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Abstract 

 
 

Continual Learning (CL) is the problem of se- 
quentially learning predictive models with vary- 
ing data that may originate from different con- 
texts. Many existing CL methods assume that the 
data stream is divided into a sequence of contexts, 
termed as tasks, with explicitly given transition 
boundaries. Unfortunately, many real-world CL 
scenarios have neither explicit task information 
nor context boundaries, motivating the study of 
task-agnostic CL. This paper proposes a varia- 
tional architecture growing framework dubbed 
VariGrow. By interpreting dynamically grow- 
ing neural networks as a Bayesian approximation, 
and defining flexible implicit variational distribu- 
tions, VariGrow detects if a new task is arriving 
through an energy-based novelty score. If the nov- 
elty score is high and the sample is “detected” 
as a new task, VariGrow will grow a new expert 
module to be responsible for it. Otherwise, the 
sample will be assigned to one of the existing ex- 
perts who is the most “familiar” with it (i.e., one 
with the lowest novelty score) to preserve all the 
acquired knowledge. We have tested VariGrow 
on several CIFAR and ImageNet-based bench- 
marks for the strictly task-agnostic CL setting 
without any task information during training or 
testing, which demonstrates its consistently supe- 
rior or competitive performance. More interesting, 
VariGrow achieves comparable performance with 
task-aware CL methods. 
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1. Introduction 
In conventional machine learning, data points are assumed 
to be identically and independently distributed (iid) and 
all available at once. In contrast, the regime of continual 
learning (CL) presents the new challenge of incrementally 
accumulating knowledge from past experiences, mimicking 
human’s ability to learn with non-iid data streams in widely 
varying contexts. CL sequentially learns novel concepts 
to achieve reliable predictions without catastrophically for- 
getting previously learned knowledge. It can be applied 
to many real-world applications, such as robotics (Thrun 
& Mitchell, 1995), computer vision (Li et al., 2017), au- 
tonomous driving (Pierre, 2018), and healthcare monitor- 
ing (Ardywibowo et al., 2019; 2018; Ardywibowo, 2017; 
Jiang et al., 2019). To this end, many CL methods have 
been developed in attempting to solve the stability-plasticity 
dilemma (Aljundi et al., 2017; 2018; Lopez-Paz & Ranzato, 
2017; Kirkpatrick et al., 2017; Rusu et al., 2016; Shin et al., 
2017; Yoon et al., 2018; Yan et al., 2021b; Liu et al., 2021; 
Rajasegaran et al., 2019). 

Many existing CL methods assume that the data stream 
is explicitly divided into a sequence of transiting contexts, 
termed as tasks, with task information given at both training 
and testing time. In real-world scenarios, however, there is 
no clear transition boundary between different contexts or 
tasks, limiting the application of these CL methods in prac- 
tice (Lee et al., 2020). With this in mind, task-agnostic CL 
performs continual learning without requiring task IDs and 
their transitions. This new setting is challenging, dubbed as 
the single-headed setting, where existing task-agnostic CL 
methods have significantly lower performance compared 
to their task-aware counterparts (Rao et al., 2019; Aljundi, 
2019; Aljundi et al., 2019; Zeno et al., 2018; He & Jaeger, 
2018). In this paper, we focus on task-agnostic CL for 
classification problems. 

Existing CL methods can be broadly categorized into 1) 
regularization-based, 2) memory-based, and 3) expansion- 
based (Parisi et al., 2019). While regularization- and 
memory-based methods focus on retaining the knowledge 
learned from the old tasks, expansion-based methods lean 
towards better absorbing new knowledge and circumvent 
the capability saturation (Sodhani et al., 2020). To the best 
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of our knowledge, though, methods that tackle both catas- 
trophic forgetting and capability saturation, under the task- 
agnostic CL paradigm, are lacking (Kaushik et al., 2021). 
Bayesian inference offers a promising way to reconcile this 
problem, with old data points naturally being summarized 
by a posterior distribution that can be sequentially updated. 
The inherent uncertainty quantification capability enables 
effective task-agnostic CL without needing task information 
explicitly (Barber, 2012). In particular, Bayesian nonpara- 
metrics offer a natural solution to the stability-plasticity 
dilemma by principally increasing model complexity as 
novel data arrives. However, the posterior distribution be- 
comes intractable with large and complex datasets, and 
existing sequential variational approximations are not flexi- 
ble enough to capture the complexity of these datasets (Blei 
& Jordan, 2006; Lin, 2013; Lee et al., 2020; Kessler et al., 
2019). Promisingly, implicit variational inference enables 
flexible modeling of the posterior (Yin & Zhou, 2018; Tit- 
sias & Ruiz, 2019; Molchanov et al., 2019). However, their 
application to dynamically growing architectures for task- 
agnostic CL has not been previously explored. 

In this paper, we propose VariGrow, a Variational archi- 
tecture Growing framework for task-agnostic continual 
learning. To accomplish this, we first formulate model 
or network growing in terms of Bayesian nonparametric 
distributions that define an infinite mixture of expert distri- 
butions, which can be considered as having an expansion- 
based backbone. This consists of an expert distribution for 
each mixture component and a mixing distribution selecting 
from which expert the data originate. We then approxi- 
mate these distributions using flexible implicit variational 
distributions, allowing us to more accurately capture the 
posterior at each incremental step. Specifically, we design 
a mixing distribution using energy-based novelty scores to 
determine the mixture component to which each data point 
belongs (LeCun et al., 2006; Liu et al., 2020). This allows 
to dynamically decide whether to grow a new mixture com- 
ponent for novel instances, or to assign it to an existing 
one. Meanwhile, each component is handled by an expert 
distribution defined implicitly through Bayesian Neural Net- 
works (BNNs) (Yin & Zhou, 2018; Titsias & Ruiz, 2019; 
Molchanov et al., 2019). By deriving tractable approxima- 
tions to the Kullback-Leibler (KL) divergence, we optimize 
the Evidence Lower Bound (ELBO) of our formulation 
through stochastic gradient-based techniques along with a 
sparsification trick to ensure expressiveness. We have tested 
VariGrow on several CIFAR and ImageNet-based bench- 
marks for the strict task-agnostic (without using the ‘label 
trick’ (Zeno et al., 2018)) CL setting, which demonstrates 
its consistently competitive performance to existing task- 
agnostic CL methods. Interestingly, VariGrow even achieves 
comparable performances to task-aware counterparts. 

2. Related Work 
Continual Learning: Continual learning models aim to 
learn new knowledge without catastrophically forgetting 
previously learned information. Methods in this domain 
can be broadly categorized into three classes: 1) memory- 
based methods which store a subset of raw data or build a 
generative model to generate synthetic data for replay (Re- 
buffi et al., 2017; Shin et al., 2017; Lopez-Paz & Ranzato, 
2017; Riemer et al., 2018), 2) regularization-based methods 
which focus on preserving old information when learning 
new ones by penalizing drastic changes to a model’s param- 
eters (Kirkpatrick et al., 2017; Aljundi et al., 2018; Titsias 
et al., 2019; Pomponi et al., 2020), and 3) expansion-based 
methods which grow and assign new model components for 
different tasks, keeping unrelated model parameters fixed. 
The expansion can be based on neurons (Wortsman et al., 
2020), layers (Rusu et al., 2016; Schwarz et al., 2018), or 
independent networks (Yan et al., 2021b). Most CL methods 
require the task information during training and/or testing. 
For example, in the multi-head setting, models would only 
need to predict among the classes in one task, instead of the 
whole class set (Kaushik et al., 2021). 

Task-agnostic continual learning: In many real-world 
applications, the current task information is usually not 
given (Lee et al., 2020; Kirichenko et al., 2021). Some 
methods proposed to tackle the task-agnostic setting, but 
only during testing (Kaushik et al., 2021; Yan et al., 2021b; 
Abati et al., 2020; Rajasegaran et al., 2020). There are re- 
cently developed methods assuming that task information is 
not given during training (Lee et al., 2020; Ebrahimi et al., 
2020; Zeno et al., 2018) but their performances are much 
lower compared to their task-aware counterparts. Further- 
more, the model training in these methods have various 
drawbacks. Rajasegaran et al. (2020) assumes that data 
in one batch comes from a single context (task), and as- 
sume that task labels are available during training. The 
training of UCB (Ebrahimi et al., 2020) is extremely slow 
due to their modified backpropagation formulation. In Lee 
et al. (2020), CN-DPM has the least assumptions on the 
data stream; however, their method requires performing 
density estimation through generative modeling, which can 
be intractable and unstable (Grathwohl et al., 2019; Lee 
et al., 2020; Mescheder et al., 2018; Nalisnick et al., 2018), 
causing their performance to be significantly lower than 
task-aware CL methods. 

Variational Inference for CL with Anomaly Detection: 
Our VariGrow is motivated by the energy-based model 
(EBM), which maps an input to a single, non-probabilistic 
scalar called energy (Liu et al., 2020; LeCun et al., 2006). 
This energy score has shown to outperform the softmax 
confidence score for OoD detection (Hendrycks & Gim- 
pel, 2016). Some other works on OoD detection either 
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(a) (b) 
Figure 1. VariGrow schematic: (a): The dynamically growing construct illustrated for two expert components. The input x is passed into 
a Bayesian Neural Network f1 with weights ω1 ∼ qϕ(ω1) multiplied by a binary mask m1 ∼ qϕ(m1), sparsifying the architecture. 
The output is used to compute an energy-based novelty score ψ1 . As ψ1 (x) exceeds a threshold α, VariGrow expands and creates a 

ϕ ϕ 
second mixture component. The novelty scores are then used to construct the mixing distribution and sample z ∼ qϕ(z|x), determining 
which expert component is used to compute p(y|x, w, z). Through differentiable reparameterizations and approximations, gradient-based 
optimization can be performed to learn the variational parameters that optimize the Evidence Lower Bound (ELBO). (b): The graphical 
model of the nonparametric distribution that we approximate, consisting of mixture assignments zn for each data point according to prior 
probability p(zn = k) = vk, and a mixture distribution where the expert parameters wk = {ωk, mk} are sampled from. 

 

develop deep generative models (Nalisnick et al., 2018), 
unify probabilistic and non-probabilistic models (Ranzato 
et al., 2007), or add background classes to enhance OoD de- 
tection (Mohseni et al., 2020). Kurle et al. (2019) analyzed 
non-stationary data using Bayesian neural networks and 
memory-based online variational Bayes by implementing 
‘Bayesian forgetting’ to selectively forget knowledge not 
relevant to the current data distribution. Kessler et al. (2019) 
proposed a hierarchical Indian Buffet process (IBP) to allo- 
cate resources when learning new tasks. However, training 
would still require task information for online inference. 
Zeno et al. (2018) proposed Bayesian Gradient Descent to 
train neural networks, claiming that their closed-form update 
rule better fits task-agnostic training. However, a ‘label trick’ 
was used to implicitly infer new tasks from novel labels. 
Nguyen et al. (2018) proposed VCL, a variational Bayesian 
interpretation of CL using exemplar data points and a KL 
divergence penalty to retain previous information. But VCL 
is a multi-head formulation and requires task labels both 
during training and testing. Kirichenko et al. (2021) pro- 
posed using likelihood-based mixture models to handle the 
multi-modality of the different tasks. However, likelihood- 
based models fail on complex datasets and often assign 
higher likelihoods to OoD data (Nalisnick et al., 2018). For 
this, they resort to use a pretrained model to extract features 
for more complex datasets such as CIFAR100 (Krizhevsky 
et al., 2009) and ImageNet (Deng et al., 2009). 

3. Methodology 

Let {Dt}T be a stream of datasets with each Dt having 
input-output pairs (x, y). Bayesian learning places a prior 
distribution p(θ) on the model parameters θ. In continual 
learning (CL), the posterior distribution after observing t + 1 
datasets is obtained using Bayes’ rule: 

p(θ|D1:t+1) ∝ p(Dt+1|θ)p(θ|D1:t). (1) 

Here, the posterior obtained in the previous step t is treated 
as a prior for the current step t + 1. As we observe more 
novel data points, the complexity of the evolving posterior 
given our dataset increases. Hence it is important that our 
model scales accordingly (Hjort et al., 2010). 
 
3.1. VariGrow 

To this end, we design a dynamically growing model, Vari- 
Grow, parameterized as follows: 

p(w, z|D1:t+1)  ∝  p(Dt+1|w, zt+1)p(w, z|D1:t), 
t 

p(w, z|D1:t)  = p(wzi |Di)p(z|D1:t). 
i=1 

 
Here, w denote the parameters of an expert module such 
as a neural network, while z determines which expert mix- 
ture component p(wz) to sample w from. This mixing 
strategy naturally enriches the model representation capac- 
ity when needed for continual learning. The schematic is 
shown in Figure. 1. When training with large and complex 
datasets, the posterior distribution is intractable and is typi- 
cally approximated (Blei et al., 2017). It is important that 
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the distributions we use to approximate the posterior via 
variational inference are flexible and expressive. For CL in 
particular, one must ensure that these variational distribu- 
tions can be robustly updated without requiring the access 
to previously observed datasets (Nguyen et al., 2018). In 
our CL settings, one would expect to grow more compo- 
nents as we sequentially observe more data from novel tasks. 
There could be infinitely many expert mixture components, 
presenting additional challenges in inference (Hjort et al., 
2010). To address the mentioned challenges, we define the 
following variational approximation to the above posterior: 

t 

qϕ(w, z|x) = qϕ(wzi )qϕ(z|x). (2) 
i=1 

 
To obtain an ideal approximate solution, it is crucial that 
both qϕ(z|x) and qϕ(wz) are expressive and flexible. 
To this end, we will define these distributions implicitly. 
Also, note that we make qϕ(z|x) covariate-dependent, 
allowing 

where nk is the number of data points previously assigned 
to expert k. Intuitively, as more data points are assigned to 
expert k, we would expect the expert distribution qϕ(wk) to 
approach the true corresponding posterior. Meanwhile, for 
new expert components, only a prior distribution is given, 
and the component is free to learn from novel data. 

To evaluate and optimize the ELBO above, it is important 
that we define our variational distributions such that the KL 
terms defined above are easily computable, plus being flex- 
ible and expressive. So we adopt an energy-based mixing 
construct for the variational distribution qϕ(z|x) and 
define the expert weight distribution implicitly. 
 
3.2. Energy-based Mixing Distribution 

Here, we describe our specification for the expert mixing 
distribution qϕ(z|x). By Bayes’ rule, we have 

 qϕ(x|z)qϕ(z)  

us to assign individual data points to any mixture compo- 
nent. To deal with the potentially infinite number of expert 

qϕ(z|x) = ∞ 
i=1 qϕ(x|z = 
i)qϕ 

. (6) 
(z = i) 

modules, we can define qϕ(z|x) through a set of K 
expert components, while the other mixture components 
can be 
defined in relation to these main components. We describe 
these two distributions in detail in the following sections. 

For the moment, let us assume that these two distributions 
are given. Optimizing the variational parameters ϕ corre- 
sponds to minimizing the negative ELBO at each CL step t: 

Although one would typically find qϕ(x|z) through density 
estimation, such as an agnostic method CN-DPM (Lee et al., 
2020), this involves the difficult optimization process of 
training generative models which can be intractable and 
unstable to perform in practice (Grathwohl et al., 2019; 
Mescheder et al., 2018; Nalisnick et al., 2018). Instead of 
relying on density estimation for qϕ(x|z) we interpret it as 
an energy-based score function as in Liu et al. (2020). 

L(ϕt+1) = Eqϕ 
 
 

t+1 (w,z|x)[− log p(Dt+1|wzt+1 )] 
 
(3) 

In energy-based models, the system is optimized such that 
x belonging to a particular mixture component k will have 

+ KL(qϕ (w, z|x) ∥ qϕ (w, z|x)). 
The expectation can be approximated using a single sample 
of (w, zt+1) ∼ qϕ (w, z|x), and log p(Dt+1|wK+1) = 

low free energy ψk (x) relative to component k (LeCun 
et al., 2006; Liu et al., 2020). For example, in classification 
problems, the Helmholtz free energy relative to component k 

N E(x,y)∼D [log p(y|x, wK+1)] can be approximated us- can be written w.r.t. the log-posterior predictive distribution 
t+1 

ing minibatches, with N being the number of data points in 
Dt+1. When a novel task is detected by our variational for- 

ℓk (x, c) = E qϕ(w|z=k) [log p(y = c|x, w, z = k)]: 

mulation, zt+1 > K, and a new expert mixture component 
K + 1 is created. So the ELBO becomes 

 
ψk (x) = −T log 

  C 

c=1 

exp(ℓk (x, c)/T )
i
. 

L(ϕt+1) = Eqϕ  t+1 (w,z|x)[− log p(Dt+1|wK+1)] 
+ 
KL(qϕ (wK+1) ∥ p(w)) (4) Here, C is all the known classes until current CL step, and 

T a temperature parameter of the free energy of compo- 

+ KL(qϕ (z|x) ∥ qϕ (z|x)). 
Here, since K + 1 indicates a new mixture component 
qϕ (wK+1) = p(w), where p(w) is the prior 
distribution on the expert parameters. Meanwhile when we 
observe data 
points assigned to an existing mixture component, zt+1 = 
k ∈ {1, . . . , K}, we have: 

nent k. Note that ℓk (x, c) can be estimated using a single 
sample of w. Similar energy functions can be derived for 
other tasks (LeCun et al., 2006). We would expect higher 
energy for data points x not belonging to component k, al- 
lowing us to assign data points into their respective mixture 
components. Specifically, for k ∈ {1, . . . , K}, we have 

L(ϕ 
 
t+1 ) = E 

 
qϕt+1 (w,z|x) [− log p(D  t+1 |wk)] 

exp (−ψk (x)) q (z = k|x) = ϕ  , 

+ nk KL(qϕ (wk) ∥ qϕ 
(wk)) 

ϕ 
(5) 

K 
i=1 exp (−ψi (x)) + e−α 

+ KL(qϕ (z|x) ∥ qϕ (z|x)), where α is a parameter controlling the concentration of the 

t+1 
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mixture components. Meanwhile, for k > K, we have 

e−α 

size, we posit that only a small percentage of weights in the 
BNN are nonzero so here we apply a sparsification method. 
Indeed, this is inline with recent findings on neural network 

qϕ(z = k|x) = k−K K i=1 exp (−ψi (x)) + e−α
 
 model compression (Frankle & Carbin, 2018), as well as 

Note that qϕ(z > K|x) = e−α/( K exp (−ψi (x)) + existing variational inference methods for encourgaging 
e ). Here, the number of active mixture components K 
can dynamically grow as more data come in. Specifically, 
when qϕ(z > K|x) > qϕ(zi|x), ∀i ∈ {1, . . . , K}, we 
can 
allocate a new mixture component, growing a new expert 
module that implicitly defines this distribution. From an 
energy-based perspective, α can be seen as the average 
energy of all data points in the system. Such energy-based 
novelty scores allow us to identify and handle novel data 
points in a Bayesian fashion. 

Having specified our mixing distribution, we now show how 
to approximate its KL term. Instead of computing the KL 
term of this distribution directly, we derive a tractable upper 
bound to the KL term. Specifically, we can divide the KL 
term into two parts as follows: 

2020; Boluki et al., 2020). So we separate w into two 
parameter groups w = {ω, m}. Here ω are the weights and 
biases commonly found in a standard BNN. For a Bayesian 
treatment of ω, approximate Bayesian inference techniques 
for neural networks, such as Monte Carlo dropout and its 
variants can be used (Gal & Ghahramani, 2016; Gal et al., 
2017; Kingma et al., 2015; Boluki et al., 2020; Kumar et al., 
2021). Alternatively, one can employ MAP estimation of 
ω and place Gaussian priors to induce L2 weight decay 
regularization (Krogh & Hertz, 1992; Vladimirova et al., 
2019). 

On the other hand, m is a learnable mask parameter that de- 
cide which weights and biases of ω are active or set to zero. 
With this, we can define a sparsifying prior for m. Specifi- 

KL(q

ϕ 
K 

 

t+1 (z|x)||qϕt (z|x)) = cally, let mk be stochastic binary variables that determine 
whether weight k is used. To simplify our exposition, we 

q 
i=1 

ϕt+1 
qϕt+1 (z = i|x) (z = i|x) log 
qϕt (z = i|x) 

 
(7) 

will remove the subscript k and introduce them later for con- 
ciseness. For each weight k, we define a prior distribution 

 
 

+ 
i=K+1 

 
qϕt+1 

qϕt+1 (z = i|x) (z = i|x) log . 
qϕt (z = i|x) 

p(m) for each binary variable as 
 

p(m) = Bern(e−η). (11) 

Then, by applying Jensen’s inequality to the second term: Here, η is a parameter controlling the shape of the prior. 

KL(q 
 
ϕt+1 (z|x)||qϕ

t 
(z|x)) ≤ 

We then define a variational distribution q(m) = qϕ(m) 
with parameters ϕ ∈ (−∞, ∞) by transforming random 

K 

q 
i=1 

 
ϕt+1 

qϕt+1 (z = 
i|x) 

(z = i|x) log 
qϕt (z = i|x) 

 
(8) 

variables from an explicit distribution ϵ ∼ p(ϵ) using a 
reparameterizable transformation as follows: 

+ qϕt+1 
qϕt+1 (z > 
K|x) 

(z > K|x) log 
qϕt (z > K|x) 

ϵ ∼ p(ϵ), m = ζ(ϕ, ϵ) ⇒ m ∼ qϕ(m). (12) 

Here, ζ(ϕ, ϵ) outputs a binary random variable that deter- 
In other words, by defining the following K + 1 categorical 
distribution q′ (z|x): 

q′ (z = k|x) = qϕ(z = k|x), k ∈ {1, . . . , K} (9) 
q′ (z = K + 1|x) = qϕ(z > K|x), (10) 

mines whether the weight corresponding to m is used, where 
m = ζ(ϕ, ϵ). By defining p(ϵ) as the logistic distribution 
with probability density f (ϵ), and ζ(ϕ, ϵ) through the sig- 
moid function σ(ϕ) ∈ (0, 1) as follows: 

e−ϵ 
ϕ 

we can use the KL divergence of this distribution as a 
ϵ ∼ p(ϵ), f (ϵ) = (1 + e−ϵ)2 

,
 

tractable upper bound to the KL divergence of our origi- 
nal distribution: 

ζ(ϕ, ϵ)  =    log  σ(ϕ)  + ϵ > 0 , 
1 − σ(ϕ) 

KL(q
ϕ 

(z|x)||qϕ (z|x)) ≤ 
KL(q′ 

(z|x)||q′ (z|x)). we have that q  (m = 1) = E [ζ(ϕ, ϵ)] = σ(ϕ). In 
t+1 t ϕt+1 ϕt ϕ p(ϵ) 

3.3. Implicit Expert Distribution 

We now define the expert distribution qϕ(w|z) = 
qϕ(wz). For each z, we define wz as the parameters of 
a Bayesian Neural Network (BNN). To regularize the 
BNN ensuring 

that it does not overfit and to maintain a small memory 

∞ 

sparse activations in BNNs (Ardywibowo et al., 2022a;b; 

. 



 VariGrow: Variational Architecture Growing for Task-Agnostic Continual Learning based on Bayesian Novelty  
 

  

practice, ϵ ∼ p(ϵ) can be sampled as ϵ = log u − log(1 − 
u), where u ∼ Unif(0, 1). With this, the KL divergence 
between the prior and posterior can be computed as 
 

K 

KL(q(m)||p(m)) = KL(qϕ(mk)||p(mk)), 
k=
1 
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Table 1. Results on CIFAR100-B0 benchmark (averaged over three runs). Parameters are counted by millions. *Dashes indicate results 
were not reported by the authors.  

Method 5 Steps 10 Steps 20 Steps 50 Steps 

 
 
 
 
 
 
 
 
 
 
 
KL(qϕ(mk)||p(mk)) = − H[qϕ(mk)] + ηqϕ(mk = 1) 

− log 1 − e−η qϕ(mk = 0), 
where H[qϕ(mk)] is the entropy of qϕ(mk). For sufficiently 
large η, log (1 − e−η) ≈ 0. We achieve this by scaling η 
with N , η = Nλ. We can then scale the negative ELBO 
with the number of samples N without changing the optima. 

take more resources but in experiments we show that they 
can reduce and sparsify the BNN nicely. 

4. Experiments 
In this section, we conduct extensive experiments to vali- 
date the effectiveness of VariGrow. We evaluate our method 

KL(q 1 (m )||p(m )) ≈ − H[q Nλ (m )]+ q (m = 1). on 3 datasets: CIFAR-100 (Rebuffi et al., 2017), ImageNet- 
ϕ k k N ϕ k N  ϕ k 100 (Rebuffi et al., 2017), and ImageNet-1000 (Rebuffi et al., 

For large N , the entropy term vanishes, leaving us with 

KL(qϕ(mk)||p(mk)) ≈ λqϕ(mk = 1) = λσ(ϕk). 

Here the KL term penalizes the model for using too many 
weights on average, enabling sparsity of each expert. The 
discrete nature of the selection variables makes it not im- 
mediately amenable to gradient-based optimization through 
reparameterization. To deal with this challenge, we adopt 
the Gumbel-softmax reparameterization trick (Jang et al., 
2016; Maddison et al., 2016) to relax the discrete random 
variables. This amounts to replacing the indicator func- 
tion in ζ(ϕ, ϵ) with a sigmoid scaled by temperature τ , 
ζ(ϕ, ϵ) ≈ ζ˜(ϕ, ϵ) = σ  log  σ(ϕ)   + ϵ /τ  . Mean- 

while, during testing, we can use ζ(ϕ, ϵ) directly and re- 
move the stochasticity. The masking parameters seemingly 

2017), using two commonly used benchmark protocols. Af- 
ter detailing our experimental setups and implementation 
details in Section 4.1, we present and discuss experimental 
results on the CIFAR-100 dataset and both ImageNet-100 
and ImageNet-1000 datasets in Sections 4.2 and 4.3. 

4.1. Experimental Setups 
Datasets: CIFAR-100 (Krizhevsky et al., 2009) consists of 
60,000 32x32 pixel color images ranging over 100 classes. 
The dataset is divided into 50,000 training images with 
500 images per class, and 10,000 images for evaluation 
with 100 images per class. ImageNet-1000 (Deng et al., 
2009) is a large-scale dataset consisting of 1,000 classes, 
including about 1.2 million RGB images for training and 
50,000 images for validation. ImageNet-100 (Rebuffi et al., 
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Figure 2. Class-incremental performance comparisons at each step for the CIFAR-100 dataset. 
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 Params. Acc. (%) Params. Acc. (%) Params. Acc. (%) Params. Acc. (%) 
Bound 11.2 80.40 11.2 80.41 11.2 81.49 11.2 81.74 
iCaRL (Rebuffi et al., 2017) 11.2 71.14 11.2 65.27 11.2 61.20 11.2 56.08 
UCIR (Hou et al., 2019) 11.2 62.77 11.2 58.66 11.2 58.17 11.2 56.86 
BiC (Hou et al., 2019) 11.2 73.10 11.2 68.80 11.2 66.48 11.2 62.09 
WA (Zhao et al., 2020) 11.2 72.81 11.2 69.46 11.2 67.33 11.2 64.32 
PODNet (Douillard et al., 2020) 11.2 66.70 11.2 58.03 11.2 53.97 11.2 51.19 
AANets (Liu et al., 2021) 11.2 67.59 11.2 65.66 - - - - 
RPSNet (Rajasegaran et al., 2019) 60.6 70.50 56.5 68.60 - - - - 
DER (Yan et al., 2021a) 2.89 75.55 4.96 74.64 7.21 73.98 10.15 72.05 
CN-DPM (Lee et al., 2020) (Agnostic) 19.2 20.34 19.2 17.60 19.2 18.79 19.2 19.70 
VariGrow (Agnostic) 2.97 75.50 4.88 75.04 7.30 74.03 10.25 72.21 

 



 VariGrow: Variational Architecture Growing for Task-Agnostic Continual Learning based on Bayesian Novelty  
 

 

 Table 2. Results on CIFAR100-B50 (averaged over three runs). Parameters are counted by millions.  

Method 2 Steps 5 Steps 10 Steps 

 
 
 
 
 
 
 
 
 
 

2017; Hou et al., 2019; Yan et al., 2021b) is a subset of it by 
selecting 100 classes from the ImageNet-1000 dataset. 
Benchmark Protocols: For the CIFAR-100, we test our 
methods on two widely used protocols: 1) CIFAR100- 
B0 (Rebuffi et al., 2017; Yan et al., 2021b): a protocol 
which divides all 100 classes into 5, 10, 20, and 50 incre- 
mental steps with a fixed memory size of 2,000 exemplars 
over batches; 2) CIFAR100-B50 (Hou et al., 2019; Yan et al., 
2021b): a protocol which starts from a model trained on 
50 classes, while the remaining 50 classes are divided into 
splits of 2, 5, and 10 incremental steps with 20 examples as 
memory per class. We compare the top-1 average incremen- 
tal accuracy, which takes the average of the accuracy for 
each step. We follow similar protocols for ImageNet-100: 
1) ImageNet100-B0 (Rebuffi et al., 2017; Yan et al., 2021b): 
the protocol trains the model in batches of 10 classes from 
scratch with a fixed memory size 2,000 over batches; 2) 
ImageNet100-B50 (Hou et al., 2019; Yan et al., 2021b): the 
protocol starts from a model trained on 50 classes while the 
remaining 50 classes come in 10 steps with 20 exemplars 
per class. For fair comparisons, we use the same ImageNet 
subset and class order done by Rebuffi et al. (2017), Hou 
et al. (2019), and Yan et al. (2021b). For ImageNet-1000, 
we evaluate our method on the ImageNet1000-B0 bench- 
mark (Rebuffi et al., 2017; Yan et al., 2021b), that trains 
the model in batches of 100 classes with 10 steps in total 

and set a fixed memory size as 20,000 exemplars, with the 
same class order by Rebuffi et al. (2017) for ImageNet-1000. 
For both ImageNet-100 and ImageNet-1000, we compare 
the top-1 and top-5 average incremental accuracy, as well 
as the last step accuracy. For the task-agnostic setting dur- 
ing training and testing we hide task IDs, which is called 
single-head setting. The task-aware setting (i.e. multi-head) 
is using one prediction head for each task and effectively 
predicting the labels within a task instead the whole label 
pool. For baselines, we compare against various state-of- 
the-art (i) task-aware CL methods: iCaRL (Rebuffi et al., 
2017) is memory-based that picks exemplars by balanc- 
ing the number of class labels. UCIR (Hou et al., 2019), 
uses normalized feature vectors for prediction. BiC (Hou 
et al., 2019) trains a bias correction layer on a validation 
set. WA (Zhao et al., 2020) corrects biased weights by 
aligning the norm of the weight vectors of new classes to 
weight vectors of old classes. PODNet (Douillard et al., 
2020) uses a spatial distillation loss penalizing parameter 
changes. TPCIL (Tao et al., 2020) attempts to preserve the 
topology of the latent feature space, AANets (Liu et al., 
2021) attempt to solve the stability-plasticity dilemma by 
proposing stable and plastic blocks, RPSNet (Rajasegaran 
et al., 2019) is a path selection algorithm that progressively 
chooses optimal paths as sub-network for the new classes. 
DER (Yan et al., 2021a) dynamically grows the network 
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Figure 3. Class-incremental performance comparisons at each step for the ImageNet-100 and ImageNet-1000. 
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 Params. Acc. (%) Params. Acc. (%) Params. Acc. (%) 
Bound 11.2 77.22 11.2 79.89 11.2 79.91 
iCaRL (Rebuffi et al., 2017) 11.2 71.33 11.2 65.06 11.2 58.59 
UCIR (Hou et al., 2019) 11.2 67.21 11.2 64.28 11.2 59.92 
BiC (Hou et al., 2019) 11.2 72.47 11.2 66.62 11.2 60.25 
WA (Zhao et al., 2020) 11.2 71.43 11.2 64.01 11.2 57.86 
PODNet (Douillard et al., 2020) 11.2 71.30 11.2 67.25 11.2 64.04 
DER (Yan et al., 2021a) 3.90 74.57 6.13 72.60 8.79 72.45 
VariGrow (Agnostic) 3.63 74.62 6.01 73.97 8.55 72.75 
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Table 3. Results on ImageNet-B0 (averaged over three runs). Parameters are counted by millions. Avg is the average accuracy (%) over 
steps. Last is the accuracy (%) evaluate on each task for the model at the last incremental step. *Dashes indicate results were not reported. 

ImageNet100-B0 ImageNet1000-B0 
Method Params. Top-1 Top-5 Params.  Top-1 Top-5  

Avg Last Avg Last Avg Last Avg Last 
Bound 11.2 - - - 95.1 11.2 89.27 - - - 
iCaRL (Rebuffi et al., 2017) 11.2 - - 83.6 63.8 11.2 38.4 22.7 63.7 44.0 
BiC (Hou et al., 2019) 11.2 - - 90.6 84.4 11.2 - - 84.0 73.2 
WA (Zhao et al., 2020) 11.2 - - 91.0 84.1 11.2 65.67 55.6 86.6 81.1 
RPSNet (Rajasegaran et al., 2019) - - - 87.9 74.0 - - - - - 
AANets (Liu et al., 2021) 11.2 75.58 - - - 11.2 64.85 - - - 
DER (Yan et al., 2021a) 7.67 76.12 66.06 92.79 88.38 14.52 66.73 58.62 87.08 81.89 
VariGrow (Agnostic) 7.82 76.04 65.87 92.51 88.17 14.89 66.58 58.47 86.88 81.70 

 

using given task labels. We also benchmark against (ii) task- 
agnostic CL methods: CN-DPM (Lee et al., 2020), a hybrid 
expansion- and memory-based method, and UCB (Ebrahimi 
et al., 2020), a regularization-based BNN model. We were 
not able to reproducible UCB’s results reliably, with an ac- 
curacy of only 40.34% on the CIFAR10/100 testing protocol. 
One agnostic method (Aljundi et al., 2019) was not consid- 
ered due to the capacity can only handle smaller dataset. 
Implementation Details: For all datasets, we adopt ResNet- 
18 (He et al., 2016) as the architecture of our expert modules, 
following RPSNet (Rajasegaran et al., 2019) and DER (Yan 
et al., 2021b). We run experiments on three different class 
orders and report the average of the results. In these ex- 
periments, we treat the exemplars variationally, follow- 
ing Nguyen et al. (2018) and select new exemplars (i.e. 
coreset) as novel mixture components are encountered based 
on the herding selection strategy (Welling, 2009). We also 
use these exemplars along with OoD datasets to further 
calibrate our energy-based novelty score, following the se- 
lection of Liu et al. (2020). We use Tiny-ImageNet (Le 
& Yang) and LSUN (Yu et al., 2015) as OoD datasets for 
CIFAR-100 and ImageNet experiments respectively. We 
perform MAP estimation of the neural network weights 
ω using Gaussian priors, equivalent to adding a 5 × 10−4 
weight decay coefficient. We set λ = 1 for the prior distribu- 
tion of m, and set T = 1, and α = 18 for the energy-based 
novelty scores. We optimize our formulation using SGD 
with a learning rate of 0.1, batch size of 128 for CIFAR-100, 
and 256 for ImageNet. We train for 120 epochs and decay 
the learning rate by 0.1 after 30, 60, and 90 epochs. 
 
4.2. Evaluation on CIFAR100 

Quantitative Results: Table 1 and Figure 2 (left) show the 
results for CIFAR100-B0. We can see that, without need- 
ing task labels nor task switching information, our method 
is competitive with state-of-the-art CL methods which are 
task-aware. Meanwhile, ours significantly outperforms CN- 
DPM, a task-agnostic online learning formulation, with an 
improvement of over +50%. Moreover, the margin between 

Table 4. Results on ImageNet-B50 (averaged over three runs). Pa- 
rameters are counted by millions. *Dashes indicate results were 
not reported by the authors.  

ImageNet100-B50 
Method Params.  Top-1 Top-5  

Avg Last Avg Last 
Bound 11.2 81.20 81.5 - - 
UCIR (Hou et al., 2019) 11.2 68.09 57.3 - - 
PODNet (Douillard et al., 2020) 11.2 74.33 - - - 
TPCIL (Tao et al., 2020) 11.2 74.81  66.91 - - 
DER (Yan et al., 2021a) 8.87 77.73  72.06 94.01 91.64 
VariGrow (Agnostic) 8.94 77.64  71.48 92.84 89.95 

 
our method and CN-DPM continuously increases, indicat- 
ing that our method performs better over longer continual 
learning episodes with fewer parameters with our sparsifica- 
tion. Note also that we are getting very close to the offline 
multi-task learning baseline (Bound). This demonstrates 
that VariGrow is able to learn from a non-iid data stream 
without much decrease in performance despite not having 
access to the entire dataset. 

We further compare the performance of VariGrow on the 
CIFAR100-B50 benchmark in Table 2 and Figure 2 (middle, 
right), again showing that our method is competitive with 
task-aware continual learning methods. We note that DER is 
the most competitive task-aware method in our benchmarks 
but it has to grow the network architecture with given task 
switching information. 

To further banchmark the efficacy of our method in handling 
task-agnosticism, we study the effects of two settings where 
task-agnosticism can occur. One setting involves removing 
 
 
Table 5. Results on different task-agnostic settings on the 
CIFAR100-B50 benchmark.  

Setting Accuracy (%) 
 5 Steps 10 Steps 
Baseline 73.97 72.45 
Lookback Old Tasks 71.21 70.98 
Fuzzy Boundaries 70.03 69.19 
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Figure 4. Novelty score values for each iteration on the CIFAR100- 
B50 10-step protocol. 

the clear task boundaries, and instead gradually introducing 
data from novel tasks. This setting is similar to the fuzzy 
task boundary experiment conducted by Lee et al. (2020). 
The other setting assumes that data from previous tasks 
can be observed again in between task switches. Thus, 
our model needs to be able to distinguish these instances 
and correctly assign them to an existing expert instead of 
growing a new one. We denote both of these experiments as 
fuzzy and lookback respectively, and the performance of our 
method in these settings on the CIFAR-100 dataset can be 
seen in Table 5. As seen in Table 5, our method suffers only 
a slight degradation in accuracy in these settings compared 
to the traditional setting. We hypothesize that this is caused 
by stray datapoints being incorrectly assigned to the wrong 
expert. 

Qualitative view on energy-based Novelty Score: We 
show the energy-based novelty score at each timestep for 
the CIFAR100-B50 10-step protocol in Figure 4. Here, we 
see that our novelty score clearly helps detect task changes, 
with significantly increased novelty scores after a new task 
is observed. Note also that VariGrow is able to correctly 
detect that there are 10 tasks with 10 observed peaks. 
 
4.3. Evaluation on ImageNet 

We show results for the ImageNet-100 and ImageNet-1000 
datasets in Tables 3, 4, and Figure 3. We see that our Vari- 
Grow is again competitive with task-aware methods for all 
splits on these two datasets, which are more complex com- 
pared to CIFAR100. We note that the gap in top-5 accuracy 
is smaller. We believe that this is because the top-5 accuracy 
is more tolerant to slightly inaccurate predictions and thus 
less sensitive to catastrophic forgetting. 
 
5. Conclusions 
We have presented VariGrow, a variational architecture 
growing formulation to solve strict task-agnostic continual 
learning. VariGrow defines an implicit variational construct 
to approximate the nonparametric posterior at each incre- 
mental CL step, giving a Bayesian interpretation of growing 

networks. Using energy-based novelty detection, we are 
able to dynamically grow the CL prediction model only 
when needed and reliably assign data points and thereafter 
corresponding tasks into different expert mixture compo- 
nents, where each component can be handled by expert 
distributions defined implicitly by neural networks. Our ex- 
tensive performance evaluation experiments on both CIFAR 
and ImageNet show that VariGrow significantly outperforms 
existing task-agnostic CL methods and is competitive even 
against task-aware CL methods. 
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