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Abstract

This paper applies analytical approaches to map illegal psychostimulant (cocaine
and methamphetamine) trafficking networks in the US using purity-adjusted price data
from the System to Retrieve Information from Drug Evidence. We use two assumptions
to build the network: (i) the purity-adjusted price is lower at the origin than at the
destination and (ii) price perturbations are transmitted from origin to destination. We
then adopt a two-step analytical approach: we formulate the data aggregation problem
as an optimization problem, then construct an inferred network of connected states and
examine its properties.

We find, first, that the inferred cocaine network created from the optimally ag-
gregated dataset explains 46% of the anecdotal evidence, compared to 28.4% for an
over-aggregated and 14.5% for an under-aggregated dataset. Second, our network re-
veals a number of phenomena, some aligning with what is known and some previously
unobserved. To demonstrate the applicability of our method, we compare our cocaine
data analysis results with parallel analysis of methamphetamine data. These results
likewise align with prior knowledge but also present new insights. Our findings show
that an optimally aggregated dataset can provide a more accurate picture of an illicit
drug network than can suboptimally aggregated data.

Keywords: lllicit supply chains; Cocaine; Methamphetamine; Data aggregation; Cocaine
trafficking; Network analysis; USA.

1 Introduction

The global economic network grows more complex every day. Increased connectivity presents
growing opportunities for people and businesses engaged in licit activities worldwide, but
it also fosters illicit trafficking networks. Such illicit trafficking creates resource flows that
are external to the formal economy and enormous in scale: the United Nations Office on
Drugs and Crime (UNODC) estimates that transnational criminal organizations reap prof-

its of approximately $870 billion USD per annum (UNODC,2018). This shadow economy



not only results in loss of revenue for governments and industries globally, but more impor-
tantly, it threatens public security, health, and safety while enriching transnational criminal
networks (TCNs) that have a vested interest in undermining the rule of law.

To effectively mitigate the global threat of illicit supply chains, public and private
sector decision makers need a clear and analytically-based understanding of the ecosystem
of illicit trafficking networks. Our work contributes to that goal, focusing on appropriate
analytical approaches to produce optimally aggregated data to map the cocaine supply
chain in the US. Our focus on cocaine is well justified. As the 2019 National Drug Threat
Assessment shows, cocaine trafficking is re-emerging as a major problem. In recent years,
levels of cocaine availability, cocaine seizures, and deaths from cocaine overdose were high
enough to be of special concern to the US government. Approximately 2.3 million people
nationwide use cocaine at least once per week, and these users constitute the majority of
consumers in a $24 billion illicit market (Midgette et al., 2019). Cocaine-related deaths
in North America rose from 5,000 in 2013 to 14,000 in 2017 and remained at that level
through 2021, reflecting an increase in harmful cocaine use due in part to the introduction
of fentanyl into the cocaine supply.

In order to map the flows of the US cocaine supply chain, we gained access to the System
to Retrieve Information from Drug Evidence (STRIDE) dataset, which contains nearly 1.8
million event observations (1982-2014) for US-wide domestic counternarcotics operations.
Using this seizure and undercover purchase data, we aim to infer the underlying network
structure based on two principles. First, for two connected nodes in the network, one of
which (the origin) is sending cocaine to the other (the destination), the purity-adjusted
price (henceforth “price”) of the drug will be lower at the origin than at the destination
because the risks (both direct and indirect) of transportation, combined with cumulative
transportation, labor, and transaction costs, are assumed to increase price. Therefore, the
price gradient between two nodes in a dyad provides information on the direction of flow.
Second, for two nodes in the network, local perturbations in price (resulting, e.g., from
the impact of local law enforcement specific to the origin node or from other supply chain
disruptions) will be transmitted from the origin to the destination. As a result, the price
co-movement between these two nodes will be higher than the “background” co-movement

in price seen in the network as a whole (due to, e.g., seasonality, law enforcement activities



in the source country). In other words, if the measure of price co-movement for two nodes
exceeds a certain baseline threshold, then the two nodes can be inferred to be connected.

One challenge presented by the STRIDE data arises from the fact that it has both a
geospatial dimension and a time dimension. Each record represents an event, for example,
a single undercover purchase, and the density of the data fluctuates across both time and
space. A key challenge, therefore, is to optimally aggregate the data over time to compute
price gradients and co-movement between pairs of locations. Prior research has typically
aggregated data into monthly, quarterly or yearly observations (NDIC, 2004; 2011), but we
argue that this approach may not maximize the information benefit of the data, and an
ad-hoc approach may result in too short or too long an aggregation period. We therefore
propose an optimization approach to determine the optimal aggregation.

In this optimization approach, our goal is to establish whether two nodes (e.g., US
states) are connected in the supply chain network. If the time period over which the data
are aggregated is too long, then the resulting dataset will have a smaller number of periods,
signals may be lost due to over-aggregation, and statistical power may be insufficient due to
too few observations. Similarly, if the period is too short, the dataset may have insufficient
numbers of periods in which both nodes (e.g., states) have sufficient time-matched infor-
mation to support the comparison. The aim of this study is therefore to explore ways in
which disaggregated data can be aggregated to achieve two objectives. The first objective
is to obtain a dataset containing time-matched data for pairs of nodes, thereby facilitating
analyses of price co-movement that require time-matched data. The second objective is to
maximize the number of usable observations, and therefore the information entering the
analysis, subject to the first objective.

Therefore, while our overall goal is to map the illicit supply chain of cocaine, the pro-
posed methodology has broader impact. Empirical social scientific research often involves
the analysis of time-tagged panel (i.e., cross-section/time series) data. The time dimension
of these data is usually measured in regular intervals (e.g., months, quarters, or years). A
common problem with such data is their unbalanced nature, or the presence of “holes.” In
other words, the time periods for which data are available for a particular individual or
location may not match the time periods for which data are available for other individuals

or locations. This mismatch renders the use of analytic methods that rely on time-matched



data, such as measures of co-movement (including correlations) impossible. One solution to
this problem of mismatched data is aggregation. If time periods can be selected such that
observations across individuals or locations are contained within those time periods, then,
for each pair of individuals or locations, balanced aggregated panel data can be created.
The optimal aggregation approach is a promising novel idea that can maximize the utility
of observational data. A second remedy for a dataset with holes is imputation, which as-
sumes smoothness in the data-generation process. Consequently, imputation can introduce
smoothness into the data; this smoothness can artificially dampen or inflate measures of
co-movement, thereby providing biased measures. Therefore, imputation is not well suited
for our purposes, as our goal is to understand and utilize the fluctuating nature of prices,
and it is these fluctuations that drive our study of connectivity between nodes.

The remainder of this paper is organized as follows. We first briefly review the related
literature in Section 2 before introducing the STRIDE data in more detail in Section 3.
Next, we introduce the optimal data aggregation approach in Section 4 and apply it to the
STRIDE cocaine data. In Section 5 we build the cocaine network based on the optimal
aggregation, comparing the results to anecdotal evidence. Next, we demonstrate a second
application of the two-step methodology to methamphetamine data in Section 6 and com-
pare the obtained methamphetamine network with the cocaine network. We conclude with

implications and directions for future research in Section 7.

2 Background

2.1 Using prices and other variables to identify networks

The identification of trafficking routes for illicit drugs is of great interest to the law enforce-
ment and drug policy research communities (Giommoni et al., 2017). For law enforcement,
identifying routes and important nodes can inform the allocation of resources to optimally
disrupt networks of drug flows (Giommoni et al., 2021). For the drug policy research com-
munity, knowing the structure of the network can enable well-contextualized studies of the
impacts of illicit drugs, drug flows, and drug markets on phenomena ranging from crime to
health (Boivin, 2014). Unlike transportation routes for legal goods, however, information

about flow networks for illicit drugs is difficult to come by, and even when it is available, it



is often incomplete and inaccurate. This scarcity of information has motivated a growing
literature on ways to use existing data on drugs and drug markets to infer the structure of
the drug flow network.

The most widely available types of data on illicit drugs include seizures, prices, and
purity. Seizure data are reported in a number of different locations, including the US and
various European countries, via a variety of media including digital datasets and reports by
government and multilateral organizations such as the United Nations and the European
Union (UNODC 2021b).

These seizure datasets usually contain information about quantities and types of drugs
seized along with spatial and temporal information relating to the seizure or seizures. As the
name suggests, these data are usually obtained as a result of drug interdiction operations.
Price data are also reported by the US and a number of European countries and are obtained
through undercover drug purchases or as part of interactions between law enforcement
professionals or informants and drug sellers or buyers (UNODC 2021a;NDIC 2004; 2011,
DOJ 2014). Purity data are derived from seized or purchased samples and often accompany
the data on prices and seizures (UNODC 2021b; DOJ2014).

In recent years, economists and drug policy researchers have paid increasing attention
to drug prices as a source of valuable information about trafficking. Indeed, as Hayek
argued over half a century ago (Hayek, 1945), prices are a rich source of information and
help authorities efficiently allocate scarce resources for optimal use. The basic premise of
prices as a source of information about illicit drug flows is supported by a variety of prior
studies. In one early one, (Farrell et al., 1996) observed that wholesale prices of drugs in
Europe tended to be lowest in the locations through which the drugs were entering the
continent. As drugs travel from producers to end users, they often change hands in a series
of transactions, each of which pushes the price of the drug up because of the incremental
costs of “personnel, transportation, and corruption” (Reuter, 1988). The incremental risk
involved in successive transactions also contributes to these increases (Reuter and Kleiman,
1986; Caulkins and Reuter, 1998). Unsurprisingly, therefore, prices of illicit drugs increase
with the distance from their source (Caulkins and Bond, 2012).

Drawing on this basic premise, Chandra et al. (2011) used price data to infer the net-

work of transnational cocaine flows across 17 western European countries using data from



UNDOC’s World Drug Reports. Two basic principles were used to infer flows between any
given pair of countries. First, the direction of a flow was inferred on the basis of the price
gradient between the two countries: flowing from the country with the lower price to the
country with the higher one. Second, in order to infer the presence of a flow between a
pair of countries, the correlation in the prices of cocaine in the two countries was required
to exceed a specified threshold. The logic for this requirement was that if a country was
receiving the drug from another country in any significant measure, then any shocks to the
price in the originating country would be transmitted to and would therefore be visible in
the price in the destination country. Using this method, researchers have leveraged price
data to estimate the following flow networks: cocaine across Europe (Chandra et al., 2011)
and heroin across Europe (Chandra and Barkell, 2013), powdered cocaine across the US
(Chandra et al., 2014), and cocaine hydrochloride across Colombia (Benitez et al., 2019).

The STRIDE data, on which this paper builds, have been used to evaluate illegal drug
market size and structure and to estimate the impact of drug prices and drug use on pub-
lic health and safety. Specifically, they have been used to estimate the size and value
of domestic US markets for cocaine, heroin, and methamphetamine (Kilmer et al., 2014;
Midgette et al., 2019), to describe geographic variation (Caulkins, 1995), to estimate vol-
ume discounts and risk premia (Caulkins and Padman, 1993; Miron, 2003; Caulkins and
Reuter, 1998), and to infer supply decisions in the cocaine market (Caulkins, 1997). Price
estimates from STRIDE have also been used to measure demand responses to supply in-
terdiction actions (DeSimone and Farrelly, 2003; Grossman and Chaloupka, 1998; Saffer
and Chaloupka, 1999) and harms associated with drug use (Cunningham and Finlay, 2016;
Dave, 2006; Dobkin and Nicosia, 2009). To date, however, STRIDE data have not been
used to identify cocaine flows across the US. This is one of the goals of this paper.

While the use of price gradients to infer the direction of flows and of price co-movements
to infer connectivity between nodes in the flow network may be intuitively obvious, it is
important to acknowledge the limitations of using gradients and co-movements in price
between nodes as indicators of flows. Prices may vary for reasons other than transmission.
For example, the increased intensity of law enforcement in a particular node at a particular
time may briefly drive up the price of cocaine in that location, causing its price to vary out

of step with prices in nodes that precede it in the supply chain. Seasonal fluctuations may



also drive variations in price, though these are more likely to be systematically transmitted
across the network, especially if that seasonality is associated with the cultivation of the
coca plant, which grows in South America, thereby causing aggregate (i.e., network-wide)
rather than idiosyncratic (i.e., node-specific) fluctuations in prices at nodes located in the
US. Notably, since our analysis is restricted to data for non-retail transactions, to the extent
that nodes are affected by such idiosyncratic factors, they may still transmit these shocks
to downstream nodes, thereby preserving the tendency for gradients and co-movements in
price to capture the basic structure of the network, however imprecisely.

Finally, our paper builds on and extends the literature of data aggregation. The study
of data aggregation is common and has a long tradition (Orcutt et al., 1968)in multiple
domains. In the social sciences, the impact of data aggregation has been studied in different
contexts. For example, a recent paper studied the impact of data aggregation on policy de-
cisions and found that aggregation impacts both the level of investment and the technology
chosen (Khavari et al., 2021). Similarly, a separate study highlighted that data aggrega-
tion can influence subsequent inferences (Shellman, 2004). In summary, the literature has
acknowledged the importance and the potential impact of data aggregation. However, for-
malizing the aggregation problem as an optimization problem to maximize learning has, to
the best of our knowledge, not yet been suggested. In this study we formulate the aggre-
gation problem as an optimization problem with the objective of maximizing the possible

learning from a dataset.

3 Data

The Drug Enforcement Administration (DEA) maintained STRIDE as a central repository
for transaction-level drug enforcement data from federal, state, and local law enforcement
agencies in the US beginning in the late 1970s. STRIDE observations describe purchases
and seizures, timing and location information, the total amount paid when the transac-
tion involved a purchase, illicit substances involved, and measures of quantity and purity.
STRIDE is the only source of data for US-wide domestic counternarcotics operations in-
cluding undercover purchases (14% of observations). In this paper, we focus on the cocaine

transactions that include price information (n==84,953 out of a total of 258,672 cocaine



transactions). Each event record includes the weight of the drug, location (at the state
level), year, month, purity of sample, and price paid.

Prior work demonstrates that analyses of STRIDE data should be conducted and in-
terpreted with caution (Arkes et al., 2008) as they are generated by non-random drug
enforcement actions and exhibit improbably high within-jurisdiction price variation that
renders them inappropriate for policy analyses (Horowitz, 2001; Manski et al., 2001). In
the present analysis, we do not attempt to evaluate within-city variation or the impact of
policy. Rather, we examine the price gradients across states. We acknowledge that the
point estimates of mean or median prices per pure gram we evaluate are measured with
error, but that between-state error in prices is random.

This analysis focuses on variation in the price per pure gram of cocaine. Price variation is
associated with the underlying purity of the purchased drug: since most street-level cocaine
transactions involve products that are not pure cocaine but rather a mixture whose exact
composition is not known to the buyer, drugs that are purer command a price premium
(Caulkins, 2007). Drugs involved in larger wholesale transactions are typically purer (Arkes
et al., 2008). We thus divide nominal price paid by recorded purity, bound by 0 and 1, to
generate a purity-adjusted price per pure gram. For our analysis, we filter the sample to
undercover purchases involving quantities of at least 5 grams and no more than 1 kilogram,
thus focusing on observations that are more representative of the wholesale and trafficking
market than more variable street-level purchases. Further excluding observations with
missing potency information leaves 59,676 records to be analyzed. Summary statistics are
shown in Table 1, and Figure 1 highlights the relationship between weight and price per
pure gram of cocaine. We note the very large variation in price per pure gram, especially
for smaller purchases.

Following earlier work, the variable we used in our analysis is the purity-adjusted price
(Midgette et al., 2019; Kilmer et al., 2014). We choose purity-adjusted price because the
appropriate metric to quantify the amount of cocaine being sold is not the physical weight
of the material transacted but rather the amount of cocaine contained in that material.
Therefore, a 100-gram sample of 50% pure cocaine should have the same price as a 50-gram
sample of 100% pure cocaine. We compute the purity-adjusted price as the amount paid

for a sample divided by the product of the weight of the sample and its purity, or



Table 1: Sample means for purity, weight, and price per transaction, gram and pure gram.

Variable | All cocaine transactions | The study sample (n =
with price (n= 84,9539) 59,676)
Potency (%) | 61.74 61.95
Weight (g) | 46.3 54.5
Price (per transaction) | 1,453 1,830
Price per gram | 460.8 44.6
Purity-adjusted price | 175.6 87.6

sted price

Purity-adiu

Purchase weight (g)

Figure 1: An overview of the study sample ranging from 1g to lkg. Excluded from the

figure are 74 observations for which the price per pure gram exceeded $1,000.

P

ot = 579

where P,4; is the purity-adjusted price per unit weight of a sample of cocaine, P is the price
paid for the sample, W is the weight of that sample (in grams), and ¥ is the percentage

purity of the sample.

4 Optimization approach to data aggregation

We now introduce our data aggregation optimization approach. Our goal is to find the

optimal aggregation in order to maximize the ability to support network generation. More



specifically, our goal is to determine the optimal length of the aggregation period, 7%, to
maximize the potential learning from the data. In the context of mapping the cocaine supply
network, maximizing learning corresponds to accurately measuring state-level correlations
and price levels.

Let I be the set of states and let ¢t be a month (which reflects the most granular level
of the STRIDE data that are publicly available). Given the complexities of the STRIDE
data, assume a minimum number « that is required to estimate the price in a given state in
a given aggregation period. Our goal is then to maximize the number of state-state periods
with at least x observations in both states.

Let n;; be the number of records in state ¢ in time period ¢. Let z;; be a binary
indicator that is 1 if in period [ there are at least x observations in states ¢ and ', and 0
otherwise, where [ is an index of an aggregation period of length 7. Further, let d;; be the
number of observations in aggregation period [ in state . In order to capture the start and

end of each period, we define:

e ¢ as the first period of observations (accounting for the lack of data often observed

in the first few periods as data collection is scaling up), and
e p; as the start time of period /.

Finally, let T represent the maximum number of aggregation periods (which is bounded from
above by the number of observation periods). We can then express the data aggregation as

the following optimization problem where 7 and s are the decision variables:
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Given that the size of the cocaine dataset does not present a computational challenge,
we solve the above model with exhaustive search, iterating over integer values of 7. More
specifically, for each integer value of 7, we iterate through ¢, each time aggregating the
data based on 7 and ts; parameters. For larger data, one would like to optimize 7 using
commercial solvers.We therefore provide in the online supplement an expanded formulation
of the model as a linear optimization model (with big M constraints).

Consider the entire cocaine data. Figure 2 (a) highlights the optimal value as a function
of k. The figure highlights the dependency of 7* on k. When we set x equal to 25, we note
that 7* is 8, highlighting that ad-hoc aggregation into three-, six-, or 12-month intervals,
which is typical (NDIC, 2004; 2011), may indeed be suboptimal.

However, we note that a state-state pair with a low number of aggregated periods that
meet the requirement may not add to our ability to estimate the underlying network. For
example, if Alabama and Georgia have enough data in a single aggregated period, it is not
enough to estimate the correlation of prices between the two states. For our use case, we
therefore need to update the formulation to only consider state pairs that have at least ~

periods in the objective function. This requires a straightforward expansion of the previous
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Number of state-state periods with at least kK observations State-state pairs with at least k=25 observations in at least y periods
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(a) (b)
Figure 2: The objective value as a function of 7. On the left (a) the objective function is
the number of state-state periods with at least x observations in each state; on the right
(b) we have the number of state-state pairs with at least k =25 observations in at least -y

aggregated periods.

formulation:

max % Z Z Ciit (2a)
i 7
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L T
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where ¢;; is a binary indicator equal to 1 if state 7 and state ¢’ have at least x observations
each in at least v periods. We note from Figure 2 (b) that the optimal 7 is quite sensitive to

the value of v. When ~ is small, 7 is large, reflecting a benefit in the count from including
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lower data density pairs. When 7 is larger, 7* ranges from 5 (for y=30) to 23 (for y=10). It
should also be noted that the optimal 7% values are sensitive to the value of x; however, the
magnitude of the impact on the value of 7* depends on the characteristics of the underlying
data.

Our data aggregation approach can potentially be expanded to allow 7 to adapt to time
varying data density and to additional aggregation across the geographical dimension (e.g.,
combining neighboring geographic units in our case states). More generally, if the goal is to
find an optimal aggregation to maximize learning from the data, we can define an objective
function f(7), which links the number of records in a period at a location to the overall
goals of the statistical project. As before, the goal is to determine the optimal length of

the aggregation period 7*. At a high level, we then express the optimization problem as:

max f(ts, T)
ts,T

s.t. p] =t (3)
Perl :p? + T Vl = 1,...,T— 1.

5 Mapping the supply network

Using the optimally aggregated data, we constructed a network representing the cocaine
supply chain. We ran the optimization approach described above and found 7* to be 20,
requiring & of 15.

For each state and time period, as described above, the aim was to obtain a measure of
the purity-adjusted price of cocaine that would allow for the computation of price gradients
between pairs of states to infer the direction of cocaine flows and of price correlation. This
in turn would allow us to infer whether or not a flow of cocaine occurs between the two
states. In order to do this, we computed a number of measures of purity-adjusted price,
including the mean purity-adjusted price of cocaine, the median purity-adjusted price of
cocaine, and four sets of prices that were generated through regression modeling, using
both ordinary least squares and robust regression on purity-adjusted price and the log of
purity-adjusted price. For comparison, we also computed the mean price and the median
price of cocaine, unadjusted for purity.

After examining the distributions of these various alternatives, we picked the median

purity-adjusted price of cocaine because this variable is not heavily influenced by outliers
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or by the variation in purity across observations. Our choice was also motivated by evi-
dence that per unit prices of cocaine are influenced by purity. Also supporting this choice,
we found in our empirical experiments that the concordance rate (described below) was
typically as high as that obtained using the more sophisticated approaches to establishing

the price in a state in a given time period.

5.1 Ground truth

The anecdotal data were extracted from the map in Figure 3. The basic pattern in the
map shows that cocaine enters through points in the south of the country and flows in a
north and northeasterly direction. This, of course, corresponds with the South American
source of cocaine, extracted from the coca plant, which thrives in the Andean countries of
Colombia, Peru, and Bolivia. Key entry states include California and Texas and, possibly,
Arizona and New Mexico, all of which share borders with Mexico, where multiple powerful

drug trafficking organizations operate.

Figure 3: Routes for cocaine flows across the US; Source: (DOJ 2011).

The anecdotal dataset listed all pairs of adjacent states through which a cocaine traf-
ficking route went along with the direction in which the cocaine was flowing. Next, we
augmented this initial (first-order) anecdotal dataset to include state-state pairs 4, j if there

existed a state k such that ¢ was connected to k and k was connected to j, producing what
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we call pairs of the second degree. Third, we added state-state pairs that, based on the
anecdotal evidence, could be connected through at most two other states, calling them pairs
of the third degree. We repeated this process until a subsequent iteration of the process
yielded a network with no new flows (i.e., the network converged with or was identical to the
preceding iteration). In the case of the cocaine map in Figure 3, the network of anecdotal
flows converged on the eighth iteration.

Note that in Figure 3, a number of states are not linked to any other states. These
include Alaska, Hawai’i, Idaho, Maine, Montana, New Hampshire, and Vermont. This
means that the maximum number of possible state-state pairs for which flows based on the
map can be recorded in the anecdotal dataset is (423) = 903. This is substantially lower
than the total number of possible state-state pairs (i.e., (520) = 1225) in the inferred dataset,
where the price data comes from all US states. Therefore, any measure of fit between the

anecdotal and inferred networks is unlikely to be high.

5.2 Calibration

In this section, we report on the overlap between the anecdotal evidence and the inferred
network before discussing the complete network. As explained above, while our network
analysis includes all possible state-state pairs, the anecdotal evidence was initially summa-
rized on the adjacent state level. We found that as we included higher order connections, the
percentage of overlap between the anecdotal network and the inferred network increased.
This is highlighted in Figure 4 (a), which shows the percentage of anecdotal links con-
tained in the inferred network when the correlation threshold is calibrated to maximize this
overlap between the two datasets (the correlation threshold varies from 0.58 for the lower
degree anecdotal networks to 0.52 for the higher order networks). A drawback of using the
percentage of anecdotal links contained in the inferred dataset is that there is no penalty
for including larger numbers of possibly spurious inferred links. This will tend to push the
calibration threshold value down, thereby introducing noise in the form of spurious inferred
links, into the inferred flow network.

A remedy for this bias is to create a measure that incorporates a penalty for the unnec-
essary inclusion of inferred links that have no explanatory power. A natural measure of fit

that satisfies this property is the concordance rate, defined as the size of the intersection of
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the anecdotal and inferred datasets (i.e., the number of pairs of states appearing in both
datasets) divided by the size of the union of the two datasets (i.e., the total number of

unique state-state pairs appearing in one or both of the datasets),

_lAnT
-~ |AuIp

(4)

where A is the anecdotal dataset, I is the inferred dataset, and C' is the concordance rate.
Note that inferred pairs that are not in the anecdotal dataset will increase the size of the
denominator without increasing the value of the numerator, thereby creating a penalty for

adding inferred links that have no explanatory power in relation to the anecdotal dataset.

Variation in Explanatory Power of the Inferred Dataset Variation in Explanatory Power of the Inferred Dataset
Measre Used: % of Aneccota Links lso inferred Dataset
Measure Used: Concordance Rate

cent of anecdotal inks idertfied
e

Pert

! . 4
B 1 0
Degree of anecdotal links Degree of anecdotal links

(a) (b)
Figure 4: Network Calibration: (a) The percentage of anecdotal links contained in the
inferred network when the correlation threshold is set to maximize the concordance between
the two datasets and (b) the concordance rate, when the correlation threshold is set to

maximize the concordance between the the anecdotal links and the inferred links.

Figure 4 (b) shows the concordance rate between the anecdotal and inferred links for
each iteration in the anecdotal dataset at the concordance-maximizing value of the corre-
lation threshold for each iteration. As in the case of the earlier measure of fit (see Figure 4
(a)), as we include higher order connections the concordance rate increases. We note that
the corresponding correlation thresholds for the first- and second-order anecdotal datasets
are much higher (0.8 and 0.7) than they are for the higher order datasets (which vary
between 0.52 and 0.57), with a value of 0.57 for the concordance-maximizing eighth itera-
tion. This value is slightly higher than the concordance-maximizing correlation threshold
of 0.52 obtained for the eighth iteration using the earlier measure of fit, reflecting a more

conservative link inclusion.
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5.3 The resulting network

—»— r2above .9

—»— r’between .8 and .9
r2between .7 and .8
r? between .6 and .7
2 below .6

Inferred Source Node

Figure 5: Inferred cocaine flows based on the analysis of concordance rates. Flows between
observed state-state pairs from the optimal 7* specification are visualized such that arrows
representing 72 > .9 are opaque and lower correlation relationships become progressively

more transparent.

Figure 5 is a map of the inferred flows using the optimally aggregated data and the
concordance-maximizing threshold correlation. The network contains 46% of the anecdotal
links and the overall concordance rate is 29%.

A number of interesting phenomena emerge from the map. First, there is a general
tendency for the flows to move in a northerly or northeasterly direction. This is illustrated
by, for example, the arrows emanating from California, Arizona, and Texas, which are
important points of origin for cocaine moving northward to the interior of the country.
This pattern matches the map in Figure 3 and reflects the fact that these three states
border Mexico, from which cocaine enters the US. In the Midwest, Illinois appears to be a
hub, receiving cocaine from a number of the entry states and sending it to the neighboring
states of Wisconsin to the north, Missouri to the south, and Indiana to the east. Indiana,

for its part, also appears to be a local distribution hub. On the eastern seaboard, Maryland
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and New Jersey appear to be hubs for the distribution of cocaine to other states in the
region, while Virginia appears to be a destination for flows coming from Texas, Illinois,
and Indiana. A number of states appear to have a preponderance of weak links, i.e.,
links characterized by low price correlations, suggesting weaker linkages with other states.
These include New Mexico, New York, Michigan, North Carolina, and South Carolina. In
addition, the five states on the map in Figure 3 through which cocaine trafficking routes
do not pass, namely Idaho, Montana, New Hampshire, Vermont, and Maine, also appear
to not be integrated into the cocaine network in Figure 5. While data for those states are
present in the optimally aggregated dataset, they are insufficient in number to generate
price-based correlations with other states and thus are absent from the map. It is possible
that the scarcity of underlying cocaine price data in these states may reflect a comparative

lack of trafficking activity.

5.3.1 Selected properties of the cocaine network

The data displayed in Figure 5 also lend themselves to network analytic methods. While
not the central subject of this paper, it is possible to systematically summarize various
network- and node-level phenomena to shed light on the network (Chandra and Joba,
2015). Properties of particular interest include in- and out-degrees of specific states and
measures of density, which may illuminate nodes that are particularly good targets for
disruption. Methods like core-periphery analysis and other node-grouping techniques may
provide information about the underlying organizational structures operating in different
parts of the US, providing a basis for comparison with anecdotal information on the different
markets in which different cartels operate. To explore these properties of the network, we
used the UCINET software (Borgatti and Freeman, 2002).

Table 2 summarizes selected aggregate properties of the cocaine flow network. The
measure of density (19%), which is the number of edges in the network as a percentage
of the total number of possible edges, demonstrates that the network is sparse. The triad
census, also described in the table, is a census of the six different types of triads (i.e.,
combinations of three nodes) that can occur in a directed acyclic (the use of price gradients
to infer direction of flow rules out the possibility of cycles) network. The six types of triads

that can occur include the empty triad (no edges), a triad with one edge, three types of
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Table 2: Aggregate properties of the US cocaine flow network. * For details on triad census,

refer to the online supplement.

Analysis Property Measure
Density Density 19%
Triad census* Empty subgraph (% of all triads) 6256 (32%)
Non-empty triad 13344 (68%)
Single edge (% non-empty triads) 7509 (56%)
Out-star (% triads with 2+ edges) 911 (16%)
In-star (% triads with 2+ edges) 643 (11%)
Directed line (% triads with 2+ edges) 948 (16%)
Out-star to in-star (% triads with 24 edges) 3326 (57%)
Core—periphery | Core members 21
Periphery members 29
Core density 0.49
Periphery density 0.02
Fitness measure 0.57

triads with two edges (an out-star, with two edges emerging from a single node to the
other two nodes; an in-star, with two edges converging from two nodes to a single node;
and a directed line, in which an edge emerges from one node and ends at a second node
from which an edge to the third node emerges), and a triad with three edges that combines
the out-star with the in-star. A figure showing these triad types is provided in the online
supplement. Notable properties of the cocaine network, which will be revisited in Section
6.1, include (i) 68% of the triads are non-empty and (ii) 57% of the triads with two or more
edges are out-star to in-star (i.e., three-edge) triads.

The core-periphery structure (Borgatti and Everett, 1999) of a network can also provide
insights into its functioning. Core-periphery analysis is a means of partitioning the nodes
in the network into two groups: a core group (or sub-graph) in which members are closely
and densely linked with one another and a periphery group in which members are sparsely
linked with each other. In the case of the cocaine network, the core consists of 21 states
and the periphery consists of 29 states. Of the 21 core states in the cocaine network (see
the online supplement for a complete list), 16 are located east of the Mississippi at some

distance from the western and southwestern states that are considered to be major entry
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points for cocaine into the US.

5.4 Sensitivity analyses

To highlight the importance of optimal data aggregation, we ran two additional scenarios
using over-aggregated and under-aggregated data. Specifically, we aggregated the data into
quarterly (three-month) time periods on one hand and five-year (60-month) time intervals
on the other. We acknowledge that the value of estimating any statistics associated with
drug trafficking in five-year intervals has little practical utility (e.g., synthetic opioid deaths
increased tenfold over 2013-2018); however, the intent of this analysis is to contrast the
optimal aggregated solution with the networks based on suboptimal values of 7.

Running the network analysis for the under- and over-aggregated data, we observed that
the percentage of anecdotal links in the inferred datasets are 14.5% and 28.4% respectively
(compared to 46% for the base case) and the concordance rates are 12.6% and 19.5%
respectively (compared to 29.1% for the base case). Figure 6 summarizes the resulting

networks.

—>— Pabove g L

—»— Pbetween 8and .9
Pbetween .7 and .8
7 between 6 and .7
7 below 6

©  Inferred Source Node

(a) (b)
Figure 6: The resulting networks for under-aggregation (top) and over-aggregation (bot-
tom). Flows between observed state pairs are visualized such that arrows representing
r? > .9 are opaque and lower correlation relationships become progressively more transpar-

ent.

What Figure 6 (a) clearly demonstrates is that when the data are under-aggregated,

the inherent noise in the data appears to outweigh the correlations; the links are typically
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weaker, and we note that the strongest link in the network appears to be a spurious link
between New York and Minnesota. We also note that in stark contrast to the base case
network, Arizona is not connected at all. From Figure 6 (b) we note that numerous links
have very strong correlation, reflective of the over-aggregation and reducing the correlation

analysis to nationwide price trends. Neither case is useful for extracting meaningful insights.

6 Inferred methamphetamine flows

As a second example we repeat our two-step process, this time building the spatial supply
chain network for methamphetamine. Methamphetamine (also known as meth, crank or
crystal meth) was first synthesized in the late 1800s and was initially used as a medical
treatment. During World War II it was used to keep troops awake, and its use increased
after the war. After being outlawed in the US in 1970, its use exploded in the early 1990s and
peaked a decade later. Two US federal laws controlling distribution of precursor chemicals
in 1996 and 1998 led to two shifts, first in the form of the methamphetamine compound
and then in the production methods. By 2011, most methamphetamine consumed in the
US was produced outside the country.

The history of meth is partially reflected in our STRIDE data. Figure 7 (a) summarizes
the number of seizures and undercover purchases by year (identified as Dextrometham-
phetamine hydrochloride or salt undetermined in the STRIDE data). There are a total of
17,006 undercover purchases with purity in the (0,100] range. The purity-adjusted price
for these observations is summarized in Figure 7 (b).

We reran the optimal data aggregation from 1995 through 2013; each year in this period
had at least 400 undercover purchases across the US. We lowered our & to five, a reflection
of the lower volume of methamphetamine purchases. Using the data aggregation approach,
we found 7* equal to 14 months. Next, using the map in Figure 8 as the source of anecdotal
data in the same manner in which we used the map in Figure 3 to ground truth the cocaine
analysis, we calibrated the price correlation threshold necessary to infer the presence of a
flow and identified a concordance-maximizing value of 0.84, which was used to generate the
resulting network shown in Figure 9.

In the case of the methamphetamine network, the overlap between the generated net-
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Figure 7: Data characteristics of methamphetamine in the STRIDE data: event volume by

year (a) and purity-adjusted price (b).

work and the anecdotal network is 23%. This lower overlap compared to the cocaine network
is in part the result of the much higher concordance maximizing correlation threshold (0.84
for methamphetamine vs. 0.57 for cocaine), which produces a sparser set of inferred links
(Figure 8) compared to the cocaine network (Figure 3). Both networks show a strong
tendency for the drugs to move from the south, southwest, and west in a north and north-
easterly direction. Interestingly, we observe a strong tendency for methamphetamine to
flow southward from Minnesota, indicating that it is a major distribution center in the
Upper Midwest. While it is possible that methamphetamine may be flowing from Canada
into Minnesota, it is also linked to California and Texas, both of which are major entry
points for methamphetamine into the US (Figure 8). The case of Minnesota is an example
of an insight that this kind of analysis can produce that is not available from the anecdotal

data.

6.1 Network comparison

The networks for cocaine and methamphetamine consist of the same set of nodes (i.e., the
50 states of the US), making it possible to compare them at the aggregate (network-wide)

and node (specific state) level.
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Figure 8: Routes for methamphetamine flows across the US; Source: (DOJ,2011).

Table 3 summarizes selected properties of the methamphetamine flow network. The
measure of density, at 4%, is substantially lower than that of the cocaine network (19%,
see the comparable Table 2 above), demonstrating that it is even sparser that the cocaine
network. A second notable set of differences occurs in the triad census: first, only 18% of
all possible triads are non-empty. Perhaps more importantly, only 33% of all triads with
two or more edges are out-star to in-star triads. This figure is substantially lower than the
analogous figure of 57% for the cocaine network. Since the out-star to in-star triad is a
structurally resilient configuration (i.e., the removal of any one edge will not disrupt the flow
from the first node to the third node), we can conclude that the cocaine network features
more path redundancy at a microstructural level than the methamphetamine network and
is therefore more resilient at this level.

Another interesting comparison between the cocaine and methamphetamine networks
is the core-periphery structure. In both networks, the fitness measure is very similar, as
are the measures of density for the core and the periphery. However, unlike the cocaine
network, where the core has 21 states, the core for methamphetamine consists of only 10
states (see the online supplement for a complete list), and only three states, Alabama,
California, and Indiana, are in the core for both drugs. The anecdotal flow maps in Figures
3 and 8 reveal that California and Alabama are located on major distribution routes in the

west and south for both drugs and contain or are in close proximity to multiple arrows. This
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Figure 9: Inferred methamphetamine flows based on the analysis of concordance rates.
Flows between observed state-state pairs from the optimal 7% specification are visualized

by opaque directed lines.

aligns with their characterization as core members. While Indiana is located at a distance
from the major entry points, both maps show a few large arrows leading into Indiana and
an array of small arrows emerging in its neighborhood.

The most noticeable difference between the cocaine and methamphetamine cores is the
locations of most core states. As noted above, the cocaine core is concentrated east of the
Mississippi River (16 out of 21 states). In contrast, seven of the 10 methamphetamine core
states lie to the west of the Mississippi, with a cluster of five of them in the vicinity of the
California entry point highlighted in Figure 8. This suggests that, while in the cocaine case
a larger number of states farther down the supply chain and presumably closer to end retail
markets are well integrated with one another, in the case of the methamphetamine network,
the degree of integration is greater closer to the supply side of the market and dissipates as
one moves away from this core. One can also speculate that, because methamphetamine
is a synthetic drug that can be produced domestically, markets are more localized and
fragmented, especially in states located at some distance from a major alternative source

of low-cost and smuggled methamphetamine (i.e., Mexico). This is in contrast to cocaine,
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Table 3: Aggregate properties of the US methamphetamine flow network. For details on

triad census, refer to the online supplement.

Analysis Property Measure
Density Density 1%
Triad census* Empty subgraph (% of all triads) 16095 (82%)
Non-empty triad 3505 (18%)
Single edge (% non-empty triads) 3038 (87%)
Out-star (% triads with 2+ edges) 73 (16%)
In-star (% triads with 2+ edges) 159 (34%)
Directed line (% triads with 2+ edges) 79 (17%)
Out-star to in-star (% triads with 24 edges) 156 (33%)
Core—periphery | Core members 10
Periphery members 40
Core density 0.48
Periphery density 0.01
Fitness measure 0.61

which, due to its agricultural origins in South America, does not lend itself to domestic

production which could act as a substitute for smuggled cocaine.

7 Conclusions

In this paper we have demonstrated the feasibility of mapping an illicit drug supply chain
network based on the STRIDE data, and we further showed the importance and impact
of data aggregation. Key contributions of this paper include (i) the novel approach of
formulating the data aggregation problem as an optimization problem and (ii) the two-
step analytical approach that successfully constructed a network supported by anecdotal
evidence, despite the noise and limitations inherent in the data. This method can be used to
analyze potentially complementary measures that describe drug flows that may be sparse
or noisy. For example, the purity of an illegal drug is recorded in STRIDE. We would
expect purity to decrease as it moves along the supply chain as it changes hands and as
more opportunities for adulteration take place. In this case, the optimal aggregation can be

applied for purity estimation. Similarly, correlated changes in substance abuse treatment
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admissions and workplace drug testing data both provide measures of drug use prevalence,
and patterns of change in these measures may also be useful for network detection.

We particularly note that while the anecdotal data were instrumental in calibrating
the correlation threshold used to generate the inferred data, the inferred dataset includes
many flows that were not part of the anecdotal dataset, providing a richer portrait of the
cocaine trafficking network in the US. By extending our analysis to methamphetamine, we
demonstrated that (i) our approach supports not only the analysis of cocaine data but also
methamphetamine data, (ii) if similar data for other drugs are available, these methods
can be deployed to study those drugs as well, and (iii) comparisons between flow networks
of different drugs can be of interest to the drug dependence research and law enforcement
communities. In the case of methamphetamine, we found its flow network to be sparser
than the cocaine network, with a smaller core of 10 states (compared with 21 for cocaine)
and a smaller proportion of resilient triads (i.e., triads within which the removal of one edge
is insufficient to disconnect the first node from the last node). All of this suggests that the
methamphetamine network is more vulnerable to disruption than the more robust cocaine
network.

The two network maps generated in this study can be analyzed in a number of ways,
each providing insights that may be of use to law enforcement and drug policy makers and
researchers. For example, it would be interesting to identify individual nodes or edges that
play a pivotal role in enabling the transportation of cocaine or methamphetamine across the
US. Such cut-points or bridges could be important targets for disruption by law enforcement.
Identifying source-like nodes (i.e., nodes from which many edges originate) may also provide
clues about land, sea, or air border locations that serve as entry points for these drugs
into the US, with implications for border interdiction efforts. Overlaying and comparing
the cocaine and methamphetamine networks with a view to identifying common edges or
subgraphs between them may provide clues about the underlying trafficking organizations
that move both products rather than only one, as appears to have increasingly become the
case in recent decades. Applying the methods of this paper to more granular data or to
data for other drugs may provide more spatially precise information or information about
flow networks for other drugs.

There are also several interesting potential extensions to the optimization approach
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presented in the paper. First, in this paper we limited ourselves to the optimal time
aggregation, which does not consider the geospatial dimension. Our approach could be
expanded to allow for the aggregation of neighboring locations. Further, we only considered
a single fixed aggregation interval. However, one possible extension of our work involves
flexible aggregation, meaning that time intervals can be adjusted based on the density of
the data in each state or by larger time periods (e.g., if law enforcement activities are
non-stationary over the observation period).

The above contributions notwithstanding, it is important to recognize some limitations
of our approach. First, because STRIDE undercover purchase data are a product of law
enforcement actions, they are a non-random sample of drug market activity, and previous
research has demonstrated large within-city variance in prices associated with the quan-
tity transacted and agency involved (Horowitz, 2001; Arkes et al., 2008). Further, only
jurisdictions that report both undercover or confidential informant purchases and drug pu-
rity enter the data, and those jurisdictions that perform proportionately more purchases
are over-represented in the data. If undercover purchases are associated with higher prices,
then external validity is limited. We also conduct this analysis at the state level; this masks
potentially important within-state heterogeneity, which more detailed data could shed light
on.

Lastly, we note that the modern problem of illegal drugs threatens to outmatch tradi-
tional data sources and modeling methods. The public health and safety impacts of cocaine
and methamphetamine use and their associated illegal markets are immense and evolving,
and agencies responsible for law enforcement and interdiction must share and synthesize
intelligence from diverse sources across jurisdictions. By varying only the time dimension
of the aggregation problem, we demonstrate that an easily replicable method using a single
source of data can approximate the combined expert assessment of the intelligence commu-
nity. The potential applications of these findings are numerous. For example, concordance
between the data-generated and the anecdotal network validates qualitative assessments,
while strongly positive price correlations estimated by the model highlight potential con-
nections in the network that were previously hidden. By examining changes in model
predictions as new data are incorporated, this method can be used to create a dynamic

picture of the network as it changes, thereby providing evolving insights leading to efficient
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ways of disrupting networks that cause enormous societal harm.
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