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ABSTRACT

Accurate detection of infected individuals is one of the critical
steps in stopping any pandemic. When the underlying infec-
tion rate of the disease is low, testing people in groups, instead
of testing each individual in the population, can be more effi-
cient. In this work, we consider noisy adaptive group testing
design with specific test sensitivity and specificity that select
the optimal group given previous test results based on pre-
selected utility function. As in prior studies on group test-
ing, we model this problem as a sequential Bayesian Opti-
mal Experimental Design (BOED) to adaptively design the
groups for each test. We analyze the required number of
group tests when using the updated posterior on the infection
status and the corresponding Mutual Information (MI) as our
utility function for selecting new groups. More importantly,
we study how the potential bias on the ground-truth noise of
group tests may affect the group testing sample complexity.

Index Terms— Group testing, Bayesian optimal experi-
mental design (BOED), mismatched models,

1. INTRODUCTION

Originally proposed for blood testing in the World War II [1],
group testing has been a powerful tool for detecting infected
individuals in a large population, for example by polymerase
chain reaction (PCR) tests for COVID-19 [2]. By mixing
up the test samples (e.g. saliva or blood) of individuals in
a group, the tester can determine whether there exists any in-
fected individual in the group if no mistakes are made.

Current studies on group testing can be roughly divided
into two categories – non-adaptive [3–7] and adaptive meth-
ods [3, 8–14] – based on whether the group to test is de-
cided before the tests or adaptively given test results during
the whole sequential procedure.

Non-adaptive group testing is solved in a two-stage fash-
ion: designing testing groups and recovering the infection sta-
tus based on the testing results. The very first paper about
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SC0019303, and the National Science Foundation (NSF) Awards 1553281,
1812641, and 2119103.

group testing [1] is in a non-adaptive way and derived the op-
timal group selection in a noiseless setup. A review of non-
adaptive group testing and its applications can be found in [5].

Adaptive group testing updates the Bayesian models of in-
fection status based on the previous testing results and designs
a new group to test at each iteration. Works on adaptive group
testing have examined its empirical performance in different
set-ups. Model inference by lattice-based classification mod-
els [15] or sum-observation [3] has been explored. In [10],
Loopy Belief Propagation (LBP) [16] and other approxima-
tion strategies [11] were adopted for scalable inference. All
the aforementioned works design group tests based on the
entropy-based utility function. Recently, other utility func-
tions, including mutual information (MI) and expected area
under the receiver operating characteristic curve (AUC), have
been explored with a sequential Monte-Carlo (SMC) method
in [9]. To the best of our knowledge, theoretical analysis for
noisy adaptive group testing is limited. In [11], the sam-
ple complexity when using the entropy utility function was
derived. However, computational of the sample complexity
requires the ground-truth probability, which is typically un-
known in practice.

In this paper, we consider adaptive group testing in the
presence of uncertainty. We follow the model formulation
in [9] to set a Bernoulli prior for the infection status. Group
testing design is based on a mutual information utility func-
tion of the current posterior, iteratively updated given previ-
ous results. Based on a stopping criterion of conditional en-
tropy, we derive a lower bound TE of the required number of
group tests. More importantly, we further analyze the sam-
ple complexity when we have possibly mismatched testing
models. We prove that when the model parameters are mis-
matched with the ground truth, the lower bound increases as
expected, T ′E = (1 + α)TE with a constant α > 0, due to the
optimal group selection based on the biased utility function.
Such a theoretical analysis has not been discussed in the exist-
ing literature. We further confirm our analyses by simulation
results.

2. GROUP TESTING

We note that capital letters denote random variables and vec-
tors are with the bold font in this paper. The detailed deriva-
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tions can be found in [17].
Given a population of n individuals whose infection sta-

tuses are unknown and modeled by Bernoulli random vari-
ables Xi’s, Xi = 1 if the i-th individual is infected, and
otherwise Xi = 0. Denote the random vector represent-
ing our understanding on the population infection state by
X = (X1, X2, . . . , Xn), where Xi ∼ Bern(qi) with the in-
fection probability qi for the ith individual. We are inter-
ested in designing group tests adaptively to discover the un-
known infection state: xtrue ∈ {0, 1}n. We assume that the
Bernoulli random variables Xi’s are independent, i.e. for any
x = (x1, x2, . . . , xn) ∈ {0, 1}n, we denote π0(x) = P (X =
x) =

∏
i q
xi
i (1−qi)1−xi . Here, P (Xi = 1) = qi can be iden-

tical or vary across individuals. For the j-th group test result
Yj ∈ {0, 1}, Yj = 1 if the j-th sample is tested positive, indi-
cating that the combined sample contains the sample(s) from
infected individual(s); and otherwise all the individuals in the
jth group test are not infected. Group testing design is to
choose a subset of individuals from the population as a group,
denoted as a vector gj = (gj,1, gj,2, . . . , gj,n) ∈ {0, 1}n, and
test the mixed samples from the individuals with the corre-
sponding gj,i = 1.

Existing testing assays have limitations and it is possible
to have testing errors. As in [9], we assume that the group
testing has the following sensitivity (sgj ) and specificity (σgj ):

P (Yj = 1|[gj , x] = 1) = sgj , P (Yj = 0|[gj , x] = 0) = σgj ,
(1)

where [g, x] = min(1, gT x) ∈ {0, 1}. In what follows, we
refer to sgj and σgj as model parameters for adaptive group
testing design. Assume that we have designed a batch of
testing groups Gt = {gtm+1, . . . , gtm+m} at stage t, where
tm = (t − 1)m and m is the batch size. Given their cor-
responding test results Yt = {Ytm+1, . . . , Ytm+m}, we can
compute:

Pr(Yt = yt|X = x) =
m∏
j=1

(Q
(0)
tm+j)

(1−y(j)t )(Q
(1)
tm+j)

y
(j)
t

(2)
based on (1), where Q(0)

tm+j = σgtm+j
− ρgtm+j

[gtm+j , x],
Q

(1)
tm+j = 1 − σgtm+j

+ ρgtm+j
[gtm+j , x]. Here, ρgtm+j

=
sgtm+j

+ σgtm+j
− 1. We can further infer the posterior

of the population infection status by Bayes’s rule: πt(x) ∝
π0(x)

∏t
k=1 Pr(Yk = yk|X = x). For simplicity, from now

on, we write the posterior of an event E given the previous t
test results by: Pt(E) = P (E|Y1 = y1,Y2 = y2, . . . ,Yt =
yt) .

3. ADAPTIVE GROUP TESTING

For adaptive group testing, we design a utility function
Ut(Gt) = U(Gt, πt) to guide the iterative selection of a
batch of groups to update the posterior πt of infection status.

More specifically, the task at each stage is to find a batch of
groups G∗t such that G∗t ∈ argmaxGt Ut(Gt).

3.1. Mutual Information based Utility Function

We adopt a mutual information utility function:

UMI(Gt, πt) = I(X;Yk|Y1, . . . ,Yk−1) , IPk−1
(X;Yk).

(3)
Denote h(p) = −p log2 p− (1− p) log2(1− p) as the binary
entropy and H(X|Y1, Y2, . . . , Yt) as HPt(X). We have:

IPt−1(X;Yt) = HPt−1(Yt)

−
k∑
j=1

[hσgtm+j
+ γgtm+j

fπt(gtm+j)],
(4)

where hφ = h(φ), γg = hsg − hσg , and

fπt(g) =
∑

x

πt(x)[g, x] =
∑

x:[g,x]=1

πt(x), (5)

representing the probability of having infected patient(s) in
the chosen group.

Here, we consider the simplified set-ups with all the sen-
sitivity and specificity being constant with respect to group
selection, i.e. σgtm+j

= σ, and sgtm+j
= s. The Mutual In-

formation (4) can be written as IPt−1
(X;Yt) = HPt−1

(Yt)−∑k
j=1 [hσ + γfπt(gtm+j)]. Further assume that we test one

group at each stage. We have:

IPt−1(X;Yt) = h(ρfπt(gt) + 1− σ)− hσ − γfπt(gt), (6)

where ρfπt(g) + 1 − σ = Pt(Yt = 1). Note that we have
replaced Yt by Yt and Gt by gt. Write J(x) = h(ρx+1−σ)−
hσ − γx, which is a concave function of x. Note that (6) can
be written as IPt−1(X;Yt) = J(fπt(gt)), which is concave
so it would be maximized when its derivative at fπt(gt) is
zero, leading to the closed-form optimal point of (6): f∗ =
σ
ρ −

exp γ
ρ

ρ(exp γ
ρ+1) .

Note that J(x) is fixed when the group testing sensitiv-
ity and specificity parameters are given. It is concave and we
can find fπt(gt) that optimizes J(x). The design problem be-
comes g∗t ∈ argmaxgt Ut(gt), and can be informally viewed
as finding g∗t to make fπt(g∗t ) as close as possible to f∗.

3.2. Stopping Criteria

In previous studies, either the budget [9] or the maximum
probability of infection status, i.e. maxx Pt−1(x) [10, 11],
have been used as stopping criteria. The former cannot help
us analyze the asymptotic performance, while the latter can be
difficult to analyze when using estimation methods like LBP.
We use Conditional Entropy (CE) as the stopping criterion:

HPt(X) ≤ δH(X), (7)
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where 0 ≤ δ ≤ 1 and H(X) is the entropy of the prior and
is fixed once the prior is given. With the mutual information
definition, we have HPt(X) = H(X) −

∑t
k=1 IPk−1

(X;Yk).
If we only search for one group to query at each stage,

HPt(X) = H(X)−
t∑

k=1

J(fπk(gk)). (8)

The stopping criterion becomes

t∑
k=1

J(fπk(gk)) ≥ (1− δ)H(X). (9)

With this, we are able to interpret the stopping criterion
from an information theoretic perspective. Furthermore, it
is straightforward to compute once each fπt(gt) is given by
adaptive group selection.

3.3. Sample Complexity

It worth noting that, by the nature of deriving f(g) in (5), we
are not guaranteed to reach f∗ every adaptive group testing
iteration. In other words, there are always gaps between the
achieved f(g) by the designed group test and the optimal f∗.
Therefore we cannot treat the information gain at each itera-
tion as a constant. Besides, it can be difficult to analyze how
close fπt(g) can approach f∗ as πt adapts over the iterations.

Here, we assume that fπt(g∗t ) ∈ argmaxfπt (gt) J(fπt(gt))
can be approximately modeled by Gaussian random vari-
ables: Ft ∼ N(f∗, ν2F ). Thus, we can transform the stopping
criterion (9) into

∑t
k=1 J(Ft) ≥ (1− δ)H(X).

Note that h(x) ≥ −4(x − 0.5)2 + 1. Therefore, J(x) ≥
J (4)(x), where J (A)(x) = −Aρ2x2− [2A(0.5−σ)ρ−γ]x−
A(0.5− σ)2 +1− hσ . We can derive the following theorem.

Theorem 1. If T ≥ T (A)
E , we have

Pr(
T∑
k=1

J (A)(F ) ≥ (1− δ)H(X))

≥
[E

(A)
F T − (1− δ)H(X)]2

V
(A)
F T + [E

(A)
F T − (1− δ)H(X)]2

,

(10)

where T (A)
E = (1−δ)H(X)

E
(A)
F

, E(A)
F = −Aρ2ν2F −A(0.5−σ)2+

1 − hσ − Aρ2(f∗)2 − BAf∗, V (A)
F = 2A2ρ4ν4F + (BA +

2Aρ2f∗)2ν2F , and BA = 2A(0.5− σ)ρ− γ.

We now give the condition for HPT (X) ≤ δH(X) in the
following proposition.

Proposition 1. If T ≥ T (4)
E , we have

Pr(HPT (X) ≤ δH(X))

≥ 1−
V

(4)
F T

V
(4)
F T + [(T − T (4)

E )E
(4)
F ]2

.
(11)

Based on this theorem, we have shown that the probability
of meeting the stopping criterion is in the rate of 1− o(T−1)
when T ≥ T

(4)
E . T (4)

E takes the form (1−δ)H(X)

E
(A)
F

, which is re-

lated to the population size n and the infection rate qi. Given
an i.i.d. Bernoulli prior, T (4)

E becomes n (1−δ)h(q)
E

(A)
F

, which is

proportional to the number of patients. In general the vari-
ance ν � 1 is small, which leads to (E

(4)
F )2 � V

(4)
F so that

Pr(HPT (X) ≤ δH(X)) can be close to 1 very quickly as
soon as T ≥ T (4)

E .

4. MISMATCHED MODEL

Now suppose there is a mismatch between the assumed group
test model parameters and the true parameters. Specif-
ically, we consider the impact of using incorrect sensi-
tivity s′ and specificity σ′ for group testing, instead of
the true sensitivity s and the true specificity σ, which are
unknown in practice. In each iteration, we would opti-
mize the ‘mismatched’ utility function: I ′P ′t−1

(X;Yt) =

HP ′t−1
(Yt)−

∑k
j=1[h

′
σgtm+j

+ γ′gtm+j
fπ′t(gtm+j)] and select

the group such that G′ ∈ argmaxG I
′
P ′t−1

(X;Yt), where π′t
is the mismatched posterior updated with the mismatched
parameters. With the same setup in Section 3, the selection at
each iteration is g′ ∈ argmaxg J

′(fπ′t(g)).
The mismatched selection target of fπ′t(g) would be

f ′ = σ′

ρ′ −
exp γ′

ρ′

ρ′(exp γ′
ρ′ +1)

. The actual information gain,

however, should be calculated with the true parameters,
IPt−1

(X;Yt) = J(fπt(g′t)). Notice that here the true poste-
rior πt needs to be updated with true parameters and have the
‘true’ understanding on the infection status.

Similar to the derivation in the previous section, we con-
sider f ′πt(gt) = F ′t ∼ N(f ′, ν2F ′). When there is model mis-
match, the variance would be much larger. Similar to Propo-
sition 1, we have:

Proposition 2. If T ≥ (1 + α(4))T
(4)
E , we have

Pr(HPT (X) ≤ δH(X))

≥ 1−
TV

(4)
F ′

TV
(4)
F ′ + [(T − (1 + α(4))T

(4)
E )E

(4)
F ′ ]

2

(12)

for mismatched models, where
α(A) = Aρ2(f ′)2+BAf

′−Aρ2(f∗)2−BAf∗

E
(A)

F ′
.

Here α(4) represents the change of sample complexity be-
cause of model bias on f ′ to f∗. We want to point out that
(E

(4)
F ′ )

2 � νF ′ � νF holds, so the probability can still be
close to 1 once T ≥ (1 + α(4))T

(4)
E . The main influence of

biased model is the difference of f ′ and f∗. Also α(4) = 0
if f ′ = f∗, so that we can observe that the performance is
similar when f ′ = f∗ in the experiments.
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(a) Average CE (b) Iterations needed (δ = 0.6) (c) Average AUC after 8 tests

Fig. 1: Simulation Results. 1a: The average CE over test iterations for each setup, the matched model is illustrated as black
dashed line. 1b: Required iterations when setting δ = 0.6. 1c: Average AUC after 8 active group testing iterations.

5. EXPERIMENTAL RESULTS

We perform simulations to confirm the derived bounds of the
required number of group testing iterations in this section.

5.1. Experimental Settings

We investigate how the group testing performance changes
with different model parameter settings. We have simu-
lated results for 24 combinations of mismatched param-
eters (biased) σ′, s′ ∈ {0.6, 0.7, 0.8, 0.9, 0.99} together
with the ground-truth group testing parameters (unbiased),
σ′ = σ = 0.8 and s′ = s = 0.8. To allow the exhaustive
search to achieve the best achieved group design, we have
simulated 1,000 runs with a population of ten individuals,
among whom one individual is randomly selected to be in-
fected. The prior π0 is set as the independent Bernoulli for
each individual and the probability of each individual being
infected is 0.1, Xi ∼ Bern(0.1). We perform adaptive group
testing as described in previous sections for each simulation
run and take the average conditional entropy and Area Under
the receiver operating characteristic Curve (AUC) [18] over
1,000 runs for each iteration for performance evaluation.

5.2. Conditional Entropy

In this set of experiments, the ground-truth entropy for per-
formed simulations is H(X) = −nh(p) = 10h(0.1). We
have plotted the average Conditional Entropy defined in (8)
over group testing iterations in Figure 1a. The dashed curve
is the performance based on the ground-truth model parame-
ters, which outperforms the ones based on the utility function
with mismatched models as one would expect.

We then show the average number of the required group
tests in Figures 1b when δ = 0.6, respectively. The horizon-
tal line in Figure 1a shows the value of δH(X) when δ = 0.6.
We can see that when f ′ = f∗, we have similar required
test numbers. More importantly, with mismatched models,
more group testing iterations are required to achieve the de-
sired conditional entropy level.

5.3. AUC

To further confirm the infection detection performance, we
compute the AUC based on the marginal likelihood as the
criterion to evaluate the performance of our updated poste-
rior given corresponding group test results across adaptive
group testing iterations. The marginal likelihood for each of
the individuals, indexed by i, can be computed as mt(i) =
Pt−1(Xi = 1) =

∑
[gi,x]=1 πt(x), where Xi is the infection

status of the i-th individual, gi is a group that only contains i-
th individual, i.e. one-hot coding of the i-th individual. With
that, the AUC of the infection marginal likelihood mt can be

written as AUC(mt) =
∑
i+∈POS

∑
i−∈NEG I(mt(i+)>mt(i

−))

|POS||NEG| ,

where I is the indicator function: I(E) = 1 if E is true.
As illustrated in Figure 1c, although not directly opti-

mized with respect to AUC, the AUC values for each setup
can be improved, reflected by the change of conditional en-
tropy, during the adaptive group testing iterations. It does
fluctuate and may not have a strictly monotonic relationship
with the accuracy of infection detection, probably due to the
inherent gap between the optimal f∗ and the best achievable
result.

6. CONCLUSIONS

In this paper, we proved that the probability of meeting the
stopping criterion based on conditional entropy is in the rate
of 1− o(T−1). More importantly, we have shown that a mis-
match in the group testing model would lead to a multiplica-
tive constant 1 + α (α > 0), determined by the difference be-
tween f∗ and f ′, to the required number of group tests. Our
simulation study shows that the adaptive group testing can be
efficient in infection detection based on the mutual informa-
tion utility. Adaptive design with the correct group testing
model outperforms the ones with mismatched models. The
performance evaluation by AUC has shown to be related to
the conditional entropy though not strictly monotonic.
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