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ABSTRACT

Multi-omics data analysis has the potential to discover hidden molecular inter-
actions, revealing potential regulatory and/or signal transduction pathways for
cellular processes of interest when studying life and disease systems. One of
critical challenges when dealing with real-world multi-omics data is that they may
manifest heterogeneous structures and data quality as often existing data may be
collected from different subjects under different conditions for each type of omics
data. We propose a novel deep Bayesian generative model to efficiently infer a
multi-partite graph that encodes molecular interactions across such heterogeneous
views, using a fused Gromov-Wasserstein (FGW) regularization between latent
representations of corresponding views for integrative analysis. With such an
optimal transport regularization in the deep Bayesian generative model, it not only
allows incorporating view-specific side information, either with graph-structured or
unstructured data in different views, but also increases the model flexibility with the
distribution-based regularization. This allows efficient alignment of heterogeneous
latent variable distributions to derive reliable interaction predictions compared to
the existing point-based graph embedding methods. Our experiments on several
real-world datasets demonstrate the enhanced performance of MoReL in inferring
meaningful interactions compared to existing baselines.

1 INTRODUCTION

Multi-view learning tries to fully leverage the information from multiple sources (i.e. different types of
omics data in molecular biology) and represents them in a shared embedding space, which is beneficial
for many downstream tasks with a limited number of training samples. In biomedical applications, the
shared embedding space also enables better understanding of the underlying biological mechanisms
by discovering interactions between different types of molecules, which is our focus in this paper.

Existing multi-omics data integration methods are limited in their applicability. First, most of them
attempt to derive low-dimensional embeddings of the input samples and are not designed to infer
a multi-partite graph that encodes the interactions across views. In unsupervised settings, matrix
factorization based methods, such as Bayesian Canonical Correlation Analysis (BCCA) (Klami et al.,
2013) and Multi-Omics Factor Analysis (MOFA) (Argelaguet et al., 2018), can achieve the similar
goal of cross-view relational learning but often through two-step procedures, in which the factor
loading parameters are used for downstream interaction analyses across views. Second, a very recent
relational inference for multi-view data integration, BayRel (Hajiramezanali et al., 2020), is built
on three strict assumptions, which may limit its practical application, including in multi-omics data
integration: 1) A graph of dependency between features of each view is available; 2) The input
dataset is complete on all views with no missing samples; 3) The samples in different views are
well-paired. While the first limitation might be solved by learning a graph using an ad-hoc technique,
the last two issues are common in many multi-omics data integration problems. Integrated samples
commonly have one or more views with various missing patterns. This is mostly due to limitations
of experimental designs or compositions from different data platforms. In addition, data might be
collected in different laboratories or the sample IDs are not available due to patient identification or
privacy/security concerns, leading to unpaired datasets. Apart from these, we might not have access
to a priori graph structured data in some view(s) as the nature of data might not be structured, or we
only have incomplete or very noisy prior knowledge. For such multi-omics data, leaving out such
a view may lose some complementary information while enforcing graph structures may lead to
degraded performances.
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In this work, we propose a new Multi-omics Relational Learning method, MoReL, based on the
fused Gromov-Wasserstein (FGW) regularization, mitigating the dependency of multi-view learning
on the aforementioned two assumptions. The proposed method contains four major contributions: 1)
MoReL provides a new Bayesian multi-omics relational learning framework with efficient variational
inference and is able to exploit non-linear transformations of data by leveraging deep learning
models for either unstructured or graph-structured data; 2) MoReL learns a multi-partite graph across
different features from multiple views using a FGW-based decoder, facilitating meaningful biological
knowledge discovery from integrative multi-omics data analysis while accounting for arbitrarily
permutation and/or transformation caused by processing features with different deep functions across
the views; 3) MoReL can flexibly integrate both structured and unstructured heterogeneous views
in one framework, in which only confident constraints need to be imposed to improve the model
performance; 4) MoReL is able to integrate multiple views with unpaired samples and/or arbitrary
sample-missing patterns.

2 RELATED WORKS

Optimal transport. There have been extensive efforts to utilize Gromov-Wasserstein (GW) dis-
crepancy to solve the alignment problems in shape and object matching (Mémoli, 2009; 2011). A
similar attempt has been made recently to investigate its potential for more diverse applications,
such as aligning vocabulary sets between different languages (Alvarez-Melis & Jaakkola, 2018),
and graph matching (Chowdhury & Mémoli, 2019; Vayer et al., 2018b; Xu et al., 2019b). Peyré
et al. (2016) have proposed a fast Sinkhorn projection-based algorithm (Cuturi, 2013) to compute
the entropy-regularized GW distance. Following this direction, Xu et al. (2019b) have replaced the
entropy regularizer with a Bregman proximal term. To further reduce the computational complexity,
the recursive GW distance (Xu et al., 2019a) and the sliced GW distance (Vayer et al., 2019) have
been proposed. In Bunne et al. (2019), a pair of generative models are learned for incomparable
spaces by defining an adversarial objective function based on the GW discrepancy. It imposes an
orthogonal assumption on the transformation between the sample and its latent space. However, it
can not incorporate the graph structured data. Similar to our model in this paper, Vayer et al. (2018a)
and Xu et al. (2020) have proposed to impose the fused GW regularization in their objective functions
by combining GW and Wasserstein discrepancies.

Graph CCA (gCCA). To utilize a priori known information about geometry of the samples, gCCA
methods (Chen et al., 2019; 2018) have been proposed to construct a dependency graph between
samples and directly impose it into a regularizer. Similar to classical CCA, gCCA learns an unstruc-
tured shared latent representation. Unlike our MoReL, though, they can neither take advantage of the
dependency graph between features, nor explicitly model relational dependency between features
across views. Therefore, they rely on ad-hoc post-processing procedures to infer inter-relations.

Graph representation learning. Graph neural network architectures have been shown to be ef-
fective for link prediction (Hamilton et al., 2017; Kipf & Welling, 2016; Hasanzadeh et al., 2019;
Hajiramezanali et al., 2019; Hasanzadeh et al., 2020) as well as matrix completion for recommender
systems (Berg et al., 2017; Monti et al., 2017; Kalofolias et al., 2014; Ma et al., 2011). The first
group of models is dealing with a single graph and is not able to deal with heterogeneous graphs, with
multiple types of nodes and edges, and node attributes (Zhang et al., 2019). The second group utilizes
the known item-item and user-user relationships and their attributes to complete the user-item rating
matrix. However, they rely on two strict assumptions: 1) the inter-relation matrix is partially observed;
and 2) both views have structured information. The proposed MoReL achieves robust multi-view
learning without these assumptions, making it more practical in multi-omics data integration.

3 PRELIMINARIES

3.1 WASSERSTEIN DISTANCE

Wasserstein distance (WD) quantifies the geometric discrepancy between two probability distributions
by measuring the minimal amount of “work” needed to move all the mass contained in one distribution
onto the other (Solomon et al., 2015). More specifically, given two probability measures Λ ∈ P(X)
and ∆ ∈ P(Y), and a transportation cost c : X × Y → R+, WD is the solution to the following
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Figure 1: Graphical illustration of MoReL’s generative flow with structured and unstructured views.
DEC stand for decoder. The rest of variables and abbreviations are defined in the manuscript.

optimization problem:

inf
π∈Π(X×Y)

E(x,y)∼π[c(x, y)] = inf
π∈Π(X×Y)

∫
c(x, y) dπ(x, y),

where π is the transport map and Π(X×Y) := {π ∈ P(X×Y) |
∫
π(x,y) dy = Λ(x),

∫
π(x,y) dx

= ∆(y)} is the set of all admissible couplings. Assuming that the probability distributions are
discrete, with probability mass functions

∑n
i=1 aiδxi and

∑m
j=1 bjδyj , WD optimization could be

simplified as follows:

DW(Λ,∆) = min
T∈Π(a, b)

n∑
i=1

m∑
j=1

Ti,j c(xi,yj),

where Ti,j is an element of the transport matrix T whose row-wise and column-wise sums equal to
[ai]

n
i=1 and [bj ]

m
j=1, respectively.

3.2 GROMOV-WASSERSTEIN DISTANCE

Gromov-Wasserstein distance (GWD) has been proposed as a natural extension of WD when a
meaningful transportation cost between the distributions cannot be defined. For example, when
two distributions are defined in Euclidean spaces with different dimensions or more generally
when X and Y are unaligned, i.e. when their features are not in correspondence (Vayer et al.,
2019). Instead of measuring inter-domain distances, GWD measures the distance between pairs of
samples in one domain and compares it to those in the other domain. More specifically, given two
probability measures Λ ∈ P(X) and ∆ ∈ P(Y), as well as two domain-specific transportation costs
c(X) : X × X → R+ and c(Y) : Y × Y → R+, GWD is the solution to the following optimization
problem:

inf
π∈Π(X×Y)

E(x,y)∼π,(x′,y′)∼π[L(x,x′,y,y′)] = inf
π∈Π(X×Y)

∫ ∫
L(x,x′,y,y′) dπ(x, y) dπ(x′, y′),

where L(x, x′, y, y′) =‖ c(X)(x, x′)−c(Y)(y, y′) ‖, π is the transport map, and Π(X×Y) := {π ∈
P(X × Y) |

∫
π(x,y) dy = Λ(x),

∫
π(x,y) dx = ∆(y)} is the set of all admissible couplings.

Likewise, this can be derived for discrete distributions with probability mass functions
∑n
i=1 aiδxi

and
∑m
j=1 bjδyj , as follows:

DGW(Λ,∆) = min
T∈Π(a, b)

n∑
i,i′=1

m∑
j,j′=1

Ti,j Ti′,j′ L(xi,xi′ ,yj ,yj′), (1)

where Ti,j is an element of transport matrix T whose row-wise and column-wise sums equal to
[ai]

n
i=1 and [bj ]

m
j=1, respectively.

4 METHOD

4.1 PROBLEM FORMULATION AND NOTATIONS

We propose a novel hierarchical generative model for multi-omics data integration that incorporates
view-specific structure information when it is available. Given observations from structured and
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unstructured views, our model, Multi-omics Relational Learning (MoReL), aims to infer the inter-
relations among entities, i.e. features, across all of the views. More specifically, assume that multiple
views, V , of data are given. Without loss of generality, we assume that the structure information,
provided as a graph, is available for some of the views Vs ⊂ V , and the remaining views Vu = V \Vs
are unstructured. We note that every structure could be represented as a graph. For example, image
and sequential data could be represented over grid and directed path graphs, respectively.

We represent the set of graphs for structured views by Gs = {G(v)}v∈Vs and their adjacency matrices
by As = {A(v)}v∈Vs . We also define Xs = {X(v)}v∈Vs as the set of node attributes for structured
views, and Xu = {X(v)}v∈Vu as the set of data for unstructured views. Moreover, Nv denotes the
number of nodes in structured views and number of features for unstructured views. MoReL infers
the interactions among the nodes in Gs and features in Xu. We represent these inter-relations by a
multi-partite graph with

∑
v∈V Nv nodes and a multi-adjacency tensor A = {A(vv′)}v,v′∈V,v 6=v′ ,

where A(vv′) is the Nv ×Nv′ bi-adjacency matrix between views v and v′.

4.2 MOREL GENERATIVE MODEL

We define a hierarchical Bayesian model for MoReL with three sets of latent variables: 1) H =
Hs ∪ Hu = {H(v)}v∈Vs∪Vu , which captures the (hidden) structural information; 2) A, which
encodes the interaction among features across views; and 3) Z = Zs ∪Zu = {Z(v)}v∈Vs∪Vu , which
summarizes the feature/attribute specific information. The joint probability of observations and latent
variables factorizes as follows:

pθ(Xu, Xs, As, H, A, Z) =

pθx(Xu | Zu) pθx(Xs | Zs) pθg (As |Hs) pθz (Z |H, A) pθa(A |H) p(H).
(2)

Figure 1 depicts the generative model of MoReL with structured and unstructured views. In the
following subsections, we define different parts of the generative and inference model.

4.2.1 OPTIMAL TRANSPORT FOR MULTI-PARTITE GRAPH DECODER

In this subsection, we define the generative distribution of the multi-adjacency tensor, A. We note
that inferring A is the main goal of our model. Given the structural latent variablesH, we introduce a
fused Gromov-Wasserstein (FGW) distance based mapping to generate A. FGW refers to distance
metrics defined by combining WD and GWD, which has been proposed to compare structured
distributions (Vayer et al., 2018b; Chen et al., 2020). Considering graphs with node attributes as
structured distributions, WD compares node distributions in two graphs (i.e, node similarity), GWD
measures the distance between pairs of nodes in one graph and compares it to those in the other (i.e.,
edge/path similarity).

FGW distance. Given two structured probability distributions, Λ ∈ P(X) and ∆ ∈ P(Y), FGW
is defined as follows:

DFGW(Λ, ∆) =αDW(Λ, ∆) + βDGW(Λ, ∆)

=α inf
πw∈Π(X×Y)

E(x,y)∼πw [c(XY)(x, y)]

+ β inf
πgw∈Π(X×Y)

E(x,y),(x′,y′)∼πgw [‖ c(X)(x, x′)− c(Y)(y, y′) ‖],
(3)

where α, β ∈ [0, 1] are scalar hyper-parameters, Π(X × Y) is the set of all admissible couplings
between Λ and ∆, and c(XY), c(X), and c(Y) are corresponding transportation cost functions. DFGW

can be further simplified by choosing πw to be equal to πgw (Chen et al., 2020).

Relational learning via FGW. We are interested in aligning the nodes/features in every pair of
views, i.e. (v, v′). Hence, we will have a FGW distance based decoder for every pair of views, in
which each view independently belongs to either structured or unstructured views, i.e. (v, v′) ∈ V .
To that end, we first define the transportation cost functions c(vv

′) and c(v), and then approximate
DFGW. We define the (inter-)cost function for the first term of FGW, i.e. DW, as follows:

c(vv
′)(H

(v)
i,: , H

(v′)
j,: ) = 1− σ

(
H

(v)
i,: (H

(v′)
j,: )T

)
; v, v′ ∈ V , (4)
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where σ denotes the sigmoid function, and H
(v)
i,: represents the structural latent variable of

node/feature i in view v. To calculate the DGW, we define two different transportation costs based
on the nature of the inputs. For the structured views, we define the cost function as a combination
of the shortest path distance from graph and the distance between structural latent variables. More
specifically, given the normalized shortest path distance matrix between every pair of nodes in the
input graph D(v):

c(v)(H
(v)
i,: , H

(v)
j,: ) = D(v) �

(
1− σ

(
H

(v)
i,: (H

(v)
j,: )T

))
; for v ∈ Vs,

where � denotes the Hadamard product. This construction ensures both graph and attributes informa-
tion are incorporated in the distance function. For unstructured views, we define the cost function
between two features as follows:

c(v)(H
(v)
i,: , H

(v)
j,: ) = 1− σ

(
H

(v)
i,: (H

(v)
j,: )T

)
; for v ∈ Vu.

Noting the definitions of WD and GWD in Section 3, we rewrite DFGW between two views of data
with shared transport matrixas follows:

DFGW

(
p(H(v)), p(H(v′))

)
=

Nv∑
i=1

Nv′∑
j=1

min
T

(vv′)
gw ∈Π

∑
H

(v)
i,: ,H

(v′)
j,: ,H

(v)′
i,: ,H

(v′)′
j,:

[
α c(vv

′)(H
(v)
i,: , H

(v′)
j,: ) +

β ‖ c(v)(H
(v)
i,: , H

(v)′
i,: )− c(v

′)(H
(v′)
j,: ,H

(v′)′
j,: ) ‖

]
.

(5)

To approximate the FGW distance, we first deploy GW algorithm in equation (1) to obtain T
(vv′)
gw

and DGW, and then utilize T
(vv′)
gw along with the defined transportation cost c(vv

′) to calculate
Wasserstein distance term in DFGW (Chen et al., 2020). The pseudo-code in Algorithm 1 (Appendix
A.1) provides the details of the FGW distance calculation procedure. Please note that we use the
same Sinkhorn solver as in Chen et al. (2020) and Alvarez-Melis & Jaakkola (2018).

We further can generate A for every pair of views based on T
(vv′)
gw as follows:

p(A |H) =
∏

v,v′∈V
v 6=v′

p(A(vv′) |H(v),H(v′)) =
∏

v,v′∈V
v 6=v′

Ber
(
A(vv′) | γT(vv′)

gw /max(T(vv′)
gw )

)
, (6)

where γ ∈ [0, 1] is a normalizing hyper-parameter, and Ber is short for Bernoulli. We note that the
sum of the elements in each of the transport matrices T

(vv′)
gw equals to one. Hence each of its elements

has a small value. Therefore, we normalize the transport matrices (as γT
(vv′)
gw /max(T

(vv′)
gw )) to

avoid very sparse and trivial solutions. To use the reparametrization trick during training, we sample
from concrete relaxation of Bernoulli (Gal et al., 2017). We emphasize that our proposed FGW-based
decoder is the key in aligning features/nodes across structured and unstructured views via accurate
and efficient distribution matching scheme.

4.2.2 PRIOR CONSTRUCTION AND LIKELIHOODS

Prior. We impose independent zero-mean unit-variance Gaussian priors on elements of H. The
prior for Z is a multivariate Gaussian distribution whose mean and diagonal covariance matrix
are constructed from the inferred multi-partite graph and the structural latent variable H. We use
two graph neural networks (GNNs) g(µ)

pz and g(σ)
pz to map H and A to the parameters of pθz (Z).

Specifically,

pθz (Z |H,A) =
∏
v∈Vs

Nv∏
i=1

pθz (Z
(v)
i,: |H,A); pθz (Z

(v)
i,: |H,A) = N (µ(v,i)

pz ,σ(v,i)
pz ),

with [µ(v,i)
pz ]v,i = g(µ)

pz (H,A), [σ(v,i)
pz ]v,i = g(σ)

pz (H,A).
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We note that in this setting,H is considered as node attributes of the multi-partite interaction graph.

Likelihood of observations. To reconstruct the input graphs in the structured views, we assume that
the views and edges are conditionally independent. More specifically, we employ an inner-product
decoder as follows:

pθg (As |Hs) =
∏
v∈Vs

Nv∏
i,j=1

pθg

(
A

(v)
i,j |H

(v)
i,: , H

(v)
j,:

)
;

pθg

(
A

(v)
i,j |H

(v)
i,: ,H

(v)
j,:

)
= Ber

(
σ(H

(v)
i,: (H

(v)
j,: )T )

)
.

To generate the features in unstructured views and node attributes in structured views, we assume
that views are conditionally independent. Hence we can expand the feature reconstruction terms in
the the equation (2) as follows:

pθx(Xu | Zu) =
∏
v∈Vu

pθx(X(v) |Z(v)), pθx(Xs | Zs) =
∏
v∈Vs

pθx(X(v) |Z(v)).

We note that pθx could also be view specific depending on whether the node attributes/features in a
view are discrete or continuous. In our experiments, we have deployed the Gaussian likelihood with
the unit variance. The mapping from Z to the parameters of pθx(X ), in our case, the mean of the
Gaussian distribution, can be any highly expressive function such as neural networks. We denote
these functions by f (v,s)

px and f (v,u)
px .

4.3 INFERENCE NETWORK AND LEARNING

Posterior. We model the posterior of the structural latent variables as a Gaussian distribution and
infer its parameters independently for each view. More specifically,

qφh(Hu | Xu) =
∏
v∈Vu

qφh(H(v) |X(v)), qφh(Hs | Xu, As) =
∏
v∈Vs

qφh(H(v) |X(v), A(v)).

We use two GNNs for each structured view, {g(µ,v)
qh (X(v),A(v)), g

(σ,v)
qh (X(v),A(v))}v∈Vs , and two

fully connected neural networks per unstructured view, {f (µ,v)
qh (X(v)), f

(σ,v)
qh (X(v))}v∈Vu , to map

inputs to the mean and variance of the posteriors. We consider the variational distribution of Z to be
a multivariate Gaussian distribution, and it is factorized as follows:

qφz (Zu | Xu) =
∏
v∈Vu

qφz (Z(v) |X(v)), qφz (Zs | Xu, As) =
∏
v∈Vs

qφz (Z(v) |X(v), A(v)).

We use two GNNs per structured view, {g(µ,v)
qz (X(v), A(v)), g

(σ,v)
qz (X(v),A(v))}v∈Vs , and two fully

connected neural networks for each unstructured view, {f (µ,v)
qz (X(v)), f

(σ,v)
qz (X(v))}v∈Vu , in the

same fashion as qφh to infer parameters of qφz .

Objective function. Having defined the prior and posterior distributions as well as the likelihood, we
write the overall loss function as the sum of the negative variational ELBO and FGW regularization
terms. Specifically,

L =− ELBO + LFGW

= Eqφz (Zu,Hu | Xu) log pθ(Zu | A,H) + Eqφz (Zs,Hs | Xs,As) log pθ(Zs | A,H)

− Eqφz (Zu | Xu) log qφz (Zu | Xu)− Eqφz (Zs | Xs,As) log qφz (Zs | Xs, As)
+ Eqφh (Hu | Xu) log p(Hu) + Eqφh (Hs | Xs,As) log p(Hs)
− Eqφh (Hu | Xu) log qφh(Hu | Xu)− Eqφh (Hs | Xs,As) log qφh(Hs | Xu, As))
+ Eqφz (Zu | Xu)log pθx(Xu | Zu) + Eqφz (Zs | Xs,As)log pθx(Xs | Zs)

+ Eqφh (Hs | Xs,As) log pθg (As |Hs) +
∑
v∈V

∑
v′∈V
v′ 6=v

DFGW

(
p(H(v)), p(H(v′))

)
.

(7)

While, as mentioned previously, we use the Sinkhorn algorithm to calculate the DFGW, the overall
loss is optimized using stochastic gradient descent based optimization algorithms such as Adam
(Kingma & Ba, 2014).
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5 EXPERIMENTS

5.1 DATASETS AND EVALUATION METRICS

Datasets. We use the same datasets as BayReL (Hajiramezanali et al., 2020), i.e. microbiome-
metabolite interactions in cystic fibrosis (CF) and gene-drug interactions in precision medicine.
Dataset description and graph construction procedure are detailed in Appendix A.2. We want to
emphasize that although these datasets have structured views, have no missing samples and their
samples are completely paired, in many real-world cases these assumptions are not satisfied. These
datasets were chosen merely to get a better understanding of the advantages of MoReL specially
compared to BayReL. We evaluate MoReL in different settings. More specifically, we demonstrate
the performance of MoReL when: 1) one or both views are unstructured, 2) there are missing samples,
and 3) samples are not paired. Furthermore, we have a comprehensive comparison with BayReL
when both views are structured.

Evaluation metrics. To quantify the performance of the methods, we use the same evaluation metrics
as the ones introduced in BayReL. Since in these datasets, the true negatives, i.e. non-interactions,
are not known; and there are only a small subset of true positives, i.e. true interactions, well-known
classification metrics cannot be used for evaluation. Therefore, positive accuracy and negative
accuracy have been defined to evaluate microbiome-metabolite experiments. Positive accuracy refers
to the accuracy of identifying validated interactions with P. aeruginosa. Negative accuracy exploits
the fact that there should not be any common metabolite targets between known anaerobic microbes
(Veillonella, Fusobacterium, Prevotella, and Streptococcus) and notable pathogen P. aeruginosa. Let
B denote the set of all microbes and A1 and A2 represent two disjoint sets of metabolites. Negative

accuracy is defined as 1 −
∑
i∈A1

∑
j∈A2

∑
l∈B 1(i and j are connected to l)

|A1|×|A2|×|B| , where 1(·) is the indicator
function. Having both higher positive and negative accuracy is desired.

For precision medicine, we compare the prediction sensitivity of identifying known interactions in the
test sets while tracking the average density of the overall constructed graphs. We note that inferring
very dense graphs would lead to high prediction sensitivity as it will includes most of the possible
interactions. Therefore, tracking the sparsity of the inferred graphs is the key to properly evaluate the
models’ capability in predicting meaningful interactions.

5.2 BASELINES AND EXPERIMENTAL SETUPS

Baselines. We compare MoReL with three baselines including Spearman’s Rank Correlation Analysis
(SRCA), BCCA (Klami et al., 2013), and BayReL. While SRCA applies to raw data, BCCA first
finds low-dimensional latent representations of views via matrix factorization and then the interactions
are discovered based on the correlation between representations. BCCA and SRCA could not
incorporate the structure of data and need a two-step procedure to infer the interaction between
features across the views. In contrast, BayReL is able to use the structure of data and infer the
relations without any ad-hoc post-processing procedure. However, BayReL suffers from three strict
assumptions: 1) All views of data are structured; 2) There are no missing samples in any views; and
3) Samples are paired, i.e. the ID of samples are known. We emphasize that MoReL is the very
first model that not only can infer interactions across structured and unstructured views but also is
able to handle missing and unpaired samples in different domains, making it more applicable in
real-world multi-omics data integration. A widely used method for multi-omics data integration is
MOFA (Argelaguet et al., 2018). The mathematical modeling of MOFA is the same as BCCA except
for the data likelihood part. While BCCA only supports continuous data, MOFA can have discrete
likelihoods. Since our datasets do not have discrete features, we are only reporting BCCA results.

Hyper-parameters. In all of our experiments, to have a fair comparison, architectural hyper-
parameters (i.e. number of layers and number of neurons) were set to be the same as in BayReL. Other
hyper-parameters that are unique to MoReL were tuned using the validation set. More specifically,
the number of hidden layers as well as their dimensions are the same for the corresponding functions
in both structured and unstructured views. We use graph convolutional layers (Kipf & Welling, 2017)
for structured views and fully connected layers for unstructured views except for reconstructing X
from Z , for which we use fully connected layers in all of the views. The mapping from inputs to the
mean and variance parameters ofH are two 2-layer neural networks (16 and 8 dimensional layers)
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Table 1: Comparison of positive accuracy (in %) on CF dataset at negative accuracy of > 97%.
SRCA BCCA MoReL uu MoReL us

Positive accuracy 26.41 28.30± 3.21 56.16± 1.85 63.77± 1.11

with a shared first layer for each view. We use two 2-layer neural networks (16 and 8 dimensional
layers) with a shared first layer for each view for the mapping fromH to the mean and variance of Z .
We use a 3-layer fully connected neural network (8 and 16 dimensional hidden layers) for each view
as the reconstruction function mapping Z to X . The temperature for relaxed Bernoulli distribution
is set to 0.3. The normalizing parameter γ in equation 6 is 0.9 while α and β in DFGW are set to 1
and 0.5, respectively. We used the exponential decaying learning rate with the decay rate of 0.01 and
initial learning rate of 0.01. All of our results are averaged over multiple runs with different random
seeds. We have implemented MoReL and all the competing methods in Tensorflow (Abadi et al.,
2015). All the experiments are performed on a workstation with a single NVIDIA P100 GPU.

5.3 DISCUSSION, DATASETS WITH UNSTRUCTURED VIEWS

Table 1 shows the performance of three variants of MoReL and competing methods for microbiome-
metabolite data integration with the CF data. In these experiments, we assume that the samples
are paired and all are available in both views. In MoReL uu, we report the results when both views
are unstructured. In MoReL us, we have the graph of interactions between microbiomes while
the metabolite view is assumed to be unstructured. Comparing MoReL uu and baselines that do
not incorporate any graph-structured data as input, we observe an almost 30% improvement in
positive accuracy while maintaining higher than 97% negative accuracy. This demonstrates that
our proposed MoReL, even without any structural information, is effective in inferring meaningful
interactions. Further incorporating the network between microbiomes (i.e. MoReL us) leads to a
37% and 7% improvement compared to the baselines and MoReL uu, respectively. This shows not
only the importance of incorporating view-specific side information, but also the effectiveness of
FGW-based decoder in aligning structured and unstructured views. Further results on interpretability
and robustness of MoReL on CF dataset is provided in Appendix A.3.

The results for prediction sensitivity of two variants of MoReL and competing methods in the
precision medicine experiments are shown in Table 2. We observe that both MoReL uu, where both
views are unstructured, and MoReL us, where the graph structure between genes is given, consistently
outperform the baselines by a significant margin in graphs with different densities. This proves that
MoReL is able to learn meaningful relations both in sparse and dense graphs. Comparing the results
for MoReL us and BCCA, the difference between their performance increases as the the density of the
bipartite graph increases, showing that MoReL us can identify gene-drug interactions more robustly.

5.4 COMPARISON WITH BAYREL

While the primary goal of experiments so far was showing the effectiveness of MoReL in integrating
unstructured and structured views, here we investigate the advantages of MoReL over BayReL.

All structured. As mentioned earlier in the manuscript, BayReL assumes that all of the views are
structured. To show the expressive power of MoReL, we train it in the same setting as BayReL where
all of the views are structured. Particularly, we assume that for CF dataset both metabolites network
and microbiome network are observed in the microbiome-metabolite experiment. Also, in precision
medicine experiment both drug network and gene regulatory network are known a priori. For fair

Table 2: Comparison of prediction sensitivity (in %) in the precision medicine experiment.
Avg. degree 0.10 0.15 0.20 0.25 0.30 0.40 0.50

SRCA 8.03 12.00 17.15 20.70 26.85 34.93 45.79
BCCA 9.65± 0.75 14.34± 0.06 18.96± 0.42 23.29± 0.52 28.22± 0.66 38.02± 2.15 46.88± 1.88

MoReL uu 11.29± 0.16 15.74± 0.62 21.21± 0.81 26.20± 1.10 30.47± 1.07 39.05± 0.75 50.19± 0.19
MoReL us 12.79± 0.39 17.51± 2.21 22.82± 1.01 29.58± 1.08 35.05± 1.27 45.74± 1.75 53.16± 0.96

8



Published as a conference paper at ICLR 2022

comparison, we set the number of layers as well as hidden dimensions to be the same in both models.
We train MoReL with the exponential decaying learning rate with the initial rate of 0.01 and decay
rate of 0.001 for 120 training epochs. For BayReL, we use the setting reported in Hajiramezanali
et al. (2020). The results for CF and precision medicine are summarized in Tables 3 and 4. We see
that MoReL outperforms BayReL on CF dataset by a margin of 7% which indicates that knowing the
metabolic pathways can greatly improve interaction learning. In precision medicine experiment, we
observe a consistent 2% improvement by MoReL compared to BayReL.

Table 3: Positive accuracy (%) on CF dataset.

BayReL MoReL ss

Positive Acc. 82.70± 4.70 89.50± 3.29

Table 4: Prediction sensitivity (%) in the precision
medicine experiment.

Avg. degree BayReL MoReL ss

0.4 47.90± 0.43 49.24± 1.64
0.5 56.76± 0.50 58.92± 0.40

We emphasize that the declined performance
of MoReL uu and MoReL us (shown in Tables
1 and 2) compared to BayReL is expected, as
they uses less information than BayReL. In-
corporating this extra information in MoReL
enhances its performance substantially. Note
that BayReL is bound to use the same set of
functions for all views to account for arbitrar-
ily rotations and transformations, which limits
its expressive power. However, the FGW based
decoder in MoReL allows to have different pro-
cessing functions for each view. We argue that
this increases the expressive power and plays
the key role in enhancing the performance.

Paired vs. unpaired. To show that MoReL can handle unpaired input samples, we perform an
ablation study on CF dataset. We reverse the order of samples in metabolite view while keeping the
order of samples in microbiome. We report the performance of BayReL and MoReL us where we
don’t use the structure of metabolite view. The results are shown in Table 5. While MoReL performed
virtually the same as a completely paired scenario (shown in Table 1), BayReL’s performance
drastically declined. We note that the reported negative accuracy is the best one achieved by BayReL.

Table 5: Positive accuracy (%) on CF dataset
with unpaired samples.

BayReL MoReL us

Positive Acc. 31.56 63.24± 2.13
Negative Acc. 72 97

Missing samples. We should again point out that
in a setting where all views are structured but the
number of node attributes are not the same in differ-
ent views, BayReL cannot be deployed (as it uses
the same processing functions for all views). To see
how MoReL us performs in such a scenario, we ran-
domly remove 10% of samples in metabolite view
of CF dataset. MoReL achieves positive accuracy
(in %) of 61.36±3.74 with negative accuracy of 97%. This again shows the robustness of FGW-based
decoder in aligning nodes with different number of samples.

Computational complexity. We have also benchmarked computational complexity of MoReL and
BayReL by tracking their runtime on CF dataset on the same hardware. While BayReL takes
0.6 seconds per training epoch, MoReL takes 2.7 seconds per training epoch. This is due to the
computational overhead caused by deploying FGW-based decoder. Considering the model flexibility
and significant prediction performance improvement, such computational overhead is acceptable.

6 CONCLUSIONS

We have proposed MoReL, a novel Bayesian deep generative model that efficiently infers hidden
molecular relations across heterogeneous views of data. By using a fused Gromov-Wasserstein based
decoder, MoReL addresses several main shortcomings of the state-of-the-art omics data integration
model. Specifically, MoReL can: 1) integrate both structured and unstructured omics datasets while
accounting for arbitrarily permutation and/or transformation caused by processing features with
different deep functions across the views; 2) handle unpaired samples across the views of data;
3) combine multiple views from different data sources with any number of missing samples. Our
experiments on two real-world datasets have demonstrated substantial improvement in inferring
meaningful relations as well as improving prediction sensitivity compared to the competing methods.
MoReL has shown the promising potential for multi-view learning, in particular multi-omics data
integration for biological knowledge discovery, when facing heterogeneous data from different views.
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A APPENDIX

A.1 FUSED GROMOV-WASSERSTEIN (FGW)

The algorithm to calculate the fused Gromov-Wasserstein distance between two views in our decoder
is provided as pseudo-code in Algorithm 1. The algorithm takes C(v), C(v′), and C(vv′), which are
intra/inter-costs between nodes in a matrix form, as well as ρ, which is a hyper-parameter. It returns
the Wasserstein distance, Gromov-Wasserstein distance, as well as the transport matrix.

Algorithm 1: Computing fused Gromov-Wasserstein distance.

1 Input: C(v)
n×n, C(v′)

m×m, C(vv′)
n×m, ρ

2 Definitions: � = Hadamard product, 〈·, ·〉 = Frobenius dot-product

3 // Cross-view similarity:
4 Ĉ(vv′) = (C(v))21n1m

> + 1n1m
>((C(v′))2)>

5 // Initializing variables:

6 T = 1n1m
>, σ = 1

m
1m, Bi,j = exp(Ĉ

(vv′)
i,j )/ρ

7 for t1 = 1, 2, . . . do
8 L = Ĉ(vv′) − 2C(v)T (C(v′))>

9 for t2 = 1, 2, . . . do
10 M = B � T
11 for t3 = 1, 2, . . . do
12 δ = 1

nMσ
, σ = 1

nM>δ

13 T = diag(δ)M diag(σ)

14 DW = 〈(C(vv′))>,T 〉
15 DGW = 〈L>,T 〉

16 Return T , DW , DGW

A.2 DATA DESCRIPTION

Microbiome-metabolome interactions. The goal studying this dataset is to detect the microbe-
metabolite interactions in patients with Cystic Fibrosis (CF). This dataset includes the 16S ribosomal
RNA (rRNA) sequencing and metabolomics for 172 patients diagnosed with CF. We follow the same
preprocessing steps as in Morton et al. (2019); Hajiramezanali et al. (2020), and filter out microbes
that appear in less than ten samples, which results in 138 unique microbial taxa and 462 metabolite
features. To construct the microbiome network, we perform a taxonomic enrichment analysis using
Fisher’s test and calculating p-values for each pairs of microbes as in Hajiramezanali et al. (2020).
More specifically, the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) is adopted
for multiple test correction and an edge is added between two microbes if the adjusted p-value is
lower than 0.01, The microbiome graph has 984 edges with the graph density of 0.102. For the
metabolomics network, there are 1185 edges in total, with each edge representing a connection
between metabolites via a same chemical construction (Morton et al., 2019). The graph density of the
metabolite network is 0.011. We use 80% of the reported target molecules of P. aeruginosain studies
in Quinn et al. (2015) and Morton et al. (2019) as a test set to evaluate the predicted microbiome-
metabolome interactions. The remaining 20% of the reported molecules are considered as a validation
set and are only used for the early stopping purpose.

Precision medicine. Here we aim to identify genetic markers of cancer drug responses. This is a very
challenging task due to the very limited number of observations with respect to the system complexity
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Figure 2: A sub-network of the relational graph consisting of P. aeruginosa microbes, their validated
targets, and anaerobic microbes, inferred using MoReLss (Left) and MoReLus (Right) with sub-
network negative accuracy of 100%.

and huge number of biological and experimental confounders, which often leads to significant false
positive associations (Barretina et al., 2012). We consider a dataset from 30 acute myeloid leukemia
(AML) patients that contains gene expression and drug sensitivity data of 160 chemotherapy drugs
and targeted inhibitors (Lee et al., 2018). For gene expression, we preprocessed the RNA-Seq data
resulting in 9073 genes (Lee et al., 2018). Following Hajiramezanali et al. (2020), we construct the
gene regulatory network based on the publicly available expression data of the 14 AML cell lines from
the Cancer Cell Line Encyclopedia1 (CCLE) using R package GENIE3 (Vân Anh Huynh-Thu et al.,
2010). Moreover, We construct drug-drug interaction networks based on their action mechanisms.
Specifically, the selected 53 drugs are categorized into 20 broad pharmacodynamics classes (Lee
et al., 2018); 14 classes contain more than one drugs. Only 16 out of the 53 drugs are shared across
two classes. We consider that two drugs interact if they belong to the same class. We use the area
under the drug response curve reported in the CCLE dataset to indicate drug sensitivity across a range
of drug concentrations (Barretina et al., 2012; Lee et al., 2018). Following Lee et al. (2018), we only
consider the drugs that have less than 50% cell viability in at least half of the samples, resulting in 53
drugs. We use 797 reported drug-gene interactions in The Drug–Gene Interaction Database (DGIdb)
(Wagner et al., 2016) in order to evaluate different models. We note that our test and validation sets
only include the interactions for 43 of the 53 drugs in the dataset. We use 20% of the evaluation set
as the validation set. Please note that the validation set has been only used for early stopping.

A.3 ADDITIONAL RESULTS FOR CF DATASET

In this section, we provide additional results for CF dataset demonstrating interpretability and
robustness of MoReL.

Figure 2 shows two sub-networks of the inferred bipartite relational graphs by MoReLss and MoReLus,
consisting P. aeruginosa, anaerobic microbes, and validated target nodes of P. aeruginosa and all of
the inferred interactions between them. Based on the biology knowledge, the expected interactions in
these sub-networks should be that the four highlighted nodes in the bottom row are connected to all
of the nodes in the top row, and any other nodes in the bottom row are not connected to any of the
top nodes. At the sub-network negative accuracy of 100% (i.e. any nodes in the bottom row other
than the four highlighted ones are not connected to any of the top nodes), while MoReLus identifies
70% of the validated edges of P. aeruginosa, MoReLss identifies 86.8% of the edges. We note that
BayReL identifies 78% of the validated interactions (Hajiramezanali et al., 2020). This clearly shows
the effectiveness of our proposed FGW-based decoder and interpretability of MoReL to identify
inter-relations.

In the main manuscript, we only reported the results for one specific threshold value of negative
accuracy (97%). Here we provide additional results with other threshold values, which show similar
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Figure 3: Positive accuracy vs negative accuracy of various models in CF data.

improvements over competing methods and similar trends by MoReL ss and MoReL us, as clearly
observed in Figure 3. We note that there is a trade-off between positive and negative accuracy, and
the optimal point can be chosen depending on the application.
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