades to come.
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