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ARTICLE INFO ABSTRACT

Keywords: Kawin, a new open-source implementation of the Kampmann-Wagner Numerical model of precipitation (con-
Precipitation kinetics comitant nucleation, growth, and coarsening), is presented. An overview of the organization and capabilities
Computer simulations of the program is provided, along with an outline of the constituent physics. Kawin is shown to be able
CALPHAD

to reproduce the results of state-of-the-art commercial software and experimental data for a variety of alloy

gl;?sz:amfomamn systems under multiple precipitation conditions. Kawin is capable of simulating the bulk precipitation behavior
of multiphase, multicomponent systems in response to complex heat treatments, and contains numerous
innovative features to enhance model stability, improve flexibility and usability, and minimize computational
expense. Kawin also incorporates sophisticated elastic energy calculations, traditionally ignored in this type of
simulation but shown here to significantly impact the precipitation behavior of some systems. The inclusion
of native strain calculations enables Kawin to predict the influence of internal or external stress fields on
precipitation, as well as track the evolution of precipitate geometry throughout the course of a heat treatment.
It is the hope of these authors that this software will facilitate the advancement of precipitation modeling as

a tool for materials design.
1. Introduction It was not until 1919 that a comprehensive theory for the mecha-
nism behind age hardening - the precipitation of a fine dispersion of
The precipitation of second-phase particles can dramatically alter second-phase particles — finally emerged, in the seminal paper by Mer-
the material properties of an alloy, allowing for the fine-tuning of ica, Wallenberg, and Scott [4]. The application of precipitation theory
properties ranging from tensile strength and ductility to magnetic to developments in phase diagrams was a significant driving force in the
performance. Smiths and metallurgists have unknowingly made use rapid metallurgical advances of the interwar period, and research into

of this phenomenon since antiquity, with the first written account
of tempering steel appearing in Homer’s Odyssey circa 800 BCE [1].
The production of Damascus steel, begun as early as 300 BCE and
famed throughout the pre-modern period for its superior strength and
durability, required a precisely controlled, multi-step heat treatment
over the course of several days to produce its distinctive microstructure
of folded cementite grains [2]. By the 7th century CE, Japanese sword-
smiths were utilizing clay coatings of varying thickness to spatially
vary the heat transfer rate during the tempering process, resulting
in complex layered microstructure and internal stress patterns that A unified model of precipitation — combining CNT and LSW coars-
produced swords still held in high regard today [3]. ening behavior such that nucleation, growth, and coarsening acted

precipitation behavior flourished. By 1935 Classical Nucleation Theory
(CNT) had been developed from the work of Becker, Doring, Volmer,
and Weber, establishing the mathematics of early-stage precipitation
behavior [5]. While capable of accurately predicting particle formation
and nucleation rates, CNT was incapable of explaining post-nucleation
behavior. In 1961, Lifschitz, Slyozov, and Wagner formalized their
theory of grain coarsening, providing a description for the behavior of
extant particles at longer time-scales [6].
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as concomitant processes — was put forth by Langer and Schwartz in
1980 [7]. The Langer-Schwartz model relied heavily on simplifying
assumptions to solve a complex set of differential equations describ-
ing the evolution of a particle suspended in a near-critical fluid. In
1984, Richard Wagner and Reinhardt Kampmann proposed a set of
modifications to the Langer—Schwartz model that leveraged advances
in modern computing to solve for the evolution of an entire particle
size distribution, rather than just the mean radius. The Kampmann—
Wagner Numerical (KWN) Model, as it came to be known, discretized
the particle size distribution into a number of “size bins”, within which
all particles were assumed to be equal. Each size class was tied to
the rest by means of mass balance and continuity equations, applying
classical nucleation and growth theories to track the flux of particles in
and out of each bin [8].

While the KWN Model is simple in theory, the optimization, mass-
balance, and continuity equations required for a stable simulation can
rapidly become quite complex, particularly when adapted to model
systems that deviate from the original assumptions that governed the
model, i.e., homogeneously nucleating spherical particles of pure sub-
stances in an isothermal solution. Many such adaptations exist in the
literature — allowing for precipitation to be accurately modeled across
a wide variety of alloy systems and conditions [9-14] — but due to
the diversity in potential KWN-like implementations reconciling these
adaptations for use-cases other than the original authors’ can be an ar-
duous task. Commercial software packages including implementations
of KWN-like precipitation modules are available from Thermo-Calc,
CompuTherm, and others, yet these programs are often expensive
and their proprietary nature makes adapting and integrating the code
difficult. Furthermore, it is difficult to advance the state-of-the-art of
precipitation modeling when many implementations of the KWN model
are hidden away from the users. To the best of the authors’ knowledge,
no open-source KWN implementation is currently available.

Recent advances in metals additive manufacturing (AM) have
reignited interest in precipitation simulation [15]. The many tunable
parameters of AM processes permit a previously unimaginable level of
control over the thermal history of a part, with documented potential
for using an AM process to produce a spatially varied thermal history
— and therefore spatially varied precipitate structures and material
properties [16]. Attaining the degree of precipitation control necessary
for effective materials design cannot occur without the ability to accu-
rately predict the precipitation response induced by an AM-like thermal
history. Much progress has been made in this area through (often
expensive) experimentation [17], but the materials design community
is in need of a physics-based precipitation model that can be flexibly
adapted to the non-standard conditions encountered during additive
manufacturing and easily integrated with existing AM process models.
It is with this purpose in mind that the authors are releasing Kawin, the
first open-source implementation of the Kampmann-Wagner Numerical
Model for phase precipitation and coarsening.

2. Methods
2.1. The Kampmann—Wagner Numerical (KWN) Model

At its core, the KWN algorithm is a mean-field model of precipi-
tation, tracking the evolution of average properties of a bulk volume
rather than the localized properties surrounding an individual pre-
cipitate. Since particles are not tracked individually, the particle size
distribution is modeled as a continuous function where particles are
placed in uniformly-spaced bins that represent the size of the particles.
At each time step, nucleation, growth, and dissolution behaviors are
calculated and the particle size distribution (PSD) updated to reflect
any changes while still adhering to strict mass balance and continuity
equations.

A generalized overview of the core physics underpinning Kawin is
provided in the remainder of this section. A more thorough treatment
of the concepts and precise equations for the various correction factors
and user options can be found in the Kawin documentation [18].
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Fig. 1. The sum of the interfacial energy contributions and volumetric contributions
for a nucleate creates a nucleation barrier with a height of AG* at critical radius R*.

2.1.1. Classical nucleation theory

Nucleation in Kawin is modeled according to Classical Nucleation
Theory (CNT). In CNT, the formation of second-phase particles occurs
due to heterophase fluctuations in a metastable solid solution. These
fluctuations are assumed to occur constantly as a result of the thermal
instability of the parent phase. Most such fluctuations are unstable—
only once the volumetric reduction in free energy resulting from phase
dissociation exceeds the energy cost of creating a new interface will the
second-phase nucleus become stable and proceed to grow [19]. The net
free energy change of nucleus formation as a function of its radius is
given in Eq. (2.1.1), depicted graphically in Fig. 1.

4

AG = —gnR3AGU +47R%y (2.1.1)

As depicted in Fig. 1, the critical radius R*—the radius at which
the volumetric and interfacial energy contributions are in a state of un-
steady equilibrium—can be found using Eq. (2.1.2). Continued growth
of a particle beyond this critical radius will result in a net decrease in
system free energy and the formation of a stable nucleus. The energy
cost of creating a nucleus of critical size is therefore the energy barrier
to nucleation AG*, given in Eq. (2.1.3).

w_ 2y

R* = G (2.1.2)
v
4 2 16 ﬂy3
AG* = —ayR** = — — (2.1.3)
3 3 AG?

The proportion of newly formed clusters that will attain this critical
size can be found according to a Maxwell-Boltzmann distribution,
which can then be adjusted by the Zeldovich factor Z (the probability
that stable clusters will dissolve), impingement rate g (the rate at which
solutes diffuse toward a cluster), number of available nucleation sites
Ny, and an incubation time 7 to obtain the steady-state nucleation rate,
as given in Eq. (2.1.4) [20].

2.1.49)

AG*
e = NoZ P exp <_ﬁ> exp (—7/1)
B

Notably, the KWN model only tracks stable clusters, thus all newly

nucleated particles are assumed to have a size of R* + % % to ensure
growth.

2.1.2. Precipitate growth
Assuming the precipitate is spherical and the composition profile
is in a quasi-steady state, the composition of the matrix outside the
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Fig. 2. Composition profile from precipitate to matrix.

precipitate is the solution to the Laplace equation, given in Eq. (2.1.5)
(Fig. 2) [21]. Here, the composition (x;) at a distance r from the
precipitate center is dependent on the far-field composition (x{°), the
interfacial composition in the matrix phase (x%) and the precipitate
radius (R).

;—X7)R

%,

x;(r)=x°+ (2.1.5)

P
The interfacial velocity is related to the concentration gradient
by Eq. (2.1.6), where xii is the interfacial composition in the precipi-
tate phase and D;; is the diffusivity.

) dR _ dxj
O =Ry = L Pugr
J

Combining these two equations gives the growth rate as shown
in Eq. (2.1.7) [21,22].

(2.1.6)
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x

(2.1.7)

Coarsening arises naturally from the interaction of the nucleation
and growth equations used in the KWN model. Continued nucleation
and growth will decrease the supersaturation of the solid solution, low-
ering the driving force for nucleation. As a consequence of Eq. (2.1.2),
this decrease in driving force results in an increase in the critical radius.
If the critical radius surpasses that of any of the smaller size bins,
those particles will become thermodynamically unstable and begin to
dissolve. This is handled in Eq. (2.1.7) where any particles smaller
than the critical radius will exhibit a negative growth rate and return
solute to the matrix, facilitating further growth of large precipitates.
For numerical efficiency, particles that drop below a minimum radius
are assumed to fully dissolve and are removed from the simulation.

2.1.3. Mass balance

After nucleation and growth have been calculated and the particle
size distribution updated, it is necessary to perform a mass balance
to update matrix solute concentrations. The number density, average
radius and volume fraction can be found by taking the zeroth, first and
third moment of the PSD respectively(Egs. (2.1.8)-(2.1.10)) where n; is
the number of particles per unit volume in size class i, R; is the radius
of size class i and f, is the volume fraction.

N total = Z n;

1
R = X mR;
e Xin

(2.1.8)

(2.1.9)
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i
To conserve mass, the sum of solute atoms in the matrix and in the
precipitate must be equal to the initial number of solute atoms. Thus the
current composition in the matrix can be determined by Eq. (2.1.11),
where x;  is the initial composition and p is used to refer to a variable
for phase p.

==Y fu )5 +—22n R,,,xR
p

2.2. Kawin implementation and features

(2.1.11)

Historically, KWN models have faced several barriers to their
widespread use that Kawin attempts to address. The original model
developed by Kampmann and Wagner was built upon numerous as-
sumptions that limited its applicability outside of the simplest of precip-
itation scenarios. Later works have vastly expanded upon the capabil-
ities of KWN models through the introduction of numerous correction
factors and algorithmic refinements, but a comprehensive compilation
of these corrections has never before existed outside of commercial
software that cannot be modified to better suit the user’s needs or
experiment with changes to the correction factors and algorithm itself.

Kawin features a modular design to provide flexibility in develop-
ment and facilitate user modification of various aspects of the program.
The core component of the code is the PrecipitateBase object, which
contains all the necessary model parameters and functions to solve the
KWN model. The PrecipitateBase object is inherited by the Precipitate-
Model object, which is kept separate to allow for easy modification
to algorithm structure and model physics. Kawin is currently bundled
with a Eulerian solution to the KWN model, in which growth rates are
converted into fluxes and particle frequency in each bin is governed by
a continuity equation. The relationship between each module in Kawin
is shown in Fig. 3, where it is shown that additional features can be
added on with little change to the model implementation defined in
the PrecipitateBase and PrecipitateModel objects. Other kinetic models
can be added easily as the Thermodynamic modules supply diffusivity
and mobility calculations that can be used for most kinetic models. In
addition, further property calculations such as strength modeling can
be added by taking values generated and stored in the PrecipitateModel
object.

2.2.1. Thermodynamics and kinetics modules

Thermodynamic and kinetic calculations are handled in the Ther-
modynamics, Mobility, Free Energy Hessian, and Local Equilibrium
modules. Kawin features native integration with PyCalphad, an open
source tool for computational thermodynamics. PyCalphad is used to
compute both the free energy change of phase dissociation and the com-
position on both sides of the matrix—precipitate interface, necessary for
calculating growth rates [23]. Kawin additionally supports the usage
of CALPHAD-based mobility models to determine atomic mobility. The
diffusivities of multicomponent systems can be calculated using the free
energy curvature and chemical potential gradients.

2.2.2. Correction factors

The general KWN model is predicated on uniformly spherical pre-
cipitates. The calculation of driving forces, interfacial compositions,
and growth rates are all curvature dependent, and assume a constant
radius of curvature across the precipitate surface. Particles that deviate
from a spherical shape due to either elastic considerations or hetero-
geneous precipitation sites can be modeled through the use of various
correction factors applied to thermodynamic and kinetic terms, based
on previous analysis of single precipitate growth [10-12,24,25]. These
correction factors are applied following Egs. (2.2.1) and (2.2.2), with
f(@) and g(a) representing the thermodynamic and kinetic corrections
necessary for a given particle shape. In this way, Kawin is capable
of modeling a wide range of precipitate geometries including spheres,
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Fig. 3. Object hierarchy in Kawin showing the relationship between each module.
Green objects directly interface with PyCalphad, blue objects are implementations of
the KWN model, yellow objects are extra factors for the model, orange objects support
specific features of a KWN implementation, gray objects are optional features and
purple objects relate to output. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

spheroids, needles, plates, and cuboids. Equations for the correction
factors of these shapes can be found in the Kawin documentation [18].

dR dR
= = fa)— (2.2.1)
dt dt sphere
2
ut =l + (g(a)% + AGe,) v (2.2.2)

Kawin’s Grain Boundary Factors module enables calculation of
shape factors for precipitates accommodated by dislocations and grain
boundaries, edges and corners. For precipitates that nucleate on grain
boundaries, the number of available nucleation sites, nucleation bar-
rier, and precipitate morphology, will differ from bulk nucleation.

Nucleation on a grain boundary requires both the formation of a
precipitate-matrix interface and the removal of a grain boundary area
(matrix-matrix interface). The Gibbs free energy involved in nucleating
a precipitate is thus modified, as shown in Eq. (2.2.3) [26,27].

AG = —cR*AG, + by, y R* — ay,, R* (2.2.3)

Yae 1S the grain boundary energy, y,, is the interfacial energy be-
tween the precipitate and the matrix, and R is the radius of curvature.
a,b, and ¢ are multiplying factors to the radius to obtain the grain
boundary area that is removed, the surface area of the precipitate, and
the volume of the precipitate, respectively.

2.2.3. Elastic energy module

Kawin includes extensive methods for calculating the elastic strain
energy associated with precipitate formation. As the matrix deforms
to accommodate lattice mismatch between the matrix and precipi-
tate, an additional volumetric reduction in free energy must be added
to Eq. (2.1.1), slowing or accelerating nucleation depending on the
geometry and strain state in question. The elastic strain energy asso-
ciated with spheroidal precipitates is calculated according to Eshelby’s
theory [28], while Khachaturyan’s approximation is used for spherical
and cuboidal precipitates [29].

In many cases, non-spherical precipitate geometry can be attributed
to elastic anisotropy in either the matrix or precipitate phase. While
all known precipitates are initially spherical to minimize interfacial
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area, elastic effects can dramatically alter precipitate aspect-ratio as
the volume-to-surface-area ratio changes with growth. Kawin’s incor-
poration of a model for elastic energy contributions allows for the
equilibrium aspect ratio of such precipitates to be predicted by finding
the aspect ratio that minimizes both elastic and interfacial energy
contributions. Variable aspect ratio across size classes is tracked and
accounted for in the mass balance equation.

a= argmin(%nR3 E(a) + 47[R§phg(a)y) 2.2.4)

sph

2.2.4. Population balance model module

The evolution of the particle size distribution (PSD) is handled by a
population balance model (PBM). The PBM discretizes the distribution
into size classes. Particle growth is handled through a Eulerian imple-
mentation, where the growth rates are converted into fluxes and the
frequencies in each size class is governed by the continuity equation,
where n is the frequency in size class i, G is the growth rate, R is the
particle size and J,,, represents any external fluxes (such as nucleation).

dn d(nG)

a5 T AR = e
For discretized size classes, Eq. (2.2.5) is handled by calculating the

growth rate at the bounds of each size class. The frequency of size class

i is determined by Eq. (2.2.6). With these two equations, the evolution

of the particle size distribution can be determined from the nucleation

and growth rates. A schematic of this process is shown in Fig. 4

(2.2.5)

At
nt =l 4 H(Gi_l(sgn(Gi_l)n,._l + sgn(=G,_)n;)

(2.2.6)
— G;(sgn(G;)N; +sgn(—=G;)N,))

2.2.5. Data management and visualization

Kawin tracks precipitate volume fraction, average radius, matrix
composition, precipitate number density, mean aspect ratio, driving
force, nucleation rate, critical radius, interfacial composition, equilib-
rium composition, equilibrium volume fraction, supersaturation, and
the particle size distribution at every step of the simulation. Any
of these variables can be visualized using Kawin’s built in plotting
function, or exported as a CSV file or NumPy binary file for further
analysis or use with other tools. Kawin also offers reset functions,
allowing multiple simulations to be run consecutively without needing
to reload thermodynamic data.

3. Results
3.1. Comparison with state-of-the-art precipitation software

In order to validate the implementation of the KWN algorithm in
Kawin, Examples 05 and 08 in the software documentation of commer-
cial KWN implementation TC-Prisma [30], modeling the Ni-Cr-Al and
Cu-Ti systems, respectively, are recreated using Kawin. Several addi-
tional parameters are defined in these comparisons in order to avoid
differences in default parameter values. Table 1 lists the parameters
used for each simulation.

Fig. 5 shows the simulation results of the Ni-Cr-Al system com-
paring TC-Prisma, Kawin (with and without using surrogate models,
discussed in Section 3.2.2.) and experimental data found in litera-
ture [31]. Different CALPHAD databases had to be used for Kawin and
TC-Prisma due to availability and the compatibility of the databases
between Thermo-Calc and PyCalphad. For Kawin, the database for Ni—
Cr-Al was constructed from data found in the literature [32], while
TC-Prisma used the TCNI12/MMOBNI6 database. Despite this, both
programs provided comparable results that fit well with the available
experimental data.

Fig. 6 shows simulation results of the Cu-Ti system comparing
TC-Prisma, Kawin and experimental data from literature [8,33]. Both
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Table 1

Parameter values for Ni-Cr-Al and Cu-Ti systems used in comparison of Kawin and TC-Prisma.

Parameter Value (Ni-Cr-Al) Value (Cu-Ti)
Parent Phase FCCA1 FCC_A1
Precipitate Phase FCC_L12 CU4_TI
Simulation time le6 s le5 s

Initial composition Ni-9.8Al-8.3Cr (at.%) Cu-1.9Ti (at.%)
Interfacial energy 0.012 J/m? 0.035 J/m?
Temperature 1073 K 623 K

Molar volume (parent) 6.566e—6 m?3/mol 7.11e—6 m?/mol
Molar volume (precipitate) 6.566e—6 m?/mol 7.628e—6 m?/mol
Nucleation site bulk bulk

Nucleation site density 9.172¢28 /m? 8.470e28 /m?
Elastic constants (C11, C12, C44) N.A. 168.4 GPa, 121.4 GPa, 75.4 GPa

Eigenstrain (g, €4,, €33) N.A.

0.022, 0.022, 0.003

Fig. 4. Schematic of how the particle size distribution is modeled using fixed bin sizes in a Eulerian KWN implementation. In 4a The nucleation of N new particles is calculated
via Classical Nucleation Theory and added to the size bin that corresponds to the critical radius. In 4b nucleation continues while the growth of added particles is modeled via
the flux between size bins. As supersaturation decreases the critical radius increases. In 4c, continuing nucleation and growth have decreased supersaturation such that the critical
radius is larger than particles in the PSD. Particles larger than the critical radius continue to grow while particles smaller than the critical radius shrink and are removed from

the simulation, capturing coarsening behavior.
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Fig. 6. Precipitation simulation results of the Cu-Ti system comparing TC-Prisma, Kawin and experimental data.

programs here utilized the same thermodynamic database for Cu-Ti,
constructed from literature data [34,35]. While TC-Prisma predicts
an earlier nucleation onset than Kawin, the two programs converge
after about 6 s of simulation time and both align well with available

experimental data. Of note, the simulations performed using a spherical
particle approximation took 19 s to compute via TC-Prisma and 31 s to
compute via Kawin. The needle-shaped particle simulation took 773 s
to compute via TC-Prisma and only 56 s to compute via Kawin. The
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differences in run time are likely due to the database size, where
larger databases may take longer to load, and due to differences in
implementation. For example, TC-Prisma may treat the particle size
distribution with higher fidelity which could slow down the run time.

3.2. Performance improvements

3.2.1. Caching

When solving the KWN model, the driving force and interfacial
composition must be calculated at each time step. This involves at
least two equilibrium calculations, which can result in performance
issues where the bulk of the time spent per iteration is spent computing
PyCalphad’s equilibrium function. Equilibrium calculations typically
involve sampling the Gibbs free energy surface, then performing a min-
imization procedure to minimize the Gibbs free energy while subject
to mass balance and summation constraints. Because the composition
and temperature generally change very little per iteration in the pre-
cipitate model, the sampling step of the equilibrium calculation can
be avoided by caching the results of the previous calculation. Equilib-
rium is then calculated by taking the previous equilibrium calculation
and performing the minimization procedure subject to the new mass
balance constraints. In the aforementioned CuTi example, running the
simulation with caching enabled reduced the simulation time from
91.0 s to 39.4 s, a 56.7% decrease. In addition to faster performance,
using cached results also improves the stability of the simulation when
driving forces are very small. For small driving forces, the precipitate
phase may sometimes not be detected if the sampling density of the
free energy surfaces are not sufficient. A sufficient sampling density
is generally not known beforehand and setting a very high sampling
density will also reduce the performance of the model. However, when
using cached results, precipitates just below the chemical potential
hyperplane of the matrix phase will still be detected and considered
stable.

3.2.2. Surrogate modeling

Modeling non-isothermal processes introduces significant variabil-
ity into the thermodynamic properties required to solve the KWN
model, and necessitates repeated recalculation of these variables as the
temperature changes. While Kawin includes code to minimize extra
calculations, it also comes packaged with surrogate models for driving
force, growth rate, diffusivity, and interfacial composition.

For relatively simple multicomponent systems(less than 5 elements),
a surrogate of the driving force and the various terms can be derived
from the curvature of the free energy surface to enable calculation
of growth rate and interfacial composition. Both surrogates require
a set of compositions and temperatures for training. In this case, a
set of equilibrium calculations are performed beforehand to determine
driving force and interfacial composition for various compositions and
temperatures. These are then interpolated over the range of the pre-
cipitate simulation and sampled directly to avoid constant equilibrium
recalculations. The surrogate models use radial basis function (RBF)
interpolation, as provided by the SciPy library [36]. The functions
in the Surrogate module are designed to be interchangeable with the
corresponding functions in the Thermodynamics module. For systems
with more than five elements, using surrogate models may not be as
effective due to the large degrees of freedom involved.

Without using the caching feature discussed in Section 3.2.1, the
Ni-Cr-Al system took 32.9 s to calculate. A surrogate was trained by
calculating the driving force and interfacial compositions at 256 grid
points over the relevant compositions. The training took 12.6 s that
reduced the simulation time to only 6.2 s, for a total computation time
of 18.8 s—a 42.8% decrease. The results of the KWN model solved using
both PyCalphad and the surrogate are shown in Fig. 5 showing that
there is little to no loss in accuracy. However, it is important to note
that the accuracy of the surrogate models are dependent on the training
data, where more training data will result in more accurate surrogate
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models while taking longer to train. These surrogates can be trained
and saved prior to running any simulation, significantly speeding up
if batches of simulations using the same thermodynamic system are
needed to be performed.

3.2.3. Adaptive stability measures

A major challenge in the implementation of any KWN model is
choosing size bin widths and time-step sizes that will produce a stable
simulation. Due to the discretized nature of particle sizes and the
large quantities of particles that can nucleate in a short time-span,
the KWN algorithm is prone to instability if the choice of bin widths
and kinetics of the system results in too significant, or too little, of
a change in any time step. This issue is traditionally solved through
optimization of model parameters against experimental data, but Kawin
incorporates a number of innovative measures that automatically adapt
model parameters — the time step and size bin width - to maintain a
stable and accurate simulation at minimal computational expense.

During each time step, Kawin checks to ensure both that the maxi-
mum observed growth rate is no more than half the width of a size bin
and that no more than a configurable limit of phase volume fraction
change occurs, subdividing the time step if necessary to maintain these
conditions. If the bins are too small, the time interval between each
iteration will be severely constrained to account for large fluxes. If the
bins are too large, the time increment will not be constrained; however,
the low resolution of the PSD may lead to inaccurate results. The bin
sizes of the PSD are modified by the following rules:

1. Nucleation: If the size of a nucleate (R, ) is larger than the
maximum bin size (R,,,,), then PSD will be recreated such that R, =
5R,,.- The number of bins will be set to the default value of B,

2. Adding size classes: If the largest size class has a precipitate
density of at least 1 particle/m> then B,/4 will be added at the end
of the PSD.

3. Increasing bin size: After adding size classes, if the number of
bins is greater than the maximum allowed amount (B,,,,), the PSD will
be recreated to have B,,;, bins while keeping the same range of size
classes.

4. Decreasing bin size: During dissolution, if the largest bin with a
precipitate density greater than 1 particle/m3 (R fillea) is smaller than
0.5R,,,y, then the PSD will be recreated to have B,,,, bins with the range
extending from [R,,,, Ry;.]. Dissolution is assumed to occur when
the growth rate of all size classes are negative.

Once the PSD bins are adjusted, the frequency of particles within
each bin is determined by interpolating the distribution density, then
adding a small correction to conserve the volume fraction. A compar-
ison of simulation times for fixed and adaptive bin sizes are shown in
Fig. 7. Fig. 8 shows the precipitate density and volume fraction of the
example using different fixed bin widths and the adaptive bin sizing.
At a fixed bin size of 0.75 nanometers, the simulation time dramati-
cally increases; however, an explanation for this behavior is currently
unknown as the interplay between the numerical stability and particle
size distribution is quite complex. The smaller bin sizes give higher
fidelity simulations while taking longer. As the bin sizes increases, the
simulation time decreases with the expense of resolution. Increasing
the bin size even further results in an increasing simulation time as
the model is no longer able to handle the particle size distribution
correctly. The implementation of adaptive bin sizing allows Kawin to
reproduce the results of high-resolution models (bin sizes smaller than
1 nanometer) at a minimum simulation time.

The process flowchart for Kawin’s implementation of the KWN
model is shown in Fig. 9. Several checks are performed per iteration
to ensure numerical stability. The first set of checks are to estimate a
proper time step for the iteration before any significant calculations are
done. This is done by calculating the nucleation rate and growth rate to
predict the change in other variables such as precipitate density, com-
position and volume fraction. The time step is then used to update the
particle size distribution. The second set of checks involves the PSD and
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Fig. 7. Comparison of simulation times for different fixed bin sizes and adaptive bin
sizes.

will change the bin sizes according to the rules listed in Section 3.2.3.
Finally, the composition and volume fraction is calculated and a final
set of checks are performed to ensure the actual change in these two
variables satisfy the numerical constraints.

3.3. Additional examples

To showcase the multiphase and elastic energy capabilities of Kawin,
two additional case studies are shown below. The first is in the Al-Mg—
Si system, where a precipitate model is run with five distinct precipitate
phases. The second case study is in the Ni-Ti system, showing the
drastic effects that elastic strain energy can have on a system.

3.3.1. Multi-phase precipitation in Al-Mg-Si

In the Al-Mg-Si system, several phases can form including: f’,
p”, B, Ul and U2 [12,37]. Kawin tracks the PSD evolution of each
precipitate individually. Nucleation and growth rate are also handled
for each precipitate phase independently. Coupling only comes from
the mass balance where all precipitates contribute to the overall mass
changes in the system. For example, dissolution of one precipitate phase
can occur when nucleation and growth of a second precipitate results
in the composition in the matrix to be low enough to make the former
precipitate phase unstable.

Setting up a precipitate model only requires the thermodynamic
database to be loaded along with a few additional parameters. These
include the simulation time, initial composition, temperature, molar
volumes and interfacial energies. In this case, the temperature is as-
sumed to be a two-stage heat treatment, where the alloy is held at
175 °C for 16 h and heated to 250 °C until 25 h (Fig. 10).

from Kawin.Thermodynamics import MulticomponentThermodynamics
from Kawin.KWNEuler import PrecipitateModel
import matplotlib.pyplot as plt

[ N O R N

phases = [FCC_A1', 'MGSI_B_P', 'MG5SI6_B_DP', B_PRIME_L', 'U1_PHASE',

< 'U2_PHASE]

6 therm = MulticomponentThermodynamics ('A1MgSi.tdb', ['AL', MG, 'SIT,
< phases,

7 drivingForceMethod='approximate')

9 model = PrecipitateModel (0, 25*3600, le4, phases=phases[1:],
< elements=[MG', 'SI],
10 linearTimeSpacing=True)

12 model.setInitialComposition([0.0072, 0.0057])
13 model.setVmAlpha(le-5, 4)
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15 gamma = {

16 'MGSI_B_P': 0.18,

17 'MG5SI6_B_DP': 0.084,

18 'B_PRIME_L': 0.18,

19 'U1_PHASE': 0.18,

20 'U2_PHASE': 0.18

21 }

22

23 for i in range(len(phases)-1):

24 model.setInterfacialEnergy (gamma[phases[i+1]],
< phase=phases[i+1])

25 model.setVmBeta(le-5, 4, phase=phases[i+1])

26 model.setThermodynamics (therm, phase=phases[i+1])

27

28 lowTemp = 175+273.15

29 highTemp = 250+273.15

30 model.setTemperatureArray ([0, 16, 17], [lowTemp, lowTemp,
< highTemp])

31

32 fig, ax = plt.subplots(l, 1, figsize=(6, 5))

33 model.plot(ax, 'Temperature', timeUnits="h')
34 ax.set_ylim([400, 550])
35 ax.set_xscale('linear’)

36 plt.show()

Once all the parameters are inserted, the model can be solved and
the results are plotted. Kawin features easy plotting methods where
tracked variables can be plotted for each phase or as a summation of
all phases. The results of these simulation are shown in Fig. 11.

1

2 model.solve(verbose=True, vIt=5000)

B3]

4 fig, axes = plt.subplots(2, 2, figsize=(10, 8))

5

6 model.plot(axes[0,0], 'Total Precipitate Density', timeUnits=h',
< label='Total', color=%',

7 linestyle=":', zorder=6)

8

9 model.plot(axes[0,0], Precipitate Density', timeUnits="h")

10 axes[0,0] .set_ylim([1e5, 1e25])

11 axes[0,0] .set_xscale('linear')

12 axes[0,0] .set_yscale('log)

14 model.plot(axes[0,1], 'Total Volume Fraction', timeUnits=h',
< label=Total', color=%k',

15 linestyle='":', zorder=6)

16

17 model.plot(axes[0,1], 'Volume Fraction', timeUnits="h")

18 axes[0,1] .set_xscale(linear')

20 model.plot(axes[1,0], 'Average Radius', timeUnits="h")
21 axes[1,0] .set_xscale('linear')

23 model.plot(axes[1,1], 'Composition’, timeUnits="h")
24 axes[1,1] .set_xscale('linear')

26 fig.tight_layout()
27 plt.show()

3.3.2. Elastically influenced precipitation in Ni-Ti

Ni-Ti alloys produce Ni Ti; precipitates at near-equilibrium com-
position. The metastable Ni,Ti; phase exists in a highly strained state,
forming plate-like precipitates oriented along the [111] plane of the Ni-
Ti matrix [38]. Kawin’s elastic energy module is capable of accounting
for non-coincident lattices and calculating the elastic strain energy
associated with the formation and growth of these precipitates, and
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Fig. 10. The two-stage heat treatment to be simulated in the Al-Mg-Si example.

modeling the impact that this strain state has on the evolution of
precipitate morphologies across the PSD.

For a precipitate of a given size, the aspect ratio is determined
by minimizing the elastic strain energy and interfacial energy [11].

The following script plots out the two contributions and the total con-
tribution for ellipsoid precipitates with a volume-equivalent spherical
radius of 20 nm (Fig. 12). Additionally, the relationship between the
equivalent spherical radius, equilibrium aspect ratio, and molar strain
energy is shown, illustrating the decrease in strain energy that drives
the increasing aspect ratio of Ni,Ti; precipitates during growth.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 from kawin.Thermodynamics import BinaryThermodynamics

5 from kawin.KWNEuler import PrecipitateModel

6 from kawin.ElasticFactors import StrainEnergy

7 from kawin.ShapeFactors import ShapeFactor

8

9 plt.style.use(['science', ‘no-latex'])

10 plt.rcParams.update ({font.size': 14})

11

12 #Set up thermodynamics

13 phases = [BCC_B2', 'TI3NI4]

14 therm = BinaryThermodynamics(NiTi_SMA.tdb', ['TI', 'NIJ, phases)
15

16 #O0verride guess composition(s) to reduce number of calculations
17 # when finding interfacial composition

18 therm.setGuessComposition(0.56)

19
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Fig. 11. Results of the Al-Mg-Si simulation showing how (a) precipitate density, (b) volume fraction, (c) average radius and (d) composition changes over time.

#Model parameters

xinit = 0.508

gamma = 0.053

T = 450+273.15

Dni = lambda x, T: 1.8e-8 * np.exp(-155000/(8.314%T))
vaBCC, nBCC = 0.0268114e-27, 2

vaNI3TI4, nNI3TI4 = 0.184615e-27, 14

se = StrainEnergy()

B2e = np.asarray([175,45,35]) * 1e9

eigenstrain = [-0.00417, -0.00417, -0.0257]

rotate = [[-4/np.sqrt(42), 5/np.sqrt(42), -1/np.sqrt(42)]1,
[-2/np.sqrt(14), -1/np.sqrt(14), 3/np.sqrt(14)],
[1/np.sqrt(3), 1/np.sqrt(3), 1/np.sqrt(3)]1]

se.setEigenstrain(eigenstrain)

se.setElasticConstants(B2e[0] ,B2e[1],B2e[2])

se.setRotationMatrix(rotate)

fig, axes = plt.subplots(l, 2, figsize=(12,5))
ax2 = axes[1].twinx ()

sf = ShapeFactor ()
sf.setPlateShape ()
se.setEllipsoidal ()
se.setup()

#Plot energy contributions for different aspect ratios
# at an equivalent spherical radius of 20nm

Rsph = 2e-8

Vsph = 4/3+np.pi*Rsph**3

Asph = 4*np.pi*Rsph**2

#Strain and interfacial energy

53 ar = np.linspace(1, 10, 100)

54 volE = Vsph * se.strainEnergy(sf._normalRadiiEquation(ar))
55 areaE = Asph * gamma * sf._thermoEquation(ar)

56 sumE = volE + areaE

57

58 axes[0] .plot(ar, volE, linewidth=2, label='Strain Energy')

59 axes[0] .plot(ar, areaE, linewidth=2, label='Interfacial Energy')

60 axes[0] .plot(ar, sumE, color='C2', linewidth=2, label='Sum of
« Energies')

61 axes[0] .set(xlim=[1, 10], xlabel='Aspect Ratio')

62 axes[0] .set(ylim=[2e-16, 12e-16], ylabel=Energy ($J/m"2$)")

63 axes[0] .legend ()

64

65 #Plot equlibrium aspect ratio and corresponding energies
66 # for equivalent spherical radii up to 200nm

67 rs = np.linspace(le-10, 2e-7, 100)

68 ars = se.eqAR_bySearch(rs, gamma, sf)

69 es = se.strainEnergy(sf._normalRadiiEquation(ars))

70

71 1nl = axes[1] .plot(rs, es*vaNI3TI4*6.022e23 / nNI3TI4,
& linewidth=2, color='C1', label='Strain Energy")
72 1n2 = ax2.plot(rs, ars, linewidth=2, label='Aspect Ratio")

73 axes[1].set(x1im=[0, 2e-7], xlabel=Equivalent Spherical Radius

s ()Y

74 axes[1].set(ylim=[25, 225], ylabel=Molar Strain Energy (J/mol)")

75 ax2.set (ylim=[0, 25], ylabel=Equilibrium Aspect Ratio')
76 axes[1].legend(1n1+1n2, [1.get_label() for 1 in 1ln1+1n2])
77

78 plt.tight_layout()

79 plt.show()
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After inserting the model parameters [39,40] the precipitation be-
havior can be simulated. Two simulations are run: one assuming spher-
ical precipitates and one accounting for elastic strain energy with
variable aspect ratios. Fig. 13 shows the results of the two simulations.
Accounting for elastic strain energy slows down nucleation and delays
the transition from nucleation to coarsening. This is due to a significant
reduction in the net free energy change associated with the phase
transformation.

#Inittalize model
= PrecipitateModel (0, 1e8, 2e4)
setInitialComposition(xinit)

model
model.
model.setInterfacialEnergy (gamma)
setTemperature (T)
.setDiffusivity(Dni)
setVaAlpha(vaBCC, nBCC)
setVaBeta(vaNI3TI4, nNI3TI4)
setThermodynamics (therm)

1

2

9

4

5 model.
6 model
7 model.
8 model.
9

model.
saveNames = ['NiTi', NiTi_strain']

for i in range(2):
if i ==
#Input strain energy parameters
model.reset ()
model.setStrainEnergy(se, calculateAspectRatio=True)

#Set precpitate shape to plate

# Aspect Tatio is not supplied since

# 4t'll be calculated from strain energy
model.setAspectRatioPlate()

model .solve (verbose=True, vIt=10000)
model . save (saveNames [1])

27
28
29
30
31
32
33

fig, axes = plt.subplots(2, 2, figsize=(12,10))
labels = [No elastic energy', With elastic energy']

for i in range(2):
model = PrecipitateModel.load(saveNames[i] + '.npz')

model.plot (axes[0,0], Precipitate Density', linewidth=2,
timeUnits=h', label=labels[i])

model.plot(axes[0,1], Volume Fraction', linewidth=2,
timeUnits='h')

model.plot(axes[1,0], 'Average Radius', linewidth=2,
timeUnits="h')

model.plot(axes[1,1], Driving Force', linewidth=2, timeUnits="h')

(3
34

159
B85}

159

axes[0,0].1legend ()
axes[0,0] .set(ylim=[1el5, 1e25], yscale='log')
axes[1,1].set(ylim=[0, 1.5e8])

10

42
43

plt.tight_layout ()
plt.show()

As shown in Fig. 13, the inclusion of elastic energy effects signifi-
cantly alters the behavior of the system. While most precipitate systems
will not display such a dramatic difference under standard conditions,
the complex residual stress profiles produced by rapid cyclic heating
during additive manufacturing have been shown to alter precipitation
behavior [41], and any attempt at modeling such heat treatments will
likely require consideration of elastic energy.

4. Future prospects

Kawin is still in active development. At the time of writing, Kawin
implements the features needed to run a variety of precipitation sim-
ulations considering factors such as particle shape, elastic energy and
grain boundary precipitation. The goal of Kawin is to provide broad
capabilities of kinetic-based Calphad modeling, either by implementing
new features in the precipitate model or implementing other types of
kinetic models.

The future implementation of a Lagrangian solution to the KWN
model will enable Kawin to simulate several precipitation scenarios
that are not currently possible with the Eulerian solution. The adap-
tive meshing measures implemented by Kawin’s Eulerian solution are
not currently capable of handling multi-modal precipitate distribu-
tions across multiple length scales, which is necessary to model some
multi-stage heat treatments such as primary and secondary gamma
prime in Ni-based alloys. Additionally, a Lagrangian solution will en-
able the modeling of time-dependent precipitate behaviors such as the
decomposition of unstable phases.

The open-source nature of Kawin makes it easy to couple with other
models, and the wide range of material properties impacted by precip-
itation means that there is significant potential for the development of
additional physics modules. For example, currently in development is a
strength model that couples with the KWN model and a diffusion model
that can solve single phase diffusion or multi-phase homogenization
problems. Further development prospects also include a user-friendly
API that allows direct coupling of user-defined models with the kinetic
models.

Kawin can also be easily implemented into other process frame-
works, and is currently being coupled with thermal history, residual
thermal stress, and evaporation models for the simulation of precipita-
tion during additive manufacturing. KWN modeling offers numerous
advantages over other methods of precipitation modeling that make
it uniquely suited for use in a materials design framework. The KWN
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Fig. 13. Simulation results of the Ni-Ti system showing (a) Precipitate density, (b) volume fraction, (c) average equivalent spherical radius and (d) driving force vs. time with

and without accounting for strain energy effects.

algorithm allows for the speed and computational efficiency of a tra-
ditional mean field model while still calculating the behavior of the
entire particle size distribution similarly to a phase-field model. Phase-
field modeling has recently been successfully applied to precipitation
simulation in additively manufactured parts by running individual
precipitation simulations in voxels throughout the part volume [15].
Because only the descriptive statistics of the precipitates in each voxel
are relevant to the bulk properties of the part, a more efficient KWN
model such as Kawin could be better suited to the task, particularly
in materials design applications where many thousands of simulations
must be performed.

5. Conclusions

Precipitation modeling is set to become a significant tool for ma-
terials and process design in the coming years. With the release of
Kawin, an open-source implementation of the Kampmann-Wagner Nu-
merical model of precipitation, a powerful, robust, and highly cus-
tomizable tool capable of modeling precipitation in a wide variety of
systems is freely available for the first time. Forty years of literature
on precipitation modeling has been compiled and standardized, under
conditions including (but not limited to) multicomponent, multiphase,
non-isothermal heat treatments, non-spherical precipitates, heteroge-
neous precipitation, elastically influenced precipitation, and variable
aspect ratios. Kawin has been shown to produce results in close agree-
ment with both commercial software and literature experimental data
across a wide range of precipitation reactions. Kawin offers stable
simulations, built-in surrogate models, and data management tools,
in an easy-to-use package, and with a modular design intended to
maximize flexibility and encourage innovation. Download information
and other details can be found at https://kawin.org.
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