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Most permissionless blockchain networks run on peer-to-peer (P2P) networks, which offer flexibility and

decentralization at the expense of performance (e.g., network latency). Historically, this tradeoff has not

been a bottleneck for most blockchains. However, an emerging host of blockchain-based applications (e.g.,

decentralized finance) are increasingly sensitive to latency; users who can reduce their network latency relative

to other users can accrue (sometimes significant) financial gains.

In this work, we initiate the study of strategic latency reduction in blockchain P2P networks. We first

define two classes of latency that are of interest in blockchain applications. We then show empirically that a

strategic agent who controls only their local peering decisions can manipulate both types of latency, achieving

60% of the global latency gains provided by the centralized, paid service bloXroute, or, in targeted scenarios,

comparable gains. Finally, we show that our results are not due to the poor design of existing P2P networks.

Under a simple network model, we theoretically prove that an adversary can always manipulate the P2P

network’s latency to their advantage, provided the network experiences sufficient peer churn and transaction

activity.
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algorithms.
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1 INTRODUCTION
Most permissionless blockchains today run on peer-to-peer (P2P) communication networks due

to their flexibility and distributed nature [20, 32]. These benefits of P2P networks typically come

at the expense of network performance, particularly the latency of message delivery [18, 20, 46].

Historically, this has not been a bottleneck because most permissionless blockchains are currently

performance-limited not by network latency, but by the rate of block production and transaction

confirmation, both of which are superlinear in network latency and dictated by the underlying

consensus mechanism [12, 18, 25, 31, 51]. For this reason, network latency has not traditionally
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been a first-order concern in blockchain P2P networks, except where substantial latency on the

order of many seconds or even minutes raises the risk of forking [15].

Emerging concerns in blockchain systems, however, are beginning to highlight the importance

of variations in fine-grained network latency—e.g., on the order of milliseconds—among nodes in

blockchain P2P networks. These concerns are largely independent of the underlying consensus

mechanism. They revolve instead around strategic behaviors that arise particularly in smart-

contract-enabled blockchains, such as Ethereum, where decentralized finance (DeFi) applications

create timing-based opportunities for financial gain. Key examples of such opportunities include:

• Arbitrage:Many blockchain systems offer highly profitable opportunities for arbitrage, in which

assets are strategically sold and bought at different prices on different markets (or at different

times) to take advantage of price differences [34]. Such arbitrage can involve trading one cryp-

tocurrency for another, buying / sellingmispriced non-fungible tokens (NFTs), etc., on blockchains

and/or in centralized cryptocurrency exchanges. Strategic agents performing arbitrage can obtain

an important advantage through low latency access to blockchain transactions.

• Strategic transaction ordering: In many public blockchains, strategic agents (who do not

validate blocks) can profit by ordering their transactions in ways that exploit other users—a

phenomenon referred to as Miner-Extractable Value (MEV) [10, 16]. For example, strategic agents

may front-run other users’ transactions, i.e., execute strategic transactions immediately before

those of victims, or back-run key transactions—e.g., oracle report delivery or token sales—to gain

priority in transaction ordering. Small network latency reductions can allow an adversary to

observe victims’ transactions before competing strategic agents do. With more adversarial nodes

and links available, it may even attempt to choose peers in order to frontrun as many pairs of

sources and destinations as possible.

• Improved block composition: Miners (or validators) rely on P2P networks to observe user

transactions, which they then include in the blocks they produce. Which transactions a miner

includes in a block determines the fees it receives and thus its profits. Therefore the lower the

latency a miner experiences in obtaining new transactions, the higher its potential profit.
1

• Targeted attacks: The security of nodes in blockchain P2P networks may be weakened or

compromised by adversaries’ discovery of their IP addresses. For example, a node may issue

critical transactions that update asset prices in a DeFi smart contract. Discovery of its IP address

could result in denial-of-service (DoS) attacks against it. Similarly, a user who uses her own

node to issue transactions that suggest possession of a large amount of cryptocurrency could be

victimized by targeted cyberattacks should her IP address be revealed.

We show that small differences in transaction latencies can help an adversary distinguish between

paths to a victim—and ultimately even discover the victim’s IP address. There is a strong incentive,

therefore, for agents to minimize the latency they experience in P2P networks. In this work, we
initiate the study of strategic latency reduction in blockchain P2P networks.

1.1 Types of network latency
In our investigations, we explore two types of latency that play a key role in blockchain P2P

networks: direct latency and triangular latency (formal definitions in §3). We demonstrate these

types of latencies in Table 1.

Direct latency refers to the latency with which messages reach a listener node from one or more

vantage points—in other words, source latency. We consider two variants:

1
Receiving blocks from other miners quickly is also beneficial. To reduce forking risks, however, miners or validators often

bypass P2P networks and instead use cut-through networks to communicate blocks to one another [7].
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• Direct targeted latency is the delay between a transaction being pushed onto the network by a

specific target node (the victim) and a node belonging to a given agent receiving the transaction,

averaged across all transactions produced by the victim. We can view targeted latency either in

terms of an absolute latency, or a relative latency compared to other nodes receiving the same

transaction; we focus in this paper on relative latency.

• Direct global latency for a given agent’s node refers to targeted latency for that node averaged

over all source nodes in the network. In other words, there is no single target victim.

Triangular latency is a second type of latency that corresponds to a node’s ability to inject itself

between a pair of communicating nodes. Low triangular latency is motivated by (for example) a

node’s desire to front-run another node’s transactions. We consider two forms of triangular latency:

• Triangular targeted latency refers to the ability of an agent’s node 𝑣 to “shortcut" paths between

a sender 𝑠 (e.g., the creator of a transaction) and a receiver 𝑟 (e.g., a miner or miners). That is,

suppose 𝑠 creates a transaction𝑚 that is meant to reach a (set of) target nodes 𝑟 . Triangular

targeted latency measures the difference between the total delay on path 𝑠 → 𝑣 → 𝑟 and the

smallest delay over all paths from 𝑠 → 𝑟 not involving 𝑣 . Given negative triangular targeted

latency, an agent can front-run successfully by injecting a competing transaction𝑚′ into 𝑣 upon
seeing a victim’s transaction𝑚.

• Triangular global latency refers to the triangular relative targeted latency averaged over all

source-destination pairs in the network.

Direct latency and triangular latency are related, but not identical, as we explain in §3 and §6.

1.2 Latency-reduction strategies
High-frequency trading (HFT) firms in the traditional finance industry compete aggressively

to reduce the latency of their trading platforms and connections to markets—in some cases, by

nanoseconds—using technologies like hollow-core fiber optics [43] and satellite links [42].

Such approaches are not viable for blockchain P2P networks, in which network topology matters

more than individual nodes’ hardware configurations. These networks are also permissionless and

experience high churn rates, and are controlled by different parties.

In practice, nodes may rely on proprietary, cut-through networks to learn transactions or blocks

quickly. Miners maintain private networks [7]. There are also public, paid cut-through networks,

such as bloXroute [3]. An agent in a blockchain P2P network, however, can also act strategically by

means of local actions, namely choosing which peers a node under its control connects to.
Peri: A recent protocol called Perigee [35] leverages agents’ ability in blockchain P2P networks

to control their peering to achieve network-wide latency improvements. In the Perigee protocol,

every node favors peers that relay blocks quickly and rejects peers that fail to do so. We observe

that Perigee-like strategies can instead be adopted by individual strategic agents. We adopt a set of

latency-reduction strategies called Peri2 that modify Perigee with optimizations tailored for the

individual-agent setting. In particular, we show that agents using Peri can gain a latency advantage

over other agents in both direct and triangular latency, including targeted and global variants.

1.3 Our contributions
We explore techniques for an agent to reduce direct measurement latency and triangular latency in

a blockchain P2P network using only local peering choices, i.e., those of node(s) controlled by the

agent. Overall, we find that strategic latency reduction is possible, both in theory and in
practice. Our contributions are as follows.

2
A mischievous winged spirit in Persian lore.
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• Practical strategic peering:We demonstrate empirically and in simulation that the strategic

peering scheme Peri can achieve direct latency improvement compared to the current Ethereum

P2P network.
3
We instrument the geth Ethereum client to measure direct measurement latency

and implement Peri. We observe direct global latency and direct targeted latency reductions

each of about 11 ms—over half the reduction observed for bloXroute for direct latency and

comparable to that of bloXroute’s paid service for targeted latency. We additionally show that

Peri can discover the IP address of a victim node 7× more frequently than baseline approaches.

• Hardness of triangular-latencyminimization:We explore the question of strategic triangular-

latency reduction via a graph-theoretic model. We show that solving this problem optimally is

NP-hard, and the greedy algorithm cannot approximate the global solution. These graph-theoretic

results may be of independent interest. We show experimentally in simulations, however, that

Peri is effective in reducing such latency.

• Impossiblity of strategy-proof peering protocols: Within a theoretical model, we prove

that strategy-proof P2P network design is fundamentally unachievable: For any default peering

algorithm used by nodes in a P2P network, as long as the network experiences natural churn

and a target node is active, a strategic agent can always reduce direct targeted latency relative to

agents following the default peering algorithm. Specifically, with probability at least 1 − 𝜀 for
any 𝜀 ∈ (0, 1), an agent can connect directly to a victim in time 𝑂 (𝜀−1 log2 (𝜀−1)).

2 BACKGROUND AND RELATED WORK
Many of the latency-sensitive applications discussed in §1 arise in decentralized finance (DeFi)

and require a blockchain platform that supports general smart contracts. We therefore focus on

the Ethereum network (in particular, the eth1 or the execution layer); however, the concepts and

analysis apply to other blockchain P2P networks.

Network Formation. Ethereum, like most permissionless blockchains, maintains a P2P network

among its nodes. Each node is represented by its enode ID, which encodes the node’s IP address

and TCP and UDP ports [49]. Nodes in the network learn about each other via a node discovery

protocol based on the Kademlia distributed hash table (DHT) protocol [36]. To bootstrap after a

quiescent period or upon first joining the network, a node either queries its previous peers or

hard-coded bootstrap peers about other nodes in the network. Specifically, it sends a FINDNODE
request using its own enode ID as the DHT query seed. The node’s peers respond with the enode

IDs and IP addresses of those nodes in their own peer tables that have IDs closest in distance to the

query ID. Nodes use these responses to populate their local peer tables and identify new peers.

Transaction Propagation. When a user wants to make a transaction, they first cryptographically

sign the transaction using a fixed public key, then broadcast the signed transaction over the P2P

network using a simple flooding protocol [6]. Each node 𝑣 , upon seeing a new transaction𝑚, first

checks the transaction’s validity; if the transaction passes validity checks, it is added to 𝑣 ’s local

TxPool of unconfirmed transactions. Then, 𝑣 executes a simple three-step process: (1) It chooses a

small random subset {𝑢𝑖 } of its connected peer nodes; (2) 𝑣 sends a transaction hash 𝐻 (𝑚) to each

peer 𝑢𝑖 ; (3) If 𝑢𝑖 has already seen transaction𝑚, it communicates this to the sender 𝑣 ; otherwise it

responds with a GetTx request, and 𝑣 in turn sends𝑚 in full [49]. There are two main sources of

latency in the P2P network: (1) network latency, which stems from sending messages over a P2P

overlay of the public Internet, (2) node latency, which stems from local computation at each node

before relaying a transaction. We treat node latency as fixed and try to manipulate network latency.

3
We explicitly do not consider the design of Peri to be a main contribution, as the design is effectively the same as Perigee.

We make a distinction between the two purely to highlight their differing goals and implementation details.
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Transaction Confirmation. After transactions are disseminated over the P2P network,miner nodes
confirm transactions from the TxPool by compiling them into blocks [40, 49]. When forming blocks,

miners choose the order in which transactions will be executed in the final ledger. This ordering can

have significant financial repercussions (§2.0.1). Miners typically choose the ordering of transactions

in a block based on a combination of (a) transactions’ time of arrival, and (b) incentives and fees

associated with mining a transaction in a particular order. In Ethereum, each block has a base fee,

which is the minimum cost for being included in the block. In addition, transaction creators add a

tip (priority fee), which is paid to the miner to incentivize inclusion of the transaction in a block

[8, 45]. These fees are commonly called gas fees in the Ethereum ecosystem.

2.0.1 Example: The role of latency in arbitrage. Among the applications in §1, the interplay between

network latency and arbitrage is particularly delicate. To perform successful arbitrage, the arbi-

trageur must often make a front-running transaction 𝑓 immediately before the target transaction𝑚,

i.e., the transactions 𝑓 and𝑚 are mined within the same block, but 𝑓 is ordered before𝑚. Techniques

for achieving this goal have shifted over time.

Before 2020, arbitrage on the Ethereum blockchain happened mostly via priority gas auctions

(PGAs), in which arbitrageurs would observe a victim transaction, then publicly broadcast front-

running transactions with progressively higher gas prices [16]. The arbitrageur with the highest

gas price would win. It benefits an arbitrageur to have a low triangular targeted latency (Definition

3.3) between target source nodes (e.g., the victim, other arbitrageurs) and a destination miner, or a

low direct targeted latency (Definition 3.1) to a miner. This allows swifter reactions to competing

bids and more rebidding opportunities before the block is finalized.

In 2020, mechanisms for arbitrage began to shift to private auction channels like Flashbots [10],

in which an arbitrageur submits a miner-extractable-value (MEV) bundle with a tip for miners

to a public relay, which privately forwards the bundle to miners. A typical bundle consists of a

front-running transaction and the target transaction, where the order of transactions is decided by

the creator and cannot be changed by the miner of the bundle. Among competing bundles (which

conflict by including the same victim transaction), the one with the highest tip is mined.

The key difference from PGA is that an arbitrageur is no longer aware of the tips of its competitors;

tips are chosen blindly to balance cost and chance of success. However, the tip is upper-bounded

for a rational arbitrageur, because the arbitraging gain is determined by the victim transaction

itself. Competing arbitrageurs may set up a grim trigger
4
on the percentage of the tip compared

to the arbitrage profit [16]. For instance, they may agree that the tip must not exceed 80% of the

profit, so that 20% of profit is guaranteed for the winner. Assuming that every arbitrageur is paying

the miner with the same maximum tip, the competition collapses to one of speed. Therefore, even

with MEV bundles, network latency remains a critical component of arbitrage success.

2.1 Related Work
Reducing P2P network latency has been a topic of significant interest in the blockchain community,

including (1) decentralized protocol changes, and (2) centralized relay networks.

Decentralized Protocol Changes. Various decentralized protocols have been proposed to reduce

the latency of propagating blocks and/or transactions. Several of these focus on reducing bandwidth

usage, and reap latency benefits as a secondary effect. For example, Erlay [41] uses set reconciliation

to reduce bandwidth costs of transaction propagation, and Shrec [26] further designs a new encoding

4
Grim trigger is a trigger strategy in which a player begins by cooperating in the first period, and continues to cooperate

until a single defection by her opponent, after which the player defects forever.
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of transactions and a new relay protocol. These approaches are complementary to our results,

which are not unique to the broadcast protocol or compressive transaction encoding scheme.

Another body of work has attempted to bypass the effects of latency and peer churn on the

topology of the P2P network by creating highly-structured networks and/or propagation paths

while maintaining an open network; examples include Overchain and KadCast [11, 44, 47]. Such

highly-structured networks would be resilient to simple peering-choice strategies like Peri.

Centralized Relay Networks. There have beenmultiple efforts to build centrally-operated, geographically-

distributed relay networks for blockchain transactions and blocks. These include bloXroute [3],

Fibre [7], Bitcoin Relay Network [48], and the Falcon network [48]. In this work, we evaluate the

latency reduction of centralized services, using bloXroute as a representative example that operates

on the Ethereum blockchain. Nodes in the Ethereum P2P network connect to the bloXroute relay

network via a gateway, which can either be local or hosted in the cloud [2]. BloXroute offers

different tiers of service, which affect the resources available to a subscriber.

3 MODEL
We begin by modelling the P2P network N as a (possibly weighted) graph (V, E). Edge weights
represent the physical distance traversed by a packet traveling between a pair of nodes (e.g., this

can be approximated in practice with traceroute). In §6, we consider an unweighted, simplified

model for analytical tractability. Let 𝑑N (𝑠, 𝑡) denote the shortest distance between 𝑠 and 𝑡 over the
graph N . Each individual node 𝑣 ∈ V can create a message𝑚 and broadcast it to the network.

The message 𝑚 traverses all the nodes in V following the network protocol, which allows an

arbitrary node to forward the message𝑚 upon receipt to a subset of its neighbors. We assume the

source nodes of these messages follow a distribution S with supportV , i.e., S specifies a probability
distribution over transaction emissions by nodes inV .

A participant of the P2P network has two classes of identifiers:

Class 1. (Network ID) An ID assigned uniquely to each of its nodes. For example, each node in the

Ethereum P2P network is assigned a unique enode ID including the IP address. For simplicity,

we letV denote the ID space, and a node 𝑣 ∈ V represents an ID instance.

Class 2. (Logical ID) An ID that is used to identify the creator or owner of a message (e.g., the public

key of a wallet). We letW denote the ID space.

In blockchain networks, a participant may own multiple instances of both classes. In our analysis,

we assume there exists a mapping NID :W →V from a logical ID to a network ID for simplicity.

3.1 Adversarial Model
We consider an adversary who aims to reduce latency in order to gain profit and/or threaten

network security, as mentioned in §1. As a starting point, we assume the adversary is capable of

inserting one agent node 𝑎 into the network, which can maintain at most 𝑘 peer connections at a

time.
5
In addition to receiving and sending messages like a normal node, the node 𝑎 can behave

arbitrarily during relaying; for instance, it can block messages when the protocol requires it to

broadcast them. The adversary observes the network traffic through 𝑎 consisting of transactions,

where each transaction has a signer, i.e., the logical ID of its sender. The adversary is assumed to not

know the mapping NID, and cannot peer to a transaction sender 𝑣 = NID(𝑤) with only knowledge

of the logical ID𝑤 . With the network ID 𝑣 , however, the adversary may establish a peer connection

between 𝑎 and the node.

5
A motivated attacker can cheaply connect to many peers. However, in practice, we find empirically that maintaining too

many peer connections is difficult due to issues including peer discovery and message processing, to name a few [14].
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Target node(s) Agent node(s) Agent-initiated connections

Targeted Global

Direct Latency

as a

s1

s2

Optimized by Directly connecting to target (§3.2) SS-ASPDM approximation algorithm [37]

Triangular
Latency

as

t

a

s1

t1

s2

t2

Optimized by Directly connecting to targets (§3.3) Unknown (§6.1)

Main
Challenge Don’t know the IP addresses of targets (§7.2.1)

Don’t know the graph topology, computational

hardness of algorithms (§3.2, §6.1)

Table 1. Challenges and algorithms for optimizing direct and triangular latency, both targeted and global.

We consider multiple adversarial models with the above capabilities, but different goals. In

particular, they aim to minimize different types of latencies, which we term direct and triangular

latencies, with both global and targeted variants. We start by precisely defining these latencies.

In Table 1, we show the relationship between these metrics, and summarize what is currently

known (and unknown) about how to optimize them. In this figure, solid red nodes represent a

strategic agent. Blue striped nodes represent target nodes in targeted latency metrics. Red thick

lines represent the edges (peer connections) that can be formed by the agent to attempt to optimize

its network latency.

We let the random variable Λ(𝑎) denote the end-to-end traveling time of a message to 𝑎 from a

random source 𝑆 ∼ S; the randomness is over the source and (possibly) the network relay protocol.

Further, we let Λ𝑣 (𝑎) denote the random variable Λ(𝑎) |𝑆 = 𝑣 , representing end-to-end traveling

time of a message from a single source 𝑣 to 𝑎. The randomness of Λ𝑣 (𝑎) is over the network relay

protocol. We measure the distributions of both random variables in §5.

3.2 Direct Latency
Direct targeted latency (Def. 3.1) is defined as the expected single-source message travel time Λ𝑣 .

6

Definition 3.1. In a P2P network N , the direct targeted latency of node 𝑎 with respect to a

target node 𝑣 is defined as:

𝐿𝑣 (𝑎) ≜ E [Λ𝑣 (𝑎)] .

6
Expectation is only one metric of interest; practitioners may care about other metrics, e.g., quantiles. While we include such

metrics in our experiments, we find that expectation captures the desired properties, while also facilitating basic analysis.
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Reducing direct targeted latency can help with applications such as targeted attacks or front-

running a specific set of victim nodes. We define direct global latency as follows.

Definition 3.2. In a P2P network N , the direct global latency of node 𝑎 is defined as:

𝐿(𝑎) ≜ E [Λ(𝑎)] .

Note that 𝐿(𝑎) = E𝑆∼S [𝐿𝑆 (𝑎)], which means the direct global latency equals the average direct

targeted latency weighted by traffic source distribution S.

3.2.1 Optimizing Direct Latency. We can consider the problem of latency reduction by an agent

as an optimization problem. As a simplification to provide basic insights, we assume the network

topology is fixed, and the end-to-end delay of an arbitrary message from source 𝑠 to destination 𝑡

is proportional to 𝑑N (𝑠, 𝑡), which denotes the graph distance between 𝑠 and 𝑡 on the network (i.e.,

number of hops, weighted by edge weights). We also assume the agent has a budget of peer links

𝑘 ≥ 1. Then, we aim to solve the following problem to optimize direct targeted latency:

minimize 𝐿𝑣 (𝑎)
subject to |{𝑦 | (𝑎,𝑦) ∈ E}| ≤ 𝑘. (1)

If we simplify the problem by assumption 𝑑N (𝑠, 𝑡) ≤ 𝑑N (𝑠, 𝑟 ) + 𝑑N (𝑟, 𝑡) for all 𝑟, 𝑠, 𝑡 ∈ V , the

solution to optimization (1) becomes trivial. The agent only needs to add the target 𝑣 as a peer in

order to achieve the minimum targeted latency, as stated in Table 1. However, achieving this is

not necessarily trivial: an agent may not know 𝑣 ’s network address (e.g., IP address), even if 𝑣 ’s

logical address is known. We discuss how to circumvent this challenge in §7.2 and what happens in

practice when the simplifying assumption does not hold in §5.2.

The situation is very different with the optimization problem for global latency reduction, which

we formulate as follows. The optimization problem is:

minimize 𝐿(𝑎) =
∑︁

𝑣∈V−{𝑎}
𝑑 (𝑣, 𝑎) · P𝑆∼S [𝑆 = 𝑣]

subject to |{𝑦 | (𝑎,𝑦) ∈ E}| ≤ 𝑘.

This problem is called single-source average shortest path distanceminimization (SS-ASPDM) [37].

It is NP-hard, but has an 𝛼-approximate algorithm [37].

3.3 Triangular Latency
Triangular latency is motivated by applications related to front-running in P2P networks. It is

defined with respect to one or more pairs of target nodes, where a pair of target nodes includes a

source node 𝑠 and destination node 𝑡 . For example, consider Table 1 (Triangular Targeted Latency),

and let 𝑠 represent the creator of a transaction and 𝑡 a miner. The goal of agent node 𝑎 is to establish

a path 𝑠 → 𝑎 → 𝑡 with lower travel time than any path on N from 𝑠 to 𝑡 excluding 𝑎. It can do so

by adding edges to the P2P network, which are shown in red in Table 1; note that the (shortest)

path from 𝑠 to 𝑎 to 𝑡 is four hops, whereas the shortest path from 𝑠 to 𝑡 excluding 𝑎 is five hops.

The existence of such a path enables 𝑎 to front-run 𝑠’s transactions that are mined by 𝑡 .

We let 𝐿′𝑢 denote the direct targeted latency with respect to 𝑢 on the network excluding the agent

𝑎 and its incident edges. As a front-runner, 𝑎 aims to satisfy the following condition:

𝐿′𝑠 (𝑡) > 𝐿𝑠 (𝑎) + 𝐿𝑡 (𝑎). (2)
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Here we assume the symmetry of targeted latency, i.e., 𝐿𝑡 (𝑎) = 𝐿𝑎 (𝑡). The left-hand side 𝐿′𝑠 (𝑡)
is a constant, while the right-hand side depends on the neighbors of 𝑎 over the P2P network

N = (V, E); we define this quantity as triangular targeted latency.

Definition 3.3. In a P2P network N , the triangular targeted latency of node 𝑎 with respect to

a target pair (𝑠, 𝑡) is defined as

𝐿𝑠,𝑡 (𝑎) ≜ 𝐿𝑠 (𝑎) + 𝐿𝑡 (𝑎).
We again optimize this subject to a constraint on the number of agent peer connections:

minimize 𝐿𝑠,𝑡 (𝑎)
subject to |{𝑦 | (𝑎,𝑦) ∈ E}| ≤ 𝑘. (3)

The optimal strategy for solving (3) is again trivial: the agent should connect to both 𝑠 and 𝑡 (Table

1). Hence, to optimize for a single source and destination, it is key to find 𝑠 and 𝑡 on the network

and to ensure (2) holds. We discuss this further in §7.

We next consider an agent that tries to manipulate the global triangular latency, capturing
front-running opportunities over the entire network. We start with a simple (and unsatisfactory)

definition of triangular global latency. Let 𝑄 denote the set of source-destination pairs of network

traffic. A front-running agent might try to optimize the following:

𝐿𝑄 (𝑎) ≜
∑︁
(𝑠,𝑡 ) ∈𝑄

𝐿𝑠,𝑡 (𝑎) =
∑︁
(𝑠,𝑡 ) ∈𝑄

𝐿𝑠 (𝑎) + 𝐿𝑡 (𝑎). (4)

This is a variation of the SS-ASPDM problem discussed previously in §3.2. Note, however, that an

agent with minimal aggregated pairwise triangular latency 𝐿𝑄 does not necessarily gain maximum
profit from front-running. To profit, the agent needs to ensure the inequality (2) holds for pairs (𝑠, 𝑡)
not necessarily that right-hand side in (4) is minimized.

We thus define the following proxy metric for triangular global latency, which instead measures

the quality of peering choices made by front-runners. Intuitively, the metric counts the number

of node pairs (𝑠, 𝑡) that an adversarial agent can shortcut, and the agent wants it to be as high as

possible. For example, in Table 1 (Triangular Global Latency), the agent 𝑎 is allowed to add three

edges to the network, and its goal is to select those edges so as to shortcut the maximum number

of node pairs (𝑠, 𝑡) from network N .

Definition 3.4. Let 𝑎 ∉ V denote an adversarial agent node, and 𝑈 ⊆ V the set of 𝑎’s peers.

N ′ = (V′, E′) represents the network modified by the agent 𝑎, where V′ = V ∪ {𝑎} and E′ =
E ∪ ⋃

𝑢∈𝑈 (𝑢, 𝑎). Let S,T ⊆ V be the sets of sources and destinations, respectively. The agent

node 𝑎 has a static distance penalty 𝜏 , which means that it can only successfully front-run a source-

destination pair (𝑠, 𝑡) if the path 𝑠 → 𝑎 → 𝑡 is at least 𝜏 units shorter than the shortest path 𝑠 → 𝑡

on N that does not pass through 𝑎. The adversarial advantage is defined as

𝐴N (𝑈 ) =
∑︁

𝑠∈S,𝑡 ∈T

(
I
[
𝑑N′ (𝑠, 𝑡) + 𝜏 < 𝑑N (𝑠, 𝑡)

]
+ 1

2

· I
[
𝑑N′ (𝑠, 𝑡) + 𝜏 = 𝑑N (𝑠, 𝑡)

] )
. (5)

Note that we avoid defining the advantage with random end-to-end latencies such as Λ𝑠 (𝑡) in
order to keep the problem theoretically tractable. We also assign equal weights to each source-

destination pair following the assumption that the adversary is unable to predict the profit to

shortcut each particular pair of sources and destinations. In practice, T is the set of miners, and

𝜏 ∈ [0,∞) is a parameter that depends on the computational capabilities of the agent, as well as

randomness in the network. Ideally, we assume N is uniformly weighted. We also assume the

weights of adversarial links 𝑑N′ (𝑢, 𝑎) = 0 for all 𝑢 ∈ 𝑈 , so that we have maximum flexibility in

controlling the time costs over these links with parameter 𝜏 .
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Summary. The proposed latency metrics express natural strategic agent goals. They are difficult

to optimize directly, however, due to a combination of strong knowledge requirements about the

P2P network, high computational complexity, and/or assumptions about the stationarity of the

underlying network. For example, to optimize global latency, we require two key assumptions

that are unrealistic for P2P networks: the network topology should be static and the agent should

know both the network topology and traffic patterns. To optimize targeted latency, we require

knowledge of the target node’s network ID, i.e., its IP address; this is often unknown in practice.

These challenges motivate the Peri algorithm in §4, which avoids all the above assumptions.

4 DESIGN
Optimizing network latency requires knowledge of network topology and/or node network ad-

dresses (§3), which are unknown for typical P2P networks. Instead, an agent is typically only aware

of its own peers. In this section, we present the Peri peering algorithm to account for this and

achieve reduced (if not necessarily optimal) latency. Peri is a variant of the Perigee [35] algorithm.

4.1 Perigee
Perigee was introduced in [35] as a decentralized algorithm for generating network topologies with

reduced broadcast latency for transactions and blocks. The Perigee algorithm is presented in Alg. 1.

Lines that are highlighted in red are specific to Peri (§4.2).

Input: Number of peers 𝐾 kept after each iteration, maximum peer count 𝑁 , length of period 𝑇 , score

function 𝜙

Result: Peer set 𝑃 at each period ℎ = 1, 2, · · ·
1 𝑃 ← ∅, 𝐵 ← ∅ ; // 𝐵 is a blocklist of evicted peers

2 Run Thread peer_manager():
3 while true do
4 Hang and wait for next peer;

5 𝑣 ← Random sampled node fromV − 𝐵;
6 if |𝑃 | < 𝑁 then
7 𝑃 ← 𝑃 ∪ {𝑣} ; // add peer when a slot is available

8 for ℎ ← 1, 2, · · · do
9 Sleep 𝑇 ; // peer_manager adds peers to 𝑃 when sleeping

10 𝑒 ← 𝑁 − 𝐾 ; // 𝑒 is the number of peers to evict

11 Init score map Φ;

12 for 𝑝 ∈ 𝑃 do
13 if not is_excused(𝑝) then
14 Φ(𝑝) ← 𝜙 (𝑝) ;
15 else
16 𝑒 ← 𝑒 − 1;
17 if 𝑒 > 0 then
18 𝑃 ← 𝑃 − {𝑒 keys with largest values in Φ};

19 𝐵 ← 𝐵 ∪ {𝑒 keys with largest values in Φ};

20 Output (ℎ, 𝑃);

Algorithm 1: Perigee [35]/ Peri. Red text denotes parts that are specific to Peri. Note:

is_excused is a predicate that is true when peer-delay information is insufficient to make a

peering decision. 𝜙 (𝑣) equals the average transaction-delivery delay of 𝑣 with respect to the

best peer, as defined in Eqn. (6). It incorporates design choices highlighted in §4.2.
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At a high level, Perigee requires every node in the network to assign each of its peers a latency

score and periodically tears down connections to peers with high scores. In our context, the latency

score represents the latency with which transactions are delivered; we want this score to be as

low as possible. Over time, Perigee causes nodes to remain connected to low-latency peers, while

replacing other peers with random new ones. Roughly speaking, [35] shows that Perigee converges

to a topology that is close to the optimal one, in the sense of minimizing global broadcast latency.

More precisely, Perigee divides time into periods. Let 𝑢 denote a given node in the network and

𝑀𝑣 denote the set of all transactions received by 𝑢 in the current period from a current peer 𝑣 . For

a given transaction𝑚, let 𝑇 (𝑚) denote the time when𝑚 is first received by 𝑢 from any of its peers

and 𝑇𝑣 (𝑚) denote the time when𝑚 is received by 𝑢 specifically from 𝑣 . We define 𝑇𝑣 (𝑚) = ∞ if 𝑣

did not deliver𝑚 during the current period.

In every period, each node 𝑢 evaluates a score function 𝜙 over each of its peers 𝑣 , defined as

𝜙 (𝑣) ≜
∑︁
𝑚∈𝑀𝑣

1

|𝑀𝑣 |
min

{
𝑇𝑣 (𝑚) −𝑇 (𝑚), Δ

}
. (6)

Δ is a parameter used by Perigee as an upper bound on measured latency differences. It bounds the

influence of outliers on score-function computation. For a node 𝑢, the score function 𝜙 (𝑣) captures
the average over all transactions𝑚 of the difference in latency between delivery of𝑚 by 𝑣 and

that by the peer from which 𝑢 first received𝑚. In other words, 𝜙 (𝑣) may be viewed as the average

slowdown imposed by 𝑣 with respect to the fastest delivery of transactions to 𝑢.

The procedure peer_manager is an asynchronous thread (or set of threads) that handles peer

connections on the P2P network, including accepting incoming peer requests, requesting nodes for

connection and dropping peers. Ideally, it can randomly sample nodes from the entire network,

gradually add peers when the peer count is under the maximum, and keep connections with specific

nodes (targets). Hence, while the main thread sleeps, peer_manager expands the peer set 𝑃 until it

reaches its maximum size 𝑁 .

4.2 Peri
Although Perigee was designed to be deployed by all network nodes to improve broadcast latency,

we observe that the same ideas can be applied by a single agent to improve their observed direct

and triangular latency. We next describe Peri, a slight modification of Perigee enabling an agent to

control their direct and triangular latency. Although Peri does not functionally differ from Perigee,

we give them different names to differentiate their usage and implementation choices. Again, the

steps unique to Peri are highlighted in Red in Alg. 1. The main differences are:

(a) Goal: Peri is meant to be applied by a single node to advantage it over other nodes, whereas

Perigee was proposed as a protocol to optimize systemic network performance.

(b) Relevant transactions: In Perigee, nodes measure the latency of all received transactions.

In Peri, the score function 𝜙 (𝑣) enforces that only relevant transactions participate in scoring

peers. In Peri, for direct global latency reduction, all transactions are considered relevant, while

for direct targeted latency reduction, only transactions made by the target are relevant.

(c) Handling silent peers: Particularly when optimizing targeted latency, the function 𝜙 may

be undefined for some peers in some periods. For example, if a peer 𝑝 is connected near the

end of a given period, there will not be sufficient data to compare 𝑝 with other peers, which

means 𝜙 (𝑝) may be undefined. Instead of evicting 𝑝 in such cases and possibly losing a good

peer, we forego eviction of 𝑝 . In Alg. 1, the predicate is_excused(𝑣) is true if node 𝑣 should be

excluded from eviction for the current period.

(d) Blocklists. The Perigee [35] algorithm advocates for selecting a new set of peers at random.

However, this increases the likelihood of a peer tearing down connections, then connecting to
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the same node(s) shortly thereafter, particularly since some cryptocurrency clients (including

geth) favor previously-visited nodes during peer selection [27, 28]. To handle this, in Peri

we use blocklists: if a node tears down a connection to peer 𝑣 in a Peri period, it refuses to

re-connect to 𝑣 in future periods. In Alg. 1, we maintain blocklist 𝐵 for this purpose.

(e) Sampling relevant transactions:We cannot relay relevant transactions; otherwise, the “late”

peers who do not deliver a relevant transaction first to our node will never deliver it to our

node (§2), thus removing them from Peri’s latency comparison. If all transactions are relevant,

our node will hence act as a black hole, and may impact the P2P network. We avoid this by

sampling 1/4 of all relevant transactions for global latency measurement, by redefining relevant

transactions as those with hashes divisible by 4 when computing 𝜙 (·) in Line 14 of Alg. 1.

5 DIRECT LATENCY EVALUATION
In §5.1 and §5.2, we show the practical latency reduction effects of Peri with experiments on the

Ethereum P2P main network (mainnet) and Rinkeby test network (testnet).

5.1 Evaluation: Direct Global Latency
5.1.1 Methods. We evaluate four approaches.

(a) Baseline. Our experimental control node uses the default settings of the Go-Ethereum client,

version 1.10.16-unstable [9]
7
. This was the latest version when we started the experiments.

(b) BloXroute. We compare against a centralized, private relay network, using bloXroute as a

representative example. We use the bloXroute Professional Plan [3]; at the time our experiments

were run, this plan cost $300 per month.
8
We ran the bloXroute gateway locally to avoid

incurring additional latency (§2.1).

(c) Peri. We modify the Go-Ethereum client [9] to implement the Peri algorithm for peer selection.

We set the period to 20 minutes, and replace at most 25 peers every period.

(d) Hybrid.We implement a hybrid method that combines bloXroute and Peri by applying Peri to

a node with access to a bloXroute relay. For correctness, we ensure that the gateway connecting

to the relay, which acts as a peer of the node, cannot be removed by the Peri algorithm.

5.1.2 Experimental Setup. We establish 4 EC2 instances in the us-east-1 AWS data center, where a

public bloXroute relay is located. On each instance, we deploy a full node on the Ethereum P2P

main network (the mainnet), which is implemented by a customized Go-Ethereum (geth) client.

Each node has at most 50 peers, which is the default setting of Go-Ethereum. For a node running

Peri or Hybrid, we set the proportion of outbound peers (peers dialed by the node itself) to 80%

so that the node actively searches for new peers. For a node running other baselines, we keep the

proportion at 33%, which is also default for Go-Ethereum.

We ran 63 experiments from Feb 18, 2022 to March 16, 2022, each following the procedure below.

First, we assign each latency reduction method (bloXroute, Peri, Hybrid and Baseline) exclusively

to a single node, so that all four nodes use different comparison methods. Then, we launch the

nodes simultaneously. When a packet arrives, the node checks if the packet contains a full relevant

transaction or its hash; if so, it records the timestamp. At the end of the experiment, we stop the

nodes and collect the arrival timestamps of transactions from their host instances.

Bias reduction. We take the following steps to control for systematic bias in our experiments.

We prohibit the 4 measurement nodes from adding each other as peers. We reset all the enode

IDs (unique identifiers of the Ethereum nodes including IP address) before each experiment. This

7
The customized client source code can be found at https://github.com/WeizhaoT/geth_peri.

8
bloXroute also offers more expensive and powerful plans, which we did not test due to financial constraints.
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Fig. 1. PDFs of global latency distributions (difference in ms from Baseline latency).

prevents the other nodes from remembering our nodes’ IP addresses and making peering decisions

based on activity from previous experiments. We record the clock differences with periodic NTP

queries between each pair of hosts to fix systematic errors in the timestamps recorded locally by

the hosts. Despite being the same type of AWS instance, the host machines may also introduce

biases because they may provide different runtime environments for the Ethereum node program.

To eliminate these biases, we rotate the assignment of latency reduction methods after every

experiment, so that for every successive 4 experiments, each node is assigned each method exactly

once. We attempt to control for temporal biases due to diurnal transaction traffic patterns by

running each experiment every 8 hours, so that the assignment of methods to nodes rotates 3

times a day. Because the number of possible method assignments is 4, a co-prime of 3, each node

experiences every combination of latency reduction methods and time-of-day. We did not control

for contention (e.g., of network bandwidth, computational resources) among EC2 instances by

running experiments on dedicated hardware due to financial constraints.

5.1.3 Results. Each node is allowed to warm up for 2.5 hours; after this, we collect all transactions

that are received by each of the nodes for 3.5 hours. Although it is infeasible to measure the

transaction propagation time directly—as this would require sender timestamps—the time difference

of arrival allows us to measure the ability of a method to reduce propagation time. For each

transaction𝑚 and each node 𝑦 with a latency reduction method other than Baseline, we compute

the difference between the timestamp of𝑚 at 𝑦 and the timestamp at the baseline node 𝑏, which

is effectively a sample of random variable Λ(𝑦) − Λ(𝑏). The smaller the time difference (i.e., the

more negative), the earlier 𝑦 delivers𝑚, and the more effective the latency reduction method is.

We gather the latency differences over 63 experiments, and plot their distributions for each node in

Fig. 1. In total, we analyzed the latencies of 6,228,520 transactions.

Finding 1: Peri alone is at least half as effective as bloXroute private networks in reducing
average direct global latency. The Hybrid node (Peri with bloXroute) achieves an additional
15% improvement in latency reduction over bloXroute alone.

In the figure, all the latency differences are distributed with negative means andmedians, showing

an effective latency reduction. We find these results to be statistically significant; our statistical

tests are detailed in App. A.4. BloXroute reduced this latency by 18.45 milliseconds on average.

In comparison, Peri reduced it by 11.09 milliseconds. Although Peri’s ability to reduce latency

is expected, it is perhaps unexpected that Peri is more than half as effective as bloXroute (and

cost-free). On the other hand, by exploiting access to bloXroute services, Hybrid nodes can achieve

an additional 15% reduction in latency. This suggests the potential of peer-selection algorithms to

further boost latency reduction techniques over private relay networks.
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Note that these experiments naturally experienced network dynamics (e.g., traffic congestion)

over months on the live Ethereum P2P network, suggesting that the results are robust to realistic

conditions. On the other hand, it is difficult to empirically determine how network dynamics (cross

traffic, BGP, etc.) exactly affect our results, because we cannot control or even measure them

comprehensively in the network. As a compromise, we study the effects of changes in local network

conditions, including the peer count and bandwidths of the attacker. Roughly, we found that the

higher the adversary’s peer count limit, the lower the advantage afforded by Peri; above a peer

count of 100, the benefits of Peri appear to plateau, with median reductions between 2-5 ms (App.

A.6). Similarly, we find that if the attacker has a low-bandwidth connection to the network, the

benefits of Peri are significantly amplified. For example, if we throttle the adversary’s bandwidth to

1.2 Mbps, the median latency reduction of Peri compared to the baselins is 37 ms—7× larger than

the reduction in Fig. 1, which uses a 10 Gpbs link (App. A.7). Overall, these results suggest that the
benefits of strategic latency reduction are most significant for nodes with comparatively
low network resources.

5.2 Evaluation: Direct Targeted Latency
Experimentally evaluating targeted latency reduction techniques on the Ethereum mainnet can be

costly and time-consuming. This is because to evaluate latency distributions, we need to observe

many transactions with a known ground truth IP address. A natural approach is to generate our

own transactions from a single node and measure their latency; unfortunately, nodes in the P2P

network do not forward transactions that are invalid or unlikely to be mined due to low gas fees.

Hence, we would need to create valid transactions. For example, at the time of writing this paper,

the recommended base fee of a single transaction was about $2.36 per transaction [4]. Collecting

even a fraction of the 6+ million transactions analyzed in §5.1 would be prohibitively costly.

We ran limited experiments on direct targeted latency, where the setups and results are shown

in details in Appendix A.5. The findings of these experiments are summarized below.

Finding 2: Peri reduces direct targeted latency by 14% of the end-to-end delay, which is as
effective as bloXroute and Hybrid.

We did not collect a sufficient amount of data for Peri and Hybrid to show a statistically significant

ability to connect directly to a victim and learn its IP address. We attribute this to the low transaction

frequency and large size of the mainnet. The testnet experiments we describe next, however, did
result in frequent victim discovery of this kind—provided a sufficiently large number of Peri periods

or a high frequency of victim transactions.

5.2.1 Targeted Latency on Ethereum testnets. Due to the financial cost of latency reduction experi-

ments on the Ethereum mainnet, we also performed experiments on the Rinkeby testnet.
9
Our

goal in these experiments is to simulate a highly active victim in the network and compare the Peri

algorithm’s ability to find and connect to the victim against a baseline default client.

In these experiments we run a victim client on an EC2 instance in the ap-northeast-1 location

and the Peri and Baseline clients in the us-east-2 location. Note that we cannot evaluate bloXroute

or Hybrid on the test network, because bloXroute does not support test network traffic. Due to

our observations of the Rinkeby network’s smaller size, and to emulate a long-running victim

whose peer slots are frequently full, we set the peer cap of the victim to 25 peers. As in previous

9
Though the Ropsten testnet is generally thought to be the test network that most faithfully emulates the Ethereum mainnet

[5], its behavior was too erratic for our experiments during our period of study. This included high variance in our ability to

connect to peers from any machine and constant deep chain reorganizations, causing lags in client synchronization.
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experiments, the Baseline node is running the default geth client with peer cap of 50. The Peri node

is also running with a peer cap of 50 but with the Peri period shortened to 2 minutes.

Method Successful Victim
Connections

Peri 47/70 = 67.1%

Baseline 6/70 = 8.6%

Table 2. Rate of connection to victim
node in Rinkeby testnet experiments. Fig. 2. CDF of number of Peri periods before finding victim.

Each Peri period lasts 2 minutes.

In each experiment, we start the victim client first and give it a 30 minute warm-up period to

ensure its peer slots are filled. We then start the Peri and Baseline nodes and begin transmitting

transactions from multiple accounts on the victim node. We set the frequency to 3 transactions per

minute to control the variance of timestamps and Peri scores. We then run the experiment for just

under 3 hours, enabling us to run 7 experiments per day and alleviate time-of-day biases. After

each experiment, we say the Peri node found the victim if the victim’s Peri score is best (lowest)

among the currently-connected peers. Since the baseline does not compute Peri scores, we say

it found the victim if the baseline node ever connected to the victim. As with the global latency

experiments in §5.1, we alternate which us-east-2 machine is running Peri v.s. Baseline across runs

in order to mitigate potential machine-specific biases. We ran these experiments from April 16 - 26,

2022, for a total of 70 runs.

Finding 3: In testnet experiments, Peri is able to identify the IP address and connect to a
target (victim) node with a frequency more than 7× that of a Baseline node.
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Fig. 3. PDFs of distributions of targeted latency for
runs when Peri found the victim split between before
either found the victim, and after Peri finds the victim.
The 𝑥 axis represents the difference of timestamp at
the Peri node and at the baseline node for each single
transaction.

The number of connections established by

the Peri and Baseline clients to our victim are

listed in Table 2. We find that Peri gives a no-

table advantage when connecting to the victim

node. Fig. 2 shows a CDF of the number of Peri

periods until Peri connected to the victim, with

an mean/median of 39/45 periods (∼ 1.3/1.5
hrs). Fig. 3 shows the delay PDF for the runs

when Peri finds the victim for all transactions

before and after Peri connects to the victim.

We observe a mean latency advantage of 22ms

over the Baseline client once Peri connects to

the victim. This is 30% of the end-to-end de-

lay between the victim and both the Peri and

Baseline clients. Unlike our mainnet experi-

ments, Peri has no significant latency advan-

tage before it connects to the victim. We at-

tribute the difficulty of establishing a network

advantage prior to direct connection to the vic-

tim to the Rinkeby network’s smaller size (1.8K

unique IPs we came across over the period of
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our study compared to 13.6K in the mainnet).

Hence, there may be relatively few peers in geographical proximity to the the Tokyo data center

compared to our mainnet victim node in Germany. There are significant differences in size and

topology between the Rinkeby network and the Ethereum mainnet, and it is unclear how our

experiments extrapolate to the mainnet.

Though it is interesting to extend our results to different settings (different peer count, etc.), we

encounter limitations for both the testnet and the mainnet. On the testnet, there are not enough

active nodes to support a peer count of even 50, and the latency data is much noisier than on the

mainnet. On the mainnet, the victim node from Chainlink is no longer available.

6 TRIANGULAR LATENCY EVALUATION
A front-runner may be interested in targeted and/or global triangular latency. As with targeted

latency, the optimal strategy for an agent to reduce triangular targeted latency is to connect directly

to the target nodes (§3.3). Since this procedure is identical to the experiments in §5.2, we do not

run additional experiments to demonstrate its feasibility.

The more complicated question is how to optimize triangular global latency. Recall from §3.3

that we study triangular global latency via a proxy metric, which we call adversarial advantage
𝐴N (𝑈 ), where N denotes the network and 𝑈 denotes the set of strategic or adversarial agents.

In the remainder of the section, we first show that directly optimizing adversarial advantage is

computationally infeasible even if the agent knows the entire network topology (§6.1). However,

we also show through simulation that a variant of Peri can be used to outperform baselines (§6.2).
10

6.1 Hardness of Optimizing Adversarial Advantage
Generally, we are interested in the following problem.

Problem 1. Given a network N , sets of sources and destinations S,T , and budget 𝑘 (number of
edges the agent can add), we want to maximize 𝐴N (𝑈 ) (Definition 3.4) subject to |𝑈 | ≤ 𝑘 , where 𝑈 is
the set of peers to which the agent node connects.

Theorem 6.1. Problem 1 is NP-hard.

(Proof in Appendix A.3.1) The proof follows from a reduction from the set cover problem. Not

only is solving this problem optimally NP-hard, we next show that it is not possible to approximate
the optimal solution with a greedy algorithm. A natural greedy algorithm that solves the advantage

maximization problem is presented in Algorithm 2.
11
It is unable to approximately solve Problem 1.

Proposition 6.2. The output of Alg. 2 is not an 𝛼-approximate solution to Problem 1 for any 𝛼 > 0.

(Proof in Appendix A.3.2) We show this by constructing a counterexample for which the greedy

algorithm achieves an adversarial advantage whose suboptimality gap grows arbitrarily close

to 1 as the problem scales up. Whether a polynomial-time approximation algorithm exists for

maximization of 𝐴N is an open problem.

10Note on evaluation: Adversarial advantage is more difficult to evaluate empirically than direct latency. For a single source-

destination pair, we would need to observe transactions from a known source (e.g., a front-running victim), which end up at

a known target destination (e.g., an auction platform [10]); we would also need to verify that our agent node can reach

the target node before the victim’s transaction reaches the target destination. Setting up mainnet nodes to measure this

would be twice as costly as evaluating direct targeted latency, which we deemed infeasible in §5.2. Measuring adversarial

advantage globally would further require visibility into every pair of nodes in the network. We therefore evaluate triangular

latency reduction theoretically and in simulation.

11
It includes a “bootstrapping” step in which two nodes are initially added to the set𝑈 of agent peers, as no advantage is

obtainable without at least two such nodes.
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Input: Number of peers 𝑘 ≥ 2, graph N
Output: Set of peers 𝑈

1 𝑈 ← argmax{𝑥,𝑦}:(𝑥,𝑦) ∈V2 𝐴N ({𝑥,𝑦}) ; // bootstrapping

2 for 𝑗 ∈ {3, 4, · · · , 𝑘} do
3 𝑧 ← argmax𝑧:𝑧∈V−𝑈 𝐴N (𝑈 ∪ {𝑧});
4 𝑈 ← 𝑈 ∪ {𝑧};
5 return𝑈 ;

Algorithm 2: Greedy Algorithm for Maximizing 𝐴N .

6.2 Approximations of Advantage Maximization
Although the greedy algorithm (Alg. 2) is provably suboptimal for maximizing adversarial advantage,

we observe in simulation that for small, random network topologies (up to 20 nodes), it attains a

near-optimal adversarial advantage (results omitted for space). We also show in this section that

the greedy strategy achieves a much higher advantage (2-4×) than a natural baseline approach of

randomly adding edges. Hence, the greedy strategy may perform well in practice. However, the

greedy strategy requires knowledge of the entire network topology.
We next evaluate the feasibility of local methods (i.e., Peri) for approaching the greedy strategy.

12

Graph topology. We consider four models of random graph topologies: Erdös-Rényi, random

regular graphs, Barabási-Albert (scale free) graphs, and Watts–Strogatz (small world) graphs—each

with 300 nodes. In addition, we study a snapshot of the Bitcoin P2P network [38] and the Lightning

Network (LN) [17] (sampling details in App. A.8). The Ethereum P2P network has been shown to

exhibit properties of both small world and scale-free networks [49]. The average degree is set to 9

for the Erdös-Rényi model to ensure connectivity. The average degree is set to 4 for the other 3

models to make sure the average distance between nodes is high enough for shortcuts to exist. For

each model, we sample 25 different graph instances. To model the observed existence of hubs in

cryptocurrency P2P networks [19, 21, 23, 38], we introduce 20 new hub nodes, each connecting to

30 nodes randomly sampled from the original graph.

On each instance, the set of sources S is equal to the set of all the nodes V , and the set of

destinations T is a random subset ofV with |T | = 0.1 · |V|. Note that T ⊂ S. We let the static

front-running penalty 𝜏 = 0, a minimum path advantage, and assign a unit weight to all the edges.

Peri Modification. To make Peri optimize adversarial advantage, we alter the scoring function

and the peer-selection criterion; this allows us to simulate the (modified) Peri algorithm without

simulating individual messages. First, we make the following simplifying assumptions: (a) Peer

replacement is completed immediately at the beginning of a new Peri period, and no peer is added

or dropped during the period; (b) The full set𝑀 of messages sent during the current Peri period is

delivered to the adversarial agent during the Peri period by every peer; (c) The end-to-end delay

of each message is proportional to the distance between its source and destination; (d) Message

sources are uniformly distributed over the network and message destinations send messages at the

same frequency; and (e) The agent can tell whether the source of any message belongs to set T .
Let 𝑑𝑣 (𝑚) denote the distance from 𝑠 (𝑚), the source of𝑚, to peer 𝑣 of the agent node 𝑎, and

𝑆 (𝑚) the time when message𝑚 departs from the source. As in (6), we define 𝑇𝑣 (𝑚) as the time

when𝑚 is received from peer 𝑣 , and𝑇 (𝑚) as the time when𝑚 is first received from the fastest peer.

Recall that we assume 𝑑N′ (𝑣, 𝑎) = 0 for any peer 𝑣 of 𝑎 in §3.3, so for such a 𝑣 , 𝑑𝑣 (𝑚) equals the
distance from the source of𝑚 to 𝑎. We assume the agent assigns a weight in the score function

12
The simulator code can be found at https://github.com/WeizhaoT/Triangular-Latency-Simulator.
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Fig. 4. Advantage-Peer-count curves on hub-enriched graph models. The mean of the curves are shown by
solid lines, and the standard deviations are shown by the transparent color zones centered at the mean.

𝜆𝑠 (𝑚) by the source 𝑠 (𝑚). The score function 𝜙 (𝑣) for peer 𝑣 can be transformed with constants

𝐶1,𝐶2,𝐶3 with respect to 𝑣 for a set topology.

𝜙 (𝑣) =
∑︁
𝑚∈𝑀

𝑇𝑣 (𝑚) − 𝑆 (𝑚)
|𝑀 |𝜆−1

𝑠 (𝑚)
+ 𝑆 (𝑚) −𝑇 (𝑚)
|𝑀 |𝜆−1

𝑠 (𝑚)
= 𝐶1

∑︁
𝑚∈𝑀

𝜆𝑠 (𝑚)𝑑𝑣 (𝑚) +𝐶2 = 𝐶3

∑︁
𝑠∈S

𝜆𝑠𝑑N (𝑠, 𝑣) +𝐶2.

Since Peri’s choice of peers to drop is invariant to 𝐶2 or 𝐶3, we can further simplify the score:

𝜙 (𝑣) = ∑
𝑠∈S 𝜆𝑠𝑑N (𝑠, 𝑣). Recall that T ⊂ S, which implies that by properly controlling 𝜆𝑠 , we can

let the agent pay equal attention to approaching sources and destinations. Eventually,

𝜙 (𝑣) = 1

|S|
∑︁
𝑠∈S

𝑑N (𝑠, 𝑣) +
1

|T |
∑︁
𝑡 ∈T

𝑑N (𝑡, 𝑣). (7)

For a given peer budget 𝑘 , we replace 𝑟 =
⌈
𝑘
3

⌉
peers and keep 𝑘 peers. We only consider the kept

peers for evaluation of the advantage metric. In total we execute 800 Peri periods.

Results. We sweep the peer count budget |𝑈 | = 𝑘 of the agent over 7 values ranging from 2 to 20.

For each maximum peer count, we obtain a resulting peer set𝑈 ∗ with advantage 𝐴N (𝑈 ∗) using
the greedy algorithm, the Peri algorithm, and random sampling, in which each agent chooses to

peer with nodes selected uniformly at random. The performance of each method is represented by

its advantage-peer-count (𝐴N-|𝑈 |) curve. For each graph model, we plot the mean and standard

deviation of the curves over 25 different hub-enriched graph instances in Fig. 4.

Finding 4: Peri is competitive with the greedy algorithm for maximizing adversarial ad-
vantage when the underlying network has many hubs, or nodes of high degree.13

Regardless of original topology, the existence of hub nodes enables the Peri algorithm to place

shortcuts almost as effectively as the greedy algorithm. We notice that Peri worked significantly

better on models with more hubs such as scale-free than the other topologies. It is also notable

that over 70% of the resulting peers of the Peri algorithm are hubs. Our results on Bitcoin and the

Lightning Network (App. A.8, A.9), however, show, that in practice, the gap between Peri and the

Greedy baseline grows with the number of adversarial links. Peri appears to be too aggressive in

selecting hubs, which are often clustered in real-world networks; hence connecting to multiple

hubs gives less advantage. Nontheless, Peri still outperforms the random baseline by 3× - 5×.

13
Precisely, we define a hub as a node whose degree is at least 10% the total number of nodes in the graph.
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7 IMPOSSIBILITY OF STRATEGY-PROOF PEERING PROTOCOLS
Peri and its variants, e.g., Hybrid, can significantly improve direct and triangular latency. A natural

question is whether this is because most nodes are currently running a poor peer selection strategy

(Baseline). If every node were running Peri or Hybrid, would it still be possible for an agent to

strategically improve their targeted latency? We show that no matter what peering strategy nodes

use, if the P2P network has some natural churn and target node(s) are active, a strategic agent can

always manipulate their targeted latency.

7.1 Model
We start with some additional modeling assumptions regarding the temporal dynamics of our

network. Consider a time-varying network N(𝑡) = (V(𝑡), E(𝑡)) whereV(𝑡) denotes the set of
nodes and E(𝑡) denotes the set of undirected edges of 𝐺 at time 𝑡 . In the network, any party can

spawn a set 𝑉 ′ of nodes and add them toV(𝑡). (V(𝑡+) = V(𝑡) ∪𝑉 ′, where 𝑡+ denotes the time

infinitesimally after 𝑡 ). We assume there is an upper bound 𝑉 on the total number of nodes in the

network; that is,V(𝑡) ≤ 𝑉 for all 𝑡 ≥ 0, due to the limited address space for nodes.

If a node 𝑢 knows the network (Class 1) ID of another node 𝑣 , 𝑢 can attempt to add an edge, or

a peer connection, (𝑢, 𝑣) at time 𝑡 (that is, E(𝑡+) = E(𝑡) ∪ {(𝑢, 𝑣)}) to the network. This peering

attempt will succeed unless all of 𝑣 ’s peer connections are full. Nodes have an upper bound of ℎ on

their total number of peer connections: deg(𝑢) ≤ ℎ ∀𝑢 ∈ V(𝑡), ∀𝑡 ≥ 0. Among these, each node

has at least 𝐹 ∈ (0, ℎ] dynamic peer slots. A connection from 𝑢 to 𝑣 that occupies one of either

𝑢’s or 𝑣 ’s dynamic peer slots is called dynamic and will be periodically torn down (see Definition

7.1). Additionally, a dynamic peer slot is permissionless and is filled first-come-first-serve (FCFS).

In practice, permissionless network nodes find each other via queries to distributed databases of

network IDs in a process called peer discovery [50]. We model such peering databases as an oracle

that responds to peer queries from any node. In response to a query, the oracle independently

draws the network ID of a node in the network from some (unknown) probability distribution,

where each node may be drawn with a non-zero probability. Specifically, there exists a universal

constant 𝑞 > 0 where the probability of drawing an arbitrary node is lower-bounded by 𝑞. This is

based on the assumption that the number of nodes is upper bounded. We assume the oracle can

process a fixed number of queries per unit time, so each query (across all nodes) takes constant

time. Upon processing a query, the oracle responds with the network ID of an existing node.

Each edge (𝑢, 𝑣) ∈ E(𝑡) has an associated link distance 𝑤 (𝑢, 𝑣), which operationally represents

the end-to-end latency from 𝑢 to 𝑣 . We assume edge latency 𝑤 (𝑢, 𝑣) is affected by the physical

length of the path 𝑢 → 𝑣 on the Internet (i.e., including routing) and processing delays at the sender

or recipient. Hence, we assume𝑤 (𝑢, 𝑣) is a constant over time and satisfies the triangle inequality:

𝑤 (𝑢, 𝑣) ≤ 𝑤 (𝑢, 𝑧) +𝑤 (𝑧, 𝑣), ∀𝑢, 𝑣, 𝑧 ∈ V(𝑡), 𝑡 ≥ 0. (8)

This is distinct from graph distance 𝑑N (𝑢, 𝑣) introduced in §3. The triangle inequality often does

not hold over the Internet [33]. However, we conjecture that triangle inequality violations may be

less common in cryptocurrency P2P networks, since end-to-end latency is significantly impacted

by processing delays at router nodes, which scales with the number of hops in a route.

Transaction dissemination. Anode can broadcast an arbitrarymessage (transaction) at an arbitrary

time through the entire network. When a message is sent from 𝑢 to its neighbor 𝑣 at time 𝑡 , 𝑣 will

receive the message at time 𝑡 +𝑤 (𝑢, 𝑣), where𝑤 (𝑢, 𝑣) is the link distance between 𝑢 and 𝑣 . If 𝑣 is

not adversarial, it will immediately forward the message to each of its neighbors.
14
We assume the

P2P network is connected at all times 𝑡 ≥ 0. We additionally assume that the latency between any

14
This is a special case of randomized flooding protocols like diffusion [24].
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pair of agent nodes is negligible, such that an agent connecting to multiple targets from multiple

agent nodes, is equivalent to these targets peering with one node.

Liveness. In our analysis, we will assume that nodes are sufficiently active in terms of producing

transactions and that the network experiences some amount of peer churn. We make both of these

assumptions precise with the following definition.

Definition 7.1. A (𝜆, 𝜈)-live network has the following properties:

(I) All dynamic connections have a random duration Exp(𝜆).
(II) For each node 𝑢 ∈ S, where S denotes a set of target nodes, we let {𝑀𝑢 (𝑡), 𝑡 ∈ [0,∞)}

denote the counting process of messages that are generated and broadcast by 𝑢.𝑀𝑢 (𝑡) is a
Poisson process with rate 𝜈 .

7.2 Optimization of Targeted Latencies
7.2.1 Inferring Network ID. We argue in §3 that we can optimize targeted latency (both direct and

triangular) by connecting directly to the target node(s). However, in practice, an agent typically only

knows the targets’ logical (Class 2) IDs (e.g., public key of wallet), whereas it needs their network

(Class 1) IDs (e.g., IP address) to connect. In the following, we show when an adversarial agent can

learn the network ID(s) of one or more targets. Our first result states that in a live network (Def.

7.1), an agent can uncover the network ID(s) of a set of target nodes with probability 1 − 𝜀 given
only their logical IDs in time quasilinear in 𝜀−1 and quadratic in the number of target nodes.

Theorem 7.2. Consider a live network N(𝑡) = (V(𝑡), E(𝑡)). Let A denote an adversarial agent
capable of identifying the logical ID of the sender of any message it received from the network.
Given a set of target nodes 𝑈 , with probability at least 1 − 𝜀 for any 𝜀 ∈ (0, 1), it takes the agent
𝑂 ( |𝑈 |2𝜀−1 log2 𝜀−1) time to find the network ID of any message sender in N(𝑡).

(Proof in Appendix A.3.3) The proof shows that a variant of Peri achieves the upper bound. In

particular, to optimize triangular targeted latency, for a target pair of nodes (𝑠, 𝑡), the agent must

connect to both 𝑠 and 𝑡 , so |𝑈 | = 2 in Theorem 7.2. Additionally, the following proposition shows

that regardless of the agent’s algorithm, we require time at least logarithmic in 1/𝜀.

Proposition 7.3 (Lower Bound). Consider a live networkN(𝑡) = (V(𝑡), E(𝑡)). LetA denote an
adversary defined in Theorem 7.2. For any 𝜀 ∈ (0, 1), to achieve a probability at least 1 − 𝜀 that the
agent is connected to its target, A must spend at least Ω(log 𝜀−1) time, regardless of algorithm.

(Proof in Appendix A.3.4) Proposition 7.3 suggests that a node aiming to prevent agents from

learning its network ID with probability at least 1 − 𝜀, should cycle its logical ID on a timescale

of order log 𝜀−1. Together, Theorem 7.2 and Proposition 7.3 show how and when an agent can

find a message source in a P2P network. They are an important missing piece in the solution to

optimization problems (1) and (3) for targeted latency. Next, we discuss how the agent ensures

successful and persistent peer connections with targets after finding them.

7.2.2 Connecting to Targets. By assumption, the target must have at least 𝑓 > 0 dynamic peer

slots, which are permissionless and thus can be accessed by the agent. Since these slots are on a

FCFS basis, the agent may request an occupied peer slot at an arbitrarily high frequency, such that

it immediately gets it when the slot becomes available after the old connection is torn down.
15
In

this way, an agent can effectively make a dynamic peer slot of any target no longer dynamic, and
constantly dedicated to itself.

15
To evade detection due to the frequency of requests, an agent can spawn many nodes and split the requests among them.
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7.2.3 Latency Manipulation. Even if an agent peers with a target, its latency is lower-bounded

due to the physical distance between the agent and the target. Agents may be able to relocate their

nodes geographically to manipulate triangular latency. Currently, over 25% of Ethereum nodes are

running on AWS [1]. An agent can deploy nodes on co-located cloud servers to reduce the direct

targeted latency to the level of microseconds. For triangular targeted latency where the source

and the destination are at different geolocations, the agent can deploy node 𝑎1 near the source 𝑠

and node 𝑎2 near the destination 𝑡 , where 𝑎1 connects to 𝑠 and 𝑎2 connects to 𝑡 , with 𝑎1 and 𝑎2
connected via a low-latency link. This increases the odds of path 𝑠 → 𝑎1 → 𝑎2 → 𝑡 being shortest,

which increases the chance of success in front-running messages between 𝑠 and 𝑡 .

8 CONCLUSION
Motivated by the increasing importance of latency in blockchain systems, we have studied the

empirical performance of strategic latency reduction methods as well as their theoretical limits.

We formally defined the notions of direct and triangular latency, proposed a strategic scheme Peri

for reducing such latencies, and demonstrated its effectiveness experimentally on the Ethereum

network. Our results suggest it is not possible to ensure strategy-proof peering protocols in

unstructured blockchain P2P networks. An open question is how to co-design consensus protocols

that account for potential abuse at the network layer.
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A APPENDIX
A.1 Table of Notations
We list the table of notations in Table 3.

Notation Description

N Network N = (V, E)
V Set of nodes in the network

E Set of edges in the network

S Set of source nodes in the network

T Set of destination nodes in the network

W The space of logical node IDs (e.g., pubkey of a wallet in Ethereum)

𝑑N (𝑎, 𝑏) Distance between a pair of nodes 𝑎 and 𝑏 over network N
𝑤 (𝑎, 𝑏) Link distance between 𝑎 and 𝑏 (dominated by their physical distance)

S Distribution of network traffic sources with supportV
Λ(𝑎) End-to-end traveling time of a message to 𝑎 from a random source 𝑆 ∼ S
Λ𝑣 (𝑎) End-to-end traveling time of a message to 𝑎 from a fixed source 𝑣

𝐿(𝑎) Direct global latency of agent node 𝑎 over network N
𝐿𝑣 (𝑎) Direct targeted latency of agent node 𝑎 w.r.t. target 𝑣 over network N
𝐿𝑠,𝑡 (𝑎) Triangular targeted latency of agent node 𝑎 w.r.t. target pair (𝑠, 𝑡) over network N
𝐿𝑄 (𝑎) Triangular global latency of agent node 𝑎 w.r.t. set of target pairs 𝑄

𝐴N (𝑈 ) Adversarial advantage when the agent chooses set of peers𝑈 ⊆ V
𝜙 (𝑣) Score of peer 𝑣 of agent 𝑎 during a Peri period

𝑘 Budget of number of peers available to the agent node

Table 3. Table of Notations.
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A.2 An Extension of Theorem 7.2
We present Lemma A.1 which shows a necessary condition that a Poisson process always satisfies.

It is proved in §A.3.5. Note that the Poisson process is not the only type of counting process that

satisfies (9). For instance, a process with constant inter-arrival time also satisfies (9).

Lemma A.1. A Poisson process {𝑀𝑢 (𝑡), 𝑡 ≥ 0} with rate 𝜈 satisfies that there exist constants𝛾, 𝜇 > 0,
such that

P [𝑀𝑢 (𝑡 + Δ) −𝑀𝑢 (𝑡) < 𝛾Δ] <
𝜇

Δ
, ∀𝑡,Δ > 0. (9)

Then, we relax the notion of live network to that of quasi-live network by relaxing the Poisson

process assumption.

Definition A.2. A (𝜆, 𝜈)-quasi-live network has the following properties:

(I) All dynamic connections have a random duration Exp(𝜆).
(II) For each node 𝑢 ∈ S, where S denotes a set of target nodes, we let {𝑀𝑢 (𝑡), 𝑡 ∈ [0,∞)}

denote the counting process of messages that are generated and broadcast by 𝑢.𝑀𝑢 (𝑡) is a
counting process, where there exist constants 𝛾, 𝜇 > 0, such that

P [𝑀𝑢 (𝑡 + Δ) −𝑀𝑢 (𝑡) < 𝛾Δ] <
𝜇

Δ
, ∀𝑡,Δ > 0.

Finally, we extend Thm. 7.2 to Thm. A.3, relaxing the Poisson process condition to its necessary

condition above. The proof of Thm. A.3 is in

Theorem A.3. Consider a quasi-live network N(𝑡) = (V(𝑡), E(𝑡)). Let A denote an adversarial
agent capable of identifying the logical ID of the sender of any message it received from the network.
Given a set of target nodes 𝑈 , with probability at least 1 − 𝜀 for any 𝜀 ∈ (0, 1), it takes the agent
𝑂 ( |𝑈 |2𝜀−1 log2 𝜀−1) time to find the network ID of any message sender in N(𝑡).

A.3 Proofs
A.3.1 Proof of Theorem 6.1. It is known that the set cover problem is NP-complete [29]. We take

an arbitrary instance of the set cover problem:

Problem 2. Given a finite set of elements Σ = {𝜎1, · · · , 𝜎𝑝 } and its subsets Γ1, · · · , Γ𝑞 . We aim to
find the fewest collection of subsets from Γ1:𝑞 , whose union equals Σ.

We construct a graph𝐺 = (V, E) as below. Each element 𝜎𝑖 in Σ corresponds to a unique node

of the same name. Each subset Γ𝑗 corresponds to 2 nodes 𝛾+𝑗 , 𝛾
−
𝑗 . Finally, a fresh node 𝑐 is added. In

other words,V = {𝑐} ∪⋃𝑝

𝑖=1
{𝜎𝑖 } ∪

⋃𝑞

𝑗=1
{𝛾+𝑗 , 𝛾−𝑗 }.

For each pair (𝑖, 𝑗) ∈ [𝑝] × [𝑞], edge (𝜎𝑖 , 𝛾−𝑗 ) ∈ E if and only if 𝜎𝑖 ∈ Γ𝑗 . Besides these, E contains

(𝛾−𝑗 , 𝛾+𝑗 ) and (𝛾+𝑗 , 𝑐) for each 𝑗 . Fig. 5 illustrates an example of topology of 𝐺 .

We take set of sources S ≜ {𝜎1, 𝜎2, · · · , 𝜎𝑝 } and set of destinations T ≜ {𝑐}. As expected, the
original distance 𝑑𝐺 (𝑠, 𝑐) = 3 for each 𝑠 ∈ S. Now we claim that if we can solve Problem 1 in

polynomial time for 𝐺,S,T where ∀𝑒 ∈ E
(
𝑤 (𝑒) = 1

)
, 𝜏 = 1.99 (breaking ties) and 𝑘 ∈ [2, 1 + 𝑞],

then we can also solve the original set cover problem in polynomial time.

When 𝑘 ∈ [2, 1 + 𝑞], we are able to select 𝑘 spy nodes amongst nodes inV . The optimal choice

must

• contain 𝑐 : Otherwise, there must exist a spy node in Γ+, or the placement will not be effective at

all. Replacing this spy node with 𝑐 will not decrease the advantage.
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Fig. 5. Topology of 𝐺 given a set cover instance where Γ1 = {𝜎1, 𝜎2}, Γ2 = {𝜎2, 𝜎3} and Γ3 = {𝜎2, 𝜎3, 𝜎4}.

• contain only nodes in Γ− other than 𝑐 : If 𝜎𝑖 is chosen, then this spy node serves no other pair than

(𝜎𝑖 , 𝑐). We pick 𝑗 where 𝜎𝑖 ∈ Γ𝑗 and choose 𝛾−𝑗 instead. This will not decrease the advantage. If 𝛾+𝑗
is chosen, then it benefits the advantage by moving it to 𝛾−𝑗 , even when this creates duplicates.

Therefore, to solve the advantage maximization, we are essentially picking nodes in Γ− , which
corresponds to picking subsets among Γ1, · · · , Γ𝑞 . If we can solve the advantage maximization in

polynomial time for all 𝑘 ∈ [2, 𝑞 + 1], we can enumerate all solutions and pick the smallest 𝑘 where

the advantage reaches 𝑝 , the total number of elements in S, and also the best advantage we have

between S and T = {𝑐}. This also solves the minimum set cover problem known to be NP-hard,

which is a contradiction. Therefore, Problem 1 is NP-hard, and such polynomial-time algorithm

exists only if P = NP. ■

A.3.2 Proof of Proposition 6.2. We present the counter-example in Fig. 6, which is a tree with

2𝑘 + 1 branches. In this tree, the initial pair of nodes chosen by the greedy algorithm must be 𝑔

and ℎ𝑖 for some 𝑖 ∈ [𝑘], because a shortcut between them puts 3 pairs at maximum of sources and

destinations {(𝑔, 𝑡3𝑖− 𝑗 ) | 𝑗 ∈ {0, 1, 2}} under the risk of being front-run. At each of the following

steps, the greedy algorithm will have to continue choosing an additional peer from {ℎ𝑖 |𝑖 ∈ [𝑘]},
which further increases the advantage by 3. Hence, with 2ℓ peers where ℓ < 𝑘/2 is an integer, the

total advantage equals 6ℓ − 3.
However, these 2ℓ peer connections can be put to better uses. If we choose {𝑠1, · · · , 𝑠ℓ } ∪
{𝑟1, · · · , 𝑟ℓ } instead, then the shortcut pairs of sources and destinations can be described by

𝑃 = {(𝑠𝑖 , 𝑟 𝑗 ) |𝑖 ≠ 𝑗, 𝑖 ∈ [ℓ], 𝑗 ∈ [ℓ]}, where |𝑃 | = ℓ (ℓ − 1). Therefore, the ratio of the greedy

algorithm solution to the maximum advantage is at most
6ℓ−3
ℓ (ℓ−1) ∼

6

ℓ
, which can be arbitrarily

close to 0 as ℓ, 𝑘 become arbitrarily large. Equivalently, the greedy algorithm cannot guarantee an

𝛼-approximately optimal solution for any 𝛼 > 0. ■

A.3.3 Proof of Theorem A.3. We first show the result for a single target, i.e., |𝑈 | = 1. Let 𝑎 denote

an adversarial node and 𝑥 denote the message sender (that is, 𝑈 = {𝑥}). We let the adversary

perform the following 3-step strategy iteratively.

Step 1. Wait Δ1 for the first arrival of a new message𝑀 sent by 𝑥 .

Step 2. Keep only the peer that contributed to the first arrival, and get 𝑑 − 1 random new addresses

from the oracle to replace the other peers. The probability of 𝑥 belonging in these addresses is

lower-bounded by 𝑞 > 0. Send peering requests repeatedly until a peer slot becomes available.
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Fig. 6. Greedy algorithm cannot maximize advantage with proximity greater than 0. 𝜏 = 3.99. Red nodes are
sources and blue nodes are destinations.

If 𝑥 is already one of the neighbors at Step 1, it will surely be kept in Step 2 because𝑤 (𝑥, 𝑎) is
already the shortest path length between 𝑥 and 𝑎 on the network, implied by the triangle inequality

(8). In the end, it will remain a peer of the adversary. Because the samplings for replacement nodes

are independent across 𝐾 iterations, we can geometrically decrease the probability that 𝑥 is missed

in the entire procedure by increasing 𝐾 . This intuitively explains why 𝐾 is of order 𝑂 (log 𝜀−1).
Next, we make this intuition precise.

Let

𝐾 ≜
log(𝜀/2)
log(1 − 𝑞) , 𝜀1 = 𝜀2 ≜

𝜀 log(1 − 𝑞)
4 log(𝜀/2) .

In Step 1, it is desired that the sender sends at least 1 message during the time window of length

Δ1 with probability at least 1 − 𝜀1.
By Definition A.2, there exist constants 𝜇,𝛾 such that

P [𝑀𝑥 (𝑡 + Δ1) −𝑀𝑥 (𝑡) ≥ 𝛾Δ1] ≥ 1 − 𝜇

Δ1

.

This assumption essentially states that it is highly probable that during a sufficiently long window

of time, a node broadcasts at least 𝛾 messages every unit of time on average.

Here by taking Δ1 = max{𝛾−1, 𝜇𝜀−1
1
}, we obtain the lower-bound probability that 𝑥 broadcasts at

least 1 message during any time interval of length at least Δ1.

In Step 2, we would like to wait Δ2 for all the 𝑑 − 1 new nodes being connected to the adversary.

This requires each new node to have at least 1 free slot. We consider the worst case where none of

the slots are free in the beginning. For each target peer 𝑝 , each one of the 𝐹 slots will become free

after a period of time 𝑇0, where 𝑇0 ∼ Exp(𝜆). Since one slot is already sufficient, the probability

the peer 𝑝 becomes available after Δ2 is lower-bounded by 1 − 𝑒−𝜆Δ2
. This expression is further

lower-bounded by 1 − 𝜁

Δ2

for 𝜁 =
1

𝑒𝜆
.

Then, considering all the (𝑑 − 1) peers, we may use the union bound to derive a lower bound of

the probability 𝑃3 that all the 𝑑 − 1 peers are available.

𝑃3 ≥ 1 − (𝑑 − 1)𝜁
Δ2

.
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We want 𝑃3 to be at least 1 − 𝜀2. This can be achieved by letting

Δ2 =
(𝑑 − 1)𝜁
𝜀2

.

After taking 𝐾 iterations of these steps, the probability of finding 𝑥 equals 1 − (1 − 𝑞)𝐾 , while
the probability that all executions of Steps 1 & 3 are successful is at least 1 −𝐾𝜀1 −𝐾𝜀2. The overall
probability equals [

1 − (1 − 𝑞)𝐾
]
(1 − 𝐾𝜀1 − 𝐾𝜀2) ≥ 1 − (1 − 𝑞)𝐾 − 𝐾 (𝜀1 + 𝜀2)

= 1 − 𝜀
2

− 𝜀
2

= 1 − 𝜀.

On the other hand, the total time consumption equals

𝐾Δ1 + 𝐾Δ2 = 𝑂 (log 𝜀−1)
[
𝑂
(
𝜀−1 log 𝜀−1

)
+𝑂

(
𝜀−1

) ]
= 𝑂

(
𝜀−1 log2 (𝜀−1)

)
. (10)

Next, we show how to extend this result to an arbitrary𝑈 via a union bound.

From (10), we know that with probability 1 − 𝜀/|𝑈 |, the adversary is able to find the network ID

of an arbitrary node 𝑢 ∈ 𝑈 within time

𝑂
(
(𝜀/|𝑈 |)−1 log2 (𝜀/|𝑈 |)

)
= 𝑂

(
|𝑈 |𝜀−1 log2

(
𝜀−1

) )
.

Regardless of how the adversary allocates time to the tasks of finding each 𝑢 ∈ 𝑈 , the probability

of finding all of them is at least 1 − |𝑈 | × 𝜀/|𝑈 | = 1 − 𝜀 by the union bound. As for the time

consumption, we consider the worst case where the agent has to run the algorithms for finding

each 𝑢 ∈ 𝑈 sequentially. In this case, the total time consumption is the time consumption above of

each single task multiplied by number of tasks |𝑈 |, which equals

𝑂
(
|𝑈 |2𝜀−1 log2

(
𝜀−1

) )
. ■

A.3.4 Proof of Proposition 7.3. First of all, we assume 𝑁 , the number of nodes, to be upper-

bounded so that the probability 𝑞 that the oracle returns a target after a single draw satisfies

0 < 𝑞1 ≤ 𝑞 ≤ 𝑞2 < 1 for some constants 𝑞1, 𝑞2. In order to connect to the target, it is necessary for

the adversary to draw it using the oracle. Temporarily, we ignore the other necessary steps (such

as judging if an existing peer is the target) and consider only drawing nodes. Then, the probability

𝑃 that the target is drawn within 𝐾 steps satisfies

1 − (1 − 𝑞1)𝐾 ≤ 𝑃 ≤ 1 − (1 − 𝑞2)𝐾 .

To let 𝑃 = 1 − 𝜀, we should equivalently have 𝐾 = Θ(log 𝜀−1) because

log 𝜀

log(1 − 𝑞2)
≤ 𝐾 ≤ log 𝜀

log(1 − 𝑞1)
.

Considering that each drawing takes Θ(1) time, it takes at least Θ(𝐾) = Θ(log 𝜀−1) time to find

the target with the oracle w.p. at least 1 − 𝜀. As argued above, drawing the target is a necessary

condition for the final peer connection to it. Hence, Ω(log 𝜀−1) is a lower bound of time consumption.

■

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 32. Publication date: June 2023.



32:28 Weizhao Tang, Lucianna Kiffer, Giulia Fanti, & Ari Juels

A.3.5 Proof of Lemma A.1. Let 𝜈 denote the arrival rate. For any Δ, we assign 𝑘 = 𝜈Δ/2, and obtain

P

[
𝑀𝑢 (𝑡 + Δ) −𝑀𝑢 (𝑡) <

𝜈Δ

2

]
= 𝑒−𝜈Δ

⌊𝜈Δ/2⌋∑︁
𝑖=0

(𝜈Δ)𝑖
𝑖!

∼ 𝑒−2𝑘
𝑘∑︁
𝑖=0

(2𝑘)𝑖
𝑖!

≲ 𝑘𝑒−2𝑘 sup

𝑡 ∈[0,𝑘 ]

(2𝑘)𝑡
𝑡 !

≲ 𝑘𝑒−𝑘 (*)

≲
1

𝑘
∼ 1

𝜈Δ
.

This already justifies the claim. It remains to prove (*). By Stirling’s approximation, let

𝑓 (𝑡) = log

(2𝑘)𝑡
𝑡 !
≈ 𝑡 log(2𝑘) − log 𝑡

2

− 𝑡 log 𝑡 + 𝑡 .

As a result,

𝑓 ′ (𝑡) ≈ log(2𝑘) − 1

2𝑡
− log 𝑡 .

As log 𝑡 +1/(2𝑡) monotonically increases in (1/2,∞), we may assert that the maximizer 𝜏 satisfies

𝑓 ′ (𝜏) = 0⇐⇒ 2𝑘 = 𝜏𝑒
1

2𝜏 .

It can be confirmed that 𝜏 ∈ [0, 𝑘]. Hence,

sup

𝑡 ∈[0,𝑘 ]

(2𝑘)𝑡
𝑡 !
∼ (𝜏𝑒

1

2𝜏 )𝜏
√
𝜏𝜏𝜏𝑒−𝜏

≲ 𝑒𝜏 ≲ 𝑒𝑘 . ■

A.4 Statistical Significance of Direct Global Latency Measurements
To establish the statistical significance of the mean difference among our direct global latency

distributions measured in Section 5.1 over the Ethereum mainnet, we first perform the Kruskal-

Wallis H test [30]. The resulting p-value equals 0, so a subsequent Dunn’s test is recommended.

We perform Dunn’s test [22] with Bonferroni correction [13], and obtained a 0 p-value between

each pair of distributions. This test supports statistically significant differences in the reduction of

direct global latency effected by the three methods, ordered by the means of their corresponding

distributions.

A.5 Evaluation of direct targeted latency over Ethereum Mainnet
We ran limited experiments on targeted latency by measuring transactions from a target / victim

node in Germany operated by Chainlink, an organization providing widely used blockchain services

; the node sends 2 transactions per hour on average. These transactions originate from an account

(Ethereum address) exclusive to the victim node, i.e., all transactions are sent only by the victim.

The node kept running on the network during our experiments.

We evaluate each of the four methods from §5.1.1, measuring both their ability to reduce targeted

latency and their ability to connect to (i.e., infer) the IP address of our target node on the Ethereum

main P2P network. To this end, we establish 4 EC2 instances in the ap-southeast-1 AWS data center

in Singapore, which have a 160 ms round-trip time to Germany. They are located within the same

subnet as a public bloXroute relay. As in §5.1, we deploy a full Go-Ethereum node on each host with

at most 50 peers. The proportion of outbound peers remain the same. We conduct the experiments
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under the same procedure and take similar anti-biasing measures, except for three key differences.

First, we define the relevant transactions as only those sent by the target’s account. Second, we set

the Peri period to 30 minutes to match the frequency of source transactions. Third, the duration of

each experiment is extended from 8 hours to 16 hours to permit a larger number of Peri periods.

Fig. 7. PDFs of distributions of targeted latency.

We ran 23 experiments from March 19, 2022 to April 19, 2022. The Hybrid and Baseline clients

were able to establish connections to the victim node once each. The distributions of targeted

latency of each method are displayed in Fig. 7. In total, we analyzed the latencies of 654 transactions.

Over distributions in Fig. 7, we performed Kruskal-Wallis test and obtained p-value = 0.0235,

which allows us to reject the null hypothesis at significance level 5% and continue with a Dunn’s

test. Then, we performed Dunn’s test with Bonferroni correction over these distributions. The

p-values are listed in Table 4. At significance level 5%, we cannot assert a difference between the

means of any pair of distributions. This indicates that all the methods share a similar ability to

reduce direct targeted latency. We can further observe this phenomenon from Fig. 7, where they

share a similar ability to reduce direct targeted latency by 14% to 18% of the end-to-end delay, and

the hybrid method outperforms the other two methods with a slight advantage. Unlike reduction

of direct global latency, the Peri algorithm is no longer significantly worse than the bloXroute

relay network at reducing direct targeted latency, which makes it a free replacement of bloXroute

services for agents with specific targets. An agent with bloXroute services can also further boost

the latency reduction by an additional 13% by stacking the Peri algorithm and turning hybrid. In

addition, Peri can potentially help an agent identify the IP address of a victim, while bloXroute,

which intermediates connections, cannot support such functionality.

A.6 Evaluation of Relation Between direct global latency and Peer Count
We ran additional experiments for comparing direct global latency when we vary the peer count of

the adversary. We use 2 EC2 (i3.xlarge) instances in the us-east-1 AWS data center, where each
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Pair (B, P) (B, H) (P, H)

p-value 1.0 0.0532 0.0529

Table 4. Pairwise p-values of Dunn’s test over distributions of targeted latency in Fig. 7, comparing bloXroute
(B), Peri (P), and Hybrid (H).

Fig. 8. PDFs of global latency with maximum peer counts 25, 50, 100 and 200. The PDFs are normalized by
the same factor for legibility.

instance deploys a full node with a customized Go-Ethereum (geth) client, built on top of the

nemata (1.10.25) release. To correctly run the nodes after the Ethereum merge in September 2022,

we ran a lighthouse client
16
at default settings in parallel. We vary the maximum peer count in

the range from 25 to 200. For each peer count, we ran 12 experiments in January 2023 with each

following the procedure below. Each experiment lasted 8 hours. We adaptively selected the period

of Peri for each peer count to let the Peri node accumulate enough candidates to choose from. The

experiments were configured by the same workflow as described in §5.1. For financial reasons, we

did not test bloXroute and Hybrid methods with 2 additional AWS nodes.

Each node is allowed to warm up for 2.5 hours; after this, we collect all transactions that are

received by each of the nodes for 3.5 hours. As we did in §5.1, we collected the samples of random

variable Λ(𝑦) − Λ(𝑏), which represents the arrival time difference of one transaction𝑚 between at

the Peri node 𝑦 and the baseline node 𝑏. The smaller the time difference (i.e., the more negative),

the earlier 𝑦 delivers𝑚, and the more effective Peri is. For each peer count, we gather the latency

differences over 12 experiments, and plot their distributions for each node in Fig. 8. Each distribution

is estimated over 500,000 transactions.

In Fig. 8, we observe that Peri maintains an advantage over the baseline, regardless of the peer

count. However, the more peers the node maintains, the less advantage Peri has, and the more

concentrated the distribution is around 0. It is still notable that Peri has a 5.5ms advantage with a

large peer count of 200.

A.7 Performance of Peri under Limited Bandwidth
We ran additional experiments for comparing direct global latency under different networking

conditions. Our nodes were deployed in the same way as in App. A.6. We set the peer count to

50, the default option of Go-Ethereum. We limited the bandwidth of both nodes by setting the

bandwidth limit of both inbound and outbound traffic. In all experiments where the bandwidths

16
https://github.com/sigp/lighthouse/releases/tag/v3.3.0
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Fig. 9. PDFs of distributions of global latency under limited bandwidth.

were unlimited, the machines had “up to 10 Gbps” bandwidth.
17
For each bandwidth, we ran 10

experiments in January 2023 with each lasting 4.8 hours. The experiments were configured by the

same workflow as described in §5.1. For financial reasons, we did not test bloXroute and Hybrid

methods with 2 additional AWS nodes.

Each node is allowed to warm up for 2.5 hours; after this, we collect all transactions that are

received by each of the nodes for 2.3 hours. The data is collected in the same way as we did in §5.1

and App. A.6. For each bandwidth, we gather the latency differences over 10 experiments, and plot

their distributions for each node in Fig. 9. Each distribution is estimated over 350,000 transactions.

In Fig. 9, we observe that the lower bandwidth an agent has access to, the higher advantage Peri

gains over the baseline.

A.8 Full Result of Simulations of Advantage Maximization Algorithms on
Hub-Enriched Topologies

We present the extended results of §4 and a full description of our simulation setups, which we

lack space to show in the main text. Cryptocurrency P2P topologies are notoriously difficult and

expensive to measure [19], and to our knowledge, there are no public datasets of recent cryptocur-

rency P2P topologies [20, 21, 23, 39]. As a compromise, we took 2 snapshots of cryptocurrency

topologies in real life – the Bitcoin P2P network topology on 9/4/2015 [38] and the Lightning

network topology in 8/23/2022 [17]. The Bitcoin data is not publicly available, and was obtained

by contacting the authors of [38]. The LN snapshot was directly collected [17]. Although the

Lightning network is a layer-2 network where latency wars do not typically take place, it is still a

P2P network and its topology may have some similarities to layer-1 P2P networks. Therefore, we

add simulation results on the Lightning network topology for reference. The major component

of the Bitcoin P2P network consists of 4,654 nodes and 18,467 edges, and that of the Lightning

network consists of 36,553 nodes and 296,589 edges. For a fair comparison against the random

topologies, we generate 25 sub-topologies of each topology by the snowball-sampling algorithm.

All subgraphs consist of 300 nodes, but their average node degree differ. The average degrees of

Bitcoin subgraphs range from 2.3 to 4.9, while those of Lightning subgraphs range from 3 to 35. Fig.

A.8 shows the performance in advantage metric of 3 different methods over 4 random synthetic

topologies and 2 topologies in practice.

17
The speed tests typically report 1 to 2 Gbps.
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Fig. 10. Full version of Fig. 4. The mean of the curves are shown by solid lines, and the standard deviations
are shown by the transparent color zones centered at the mean.

Fig. 11. Advantage-Peer-count curves on original random graph models. The mean of the curves are shown
by solid lines, and the standard deviations are shown by the transparent color zones centered at the mean.

A.9 Simulations of Advantage Maximization Algorithms on Original Topologies
We synthesize the network models as in §6.2 without centralizing them by introducing hub nodes.

We reuse other setups in the original simulation, and plot the advantage-peer-count curves in Fig.

11.

For all the graph models, both Peri and Greedy achieve a higher advantage 𝐴N than the random

baseline, with Greedy outperforming Peri by varying amounts. For the most decentralized models,

such as the random regular and small world, the advantage of Peri is much closer to that of random

baseline than the greedy algorithm. On the other hand, for models with a few high degree nodes

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 32. Publication date: June 2023.



Strategic Latency Reduction in Blockchain Peer-to-Peer Networks 32:33

(i.e., hubs), Peri inserts shortcut peering connections almost as well as the greedy algorithm, in spite

of its limited knowledge of the graph. Therefore, the performance of Peri is likely to be stronger on

networks with many hubs. This is consistent with our conclusion in §6.2.

Received August 2022; revised February 2023; accepted April 2023
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