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Multi-objective Bayesian alloy design using multi-task Gaussian processes 
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A B S T R A C T   

In design applications, correlations among material properties (such as the tendency for stronger materials to be 
less ductile) are often neglected. This approach is echoed in multi-objective optimization techniques which treat 
each performance characteristic as an independent objective, aiming to optimize scalar functions and find 
optimal Pareto fronts. However, this overlooks the statistical relationships between performance characteristics 
inherent in a material system. To address this, we propose the use of Bayesian optimization, a highly efficient 
black-box optimization algorithm known for constructing Gaussian processes (GPs) – uncorrelated surrogates - to 
model objective functions. Rather than evaluating multiple GPs for each objective function separately, we argue 
for a shift towards jointly modeling these objective functions, considering their statistical correlations. This 
integrated approach utilizes naturally occurring relationships among material properties, providing additional 
information to enhance the performance of the design framework. This requires the replacement of multiple 
independent GPs with a single multi-task GP, employing a correlation matrix to construct a multi-task kernel 
function, wherein each task corresponds to a single objective function. We anticipate this refined methodology 
will better leverage material correlations, improving design optimization results.   

1. Introduction 

In alloy design, multiple performance characteristics, or properties, 
are often optimized for specific operational or environmental condi
tions. Yet, there is frequently a trade-off between these characteristics, 
with the improvement of one inadvertently leading to the sacrifice of 
another. This dynamic is evident in strength versus ductility [1] and 
density versus creep resistance [2] trade-offs in alloy design. To address 
this, multi-objective optimization techniques have emerged to identify 
Pareto-optimal solution sets [3,4]. A solution is considered Pareto- 
optimal when no other solution better optimizes all objectives 
simultaneously. 

Among these techniques, Bayesian optimization (BO) algorithms 
represent a class of highly efficient design frameworks [5]. These algo
rithms iteratively conduct experiments to actively learn the Pareto- 
optimal designs. Their efficiency derives from modeling objectives 
with surrogates, typically Gaussian processes (GPs) [6]. This enables 
computationally economical representations of objective functions, 
alongside a heuristic-based search to discover non-dominated designs 
with an optimal number of experiments. Instances of implementing 
multi-objective BO in the design and discovery of materials with 
improved properties illustrate the importance and capability of Bayesian 

approaches in the field [7,8]. 
However, a crucial gap in this approach is the neglect of statistical 

relationships between objectives, or properties. The strength-ductility 
tradeoff, for example, is a consequence of the fact that mechanisms or 
features that make a material strong tend to contribute to its brittleness. 
Traditional multi-objective BO algorithms construct independent GPs 
for each objective function, disregarding potential interactions between 
the functions. Such correlations naturally exist when modeling and 
designing a material system and can enhance our understanding of 
material properties. In the context of BO, explicitly accounting for these 
correlations essentially promotes transfer learning among the different 
property models (GPs), enhancing the predictive ability of the GPs 
across the entire property space. In this study, using the design of ductile 
high-strength refractory alloys as a benchmark, we demonstrate how 
acknowledging these correlations can improve the accuracy of surrogate 
models and the efficiency of multi-objective BO schemes. 

2. Methods 

In traditional multi-objective BO algorithms, objective functions are 
modeled as independent Gaussian Processes (GPs), relying solely on 
their respective observations, that implies an assumption of no 
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correlation between them. However, the multi-task GP approach pro
poses a single surrogate to jointly model all objective functions [9], 
thereby acknowledging potential interrelationships. Within this design 
scheme, the term”task” refers to an objective function to be optimized. 
In this study, we build upon the design framework out-lined in [8], with 
a notable alteration: we replace multiple independent GPs with a single 
multi-task GP. This adaptation allows us to consider the correlation 
between objective functions within our probabilistic modeling. Thus, a 
Multi-task GP models the experiment and is searched to find maximizer 
of an acquisition function to select the next experiment to run. 

Assuming constructing a GP for objective function f (x), the predic
tion at an unobserved location £ in existence of N previously observed 
data denoted by {XN, yN }, where XN = (x1, …, xN) and yN = (f (x1), …, f 
(xN)), is given as: 

fGP(x)|XN , yN ∼ N
(
μ(x), σ2(x)

)
(1)  

where 

μ(x) = K(XN , x)
T
[K(XN , XN) + σ2I]

−1yN
σ2(x) = k(x, x) − K(XN , x)

T
[K(XN , XN) + σ2I]

−1K(XN , x)
(2)  

with k as a real-valued kernel function, K(XN, XN) as a N by N matrix with 
m, n entry as k(xm, xn), and K(XN, x) is a N by 1 vector with mth entry as k 
(xm, x). The term σ2 represents experimental error. The kernel function 
uses the notion of relative distance to obtain the correlation between 
observations. A common kernel function is squared exponential: 

kx
(x, x′) = exp

(

−
∑d

h=1

(
xh − x′

h

)2

2l2
h

)

kx indicates distance-based correlation, d is dimensionality of the 
input space and lh is the characteristic length-scale to determine corre
lation strength between observations within the dimension h. 

To better leverage the correlation between tasks and facilitate joint 
modeling of all objective functions, we first define the correlation matrix 
K f, a covariance function over the tasks to capture the statistical re
lationships [9]. Then, we construct the kernel functions and covariance 
matrices in Eq. (2) as proposed in Ref. [9]: 

K = Kf ⊗ Kx, k = Kf ⊗ kx (4)  

where ⊗ is the Kronecker product operation. Note that the variable yN in 
Eq. (2) is a column vector, thus, each task data should be ordered in 
columns, stacked vertically and the predictions are similarly stacked 
vertically. One can use GPyTorch Python package to build multi-task 
GPs and tune model hyperparameters [11]. 

3. Results 

Here, we benchmark multi-objective BO frameworks, integrated 
with multi-task GPs (MTGPs), against a previously investigated multi- 
objective alloy design problem [7,8] in which the GPs for each prop
erty were considered to be independent (IGPs). Our objective is to 
maximize two indicators of ductility (Pugh ratio, Cauchy pressure) along 
with the yield strength, as predicted by the Maresca-Curtin model [10], 
within the Mo-Nb-Ti-V-W high-entropy alloy system. These alloys are 
relevant to next-generation gas turbine engine blades [8]. 

In this study, we replace the multiple IGPs with a single MTGP, 
jointly modeling all objectives by capitalizing on the existing 

correlations. Data from our previous work [7,8] shows the correlation 
coefficients between the three objective functions, as indicated in 
Table 1. It is worth noting that these correlation coefficients should be 
dynamically updated as additional data is acquired, to maintain the 
most accurate statistical relationships between the objective functions. 
The calculated correlation coefficients indicate a discernible degree of 
correlation among the objectives. Notably, a strong inverse correlation is 
observed between the Pugh ratio and yield strength, offering the po
tential for exploitation of this correlation in the probabilistic modeling 
of these properties. 

To assess the impact of integrating correlations into our design 
framework, we use both MTGP and IGPs to approximate the problem’s 
optimal Pareto front, aiming to maximize the hypervolume, an indicator 
of proximity to the Pareto front. The BO over a design space consisting of 
10,000 alloys is carried out 80 times in each case to assess the robustness 
of each approach, as shown in Fig. 1. 

Utilizing a MTGP enhances design efficiency, achieving larger 
hypervolumes at each iteration than when using IGPs. While both 
methods converge to the same Pareto front, leveraging objective cor
relations improves modeling precision and design performance. 
Crucially, exploiting these correlations accelerates the discovery of the 
Pareto set. 

The Uniform Manifold Approximation and Projection (UMAP) [12] 
in Fig. 2 visualizes the design space and Pareto points discovered after 
300 iterations. Notably, the MTGP and IGP Pareto Sets agree with each 
other, but the MTGP Pareto set arrived at much faster. The trade-offs 
between objective functions and the strong inverse correlation be
tween Pugh ratio and Yield strength are evident by comparing the 
colored spaces. 

To quantify the improvement in modeling accuracy afforded by the 
MTGP implementation, we create training and testing sets using an 80/ 
20 split of data, and compute the mean squared error for objective 
functions modeled using both independent and MTGP. The average 
mean squared errors, obtained via 5-fold cross-validation, are displayed 
in Fig. 3 for the three objectives under consideration. As shown in Fig. 3, 
for Pugh ratio and Cauchy pressure, the mean squared errors are about 
100 times smaller when they are jointly modeled, however, the 
modeling error is smaller by around 10 times for independent modeling 
of the yield strength. Overall, MTGP models the objective functions 

Table 1 
Pearson correlation coefficients between the 3 objective functions.   

Pugh ratio Cauchy pressure Yield strength 

Pugh ratio 1 0.466 −0.917 
Cauchy pressure 0.466 1 −0.235 
Yield strength −0.917 −0.235 1  

Fig. 1. Mean Hypervolume as a Function of Iteration Number. The graph re
veals an enhancement in design performance when objective functions are 
jointly modeled. This improvement is indicated by larger hypervolumes, which 
suggest the discovery of higher-quality Pareto fronts. 
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more accurately and improves the design efficiency by lowering the 
data-dependency of the design framework. 

4. Conclusions  

• Generally, properties of a material system have some degree of 
correlation.  

• Multi-task GP exploits correlations among tasks in predictive 
modeling. 

• Replacing uncorrelated GPs by a multi-task GP suggests more effi
cient multi-objective Bayesian alloy design. 
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