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a b s t r a c t

The paper presents an efficient and robust data-driven deep learning (DL) computational framework
developed for linear continuum elasticity problems. The methodology is based on the fundamentals of
the Physics Informed Neural Networks (PINNs). For an accurate representation of the field variables,
a multi-objective loss function is proposed. It consists of terms corresponding to the residual of
the governing partial differential equations (PDE), constitutive relations derived from the governing
physics, various boundary conditions, and data-driven physical knowledge fitting terms across ran-
domly selected collocation points in the problem domain. To this end, multiple densely connected
independent artificial neural networks (ANNs), each approximating a field variable, are trained to
obtain accurate solutions. Several benchmark problems including the Airy solution to elasticity and the
Kirchhoff–Love plate problem are solved. Performance in terms of accuracy and robustness illustrates
the superiority of the current framework showing excellent agreement with analytical solutions. The
present work combines the benefits of the classical methods depending on the physical information
available in analytical relations with the superior capabilities of the DL techniques in the data-driven
construction of lightweight, yet accurate and robust neural networks. The models developed herein
can significantly boost computational speed using minimal network parameters with easy adaptability
in different computational platforms.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, driven by the advancement of big data-based
rchitectures (Khan et al., 2022), deep learning (DL) techniques
LeCun, Bengio, & Hinton, 2015) have shown great promises in
omputer vision (Roy & Bhaduri, 2021, 2022; Roy, Bose & Bhaduri,
022c), object detection (Chandio et al., 2022; Roy, Bhaduri, Ku-
ar, & Raj, 2022a, 2022b), image/signal classification (Irfan et al.,

2021; Jamil, Abbas, & Roy, 2022; Jamil & Roy, 2023), damage
detection (Glowacz, 2021, 2022), brain–computer interfaces (Roy,
2022a, 2022b, 2022c), and across various scientific applications
(Bose & Roy, 2022; Ching et al., 2018).

The success of these methods, such as various classes of Neural
Networks (NNs), can be largely attributed to their capacity in
excavating large volumes of data in establishing complex high-
dimensional non-linear relations between input features and
output (Kutz, 2017). However, the availability of sufficient data
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is a major bottleneck for analyzing various complex physical
systems (Butler, Davies, Cartwright, Isayev, & Walsh, 2018; Ching
et al., 2018). Consequently, the majority of state-of-the-art ma-
chine learning algorithms lack robustness in predicting these sys-
tems. Upon availability of sufficient data, these have also garnered
considerable success in problems governed by physics, such as
dynamical systems (Dana & Wheeler, 2020), geosciences (Jahan-
bakht, Xiang, & Azghadi, 2022; Racca & Magri, 2021; Saha, Dash,
& Mukhopadhyay, 2021), material science and informatics (Batra,
Song, & Ramprasad, 2021; Butler et al., 2018; Määttä et al.,
021), fluid mechanics (Brunton, Noack, & Koumoutsakos, 2020;
utz, 2017), various constitutive modeling (Tartakovsky, Marrero,
erdikaris, Tartakovsky, & Barajas-Solano, 2018; Xu, Huang, &
arve, 2021), etc. Their applicability however may be further
nhanced by utilizing physical information available by mathe-
atical/ analytical means. The recent endeavor of scientific and
ngineering community has been in attempting to incorporate
uch physical information within their predictive scheme in small
ata regimes.
The incorporation of physical information into the DL frame-

ork may have several advantages. First, as previously men-

ioned, in absence of sufficient data, it may be possible to solely
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tilize physical knowledge for solving such problems (Raissi,
erdikaris, & Karniadakis, 2019), or to the least, enhance solutions

in a data-driven predictive scheme (Karniadakis et al., 2021;
aissi, Yazdani, & Karniadakis, 2020). For example, in Sirignano

and Spiliopoulos (2018), a high-dimensional Hamilton–Jacobi–
Bellman PDE has been solved by approximating the solution with
a DNN trained to satisfy the differential operator, initial condition,
and boundary conditions. In incompressible fluid mechanics, the
use of the solenoidality condition of the velocity fields restricts
the solution space of the momentum equations. Therefore, this
condition may be used as a constraint for solving the governing
equations (conventional solvers are generally developed in a
way to satisfy this constraint through the Poisson equation for
pressure), or at least improve the predictions in a data-driven
approach. Second, physical systems are often governed by laws
that must satisfy certain properties, such as invariance under
translation, rotation, reflection, etc. In a purely data-driven ap-
proach, it is almost impossible for a DL algorithm to inherit those
properties entirely from data without explicit external forcing.
Embedding such properties in the DL algorithm might automati-
cally improve the accuracy of the predictions. For example, Ling,
Kurzawski, and Templeton (2016) used a Tensor-based Neural
Network (TBNN) to embed Galilean invariance that improved NN
models for Reynolds-averaged Navier Stokes (RANS) simulations
for the prediction of turbulent flows. And lastly, any scientific
problem is governed by some underlying mechanism dictated by
physical laws. Neglect of such physical information in a purely
data-driven framework in the current state of affairs is, therefore,
an unsophisticated approach, if not an ignorant one.

Partial differential equations (PDEs) represent underlying
physical processes governed by first principles such as conserva-
tion of mass, momentum, and energy. In most cases, analytical
solutions to these PDEs are not obtainable. Various numerical
methods, such as finite-difference (Sengupta, 2013), finite ele-
ment (FE) (Zienkiewicz & Taylor, 2005), Chebyshev and Fourier
spectral methods (Boyd, 2001), etc are used to obtain approxi-
mate solutions. However, such techniques are often computation-
ally expensive and suffer from various sources of errors due to
the complex nature of the underlying PDEs, numerical discretiza-
tion and integration schemes, iterative convergence techniques,
etc. Moreover, the solution of inverse problems is the current
endeavor of the engineering community which requires complex
formulations and is often prohibitively expensive computation-
ally. The use of the NNs in solving/modeling the PDEs governing
physical processes in a forward/ inverse problem is an important
challenge worth pursuing, as these methods have the capacity to
provide accurate solutions using limited computational resources
in a significantly robust framework relative to the conventional
methods. In this paper, we explore the possibility of using NN
to obtain solutions to such PDEs governing linear continuum
elasticity problems applicable in solid mechanics.

There has been a recent thrust in developing machine learning
(ML) approaches to obtain the solution of governing PDEs (Kar-
niadakis et al., 2021; von Rueden et al., 2019). The idea is to
combine traditional scientific computational modeling with a
data-driven ML framework to embed scientific knowledge into
neural networks (NNs) to improve the performance of learning
algorithms (Karniadakis et al., 2021; Lagaris, Likas, & Fotiadis,
998; Raissi & Karniadakis, 2018). The Physics Informed Neu-
al Networks (PINNs) (Lagaris et al., 1998; Raissi et al., 2019,
020) were developed for the solution and discovery of non-
inear PDEs leveraging the capabilities of deep neural networks
DNNs) as universal function approximators achieving consider-
ble success in solving forward and inverse problems in different
hysical problems such as fluid flows (Jin, Cai, Li, & Karniadakis,

021; Sun, Gao, Pan, & Wang, 2020), multi-scale flows (Lou, d
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eng, & Karniadakis, 2021), heat transfer (Cai, Wang, Wang,
erdikaris, & Karniadakis, 2021; Zhu, Liu, & Yan, 2021), poroe-
asticity (Haghighat, Amini, & Juanes, 2022), material identi-
ication (Shukla, Jagtap, Blackshire, Sparkman, & Karniadakis,
021), geophysics (bin Waheed, Alkhalifah, Haghighat, & Song,
022; bin Waheed, Haghighat, Alkhalifah, Song, & Hao, 2021),
upersonic flows (Jagtap, Mao, Adams, & Karniadakis, 2022), and
arious other applications (Bekar, Madenci, Haghighat, Waheed,
Alkhalifah, 2022; Waheed, Haghighat, Alkhalifah, Song, & Hao,
020). Contrary to traditional DL approaches, PINNs force the
nderlying PDEs and the boundary conditions in the solution
omain ensuring the correct representation of governing physics
f the problem. Learning of the governing physics is ensured by
he formulation of the loss function that includes the underlying
DEs; therefore labeled data to learn the mapping between inputs
nd outputs is no more necessary. Such architectural construc-
ion can be utilized for complex forward and inverse (finding
arameters) solutions for various systems of ODEs and PDEs
Karniadakis et al., 2021). Additionally, the feed-forward neu-
al networks utilize graph-based automated differentiation (AD)
Baydin, Pearlmutter, Radul, & Siskind, 2018) to approximate
he derivative terms in the PDEs. Various PINNs architectures
otably self-adaptive PINNs (McClenny & Braga-Neto, 2020), ex-
ended PINNs (XPINN) (De Ryck, Jagtap, & Mishra, 2022; Hu,
agtap, Karniadakis, & Kawaguchi, 2021) have been proposed that
emonstrated superior performance. Moreover, multiple DNN-
ased solvers such as cPINN (Jagtap, Kharazmi, & Karniadakis,
020), XPINNs (Jagtap & Karniadakis, 2021), and PINNs frame-
ork for solid mechanics (Haghighat, Raissi, Moure, Gomez &

uanes, 2021) have been developed that provide important ad-
ancement in terms of both robustness and faster computa-
ion. In this regard, (Haghighat, Raissi, Moure, Gomez, & Juanes,
020; Haghighat, Raissi et al., 2021) have been the breakthrough
orks geared towards developing a DL-based solver for inver-
ion and surrogate modeling in solid mechanics for the first
ime utilizing PINNs theory. Additionally, PINNs have been suc-
essfully applied to the solution and discovery in linear elas-
ic solid mechanics (Guo & Haghighat, 2020; Haghighat, Bekar,
adenci & Juanes, 2021; Rezaei, Harandi, Moeineddin, Xu, &
eese, 2022; Roy & Bose, 2023; Samaniego et al., 2020; Va-
ab, Haghighat, Khaleghi, & Khalili, 2021; Zhang, Dao, Karni-
dakis, & Suresh, 2022; Zhang, Yin, & Karniadakis, 2020), elastic-
iscoplastic solids (Arora, Kakkar, Dey, & Chakraborty, 2022;
rankel, Tachida, & Jones, 2020; Goswami, Yin, Yu, & Karniadakis,
022), elastoplastic material (Roy & Guha, 2022, 2023), brittle
racture (Goswami, Anitescu, Chakraborty, & Rabczuk, 2020) and
omputational elastodynamics (Rao, Sun, & Liu, 2021) etc. The
olution of PDEs corresponding to elasticity problems can be ob-
ained by minimizing the network’s loss function that comprises
he residual error of governing PDEs and the initial/boundary
onditions. In this regard, PINNs can be utilized as a computa-
ional framework for the data-driven solution of PDE-based linear
lasticity problems that can significantly boost computational
peed with limited network parameters. The potential of the
INNs framework in achieving computational efficiency beyond
he capacity of the conventional computational methods for solv-
ng complex problems in linear continuum elasticity is the main
otivation behind the present work.
In the present work, an efficient data-driven deep learning

omputational framework has been presented based on the fun-
amentals of PINNs for the solution of the linear elasticity prob-
em in continuum solid mechanics. In order to efficiently incorpo-
ate physical information for the elasticity problem, an improved
ulti-objective loss considering additional physics-constrained

erms has been carefully formulated that consists of the resid-
al of governing PDE, various boundary conditions, and data-

riven physical knowledge fitting terms that demonstrate the
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fficacy of the model by accurately capturing the elasticity so-
ution. Several benchmark problems including the Airy solution
o an elastic plane-stress problem for an end-loaded cantilever
eam and simply supported rectangular Kirchhoff–Love thin plate
nder transverse sinusoidal loading conditions have been solved
hich illustrates the superiority of the proposed model in terms
f accuracy and robustness by revealing excellent agreement with
nalytical solutions. The employed models consist of independent
ulti-layer ANNs that are separately trained on minimizing the
rescribed loss function specific to the problem under consider-
tion. The performance of PINNs has been evaluated for different
ctivation functions and network architectures. Furthermore, we
ave illustrated the applicability of data-driven enhancement
sing the smart initialization of a data-driven learning-based ap-
roach in reducing training time, while simultaneously improving
he accuracy of the model which is not possible in conventional
umerical algorithms. Such an approach would be important
n achieving computational efficiency beyond the capacity of
onventional computational methods for solving complex linear
lasticity problems. The present study also demonstrates the con-
ribution of analytical solutions for the data-driven construction
f an accurate and robust PINNs framework that can significantly
oost computational speed utilizing minimal trainable network
arameters.
The paper is organized as follows: Section 2 introduces the

ackground of PINNs theory and the generalized idea of imple-
enting multi-objective loss function into the PINNs framework;

n Section 3, a brief overview of the theory of linear elasticity
as been presented; Section 4 introduces the extension of the
roposed PINNs framework for the Airy solution to an elastic
lane-stress problem for an end-loaded cantilever beam; in Sec-
ion 5, the proposed PINNs framework has been extended to the
olution of Kirchhoff–Love thin plate governed by Biharmonic
DE; Section 7 deals with the relevant finding and prospects of

the current work. Finally, the conclusions have been discussed in
Section 7 .

2. Physics-informed neural networks

The concept of training a NN in the PINNs framework is the
construction of the loss function. The loss function is intended to
embed the underlying physics which is represented in mathemat-
ical terms by the PDEs and the associated boundary conditions. In
this section, we discuss the construction of the proposed multi-
object loss functions for embedding a data-driven physical model
that has been associated with the PINNs framework.

Let us consider a fully connected NN defined by

N k+1(N k) = ~k(W k
· N k

+ bk) (1)

where k ∈ {0, 1, . . . ,N} represents the layer number of NN. N is
a nonlinear map defined by N m(x̂m) := ~m(Wm

·xm+bm) for mth-
layer where Wm and bm represents the weights and biases of this
transformation, respectively; ~(·) is the non-linear transformer or
activation function acting on a vector element-wise. Therefore,
k = 0 represents the input layer of the NN taking in the input x0.

Also consider a steady state general nonlinear partial differ-
ential operator G operated on a scalar solution variable φ(x⃗) such
that,

Gφ(x⃗) = 0 x⃗ ∈ Rndim (2)

Since G is a differential operator, in general, Eq. (2) is accompa-
nied by appropriate boundary conditions to ensure the existence
and uniqueness of a solution. Let us assume, it is subjected to
the boundary condition B φ(∂Γ⃗ ) = τ (∂ x⃗) on the boundary Γ⃗

in domain Ω ∈ Rndim , ndim being the spatial dimension. In a

PINNs framework, the solution to Eq. (2), φ(x), subjected to the

474
aforementioned boundary condition may be approximated for
an input x = x⃗ by constructing a feed-forward NN expressed
mathematically as

φ̂ = N N ⊚ N N−1 ⊚ · · · ⊚ N 0(x) (3)

here φ̂ is the approximate solution to Eq. (2); ⊚ denotes the
eneral compositional construction of the NN; the input to the
N N 0

:= x0 = x⃗ = (x1, x2, . . . , xndim ) is the spatial coordinate
t which the solution is sought. Following Eqs. (1) and (3), if W i

and bi are all collected in θ =
⋃N

i=0 (W
i, bi), the output layer N N

contains the approximate solution φ̂(x⃗) to the PDE such that

N k+1
= φ̂ [x, θ] = [φ̂1, φ̂2, . . . , φ̂m] (4)

The spatial dependence of φ̂ is implicitly contained in the NN
parameter θ . In the internal/ hidden layers of NN, several vari-
ations of nonlinear transformer or the activation function ~ may
be used, such as, the hyperbolic-tangent function tanh(ξ ), the sig-
moid function ~(ξ ) = 1/(1+ e−ξ ), the rectified linear unit (ReLU)
~(ξ ) = max(0, ξ ), etc. The activation in the final layer is generally
taken to be linear for regression-type problems considered here.

2.1. Embedding constraints in NN

This section briefly describes the general idea of embedding
linear constraints into NN (Du & Zaki, 2021; Lagaris et al., 1998).
Let us consider U and A, two complete normed vector spaces,
where NN function class M ⊂ U need to be constrained. A linear
constraint on φ ∈ M can be expressed as:

Pφ(x) = 0, φ ∈ M (5)

where, P : U → A expresses a linear operator on U. Generally,
a such constraint can be realized for solving PDEs in most of the
DL framework by minimizing the following functional

JA = ∥Pφ∥A, φ ∈ M (6)

where ∥ � ∥A denotes the norm corresponding to space A. It
is noteworthy to mention that the aforementioned procedure
approximately enforces linear constraint in Eq. (5). However,
the accuracy of the imposed constraint relies on the relative
weighting between the constraint and other objectives involved
in the training include the satisfaction of the governing PDEs or
the integration of data-driven schemes.

2.2. Multiple objective loss functions

In order to incorporate physical information of the problem,
one of the possibilities is to impose Eq. (2) as a hard constraint
in x ∈ Ω while training the NN on the physical data. Mathemat-
ically, such a condition is imposed by formulating a constrained
optimization problem which can be expressed as (Krishnapriyan,
Gholami, Zhe, Kirby, & Mahoney, 2021),

min
θ

∆L(x, θ ) s.t. Gφ(x⃗) = 0. (7)

where ∆L represents data-driven physical knowledge fitting term
which includes the imposed initial and boundary conditions.
Gφ(x⃗) denotes the constraint corresponding to the residual PDE
imposing the governing PDE itself. Thus, it is important to care-
fully impose appropriate constraints for the NN to realize the
underlying physics of the problem.

In the present work, we propose a multi-objective loss func-
tion that consists of residuals of governing PDEs, various bound-
ary conditions, and data-driven physical knowledge fitting terms
that can be expressed in the following general form:

∆ (x, θ ) = ϕ∥Gφ(x)− 0̂∥ + β ∥B Γuφ − g Γu∥
L Ω u Γu
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+ βt∥B Γtφ − g Γt ∥Γt + α∥φ − φ̂∥Ω + · · · (8)

here, ∆L(x, θ ) is the total loss function; the symbol ∥ ⊚ ∥ rep-
esents the mean squared error norm, i.e., ∥

⨀
∥ = MSE(

⨀
) for

egression type problem; ∥Gφ(x)−0̂∥Ω denotes the residual of the
overning differential relation in Eq. (2) for x ∈ Ω; Γu and Γt are

the Dirichlet and Neumann boundaries subjected to conditions
B Γuφ = g Γu and B Γtφ = g Γt , respectively. The values of g Γu

and g Γt are specific to the problem under consideration, and
therefore, pre-specified as inputs to the problem/ loss function.
Note ϕ, βu, and, βt , are weights associated with each loss term
regularizing the emphasis on each term (the higher the relative
value, the more emphasis on satisfying the relation). The remain-
ing task is to utilize standard optimization techniques to tune the
parameters of the NN minimizing the proposed objective/ loss
function ∆L(x, θ ) in Eq. (8).

However, even with a large volume of training data, such
an approach may not guarantee that the NN strictly obeys the
conservation/governing equations in Eq. (2). Thus, additional loss
terms to fit the observation data can be introduced. Hence, in
the proposed objective loss function, additional loss terms such
as ∥φ − φ̄∥Ω have been included that represent the data-driven
physical knowledge fitting term for the state variable φ(x⃗). Here,
φ̄ is the true (target) value of φ provided from either the analyt-
ical solution (if available), numerical simulation, or experimental
observations. α is the weight associated with the data-driven
physical knowledge fitting term for φ(x⃗). In the NN approxima-
tion, various degrees of differentials of the state variable φ(x)
(i.e., φ′(x), φ′′(x), . . .) can also be included (if known) for stronger
coupling in the data-driven approach. The partial differentials
of φ(x) may be evaluated utilizing the graph-based automatic
differentiation (Baydin et al., 2018) with multiple hidden layers
representing the nonlinear response in PINNs. Following the same
steps, the initial conditions can also be incorporated in Eq. (8). The
loss from the initial conditions is not included herein due to the
quasi-static nature of the elasticity problem. In a more general
case, the additional loss term ∥φ0 − φ̂0∥

t=t0
Ω should be added for

the loss contribution from the initial condition.
Finally, the optimal network parameters of NN θ̃ can be ob-

tained by optimizing the loss function in Eq. (8) as

θ̃ = arg min
θ⊂RNt

∆L(X̄, θ ). (9)

where, θ̃ :=
⋃N

i=0 (W̃
i
, b̃

i
) is the set of optimized network param-

eters; N t is the total number of trainable parameters; and X̄ ∈

RNc×Nt
is the set of Nc collocation points used for optimization.

3. Theory of linear elastic solid

Consider an undeformed configuration B of an elastic body
bounded in the domain Ω ⊂ Rndim (1 ≤ ndim ≤ 3) with
boundary Γ = Γu ∪ Γt where Γu ̸= ∅ is the Dirichlet boundary,
Γt is the Neumann boundary, and Γu ∩ Γt = ∅. With respect
to the undeformed surface, the elastic body can be subjected
to a prescribed displacement ū on ΓD, and a prescribed surface
traction t̄ ∈ [L2(Γt )]ndim . Additionally, a body force of density
B ∈ [L2(Ω)]ndim in Ω can be prescribed with respect to the
undeformed volume. Using a standard basis {ei} in Rndim , we can
express the displacement, u = uiei, and its gradient, ∇u =
1
2

(
ui,j + uj,i

)
ei ⊗ ej ; where, ⊗ denotes the tensor products.

econd order symmetric tensors are linear transformations in S,
defined as S :=

{
ξ : Rndim → Rndim | ξ = ξT

}
with inner product

ξ : ξ = tr
[
ξξT

]
≡ ξijξij. Therefore, the stress tensor can be

expressed as σ := σijei ⊗ ej . For infinitesimal strain, displacement
gradient tensor ∇u can be expressed as: ∇u = ε + ω where
ε :=

1
2

[
∇u+∇(u)T

]
is the infinitesimal strain tensor with ∇ ×

= eijk εrj,i ek ⊗ er , and ω :=
1
2

[
∇u−∇(u)T

]
is the infinitesimal

rotation tensor.
 2
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3.1. Compatibility condition

In the context of infinitesimal strain theory, we seek to find
u : Ω → Rndim and corresponding ε : Ω → Rndim×ndim , and
σ : Ω → Rndim×ndim for a given infinite elastic solid satisfying the
following compatibility conditions (Marsden & Hughes, 1994):

R : = ∇ × (∇ × ε)T = 0; (10)

where, R is Saint-Venant compatibility tensor. Alternatively, the
elastic solid should satisfy the Navier–Cauchy equations which
can be expressed as (Lurie, 2010):

(λ+ µ)∇(∇ · u)+ µ∆u+ B = 0, in Ω

u |ΓD = ū;
(11)

where u = (u1, u2, . . . , undim ) is the unknown displacement field;
µ > 0 and λ > −µ are Lame constants; ∇, ∆, and ∇ represent
the gradient, the Laplacian, and the divergence operators, respec-
tively. Eq. (11) satisfies the continuity of the displacement field u
and Dirichlet boundary condition.

3.2. Equilibrium condition

In addition, the equilibrium condition and the Neumann
boundary condition should be satisfied which can be expressed
as (Marsden & Hughes, 1994):

∇ · σ + B = 0, in Ω

t := Tu = t̄, on Γt σ |Γt n̂ = t̄
(12)

where, t̄ is a prescribed function on Γt ; n̂ is the field normal to
Γt . Eq. (12) satisfies the momentum equation and the Neumann
boundary condition where T follows the conformal derivative
operator such that (Atkin & Fox, 2005)

Tu = λ(∆ u) · n̂+ 2µ
∂u
∂n̂

+ µ n̂× (∇ × u) (13)

3.3. Constitutive relation

Subsequently, the elastic constitutive relation can be
expressed from generalized Hooke’s law (Timoshenko, 1970) as:

σ = C : ε (14)

where, the fourth-order stiffness tensor C = Cijkl ei ⊗ ej ⊗ ek ⊗ el
enotes the constitutive relation that maps the displacement gra-
ient ∇u to the Cauchy stress tensor σ. For an isotropic linearly
lastic material, Cijkl = λδijδkl + µ(δikδjl + δilδjk) where δij is the
ronecker delta. The components of the stress tensor σ, and the
train tensor ε, are expressed as :

ij(u) = λδij

ndim∑
k=1

εkk(u)+ 2µεij(u), εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
,

i, j = 1, 2, . . . , ndim. (15)

Note that σ is the Cauchy stress tensor in linear elasticity appli-
cable under small deformation. The constitutive relation in terms
of strain can be

εij,kl + εkl,ij − εik,jl − εjl,ik = 0 i, j, k, l ∈ 1, 2, . . . , ndim. (16)

quations governing a linear elastic boundary value problem
BVP) are defined by Eqs. (11)–(16) where the field variables
, σ, ε can be obtained for given material constants (Atkin & Fox,
005; Lurie, 2010).
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σ

Fig. 1. PINNs network architecture for solving linear elasticity problem consisting of multi-ANN (NNi ∀ i = 1, k) for each output variables ũNN
x (x), ũNN

y (x), σ̃NN
xx (x),

˜
NN
yy (x), σ̃NN

xy (x), ε̃NN
xx (x), ε̃NN

yy (x), and ε̃NN
xy (x), with independent variable x = (x, y) as input features.
∆

4. PINNs formulation for continuum linear elasticity

The proposed PINNs framework is applied to linearly elastic
solids. A two-dimensional (ndim = 2) problem is considered.
The input features (variables) to the models are the spatial co-
ordinates x = (x, y). A separate NN is used to approximate
each output field variable. As shown in Fig. 1, displacement u(x),
stress σ(x), and strain ε(x) fields are obtained by densely con-
nected independent ANNs. For ndim = 2, considering symmetry
of the stress and strain tensors, u(x), σ(x), and ε(x) fields can be
approximated as:

u(x) ≃ ΞNN
u (x) =

[
ũNN
x (x)

ũNN
y (x)

]
(17)

σ(x) ≃ ΞNN
σ (x) =

[
σ̃NN
xx (x) σ̃NN

xy (x)
σ̃NN
yx (x) σ̃NN

xy (x)

]
;

ε(x) ≃ ΞNN
ε (x) =

[
ε̃NN
xx (x) ε̃NN

xy (x)
ε̃NN
yx (x) ε̃NN

xy (x)

]
(18)

Here ΞNN
u (x), ΞNN

σ (x), and ΞNN
ε (x) denote the NN approximations

for u(x), σ(x), and ε(x), respectively.

4.1. Loss function

To define the loss function for the linear elasticity problem,
governing equations including compatibility conditions, equilib-
rium conditions, constitutive relations, and boundary conditions
that fully describe the problem have been considered. Addition-
ally, as in a data-driven approach, the field variables in Eq. (8)
have been included. The generalized multi-objective loss func-
tional ∆L can be expressed as:

∆L(x, θ ) = ϕ∆Ω
L + ϕe ∆

e
L + ϕc ∆

c
L + βu ∆

Γu
L + βt ∆

Γt
L

+ αu ∆
u
L + ασ∆

σ
L + αε∆

ε
L (19)

where, ∆e
L, ∆

c
L, and ∆Ω

L are the loss components from the equi-
librium condition (Eq. (12)), constitutive relation (Eq. (14)), and
the compatibility condition (Eq. (15)), respectively; ∆Γu and ∆

Γt

L L

476
represent the loss components computed at the Dirichlet bound-
ary Γu, and the Neumann boundary Γt (Eq. (11)), respectively;
∆u

L, ∆
σ
L, and ∆ε

L are the loss components for the fields u(x), σ(x),
and ε(x), respectively, when a data driven approach is pursued.
The coefficients ϕ, ϕe, ϕc, βu, βt , αu, ασ , and αε are the weights
associated with each loss term that dictates the emphasis on
each penalty term. Evidently, the terms in the cost function are
the measures of the errors in the displacement and stress fields,
the momentum balance, and the constitutive law. The explicit
expressions for each term in ∆L(x, θ ) are,

∆Ω
L =

1
NΩ

c

NΩ
c∑

l=1

∥∇ ·Ξ NN
σ (xl|Ω )+ B(xl|Ω )∥ (20)

∆c
L =

1
NΩ

c

NΩ
c∑

l=1

∥Ξ NN
σ (xl|Ω )− C

[
∇ ·ΞNN

u (xl|Ω )
]
∥ (21)

Γu
L =

1

NΓu
c

NΓu
c∑

k=1

∥Ξ NN
u (xk|Γu )− ū(xk|Γu )|∥ (22)

∆
Γt
L =

1

NΓt
c

NΓt
c∑

j=1

∥Ξ NN
σ (xj|Γt )n̂− t̄(xj|Γt )∥ (23)

∆u
L =

1
NΩ

c

NΩ
c∑

l=1

∥Ξ NN
u (xl|Ω )− û(xl|Ω )∥ (24)

∆σ
L =

1
NΩ

c

NΩ
c∑

l=1

∥Ξ NN
σ (xl|Ω )− σ̂(xl|Ω )∥ (25)

∆ε
L =

1
NΩ

c

NΩ
c∑

l=1

∥Ξ NN
ε (xl|Ω )− ε̂(xl|Ω )∥ (26)

where,
{
x1|Ω , . . . , xNΩ

c |Ω

}
are randomly chosen collocation points

over the domain Ω;
{
x1|Γu , . . . , xNΓu

c |Γu

}
and

{
x1|Γt , . . . , xNΓt

c |Γt

}
are those chosen randomly along the boundaries Γ and Γ ,
u t
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Fig. 2. (a) Elastic plane-stress problem for an end-loaded cantilever beam of length L, height 2a and out-of-plane thickness b which has been clamped at x = L; (b)
istributions of total collocations points Nc = 5000 on the problem domain and various boundaries during PINNs training.
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espectively. The terms û(xl|Ω ), σ̂(xl|Ω ), and ε̂(xl|Ω ) represent the
rue (target) value obtained by means of analytical solution or
igh-fidelity simulation. The weights ϕ, ϕe, ϕc ∈ R+ are the
eights corresponding to the compatibility, equilibrium, and con-
titutive relations, respectively. In general, these coefficients can
e prescribed as 1 for solving a relatively less complex problem,
hereas, βu and βt are the binary (i.e., either 0 or 1) integers.
he weights αi = 1; ∀ i = u, σ, ε for a complete data driven
pproach for u(x), σ(x), and ε(x), respectively at the collocation
oints NΩ

c . However, we prescribe αi = 0 ∀ (i = u, σ, ε) as
abeled training data is unavailable, which may not guarantee the
ccuracy of PINNs solutions.
The forward problem is studied herein, where the displace-

ent, stress, and strain fields are obtained as the PINNs solu-
ions assuming material properties λ and µ remain constant.
owever, the loss functional in Eq. (19) can also be utilized in
n inverse problem for parameter identification, where λ and
can be treated as network outputs which may vary during

raining (Fig. 1). For the network construction in the PINNs frame-
ork, SciANN (Haghighat & Juanes, 2021), a convenient high-level
eras (Chollet et al., 2015) wrapper for PINNs is used.

.2. Solution for linear elasticity problem

For this study, an end-loaded isotropic linearly elastic can-
ilever beam of height 2a, length L, thickness b (assuming b ≪ a)
as been considered to ensure a state of plane-stress condition
s shown in Fig. 2. The left edge of the beam is subjected to a
esultant force P . Whereas, the right-hand end is clamped. The
op and bottom surfaces of the beam, y = ±a are traction free.
n approximate solution to the problem can be obtained from the
iry function discussed next.

.2.1. The Airy solution to the end-loaded cantilever beam
The Airy solution in Cartesian coordinates Ω ⊂ R2 can be

ound from the Airy potential φ(x, y) that satisfies (Bower, 2009),

φ =
∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+

∂4φ

∂y4
= C(ν)(

∂bx
∂x

+
∂by
∂y

) (27)

here,

(ν) =
{ 1−ν

1−2ν (plane strain)
1

1−ν
(plane stress)

(28)

ere, the body forces bx, by have the form ρ0bx =
∂Ω
∂x , ρ0by =

∂Ω
∂y ; Ω(x, y) is the positional scalar function. The solution of the
iry function can be expressed in the polynomial form φ(x, y) =
∞

∑
∞ A xmyn. For m + n ≤ 3, the terms automatically
m=0 n=0 mn

477
satisfy the biharmonic equation for any Amn. Additionally, φ must
satisfy the following traction boundary conditions on Ω .

∂2φ

∂y2
nx −

∂2φ

∂x∂y
ny = tx;

∂2φ

∂x2
ny −

∂2φ

∂x∂y
ny = ty (29)

ere, (nx, ny) are the components of a unit vector normal to the
oundary. For the end-loaded cantilever beam, the Airy function
an be formulated as,

= −
3P
4ab

xy+
P

4a3b
xy3 (30)

here, σxx =
∂2φ
∂y2

− Ω; σyy =
∂2φ
∂x2

− Ω; σxy = σyx = −
∂2φ
∂x∂y

ith Ω = 0. At the clamped end, x1 = L, displacement boundary
onditions are ux = uy = ∂uy/∂x = 0. The top and bottom
urfaces of the beam (i.e., y = ±a) are traction free, σijni = 0,
hat requires σyy = σxy = 0. Whereas, the resultant of the
raction acting on the surface at x = 0 is −Pey with traction
ector ti = σijnj = −σxyδiy = −

3P
4ab (1 −

y2

a2
)δiy. The resultant

force can be obtained as : Fi = b
∫ a
−a −

3P
4ab (1−

y2

a2
)δiydx2 = −Pδiy.

n satisfaction of the aforementioned conditions, approximate
nalytical solutions for the displacements ux, uy, the strain fields
xx, εyy, εxy and the stress fields σxx, σyy, σxy can be expressed as:

ux =
3P

4Ea3b
x2y− (2+ µ)

P
4Ea3b

y3 + 3(1+ µ)
Pa2

2Ea3b
y−

3PL2

4Ea3b
y (31)

uy = −
3µP
4Ea3b

xy2 −
P

4Ea3b
x3 +

3PL2

4Ea3b
x−

PL3

2Ea3b
(32)

εxx =
3P

2Ea3b
xy; εyy = −

3Pµ
2Ea3b

xy; εxy =
3P(1+ µ)

4Eab

(
1−

y2

a2

)
(33)

σxx =
3P
2a3b

xy; σyy = 0; σxy =
3P
4ab

(
1−

y2

a2

)
(34)

These analytical solutions for u(x), σ(x), and ε(x) have been used
as û(xl|Ω ), σ̂(xl|Ω ), and ε̂(xl|Ω ) at the collocation points for data-
driven enhancement in Eqs. (24)–(26), respectively, for solving
the field variables in the proposed PINNs framework.

4.2.2. PINNs solutions for linear elasticity problem
For the benchmark, end-loaded cantilever beam problem, L =

3 m, a = 0.5 m, and b = 0.001 m have been considered. The ma-
terial properties are, Young’s modulus E = 1 GPa, and the Poisson
ratio ν = 0.25 as shown in Fig. 2(a). Unless otherwise stated, a
total of Nc = 5000 randomly distributed collocation points over
the domain and boundaries have been used for training the PINNs
model as shown in Fig. 2(a). During training, the optimization
loop was run for 500 epochs using the Adam optimization scheme
with a learning rate of 0.001, and a batch size of 32 for optimal
accuracy and faster convergence.

The Airy solutions for various fields including displacements
u , u , stresses σ , σ , σ , and strains ε , ε , ε as in Eqs.
x y xx yy xy xx yy xy
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ε

(

Fig. 3. (a) The Airy solutions for displacements ux , uy , stresses σxx , σyy , σxy , strains εxx , εyy , εxy; (b) corresponding PINNs solutions for ũNN
x , ũNN

y , σ̃NN
xx , σ̃NN

yy , σ̃NN
xy , ε̃NN

xx ,
˜
NN
yy , and ε̃NN

xy ; (c) absolute error between the Airy solutions and PINNs predictions associated with each field variables for an end-loaded cantilever beam.
31)–(34) are shown in Fig. 3(a). The corresponding PINNs ap-
proximations using the tanh activation function are shown in
Fig. 3(b). Additionally, in Fig. 3(c), the absolute error between
the Airy solutions and PINNs predictions for each field variable
is shown. The overall results from PINNs are in excellent agree-
ment with the Airy solutions. The PINNs approximations attained
satisfactory accuracy with low absolute errors for all field vari-
ables. For the displacement fields, the absolute error is relatively
high near to clamped edge for ux. For uy, the absolute error is
maximum at the midsection and near the horizontal edges as
478
shown in Fig. 3(c). This is due to the approximate nature of
the Airy solutions at clamped end x1 = L for the displacement
boundary conditions ux = uy = ∂uy/∂x = 0. Such differences
also propagate through the solutions of stress and strain fields,
where PINNs predictions slightly deviate from the Airy solutions,
in particular, near the free vertical and horizontal edges as shown
in Fig. 3(c). However, according to Saint-Venant’s principle, these
deviations do not sufficiently influence the solution far from the
end, which is reflected in the result. Overall, the proposed PINNs
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Fig. 4. Comparison of (a) total loss ∆Ω
L; (b) constitutive loss ∆Ω

L for tanh, sigmoid and ReLU activation functions for network parameters N = 20, Ln = 5.
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odel can capture the distributions of various fields accurately
rom the solution of the Airy stress function.

.2.3. Suitable activation function
The impact of the use of various activation functions on train-

ng the PINNs models in predicting field variables and the epoch
volution of various components of the loss function is explored.
he ReLU, sigmoid, and tanh activation functions are compared;
he network architecture remains the same: the number of neu-
ons in each layer N = 20 with the total number of hidden layers
n = 5 in the PINNs model. The evolution of the total loss ∆L,
nd the constitutive loss ∆Ω

L are depicted in Fig. 4. Additionally,
alues of the various loss components and training times ttr at
he end of training are compared in Table 1. Evidently, the tanh
ctivation provides the best performance in terms of the value
f the total loss at the end of training. The final constitutive loss
ith tanh activation is significantly lower compared to the other
wo activations illustrating the suitability of the use of the tanh
ctivation for the PINNs model for solving the elasticity problem
erein. In addition, all other loss components obtained are lowest
pon using the tanh activation as shown in Table 1.
Comparing the evolution of ∆L, the convergence characteris-

ics for the ReLU activation are better compared to the tanh with
ewer fluctuations and rapid decrease in loss values as shown in
ig. 4(a). However, the tanh illustrates better adaptability in the
onstitutive loss with an excellent convergence rate in Fig. 4(b).
ut of the three activations, ReLU performs the worst possibly
ue to its derivative being discontinuous. However, the total loss
or all three activations is negligible (loss value in the range below
0−4 to 10−5) within 200 epochs indicating the adaptability of the
roposed PINNs framework to any of these activations provided
he models are trained sufficiently long. In comparing the train-
ng time, the tanh activation takes longer for the same number
f epochs compared to the other two. This coincides with the
act that the evolution of the total loss has a higher degree of
iscontinuity. However, the model with the ReLU activation trains
he fastest possibly due to its linear nature. From the comparison,
t can be concluded that although tanh is the best in terms of
ccuracy, however, ReLU can be an optimal choice of activation
onsidering both accuracy and training time for solving elasticity
quation in the proposed PINNs framework.
479
.2.4. Influence of network complexity
It is worth mentioning that the PINNs approximations are sen-

itive to network architecture including the depth of the hidden
ayer and the number of network parameters. In this section, the
nfluence of network architecture parameters, i.e., the number of
eurons in each hidden layer N , and the number of hidden layers
n on the accuracy and the efficiency of the PINNs solution are
xplored. Since the tanh activation performs the best in terms of
ccuracy (see previous section), it is chosen as the activation for
ifferent networks used in the following experiments.
In the current study, four different networks considering the

ombinations N = 20, 40, and Ln = 5, 10 are tested, and
alues of different loss components at the end of the training,
raining duration (ttr ), along with model complexities in terms of
etwork parameters (np) for these architectures are presented in
able 2. For fair comparison, Nc = 5000 for all experiments. The
volution of the total loss ∆L and the constitutive loss ∆Ω

L for
hese networks are shown in Fig. 5. From the comparisons, for the
hosen number of collocation points relatively shallow network

= 20, Ln = 5 provides the best performance in terms of ∆L
nd ∆Ω

L at the end of training. Additionally, the time required for
raining is faster due to a significantly lower number of network
arameters. However, for a relatively deeper network, N = 20,
n = 10 with increased network complexity, the performance
f the model degrades with respect to loss values as shown in
able 2 possibly due to an increase in variability and reduction in
ias. Interestingly, an increase in the number of neurons N = 40
hile maintaining the depth of the network (Ln = 5) leads to the
orst performance which can be attributed to over-fitting (Bilbao
Bilbao, 2017; Jabbar & Khan, 2015). The epoch evolution of the

loss for various network architectures demonstrates the efficacy
of a relatively shallow network with significantly faster training
for solving elasticity problems in the proposed PINNs framework.

5. PINNs formulation for linear elastic plate theory

In this section, the PINNs framework is expanded for the
solution of the classical Kirchhoff–Love thin plate (Timoshenko
& Woinowsky-Krieger, 1959) subjected to a transverse loading
in linearly elastic plate theory. In the subsequent section, the
Kirchhoff–Love theory has been briefly described; PINNs formu-
lation for solving the governing fourth-order biharmonic partial
differential equation (PDE) for the solution of the thin plate
is elaborated. For a benchmark problem, the proposed PINNs
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Table 1
Influence of different activation functions on the final values of various loss components (in 10−09) and training times ttr in the proposed PINNs
model for solving linear elastic beam problem.

Activation function ∆Ω
L ∆c

L ∆
Γu
L ∆

Γt
L ∆u

L ∆σ
L ∆ε

L ∆L ttr
(min)

ReLU 107.16 43.43 14.51 36.75 24.97 1.07 5.48 233.37 9.4
Sigmoid 30.96 54.33 517.38 126.14 37.85 124.51 592.82 1483.99 13.8
tanh 4.56 0.73 31.47 25.64 3.11 9.60 10.45 85.56 15.7
Table 2
Influence of network parameters N and Ln on training times ttr and final values various loss components (in 10−09) for tanh activation.

Network identifier np ttr
(min)

∆Ω
L ∆c

L ∆
Γu
L ∆

Γt
L ∆u

L ∆σ
L ∆ε

L ∆L

N-1 (N = 20, Ln = 5) 22,706 15.7 4.56 0.73 31.47 25.64 3.11 9.60 10.45 85.56
N-2 (N = 40, Ln = 5) 113,530 23.8 2.21 90.39 77.73 59.58 4.29 24.16 78.39 336.75
N-3 (N = 20, Ln = 10) 54,494 18.3 6.89 0.89 12.73 65.42 13.01 17.19 4.67 120.8
N-4 (N = 40, Ln = 10) 272,472 32.3 2.78 3.67 18.78 12.63 24.19 43.10 2.49 107.64
Fig. 5. Comparison of (a) total loss ∆Ω
L; (b) constitutive loss ∆Ω

L for various combinations of network parameters N and Ln considering tanh activation function.
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approach is applied for the solution of a simply supported rect-
angular plate under a transverse sinusoidal loading condition.

5.1. Kirchhoff–Love thin plate theory

Thin plates are structurally planar elements that have small
thickness relative to their in-plane dimensions which can be
simplified as a two-dimensional plate problem. According to the
Kirchhoff–Love theory, the kinetics of a thin plate under the effect
of a distributed transverse loading q = q(x, y) can be described by
a fourth-order differential equation (Reddy, 2006; Timoshenko &
Woinowsky-Krieger, 1959).

∆(D∆w) = q (35)

When the elastic plate is bounded in the domain Ω ⊂ R2,
Eq. (35) is known as the Kirchhoff–Love equation. In Cartesian
coordinates, w = w(x, y) represents the transverse displacement
field, D = D(x, y) is the bending stiffness of the plate, and ∆ =

∂2/∂x2 + ∂2/∂y2 is the Laplace operator. Considering a homoge-
neous and isotropic plate (i.e., D ≡ constant), Eq. (35) becomes
the biharmonic equation (Szilard & Nash, 1974; Timoshenko &
Woinowsky-Krieger, 1959)

D∆2w = D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
= q (36)

nder appropriate boundary conditions, and with D(x, y) > 0
nd q(x, y) ≥ 0, both being known, the problem possesses a
nique solution for the displacement w(x, y). The set of solution
480
ariables includes the primitive variable deflection w, and the
erived quantities, moments Mxx, Myy, Mxy = −Myx, and shearing

forces Qxx, Qyy. The expressions for the derived fields are,

Mxx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
; Myy = −D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
;

Mxy = −D(1− ν)
(
∂2w

∂x∂y

)
(37)

xx =
∂Myx

∂y
+

∂Mxx

∂x
= −D

∂

∂x

(
∂2w

∂x2
+

∂2w

∂y2

)
;

Qyy =
∂Myy

∂y
−

∂Mxy

∂x
= −D

∂

∂y

(
∂2w

∂x2
+

∂2w

∂y2

)
(38)

.2. PINNs formulation for the biharmonic equation

For solving the Biharmonic equation using the PINNs frame-
ork, the input features are the spatial coordinates x := (x, y);
he field variables, w(x), M(x), and Q (x) are obtained using mul-
iple densely connected independent ANNs, with each network
pproximating one of the outputs as shown in Fig. 6. Different
ield variables approximated by the NNs are as follows:

(x) ≃ ΞNN
w = w̃NN(x) (39)

(x) ≃ ΞNN
M =

[
M̃NN

xx (x) M̃NN
xy (x)

˜ NN ˜ NN

]
;

Myx (x) Myy (x)
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f

∆

Fig. 6. PINNs network architecture for solving Kirchhoff–Love thin plate problem governed by biharmonic equation consisting of multi-ANN (NNi ∀ i = 1, k) for each
ield variables w̃NN(x), M̃NN

xx (x), M̃NN
xy (x), M̃NN

yy (x), Q̃NN
xx (x), and Q̃NN

yy (x) with independent variable x = (x, y) as input features.
Fig. 7. Benchmark problem setup for Kirchhoff–Love plate: (a, b) simply supported rectangular plate of a = 200 cm and b = 300 cm with thickness t = 1 cm
subjected to transverse sinusoidal loading of intensity q0 = 9.806× 10−4 MPa; (b) distributions of total collocations points Nc = 10,000 on the problem domain and
various boundaries during PINNs training.
w

Q (x) ≃ ΞNN
Q =

[
Q̃NN

xx (x)
Q̃NN

yx (x)

]
(40)

where, ΞNN
w , ΞNN

M , and ΞNN
Q are the neural network approxi-

mations. From the NN approximations of the fields, the multi-
objective loss function ∆L(x, θ ) can be defined as:

∆L(x, θ ) = ϕ∆Ω
L+βu ∆

Γu
L +βt ∆

Γt
L +αw ∆w

L+αM ∆M
L+αQ ∆

Q
L (41)

where, ∆Ω
L , ∆Γu

L , ∆Γt
L are the losses in the domain Ω , and along

the boundaries Γu and Γt , respectively. Their expressions are,

∆Ω
L =

1
NΩ

c

NΩ
c∑

l=1

∥∇
2
∇

2w −
q̂
D
∥ (42)

Γu
L =

1
Γu

NΓu
c∑

∥Ξ NN
w (xk|Γu )− w̄(xk|Γu )|∥ (43)
Nc k=1

481
∆
Γt
L =

1

NΓt
c

NΓt
c∑

j=1

∥Ξ NN
M (xj|Γt )− M̄(xj|Γt )|∥ (44)

here,
{
x1|Ω , . . . , xNΩ

c |Ω

}
,

{
x1|Γu , . . . , xNΓu

c |Γu

}
,

{
x1|Γt , . . . ,

xNΓt
c |Γt

}
are the collocation points over the domain Ω , and along

the boundaries Γu and Γt , respectively; ϕ ∈ R+ is the penalty
coefficient for imposing the biharmonic relation in Eq. (36). Ad-
ditionally, data driven estimates of w(x), M(x), and Q (x) at the
collocation points across Ω are used to define ∆L(x, θ ).

∆w
L =

1
NΩ

c

NΩ
c∑

l=1

∥Ξ NN
w (xl|Ω )− ŵ(xl|Ω )∥ (45)

∆M
L =

1
NΩ

NΩ
c∑
∥Ξ NN

M (xl|Ω )− M̂(xl|Ω )∥ (46)

c l=1
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L =

1
NΩ

c

NΩ
c∑

l=1

∥Ξ NN
Q (xl|Ω )− Q̂ (xl|Ω )∥ (47)

ere, ŵ(xl|Ω ), M̂(xl|Ω ), and Q̂ (xl|Ω ) are obtained by means of an-
alytical or high-fidelity numerical solutions. Note, αi = 1; ∀ i =
,M,Q for data-driven enhancement coupled with
hysics-informed regression by forcing the PDE constraints in
qs. (36)–(38). Whereas, αi = 0 switches off the data-driven
nhancement of accuracy of the NN approximations. The loss
unction in Eq. (41) can either be used for obtaining PINNs
pproximations ofw(x),M(x), and Q (x) (i.e., forward problem), or
dentification of model parameters λ and µ (i.e., inverse problem).

.3. Simply supported Kirchhoff–Love plate

A simply supported rectangular plate of size (a × b) under a
inusoidal load q(x, y) = q0 sin πx

a sin πy
b is considered in Cartesian

coordinates as shown in Fig. 7. Here, q0 is the intensity of the load
at the center of the plate.

The following boundary conditions are applied at the simply
supported (SS) edges:

w = 0;
∂2w

∂x2
= 0 for x = 0 and x = a (48)

= 0;
∂2w

∂y2
= 0 for y = 0 and y = b (49)

5.3.1. Analytical solution
Along with the governing equation in Eq. (36) and the bound-

ary conditions in Eqs. (48)–(49), the analytical solutions of w are
obtained as:

w =
q0

π4( 1
a2

+
1
b2
)2

sin
πx
a

sin
πy
b

(50)

tilizing Eqs. (37)–(38), analytical solutions for the moments Mxx,
Myy, Mxy and the shearing forces, Qxx, Qyy are obtained as:

Mxx =
q0

π2
(

1
a2

+
1
b2

)2

(
1
a2

+
ν

b2

)
sin

πx
a

sin
πy
b

(51)

yy =
q0

π2
(

1
a2

+
1
b2

)2

(
ν

a2
+

1
b2

)
sin

πx
a

sin
πy
b

(52)

Mxy =
q0(1− ν)

π2
(

1
a2

+
1
b2

)2
ab

(
ν

a2
+

1
b2

)
cos

πx
a

cos
πy
b

(53)

Qxx =
q0

πa
(

1
a2

+
1
b2

) cos
πx
a

sin
πy
b

(54)

Qyy =
q0

πa
(

1
a2

+
1
b2

) sin
πx
a

sin
πy
b

(55)

hese analytical solutions, w(x), M(x), and Q (x) have been uti-
ized as ŵ(xl|Ω ), M̂(xl|Ω ), and Q̂ (xl|Ω ) for data driven enhancement
n Eqs. (45)–(47), respectively for the PINNs approximations of
he field variables.

.4. PINNs solutions for the biharmonic equation

For the benchmark problem, a rectangular plate (a = 200 cm,
= 300 cm) with thickness t = 1 cm is considered with the

ollowing material properties: Young’s modulus of elasticity E=
02017.03 MPa, Poisson’s ratio ν = 0.25, and flexural rigidity D=
7,957 N m. The sinusoidal load intensity q0 = 9.806×10−4 MPa
s prescribed as shown in Fig. 7. A similar problem has been
 f

482
lso solved in the recent work (Vahab et al., 2021). Unless other-
wise stated, the total number of randomly distributed collocation
points, Nc = 10,000 is used during the training of the PINNs
model. Additionally, a learning rate of 0.001, and a batch size of
50 were prescribed for optimal accuracy and faster convergence
of the optimization scheme. For better accuracy during training,
the Adam optimization scheme is employed with 1000 epochs. In
the present study, three different activation functions were tested
(see Section 5.4.1).

In Fig. 8(a–f), the analytical solution for various fields including
plate deflection w, moments Mxx, Myy, Mxy, and shearing forces
Qxx, and Qyy in Eqs. (50)–(55) are shown. Corresponding approx-
imations from PINNs for various activation functions are shown
in Fig. 8(a–f) which illustrate the efficacy of the proposed model
in terms of accuracy and robustness as excellent agreement with
the analytical solutions is evident.

5.4.1. Influence of the activation function
The accuracy of the field variables and epoch evolution of

the loss functions are explored for various activation functions
for solving the fourth-order biharmonic PDE. To this end, three
different activations, i.e., ReLU, sigmoid, and tanh are selected;
the network used is defined by N = 20, Ln = 5. The corre-
sponding results are depicted in Fig. 8(g–l). Based on the results,
all the activations perform well as the NN approximations are
in good agreement with the analytical solutions both qualita-
tively and quantitatively. For further insight into the influence
of an activation function on the accuracy of the solutions, the
absolute error between the analytical solutions and the PINNs
approximations for each field variable is compared for the solu-
tions obtained with different activations in Fig. 9(a–f). From the
comparison, ReLU provides the least absolute error distributions
in solving the Biharmonic equation for the simply supported
plate. Although, the sigmoid activation provides the best result
for |Mxy − M̃NN

xy |, the absolute error for the rest of the fields is
higher compared to the solutions obtained with ReLU. Because
of the sinusoidal nature of the solution, it was expected that
tanh activation might be specifically suitable for this problem.
Surprisingly, tanh provides worse results compared to ReLU and
sigmoid activations. This can be due to the complex nature of the
solution space, where ReLU can provide better adaptability during
training. Furthermore, in Fig. 10, the epoch evolution of the
total loss ∆Ω

L , and constitutive loss ∆Ω
L is compared for different

activation functions. For a particular epoch, ReLU performs better
than the other two activations for ∆L. For ∆Ω

L , tanh activation
hows better convergence and the lowest loss value at the end
f training due to the sinusoidal nature of the solution of the
iharmonic PDE. However, the fluctuations in the loss curve for
anh have a relatively higher variance compared to ReLU and
igmoid. As reported in Table 3, overall, performance in terms
f various loss components at the end of training is superior
or the ReLU activation for solving the Biharmonic PDE using
he proposed PINNs framework. Additionally, the model with the
eLU activation requires the least training time ttr , indicating
etter convergence and faster computation of the forward and
ackpropagation steps.

.4.2. Influence of network parameters
As was found for the linear elasticity problem, PINNs solu-

ions are sensitive to the NN architecture. Various parameters
hat influence the NN architectures, the number of neurons in
ach hidden layer N , and the total number of hidden layers
n, on the accuracy of the model and the efficiency of training
he model have been explored herein. Because of its superior
erformance for the problem, ReLU is chosen as the activation

unction. Four different networks with combinations N = 20, 40,
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Fig. 8. Solution of field variables obtained from (a–f) analytical solutions (left to right): w, Mxx , Myy , Mxy , Qxx , and Qyy; (g–l) proposed PINNs results (left to right):
w̃NN , M̃NN

xx , M̃NN
xy , M̃NN

yy , Q̃NN
xx , and Q̃NN

yy for activation functions (i) ReLU, (ii) sigmoid, and (iii) tanh.
Table 3
Influence of different activation functions on the final values of various loss components (in 10−05) and training times ttr in the proposed PINNs
model for solving biharmonic PDE.

Activation function ∆Ω
L ∆

Γt
L ∆

Γu
L ∆w

L ∆M
L ∆

Q
L ∆L ttr

(min)

ReLU 5.34 132.31 1672.91 278.43 498.76 101.36 2689.11 23.1
Sigmoid 63.07 980.67 4601.60 1707.50 987.89 117.56 8458.29 25.8
tanh 0.12 7138.43 9807.31 6809.34 397.89 500.37 24653.46 34.6
a
H
E
n
c

5

e
a
r
f

and Ln = 5, 10 were trained. Corresponding network parameters
(np), model training time (ttr ), and values of different loss com-
onents at the end of training have been presented in Table 4.
he comparisons of the absolute error between the analytical
olutions and the PINNs approximations for each field are shown
n Fig. 11. Comparisons of the total loss ∆L, the constitutive loss
Ω
L for various combinations of network parameters, N and Ln
re shown in Fig. 12.
Based on the comparisons shown in Fig. 11, increased network

epth improves the accuracy of the PINNs approximations for all
ariables. Predictions by both networks with Ln = 10 are superior
ompared to the analytical solutions for the chosen number of
ollocation points. On the other hand, an increase in the number
f neurons in each layer increases model prediction variance
hich is reflected in the higher absolute error comparisons for
 a

483
N = 20, 40 and Ln = 10. Similar conclusions may be drawn
based on Fig. 12 and Table 4. The total and constitutive losses
re minimum for N = 40 and Ln = 10 at the end of training.
owever, the approximations by this model have higher variance.
xpectedly, more complex models (higher Ln), or with larger
p, require longer training time ttr . For the chosen number of
ollocation points, Ln = 10 is optimal.

.4.3. Smart initialization of data-driven enhancement
In this section, we explore the applicability of data-driven

nhancement in the proposed PINNs framework to improve the
ccuracy of the solution. Initially, the network is trained with
elatively low Nc = 10,000. The pre-trained model is then trained
or the higher number of collocation datasets Nc = 15,000
nd N = 20,000 to further improve the model accuracy. The
c
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N
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a
t
e

Fig. 9. Absolute error of field variables between analytical solution and PINNs results (a) |w − w̃NN
|; (b) |Mxx − M̃NN

xx |; (c) |Myy − M̃NN
yy |; (d) |Mxy − M̃NN

xy |; (e) |Qxx − Q̃NN
xx |;

and (f) |Qyy − Q̃NN
yy | for activation functions (i) ReLU, (ii) sigmoid, and (iii) tanh.
Fig. 10. Comparison of (a) total loss ∆L; (b) constitutive loss ∆Ω
L during training for tanh, sigmoid and ReLU activation functions for network parameters

= 20, Ln = 5.
Table 4
Influence of network parameters N and Ln on training times ttr and final values of various loss components (in 10−05) for tanh activation.

Network identifier np ttr
(min)

∆Ω
L ∆

Γu
L ∆

Γt
L ∆w

L ∆M
L ∆

Q
L ∆L

N-1 (N = 20, Ln = 5) 12,940 23.1 5.34 132.31 1672.91 278.43 498.76 101.36 2689.11
N-2 (N = 40, Ln = 5) 52,760 29.8 0.47 35.13 467.34 128.38 198.11 40.29 869.72
N-3 (N = 20, Ln = 10) 32,056 31.7 0.07 82.15 86.84 77.82 298.01 10.17 555.06
N-4 (N = 40, Ln = 10) 126,224 42.8 0.009 0.67 5.12 4.21 0.53 0.17 10.709
T
s
n

idea is to speed up the training by utilizing pre-trained weights;
the initial states of the PINNs models in the later phases of
training are not random anymore. The speed-up is reflected in
Figs. 13(a, b) when the convergence of the loss curves (∆L and

Ω
L ) for the pre-trained models corresponding to Nc = 15,000
nd Nc = 20,000 are much improved compared to the first
raining phase with Nc = 10,000. In Fig. 13(c), the absolute
rrors between the approximations and analytical solutions are
484
shown which demonstrate significant improvement of the PINNs
approximations with the increase in Nc . Additionally, parameters
related to the efficiency of the network training processes with
initialization of data-driven enhancement are reported in Table 5.
he loss terms quickly reduce by orders of magnitude in the
econd training phase which indicates that for the considered
etwork architecture, Nc = 15 000 is possibly optimal.
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Fig. 11. Absolute error of field variables between analytical solution and PINNs results (a) |w − w̃NN
|; (b) |Mxx − M̃NN

xx |; (c) |Myy − M̃NN
yy |; (d) |Mxy − M̃NN

xy |; (e)
Qxx − Q̃NN

xx |; and (f) |Qyy − Q̃NN
yy | for various network parameters (i) N = 20, Ln = 5, (ii) N = 40, Ln = 5, (iii) N = 20, Ln = 10, and (iv) N = 40, Ln = 10.
Fig. 12. Comparison of (a) total loss ∆Ω
L; (b) constitutive loss ∆Ω

L for various combinations of network parameters N and Ln considering ReLU activation.
m
e
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f
f
a
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i
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. Discussions

In the current study, a generalized PINNs framework for solv-
ng problems in linear continuum elasticity in the field of solid
echanics is presented. The fundamentals of the PINNs frame-
ork involve a construction of the loss function for physics-

nformed learning of the NNs through the embedding of the linear
onstraint during training. Following the PINNs philosophy to
olve the linear elastic problem accurately, a multi-objective loss
unction has been formulated and implemented. The proposed
485
ulti-objective loss function consists of the residual of the gov-
rning PDE, various boundary conditions, and data-driven physi-
al knowledge fitting terms. Additionally, weights corresponding
o the terms in the loss function dictate the emphasis on satis-
ying the specific loss terms. To demonstrate the efficacy of the
ramework, the Airy solution to an end-loaded cantilever beam
nd the Kirchhoff–Love plate theory governed by fourth-order
iharmonic PDE has been solved. The proposed PINNs framework
s shown to accurately solve different fields in both problems.
arametric investigations on activation functions and network
rchitectures highlight the scope of improvement in terms of
olution accuracy and performance. Data-driven enhancement
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Fig. 13. Influence of smart initialization of data-driven enhancement on (a) total loss ∆Ω
L; (b) constitutive loss ∆Ω

L for increasing Nc considering ReLU activation;
c) Absolute error of field variables between analytical solution and PINNs results for (i) Nc = 10,000, (ii) Nc = 15,000 TL, and Nc = 20,000 TL.
Table 5
Network parameters, training time, and the component of loss for different smart initialization of data-driven enhancement models.

Network identifier Nc Epochs ∆Ω
L ∆

Γt
L ∆

Γu
L ∆w

L ∆M
L ∆

Q
L ∆L ttr

(min)

N-1 10000 1000 5.34 132.31 1672.91 278.43 498.76 101.36 2689.11 23.1
N-TL1 15000 250 0.025 1.31 17.34 1.43 13.11 9.89 43.11 5.1
N-TL2 20000 250 0.005 0.71 2.96 2.01 2.56 0.87 9.11 7.2
of the PINNs approximations using analytical solutions signifi-
cantly boosts accuracy and speed only using minimal network
parameters. Therefore, such an approach can be employed to
enhance solution accuracy for complex PDEs. Additionally, the
applicability of a smart initialization of data-driven enhance-
ment learning-based approach quickening the training process
and also improving model accuracy have been illustrated. Such
an approach would be key in achieving computational efficiency
beyond conventional computational methods for solving linear
continuum elasticity. The proposed PINNs elasticity solvers uti-
lize Tensorflow as the backend which can be easily deployed in
CPU/ GPU clusters, whereas, conventional algorithms lack such
adaptability. Thus, it opens new possibilities for solving complex
elasticity problems that have remained unsolved by conventional
numerical algorithms in the regime of continuum mechanics. It is
however worth noting that exploitation of the computational ad-
vantages of the PINNs framework depends on various factors in-
cluding the choice of the network architectures, hyperparameter
tuning, sampling techniques (distribution) of collocation points,
etc. It has been shown that appropriate combinations of such
factors significantly improve the training process and the trained
models.

In the present study, random sampling of the collocation
oints has been considered which is simple, yet powerful, that
an lead to a significantly better reconstruction of the elastic
ields. Importantly, this approach does not increase computa-
ional complexity, and it is easy to implement. However, in
lastic/elastoplastic PDE problem which exhibits local behavior
e.g., in presence of sharp, or very localized, features) or problems
486
with singularities the performance of PINNs may vary drastically
with various sampling procedures (Daw, Bu, Wang, Perdikaris,
& Karpatne, 2022; Leiteritz & Pflüger, 2021). To overcome such
an issue, a failure-informed adaptive enrichment strategy such as
failure-informed PINNs (FI-PINNs) can be employed that adopts
the failure probability as the posterior error indicator to generate
new training points in the failure region (Gao, Yan, & Zhou,
2022). Furthermore, the basic resampling scheme can be further
improved with a gradient-based adaptive scheme to relocate
the collocation points through a cosine-annealing to areas with
higher loss gradient, without increasing the total number of
points that demonstrated significant improvement under rela-
tively fewer number of collocation points and sharper forcing
function (Subramanian, Kirby, Mahoney, & Gholami, 2022). In
addition, the evolutionary sampling (Evo) method (Daw et al.,
2022) that can incrementally accumulate collocation points in
regions of high PDE residuals can be an efficient choice for solving
various time-dependent PDEs with little to no computational
overhead. Instead of using a random approach such as Latin
Hypercube sampling, in the future, different deterministic and
pseudo-random sampling strategies such as Sparse Grid sampling
or Sobol Sequences can be employed to further improve the
performance of the model.

Furthermore, it is critical to obtain the statics of saturation
along different parts of the solution domain during the training
of DNNs (Glorot & Bengio, 2010; Rakitianskaia & Engelbrecht,
2015b). The saturation occurs when the hidden units of a DNN
predominantly output values close to the asymptotic ends of
the activation function range which reduces the particular PINNs
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m
c

odel to a binary state, thus limiting the overall information
apacity of the NN (Bai, Zhou, Li, & Li, 2019; Rakitianskaia &
Engelbrecht, 2015a). The saturated units can make gradient de-
scent learning slow and inefficient due to small derivative values
near the asymptotes which can hinder the training PINNs effi-
ciently (Bai et al., 2019). Thus, in the future, NN saturation can be
studied quantitatively in relation to the ability of NNs to learn,
generalize, and the degree of regression accuracy. In addition,
various weighting coefficients of the loss terms in Eq. (8) and
implementation of second-order optimization techniques (Tan
& Lim, 2019) can accelerate the training significantly. Based on
the performance of the PINNs framework herein, further studies
quantifying the computational gains of the PINNs approach com-
pared to conventional numerical methods are in order. The pro-
posed approach can be extended to the solution in various com-
putational mechanics problems such as soil plasticity (Bousshine,
Chaaba, & De Saxce, 2001; Chen & Baladi, 1985), strain-gradient
plasticity (Guha, Sangal, & Basu, 2013, 2014), composite mod-
eling (Roy, 2021c) etc. Furthermore, the present model can be
employed to predict microstructure evolution in Phase-field (PF)
approach including various solid–solid phase transitions (PTs)
(Levitas & Roy, 2015; Levitas, Roy, & Preston, 2013; Roy, 2020a,
2020b, 2020c), solid–solid PT via intermediate melting (Levitas &
Roy, 2016; Roy, 2021a, 2021b, 2021d, 2021e, 2021f, 2022d), and
various other applications (Jamil & Roy, 2022; Khan, Raj, Kumar,
Roy & Luo, 2022; Roy & Bhaduri, 2023; Singh, Raj, Kumar, Verma
& Roy, 2023; Singh, Ranjbarzadeh, Raj, Kumar & Roy, 2023).

7. Conclusions

Summarizing, the current work presents a deep learning
framework based on the fundamentals of PINNs theory for the
solution of linear elasticity problems in continuum mechanics.
A multi-objective loss function is proposed for the linear elastic
solid problems that include governing PDE, Dirichlet, and Neu-
mann boundary conditions across randomly chosen collocation
points in the problem domain. Multiple deep network mod-
els trained to predict different fields result in a more accurate
representation. Traditional ML/ DL approaches that only rely
on fitting a model that establishes complex, high-dimensional,
non-linear relationships between the input features and outputs,
are unable to incorporate rich information available through
governing equations/ physics-based mathematical modeling of
physical phenomena. Conventional computational techniques on
the other hand rely completely on such physical information
for prediction. The PINNs approach combines the benefits of the
DL techniques in the extraction of complex relations from data
with the advantages of the conventional numerical techniques
for physical modeling. The proposed method may be extended to
nonlinear elasticity, viscoplasticity, elastoplasticity, and various
other mechanics and material science problems. The present
work builds a solid foundation for new promising avenues for
future work in machine learning applications in solid mechanics.
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