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In design applications, correlations among material properties (such as the tendency for stronger materials to be
less ductile) are often neglected. This approach is echoed in multi-objective optimization techniques which treat
each performance characteristic as an independent objective, aiming to optimize scalar functions and find
optimal Pareto fronts. However, this overlooks the statistical relationships between performance characteristics
inherent in a material system. To address this, we propose the use of Bayesian optimization, a highly efficient
black-box optimization algorithm known for constructing Gaussian processes (GPs) — uncorrelated surrogates - to
model objective functions. Rather than evaluating multiple GPs for each objective function separately, we argue
for a shift towards jointly modeling these objective functions, considering their statistical correlations. This
integrated approach utilizes naturally occurring relationships among material properties, providing additional
information to enhance the performance of the design framework. This requires the replacement of multiple
independent GPs with a single multi-task GP, employing a correlation matrix to construct a multi-task kernel
function, wherein each task corresponds to a single objective function. We anticipate this refined methodology
will better leverage material correlations, improving design optimization results.

1. Introduction

In alloy design, multiple performance characteristics, or properties,
are often optimized for specific operational or environmental condi-
tions. Yet, there is frequently a trade-off between these characteristics,
with the improvement of one inadvertently leading to the sacrifice of
another. This dynamic is evident in strength versus ductility [1] and
density versus creep resistance [2] trade-offs in alloy design. To address
this, multi-objective optimization techniques have emerged to identify
Pareto-optimal solution sets [3,4]. A solution is considered Pareto-
optimal when no other solution better optimizes all objectives
simultaneously.

Among these techniques, Bayesian optimization (BO) algorithms
represent a class of highly efficient design frameworks [5]. These algo-
rithms iteratively conduct experiments to actively learn the Pareto-
optimal designs. Their efficiency derives from modeling objectives
with surrogates, typically Gaussian processes (GPs) [6]. This enables
computationally economical representations of objective functions,
alongside a heuristic-based search to discover non-dominated designs
with an optimal number of experiments. Instances of implementing
multi-objective BO in the design and discovery of materials with
improved properties illustrate the importance and capability of Bayesian
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approaches in the field [7,8].

However, a crucial gap in this approach is the neglect of statistical
relationships between objectives, or properties. The strength-ductility
tradeoff, for example, is a consequence of the fact that mechanisms or
features that make a material strong tend to contribute to its brittleness.
Traditional multi-objective BO algorithms construct independent GPs
for each objective function, disregarding potential interactions between
the functions. Such correlations naturally exist when modeling and
designing a material system and can enhance our understanding of
material properties. In the context of BO, explicitly accounting for these
correlations essentially promotes transfer learning among the different
property models (GPs), enhancing the predictive ability of the GPs
across the entire property space. In this study, using the design of ductile
high-strength refractory alloys as a benchmark, we demonstrate how
acknowledging these correlations can improve the accuracy of surrogate
models and the efficiency of multi-objective BO schemes.

2. Methods
In traditional multi-objective BO algorithms, objective functions are

modeled as independent Gaussian Processes (GPs), relying solely on
their respective observations, that implies an assumption of no
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correlation between them. However, the multi-task GP approach pro-
poses a single surrogate to jointly model all objective functions [9],
thereby acknowledging potential interrelationships. Within this design
scheme, the term”task” refers to an objective function to be optimized.
In this study, we build upon the design framework out-lined in [8], with
a notable alteration: we replace multiple independent GPs with a single
multi-task GP. This adaptation allows us to consider the correlation
between objective functions within our probabilistic modeling. Thus, a
Multi-task GP models the experiment and is searched to find maximizer
of an acquisition function to select the next experiment to run.

Assuming constructing a GP for objective function f (x), the predic-
tion at an unobserved location X in existence of N previously observed
data denoted by {Xy, yn }, where Xy = (x1, ..., Xy) and yy = (f (X1), ..., f
(xn)), is given as:

Jor(®)| Xn,yy ~ N(u(x), 6> (x)) (€Y
where

H(x) = K(Xy,x) [I_r((XNyXN)+GZI]7].X{V )
o’ (x) = k(x,x) — K(Xy, %) [K(Xy,Xy) +0°1] " K(Xy,x)

with k as a real-valued kernel function, K(Xy, Xn) as a N by N matrix with
m, n entry as k(Xm, X,), and K(Xy, x) is a N by 1 vector with mth entry as k
(Xm, X). The term o> represents experimental error. The kernel function
uses the notion of relative distance to obtain the correlation between
observations. A common kernel function is squared exponential:

K (x,x) = exp(— ZZI%>

k* indicates distance-based correlation, d is dimensionality of the
input space and Iy, is the characteristic length-scale to determine corre-
lation strength between observations within the dimension h.

To better leverage the correlation between tasks and facilitate joint
modeling of all objective functions, we first define the correlation matrix
K £, a covariance function over the tasks to capture the statistical re-
lationships [9]. Then, we construct the kernel functions and covariance
matrices in Eq. (2) as proposed in Ref. [9]:

K=K @K k=K ok @

where ® is the Kronecker product operation. Note that the variable yy in
Eq. (2) is a column vector, thus, each task data should be ordered in
columns, stacked vertically and the predictions are similarly stacked
vertically. One can use GPyTorch Python package to build multi-task
GPs and tune model hyperparameters [11].

3. Results

Here, we benchmark multi-objective BO frameworks, integrated
with multi-task GPs (MTGPs), against a previously investigated multi-
objective alloy design problem [7,8] in which the GPs for each prop-
erty were considered to be independent (IGPs). Our objective is to
maximize two indicators of ductility (Pugh ratio, Cauchy pressure) along
with the yield strength, as predicted by the Maresca-Curtin model [10],
within the Mo-Nb-Ti-V-W high-entropy alloy system. These alloys are
relevant to next-generation gas turbine engine blades [8].

In this study, we replace the multiple IGPs with a single MTGP,
jointly modeling all objectives by capitalizing on the existing

Table 1
Pearson correlation coefficients between the 3 objective functions.

Pugh ratio Cauchy pressure Yield strength
Pugh ratio 1 0.466 -0.917
Cauchy pressure 0.466 1 —0.235
Yield strength —0.917 —0.235 1
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correlations. Data from our previous work [7,8] shows the correlation
coefficients between the three objective functions, as indicated in
Table 1. It is worth noting that these correlation coefficients should be
dynamically updated as additional data is acquired, to maintain the
most accurate statistical relationships between the objective functions.
The calculated correlation coefficients indicate a discernible degree of
correlation among the objectives. Notably, a strong inverse correlation is
observed between the Pugh ratio and yield strength, offering the po-
tential for exploitation of this correlation in the probabilistic modeling
of these properties.

To assess the impact of integrating correlations into our design
framework, we use both MTGP and IGPs to approximate the problem’s
optimal Pareto front, aiming to maximize the hypervolume, an indicator
of proximity to the Pareto front. The BO over a design space consisting of
10,000 alloys is carried out 80 times in each case to assess the robustness
of each approach, as shown in Fig. 1.

Utilizing a MTGP enhances design efficiency, achieving larger
hypervolumes at each iteration than when using IGPs. While both
methods converge to the same Pareto front, leveraging objective cor-
relations improves modeling precision and design performance.
Crucially, exploiting these correlations accelerates the discovery of the
Pareto set.

The Uniform Manifold Approximation and Projection (UMAP) [12]
in Fig. 2 visualizes the design space and Pareto points discovered after
300 iterations. Notably, the MTGP and IGP Pareto Sets agree with each
other, but the MTGP Pareto set arrived at much faster. The trade-offs
between objective functions and the strong inverse correlation be-
tween Pugh ratio and Yield strength are evident by comparing the
colored spaces.

To quantify the improvement in modeling accuracy afforded by the
MTGP implementation, we create training and testing sets using an 80/
20 split of data, and compute the mean squared error for objective
functions modeled using both independent and MTGP. The average
mean squared errors, obtained via 5-fold cross-validation, are displayed
in Fig. 3 for the three objectives under consideration. As shown in Fig. 3,
for Pugh ratio and Cauchy pressure, the mean squared errors are about
100 times smaller when they are jointly modeled, however, the
modeling error is smaller by around 10 times for independent modeling
of the yield strength. Overall, MTGP models the objective functions
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Fig. 1. Mean Hypervolume as a Function of Iteration Number. The graph re-
veals an enhancement in design performance when objective functions are
jointly modeled. This improvement is indicated by larger hypervolumes, which
suggest the discovery of higher-quality Pareto fronts.
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Fig. 3. Mean squared errors in prediction of test data using independent and
joint modeling of quantities of interest. Overall, multi-task GP suggests higher
accuracy in predictions because of considering existing correlations.

more accurately and improves the design efficiency by lowering the
data-dependency of the design framework.

4. Conclusions

e Generally, properties of a material system have some degree of
correlation.

e Multi-task GP exploits correlations among tasks in predictive
modeling.

e Replacing uncorrelated GPs by a multi-task GP suggests more effi-
cient multi-objective Bayesian alloy design.
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Fig. 2. Color coded UMAPs including discovered non-dominated designs. The non-dominated region discovered via using multi-task GP is slightly wider.
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