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Abstract—Designing and/or controlling complex systems in
science and engineering relies on appropriate mathematical mod-
eling of systems dynamics. Classical differential equation based
solutions in applied and computational mathematics are often
computationally demanding. Recently, the connection between
reduced-order models of high-dimensional differential equation
systems and surrogate machine learning models has been ex-
plored. However, the focus of both existing reduced-order and
machine learning models for complex systems has been how to
best approximate the high fidelity model of choice. Due to high
complexity and often limited training data to derive reduced-
order or machine learning surrogate models, it is critical for
derived reduced-order models to have reliable uncertainty quan-
tification at the same time. In this paper, we propose such a novel
framework of Bayesian reduced-order models naturally equipped
with uncertainty quantification as it learns the distributions of the
parameters of the reduced-order models instead of their point
estimates. In particular, we develop learnable Bayesian proper
orthogonal decomposition (BayPOD) that learns the distributions
of both the POD projection bases and the mapping from the
system input parameters to the projected scores/coefficients so
that the learned BayPOD can help predict high-dimensional
systems dynamics/fields as quantities of interest in different se-
tups with reliable uncertainty estimates. The developed learnable
BayPOD inherits the capability of embedding physics constraints
when learning the POD-based surrogate reduced-order models,
a desirable feature when studying complex systems in science
and engineering applications where the available training data
are limited. Furthermore, the proposed BayPOD method is an
end-to-end solution, which unlike other surrogate-based methods,
does not require separate POD and machine learning steps. The
results from a real-world case study of the pressure field around
an airfoil have shown the potential of learnable BayPOD as a
new family of reduced-order models with reliable uncertainty
estimates.

Impact Statement—Surrogate machine learning models for
complex engineering and science systems have gained popularity
with the advancement of machine learning and data-driven
methods, where they can aid in the design or control of the
systems with a lower computational burden. However, most of
the existing methods either lack principled uncertainty estimation
capabilities or cannot effectively incorporate physical constraints
along the observations, which become even more important when
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the amount of available data is limited with respect to the system
complexity. In this work we introduce a method that tries to over-
come these limitations. The presented method is equipped with
uncertainty quantification and can embed physics constraints.
Our tests on two case studies have shown better prediction
accuracy with reliable uncertainty estimates compared with the
baseline reduced-order models. The method can also pave the
way for adaptive decision making and Bayesian experimental
design guided by reduced-order models incorporating scientific
principles.

Index Terms—Bayesian proper orthogonal decomposition, par-
tial differential equations, reduced-order model, uncertainty
quantification.

I. INTRODUCTION

ACHINE learning and artificial intelligence (ML/AI)

have been revolutionizing modeling and decision-
making in many real-world applications [14]. If generalizable
predictive models can be learned, typically from “big” data,
ML/AI can greatly help effective and efficient decision mak-
ing. However, when facing complex natural and engineered
systems, where available data of observations are small with
respect to the system complexity, deriving generalizable ML
models can be challenging. On the other hand, in applied
and computational mathematics, research in simulating high-
dimensional complex systems has been studied extensively
with rich knowledge in fundamental physics principles, such
as conservation laws and other governing equations. Nonethe-
less, it is often computationally expensive to simulate high-
dimensional systems dynamics, typically by solving the cor-
responding Ordinary or Partial Differential Equation Sys-
tems (ODE/PDEs). Many recent research efforts have been
made to develop ML methods to speed up computational
simulations based on differential equation systems.

For example, neural networks have been used as (black-box)
surrogates for physical systems [13], [17], and have recently
gained renewed interest [18], [25] due to widespread avail-
ability of more powerful computational resources. Physics-
informed neural networks (PINN) [18] represent one of such
models where the input to the neural network is the spatial
coordinates (and also time if time-dependent) and the out-
put is the predicted output field(s). In PINNs, the physics
principles are added via regularization terms in addition to
the reconstruction loss for training the surrogate to encourage
it to respect the underlying governing equations and the
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initial/boundary conditions with the help of automatic differen-
tiation. PINNs have been recently extended [23] by employing
Bayesian neural networks, i.e. placing a prior on the network
weights and calculating an approximate posterior, to have a
notion of uncertainty estimate. The Bayesian version of PINNs
can only use samples from the boundary conditions and not
full knowledge of it. Also, the experiments in [23] have shown
that the training of Bayesian PINNs can be challenging where
simpler variational approximations do not usually work and
they require the more computationally complex Hamiltonian
Monte Carlo approximation in order to result in satisfactory
performances. In [25], Bayesian convolutional neural networks
for image to image regression are used as a surrogate model
for flow through porous media. The approach taken there
lacks any specific mechanism to enforce boundary conditions.
All these methods lack an interpretable lower-dimensional
embedding, need retraining if boundary/initial conditions are
changed, and still require a quite significant amount of data
for training. Other works like [6], [11] assume that all the
underlying governing equations are fully known and utilize
them to train a neural network to imitate them.

In this paper, motivated by recent efforts to derive reduced-
order models to approximate the high-fidelity solutions of
differential equation systems by physics-based ML to embed
physics constraints [21], we leverage Bayesian learning to
develop a new framework of Bayesian reduced-order mod-
els (ROMs). Besides searching for reduced-order models that
best approximate the high-fidelity differential equation solu-
tions, Bayesian ROMs emphasize naturally-equipped uncer-
tainty quantification capability, which is critical when design-
ing and controlling complex systems in science and engineer-
ing often with little-to-no observed data, to enable reliable
estimates of prediction confidence for robust decision making.
Moreover, when learning reduced-order models of differential
equation systems, the underlying scientific principles can be
naturally incorporated as shown in [21].

There exist a wide variety of model reduction methods [7],
[9], [10], [15], [20] that search for the best low-dimensional
approximations of an underlying high-fidelity model, which
is typically a high-dimensional system of ordinary differential
equations or a system of equations stemming from the dis-
cretization of partial differential equations characterizing the
corresponding systems dynamics. In this paper, we focus on
reduced-order models based on the proper orthogonal decom-
position (POD) [3] as they are closely related to subspace
learning in ML/AIL In addition, the projection-based POD
can be derived with embedded physics constraints, including
system geometry, system configuration, initial conditions, and
boundary conditions [21]. In particular, we develop learnable
Bayesian POD (BayPOD). In BayPOD, we propose to simul-
taneously learn the distributions of both the POD projection
bases and the mapping from the system input parameters to
the projected scores/coefficients from “snapshots,” solutions
computed with the high-fidelity model for different inputs,
which can include both the settings for the parameters of the
high-fidelity or full-order model (FOM) and initial or boundary
conditions. BayPOD is different from existing machine learn-
ing methods, for example, probabilistic principal component

analysis [22], which aims at learning the distribution of latent
representations by deriving linear projection of training data.
Besides learning projection bases in a Bayesian framework,
BayPOD focuses on simultaneously deriving a mapping from
input parameters of the full-order model to latent projection
coefficients and it also involves embedding physics constraints
including initial/boundary conditions.

Figure 1 provides a schematic illustration of BayPOD,
which leverages the subspace learning and regression models
into one unified Bayesian learning framework to help reliably
predict high-dimensional systems dynamics/fields as quantities
of interest with significantly improved scalability and compu-
tational efficiency compared to the original high-dimensional
ODE/PDE solvers. As shown in the figure, BayPOD is trained
with snapshots generated/observed from the full-order model
for a set of input parameters, and can then be used to predict
the high-dimensional systems dynamics/fields for new input
settings. More critically, the learned BayPOD models, due to
its generative nature, can provide reliable uncertainty estimates
of predicted systems dynamics in different setups, which will
be the enabler of optimal and adaptive decision making when
studying and intervening complex systems of interest.

Compared to the existing reduced-order models, our Bay-
POD has the following advantages:

o Our framework provides a unified way for learning POD
basis and coefficients without resorting to multiple inde-
pendent steps, as originally implemented in [21].

« We can quantify the uncertainty about field prediction for
new inputs through posterior distributions.

« By incorporating prior distributions, the POD basis pa-
rameters are regularized to mitigate the impacts of high-
dimensional snapshots with small sample size.

o Flexible models, such as neural networks (NNs), can
be integrated for mapping from systems inputs to POD
coefficients when needed, using amortized variational
inference [12].

¢ Our BayPOD enables Bayesian experimental design with
reduced-order models based on scientific principles, in-
stead of “black-box” surrogate models.

The organization of the rest of the paper is as follows.
Section II briefly reviews the background of POD and its
machine learning extensions with physics constraints. Section
IIT presents BayPOD and the corresponding inference algo-
rithms. In Sections IV and V, case studies of predicting the
temperature field of a heated rod and the pressure field around
an airfoil are performed with both prediction and uncertainty
quantification performance evaluation. Finally, Section VI
concludes the paper.

II. BACKGROUND
A. Proper Orthogonal Decomposition (POD)

Consider a system that maps an input onto a physical field
such as pressure, temperature, stress, strain, etc. The physical
field is the quantity of interest that we aim to predict. Denote a
field as a function f : X X T xP — R, with the spatial domain
X, time domain 7, and input domain P. The field f varies in
space and time, and depends on the input of the system. Given
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Fig. 1: Schematic diagram of BayPOD at training and for prediction. Inputs can include settings for the parameters of the full (high-fidelity) model and initial

or boundary conditions.

the observed data D C {f(x,t;p)|lx € X,t € T,p € P},
we focus on learning approximate models f that respect the
underlying physical constraints of the system.

Proper orthogonal decomposition (POD) is one of the
most widely used model reduction methods which computes
an expansion basis that enables a low-dimensional repre-
sentation of the high-dimensional system state modeled by
ODE/PDEs [21]. The goal in this paper is to facilitate learn-
ing a model to predict the high-dimensional output fields
for new input settings of the corresponding high-fidelity
ODE/PDEs while respecting physical constraints in the POD-
based reduced-order model framework. Consider the field
f(-,t;p) at time ¢ € T and with input p € P. To calculate the
POD basis, we introduce the finite-dimensional approximation
f(t;p) € R™ of f(-,t;p), where n, is the dimension of
the finite-dimensional discretization of the spatial domain. The
approximate field f(¢;p) is referred to as a snapshot, and it
can be sensed data or a computational solution generated by
a numerical model. The POD basis is computed using many
such collected snapshots.

Let {f(ti;;p;)li =1,....,n¢,j = 1,...,n,} be the set of ng
nyn, snapshots at n, different time instances {t1,...,t,, } C T
and for n,, different inputs {p1, ..., pnp} C P. The POD bases
are then obtained by singular value decomposition (SVD) of
the snapshot matrix F' = [f(ti;pj)]m € R™ %" which
contains the snapshot vectors as its columns. More precisely,
the SVD can be written as

F=VYW,

where the columns of the matrices V' € R"=*"s and W €
R™s*"= are the left and right singular vectors of F', respec-
tively. The POD basis of dimension K , Vx = [v1, ..., k], is
then defined as the K left singular vectors of F' that correspond
to the K largest singular values, where K < n,.

B. Physical fields in the POD basis

After learning the POD basis from snapshot data, any field
f can be approximated by a linear expansion as:

K
ftip) =D vrak(t;p), (1)
k=1

where ay(t;p) is the POD expansion coefficients and f(¢; p)
is the approximation of the field f(-,¢;p) at time ¢ and
input p. The POD expansion coefficients can be calculated
as ai(t; p) = v f(t;p), for k € {1,..., K}.

The linear representation (1) provides a mechanism for
embedding physical constraints. An approach to embed phys-
ical constraints into POD representation is by considering an
alternative representation to (1) as:

K
ftp) =+ veaw(t;p), )
k=1

where f is a particular solution. The particular solution
can be dependent on time and/or input parameters of the
corresponding full-order models (ODE/PDEs). As an example,
the particular solution f is chosen to satisfy a particular set of
prescribed inhomogeneous boundary conditions and the POD
bases v are defined so that they satisfy homogeneous boundary
conditions.

C. Learning POD coefficients

The aim is to derive a function mapping from the input
parameters to POD coefficients to approximate the high-
dimensional field as the output of the full-order model for
new inputs. Recently, machine learning methods have been
employed to learn a surrogate model for the map o« : P — A
from inputs p € P to the POD coefficients a(p) € A,
where a(p) = [a1(p),...,ax(p)] and we assume inputs
p = [p1,...,pm] are m-dimensional system parameters [21],
which can additionally include time as well. For brevity of
notations, hereafter when referring to inputs for the map, time
can be one dimension of the input vector p. In the first step,
we collect the inputs corresponding to the snapshots in a
matrix P € R™*™ and their corresponding POD coefficients
in a matrix A € R"*X_ Note that the time-dependency of
coefficient parameters is captured through snapshots. Then,
input and output data are divided into training and test sets,
and the map a : P — A is learned from the training data by
applying supervised machine learning methods such as neural
networks, decision trees or k-nearest neighbors regression
model [21].
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Due to high complexity and the approximation gap in-
volved in the reduced-order model, principled (i.e. theoreti-
cally grounded, not ad hoc) uncertainty quantification for the
prediction of the output fields of the full-order model for new
input parameters becomes critical. Our proposed method in
the next section, which is grounded in Bayesian inference,
addresses this requirement.

III. BAYESIAN POD

In this section, we introduce our framework of Bayesian
reduced-order models, BayPOD, which simultaneously learns
the distributions of both POD projection bases and mapping
from system inputs to projection coefficients. BayPOD is a
Bayesian matrix factorization framework for simultaneously
learning POD bases together with the relationship between
input parameters and POD coefficients. The modeling of
mapping from inputs to coefficients can be flexible. In this
paper, we focus on linear parameter models (BayPOD-LM)
first and then extend it to neural network models (BayPOD-
NN) with amortized variational inference.

A. BayPOD — A Generative POD Model

We start by modeling the homogeneous field f in (1) using a
multivariate normal distribution. The framework can be readily
extended to (2) by adding the particular solution f.

Let fsm denote the field response for snapshot s €
{1,2,...,n,} at the spatial point = € {1,2,...,n,}. We model
this response as a normally-distributed random variable:

fsz ~ N(uzam 7;1)7 (3)
where u, = [Uuz1, ..., UzK] € R¥ is the K-dimensional POD
basis vector at position x and as = [agl,...,asx] € RE

represents the K POD coefficients for snapshot s. The variance
7,1 can be considered as the model uncertainty at posi-
tion x. In other words, the corresponding probability density
function (PDF) p(fez|ta, @s,72) = N(feasulag,ypt) =

7= exp [ — %’ym(fsm - ufas)ﬂ, following the commonly
used notations. In what follows, the random variables are
explicitly indicated on the left side of the punctuation mark
“” and the parameters or fixed variables are denoted on the
right side of “;” of the corresponding PDFs.

We place independent zero-mean normal priors on POD

basis and coefficients:

N(0, Ix),
a, ~ N(0,7,'Ik), ©))

U, ~

where Ix is the identity matrix, and 7, is the precision
parameter for . Note that K is the dimension of subspace
(POD bases/factors/principal components). Employing the pri-
ors in (4) has multiple benefits. First, by placing zero-mean
priors on u and o, we ensure that the marginal distribution of
f is zero mean, and thus physical constraints can be applied
through the particular solution. Second, normal priors enhance
the robustness of our model in the presence of small sample
size data, as they play a role similar to ridge regularization [8].
Finally, by using identity covariance matrix for POD basis
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w in the prior distribution, we aim to reduce the scale non-
identifiability of w from o in the model as f is related to uw
and « through their multiplication. To complete the model,
we place conjugate gamma distributions over the position and
coefficient precision parameters:

Yas Yz ~ Gamma(1, 1). 5)

1) Inference model: A primary goal of model reduction is
to predict the system response to new input parameters by
leveraging the learned basis vectors. We attain this goal by
introducing an inference (recognition) network, widely used
in variational inference literature [2], [12], [19], [24].

For variational inference, we introduce variational distri-
butions ¢(-) over model parameters as approximations for
intractable posterior distributions. For our Bayesian reduced-
order model, to simplify deriving the variational parameters,
we assume the following independence structure for varia-
tional distributions:

q(u,a,v) = q(u)g(a)q(7). (6)

To establish amortized inference of POD coefficients s for
s €{1,...,ns}, we define their variational distributions as

Q(as) = N(as;uw(ps)azw(ps))’ (7

where p,, and ¥, are the mean vector and covariance matrix
which take the form of some mapping with weights w from
input parameters p. Hence, for new input parameters p*, the
variational posterior mean ft,,(p*) can be considered as an
estimate of the POD coefficients.

Finally, to exploit the conjugate priors, we let the variational
posteriors for POD basis and precision parameters to be
normal and gamma distributions, respectively:

q(ux) = N(uaf; Mo, Em)v ()
Q('Yac) = Gamma(%% )\zv 1/Tw)a
q(Va) = Gamma(vyy;Aa,1/74).

To obtain the optimal variational parameters ® =
{1, 2,7, A\, 7,w}, our variational inference procedure min-
imizes the Kullback-Leibler (KL) divergence between the
variational posteriors and the true posteriors, or equivalently
maximizes the evidence lower bound (ELBO) of the marginal

log-likelihood log p(f) [11, [4]:
L(®|D = {f,,ps}i2,) =

p(f|u,a,7)p(u7a77>} < logp(f) v
q(u,a,7) a 7

where we have the conditional independence assumption for
p(f|U,a,’7) = Hs,xp(fsx‘ux7as>'7$)a and p(u,o,7y) =
p(u)p(ee|y)p(7y), with the corresponding components defined
in (4) and (5). Note that here, log p(f) denotes the marginal
log-likelihood of field responses, integrated over the param-
eter space. The variational distribution in the demonimator
q(u, c,7) is defined in equations (6) to (8), and Eq(y «,~)
denotes the expectation with respect to the variational distri-
butions ¢(u, a,=y). More specifically,
ns Ny

s=1x=1

Eq(u,am) [IOg
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= p(u)p(aly)p(y) =

H N(wy; 0, I'x)Gamma(~y,;1,1)
=1

H N(as; 0,7, ' Tx) Gamma(vya; 1, 1),
s=1

q(u, a,y) =

p(u, o, )

q(u)g(a)g(y) =

Ny
T N(was o,
x=1

Y.)Gamma(y,; Ay, 1/72)

1_1 N(as; Hw(ps)v Ew(ps)) Gamma(’Yoz; Aas 1/7'04)'

s=1
Below, we present the update equations for the variational
parameters.
a) Update u: Using the conjugacy property of normal
distributions, we can derive the closed form of variational
parameters for u, as follows:

Ns _1
(<’yw>z<asasT>+IK) ,

S, =
s=1
Mz = Ea:[<’7a:>z.f~sz<as>]7
s=1
<> = Ag/ra,
< Qs > = /Lw(p),
< asaz > = /J"w(ps)ll’w(ps)T + Ew(ps)a (10)

where < - > denotes expectation with respect to the variational
distributions.

b) Update ~: Similar to u, we exploit the conjugacy to
obtain the variational parameters for both v, and . For ~,,
we have:

Az = 14ng/2, (11)
1
_ r T 2
Ty = 1+§gz::1<(fsm_uxas) >,

where the expectations in the second line can be calculated
using the following equations:

<uy > s (12)
< umuz; > = IJ’ZL’IJ’z; + 35,
< azAas > = Nw(pS)TANw(ps) + tr(A¥w (ps))-

Similarly, for v,, we can update the variational distribution’s
parameters as:

K

Ay = 142 (13)
2

To = 1+1§S<aTa>

e} 9 vt s Xs .

Variational inference alternates the updates of these model
parameters (v and <), and parameters of the mapping (o)
by: logq(0;) oc Eg_s)[logp(D,0)], where 8 = {u,~v,a},
0; € 0 denotes the parameter of interest to update, and (—1)
indicates the set of all the remaining parameters over which the
expectation is taken with respect to the variational distribution,
and p(D, 0) is the joint density of data and model parameters.

The main implementation difference with different mappings
is to update o according to the model.

¢) Update o: To update the parameters of the mapping
from the inputs to the variational distribution, we optimize the
evidence lower-bound with respect to the parameters of ¢(c),
where the objective function can be expressed as:

Eq(a)a(wam {10% [INGawsul e, v;l)} -
Eqwiatn)| 26 KLIN(@: f(By): Sao(P0) [IN(ets; 0,95 i) ]|
(14)

L(w|D) =

where KL(p||lq) = [ p(z)log (zg dx denotes the Kullback-
Leibler (KL) divergence. Note here that the functional relation-
ships from the input parameters to the variational distribution
is through ft.,(p) and X, (p), which can be modeled flexibly
with different complexity levels to balance the model expres-
siveness and computational as well as sample complexity.
In this paper, we illustrate two implementation options with
simple linear models and non-parametric neural networks.

2) Bayesian POD with linear mappings (BayPOD-LM): In
the first scenario, we employ a linear mapping from the input
p to «, which we call BayPOD-LM, with

q(as) = N(as; paw (Ps); B (Ps)) = N(aws; Wps, Xa),
15)
where W € RE>™_Note that here, the mean in (7) is a linear
function of the input parameters and the covariance is shared
across different inputs. For BayPOD-LM, we can express (14)
by keeping only the terms depending on W and X, as:

Ns

n
L = <o >pLW Wp, + log|Sa 16
Z Yo > P! ps + 5 log[al  (16)
<
— Z VTl[pZWT < uzul > Wp,
+ tr(< ugul > %) = 2feupI WT < u, > 1,
where | - | is the determinant. We can calculate the gradients

of the objective function in (16) with respect to W and X, in
closed form. Hence, we have the following update equations
integrated into the inference procedure of general BayPOD:

a) Update a: To update the parameters of the linear
model which outputs a:

Ya =

—1
(Z<7z><u$u >+<’YQ>IK) , (A7)
W == Z<7x>fsm<uz>ps

(>_pspl)
S,T S

3) Bayesian POD with neural networks (BayPOD-NN): The
linearity assumption for the mean in (7) is potentially limiting
the model expressiveness. Therefore, as a more flexible model,
we let 1o, () and X, (+), i.e. the mean and covariance matrix
mapping, take the form of a neural network with weights w
and input parameters p. Neural networks have been widely
used as the inference model in amortized variational inference
[2], [12], [19], [24]. We denote this model with BayPOD-

NN. Note that here, both the mean and covariance matrix are
flexible functions of the input parameters. For BayPOD-NN,
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the corresponding inference procedure adopts the following
amortized variational inference to update o:

a) Update o: To update the parameters of the neural
network, which outputs the variational distribution over c,
we adopt the stochastic gradient variational Bayes (SGVB)
algorithm [12] to optimize (14).

The parameters of the mapping from the inputs to the varia-
tional distribution (i.e. w) and the other variational parameters
are alternately updated in the inference procedure.

IV. HEATED ROD EXAMPLE

The first case study considers predicting the evolution of
the temperature in a one-dimensional heated rod given time-
dependent boundary conditions. Our output quantity of interest
is the discretized temperature distribution along a rod of length
L. Having the initial conditions and the specified boundary
conditions, the evolution of the temperature field f over the rod
is governed by the heat equation with the diffusivity parameter,

K as an input:
o _ .0

ot ox? (18)

Kom?
The temperature field varies as a function of time and distance
along the rod. The initial condition and Dirichlet boundary
conditions are defined as f(x = 0,t) = 3sin(2t), f(x =
L,t) =3, f(z,t = 0) = 0, where we have a time-varying
boundary condition at the left end of the rod and a fixed
temperature value at the right end.

The input parameter vector for this example is p = [t, x],
and each snapshot is a discretized temperature field with n, =
200 that corresponds to a set of values for the input vector,
i.e. a fixed diffusivity and time point. Each entry in a snapshot
vector represents a spatial location along the rod.

Similar as in [21], we incorporate the constraints to satisfy
the (time-dependent) boundary conditions through a particular
solution f as in (2). For this, we can solve two auxiliary
problems, one with boundary conditions f(xz = 0,t) 0,
f(x = L,t) = 1 to get the steady-state solution fr(z),
and the other with boundary conditions f(x = 0,t) 1,
f(x = L,t) = 0 to get the steady-state solution fo(x). The
particular solution can then be defined as

f = 3sin(2t) fo(x) + 3fL(x).

By subtracting the particular solution that corresponds to a
snapshot from it, we get a modified snapshot with homo-
geneous boundary conditions. The different POD learning
methods are then applied to the modified (training) snapshots
to learn the reduced-order models and predict the temperature
field for the unseen (test) snapshots satisfying the homoge-
neous boundary conditions. Adding the corresponding partic-
ular solution to each snapshot prediction guarantees satisfying
the original inhomogeneous boundary conditions.

Snapshots are generated for six different diffusivity param-
eters k =[0.25, 0.35, 0.45, 0.55, 0.65, 0.75]. For solving the
heat equation, 628 equally spaced temporal points in [0, 27]
are used, and 157 time points are randomly selected for
snapshot generation. Overall, we have 942 snapshots (ns =
942) corresponding to the 6 diffusivity values (n, = 6) at 157

—~ I

19)

Method mean std min max
Polynomial Regression | 0.846 0.370 0.213  1.685
BayPOD-LM 0.847 0367 0.198  1.687
Neural Net Regression | 0.041 0.019 0.004 0.079
BayPOD-NN 0.030 0.017 0.003  0.067

TABLE I: Mean, standard deviation (std), minimum (min), and maximum
(max) of mean absolute errors on all the different testing snapshots by Poly-
nomial Regression, BayPOD-LM, Neural Network Regression, and BayPOD-
NN for the heated rod case study.

different time points (n; = 157). We solve the two auxiliary
problems to get fr(x) and fo(x) only once for K = 2.
Although this introduces an approximation, it does not affect
the enforcement of boundary conditions through the particular
solution and the homogeneous boundary conditions of the
modified snapshots.

For evaluating different methods, 31 of the generated snap-
shots are randomly selected and withheld from POD learning
as the test set. The competing methods are trained on the
remaining snapshots and make predictions for the withheld
test snapshots. We set the dimension of POD bases, K, to be
5, which is the lowest number that results in less than 1%
reconstruction error of the training snapshots by the classical
POD analysis.

A. Results and discussion

We test the performance of the proposed BayPOD-LM and
BayPOD-NN for this case study and compare them with the
original two-step approach using the corresponding polyno-
mial regression (quadratic) and neural network regression (NN
Regression) in [21]. In BayPOD-LM, the same polynomial
features that are utilized in the original two-step Polynomial
Regression approach are used to have quadratic regression and
the variational parameters are initialized with the correspond-
ing parameters from the original approach. In other words, in
BayPOD-LM, for each snapshot p = [k, t, tk, k%, %] as in the
original two-step Polynomial Regression to have a fair com-
parison. Both BayPOD-NN and the two-step NN Regression
employ the same NN architecture, having two hidden layers
each with 50 nodes and ReLU activation functions. BayPOD-
NN has outputs with the softplus activation for the covariance
of a (X4 (+)) in addition to the outputs for the mean of «
(f (+)) for uncertainty quantification.

We calculate the mean absolute prediction error of each
method for each test snapshot. The mean, standard deviation,
minimum, and maximum values of the mean absolute errors
of each method are provided in Table I. Moreover, four test
snapshots as representatives of the different patterns observed
in all the test snapshots, their corresponding predictions by
all the methods, and uncertainty estimates (as shaded regions)
from the proposed BayPOD methods are shown in Figure 2.

BayPOD-LM and the two-step Polynomial Regression have
virtually the same error statistics as shown in Table 1. In
Figure 2, we can see that models with the quadratic mapping
from the inputs to the projection coefficients, i.e. Polynomial
Regression and BayPOD-LM, have a relatively higher error
compared with the methods with a more flexible mapping
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Fig. 2: Four testing examples of comparing the actual temperature field snapshots and predictions from Polynomial Regression, BayPOD-LM, Neural Network
Regression, and BayPOD-NN.

using neural networks. One of the critical advantages of pared with the two-step Polynomial Regression. The estimated
BayPOD-LM is its uncertainty quantification capability com- 95% posterior confidence intervals by BayPOD-LM in Fig-
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ure 2 for the bottom three testing examples include the true
temperature values across many spatial points. Moreover, in
the top plot of Figure 2, although both BayPOD-LM and
Polynomial Regression have very large errors and the 95%
posterior confidence interval from BayPOD-LM is far from
the true values, we can see that the prediction uncertainty is
highly correlated with the prediction error over the length of
the rod.

Table I and Figure 2 clearly show the advantage of the more
flexible BayPOD-NN modeling compared with BayPOD-LM.
It is clear that BayPOD-NN can achieve significantly more
accurate predictions in addition to narrower and better uncer-
tainty estimates. Both BayPOD-NN and NN Regression out-
perform the corresponding linear parametrized models. From
Table I, we see that BayPOD-NN also performs better than the
two-step NN Regression in terms of the error statistics while
providing uncertainty quantification as shown in Figure 2.
We can see in all testing examples in Figure 2 that the
estimated 95% posterior confidence intervals by BayPOD-
NN contain the true temperature values in all the spatial
locations for the four depicted snapshots. The results of this
case study clearly show that BayPOD-NN is more accurate
than the deterministic two-step NN regression while providing
principled and accurate uncertainty estimates.

V. AIRFOIL EXAMPLE

This case study considers learning a Bayesian reduced-order
model for the prediction of the flow around an airfoil. The
learned model can predict the flow for new input settings with-
out running the full-order PDE solvers. Both the POD bases
and input mappings are trained using data generated from a
large-scale computational fluid dynamics (CFD) simulator for
the NACA 0012 airfoil [16].

The input parameters for this example are the freestream
Mach number, M, and the airfoil lift coefficient, ¢;. Our input
parameter vector is p = [M, ¢;] € R? . The output quantity of
interest is the pressure field around the airfoil, which varies
as a function of the input parameters. In this example, we use
the SU2 CFD tool suite, a multi-purpose open-source solver,
specifically developed for aerospace applications. SU2 uses
a finite volume method to discretize the underlying partial
differential equations. Here we use the Euler equations to
model the inviscid steady flow over the airfoil. We consider a
range of Mach numbers, spanning subsonic and transonic flow
regimes. Flow tangency boundary conditions are imposed on
the airfoil surface and the farfield boundary is approximately
20 chord lengths away from the airfoil.

SU2’s discretization of the pressure field has n, = 9027
degrees of freedom; that is, each SU2 pressure field solution
is a vector of dimension n, = 9027 , where each entry
corresponds to the predicted pressure at a different spatial
location in the computational domain.

We refer to each pressure field solution vector as a snap-
shot. Snapshots are generated by the CFD solver for the
NACA 0012 airfoil and a domain of Mach numbers from
M = 0.6 to M = 0.8 in increments of 0.01. At each
Mach number, the following seven lift coefficients are used:

¢ = [0.4,0.5,0.6,0.7,0.8,0.85,0.9]. This provides a total of
ns = 147 snapshots, where each snapshot is a high-fidelity
pressure field solution, represented as a high-dimensional
vector.

For evaluation, we withhold all data corresponding to a
single Mach number, train the models with the remaining data,
and test on the withheld data one sample at a time. We set
the dimension of POD bases, K, to be 20, which is the lowest
number that results in less than 1% reconstruction error of the
training snapshots by the classical POD analysis for all the
data splits.

A. Results of BayPOD-LM and discussion

Figure 3 illustrates the comparison of BayPOD-LM after
five iterations of updates with the original results using poly-
nomial regression (quadratic) in [21]. In this figure, for each
Mach number, the plots show the minimum, mean, and max-
imum of the mean absolute error (MAE) over the entire field,
across the seven lift coefficient values. Note that in BayPOD-
LM, we use polynomial combinations of the features with
degree less than or equal to 2 as in Polynomial Regression,
and initialize the variational parameters with the corresponding
parameters from the original two-step approach. We can see
from the figure that BayPOD-LM has a similar or slightly
better performance compared with the two-step Polynomial
Regression for the different Mach numbers.

For the case when the Mach number M = 0.7 and lift
coefficient ¢; = 0.7, Figure 4 shows the point-wise absolute
error of the field predictions. All pressure fields produced with
Mach 0.7 have been held out of the training set used by each
method for making the predictions. This figure again shows
that BayPOD-LM performs slightly better in terms of MAE.
Critically, the advantage of BayPOD-LM is its uncertainty
quantification capability. In Figure 5, the point-wise posterior
predictive standard deviation times two is illustrated, where the
regions with higher uncertainty are overlapping with some of
the regions with the highest MAE in Figure 4, demonstrating
the effectiveness of the uncertainty quantification capability of
BayPOD.

B. Results of BayPOD-NN and discussion

Next, we test the more flexible BayPOD-NN with the same
setup of this case study. We use a NN with two hidden layers,
each with 50 nodes and ReLLU activation functions, shared by
both fi,(+) and X, (+). The output layer for the mean inference
network does not have any activation while we use softplus
for the covariance network.

For direct comparison, we here illustrate the results with the
same Mach number M = 0.7 and lift coefficient ¢; = 0.7. The
point-wise absolute error of the field predictions by BayPOD-
NN and the posterior predictive standard deviation times two
as a measure of uncertainty are provided in Figure 6. We can
clearly see that BayPOD-NN improves upon BayPOD-LM.

Moreover, we compare BayPOD-NN with the original
Polynomial Regression approach and also Neural Network
Regression (NN Regression) in terms of the error statistics
over the entire field for the lift coefficients and the different
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Fig. 3: The minimum, mean, and maximum mean absolute error across lift coefficients for each Mach number by Polynomial Regression, BayPOD-LM,

Neural Network Regression, and BayPOD-NN for the airfoil case study.

Mach numbers, as shown in Figure 3(d). The figure depicts the
advantage of the more flexible BayPOD-NN modeling com-
pared with the linear model in BayPOD-LM in Figure 3(b),
where we see consistent improvement for all Mach numbers.

In Figure 3(c) and (d), the two-step NN Regression approach
and BayPOD-NN overall show comparable performance in
terms of the error statistics over the entire field for the lift
coefficients and different Mach numbers. The NN architecture
is the same for both NN Regression and BayPOD-NN (i.e. two
hidden layers with width 50), with BayPOD-NN having the ad-
ditional outputs corresponding to the covariance of a (X, (+)).
We can see that for smaller Mach numbers their error statistics
are virtually the same, while for a few of the mid-range Mach
numbers NN Regression has slightly better error statistics
and for larger Mach numbers BayPOD-NN performs better.
These results clearly show that BayPOD-NN is a flexible
unified approach for learning projection bases and coefficients
that does not lose accuracy compared with the deterministic
two-step NN Regression, while providing a mechanism for

principled input-dependent uncertainty estimates. It is worth
emphasizing that as opposed to the NN Regression approach
where NN are used as the regressor in the two-step procedure,
for BayPOD-NN, we are integrating NNs in the variational
distribution, where in addition to providing uncertainty esti-
mates, the structure of the model and the prior distributions
automatically impose inherent model regularization obviating
the need for additional fine-tuned regularization.

It is worth noting that BayPOD-NN does not have much
higher complexity than NN Regression at prediction/inference.
BayPOD-NN only requires one pass through the neural net-
work to get the variational parameters for the coefficients
(o) to reconstruct the homogeneous component of the field.
Furthermore, we have the additional benefit of having full
access to the posterior distribution of f. BayPOD-NN has
computation overhead during training. We have provided more
detailed discussions in the Appendix. Additionally, results
for another two-step baseline with fixed bases and a neu-
ral netwrork mapping from inputs to coefficients with MC
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Fig. 4: The error field produced by the deterministic polynomial regression
and our BayPOD predictions

Dropout [5] are included in the Appendix. The results show
that BayPOD-NN outperforms this baseline in terms of both
accuracy and uncertainty estimate.

VI. CONCLUSIONS

The critical contributions of developing learnable Bayesian
reduced-order models are to not only seek the best low-
dimensional subspace for approximating high-dimensional dy-
namics, but also allow uncertainty estimates by learning distri-
butions of reduced-order model parameters. By modeling both
projections and mappings from system inputs to projection
coefficients in one unified model with seamless integration
of Bayesian inference for both components, our experimental
results with the heated rod and airfoil examples clearly show

Uncertainty

Fig. 5: Uncertainty quantification map by visualizing twice of the posterior
predictive standard deviation from BayPOD-LM.

the advantages over non-Bayesian reduced-order models on
both prediction accuracy and uncertainty estimation of high-
dimensional system dynamics. With the developed BayPOD
framework, Bayesian experimental design guided by efficient
predictive models constrained by scientific principles can be
developed for science and engineering applications where
training data are difficult or costly to generate and the involved
decision making based on predictions can have significant
consequences, which are the main challenges in the recent
emerging scientific machine learning (SciML) research.
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APPENDIX A
Di1scUSSION ON COMPUTATIONAL COMPLEXITY

Here we discuss the complexity and run time of the
proposed methods in comparison with the baselines. Both
BayPOD-LM and BayPOD-NN have the same complexity and
run time as their respective baselines, Polynomial Regression
and Neural Network Regression, for prediction/inference. Dur-
ing inference for BayPOD-NN, only one pass of the neural
network is required to obtain the parameters of the basis coef-
ficients c. The estimated « is then leveraged to reconstruct the
homogeneous component of the field. Moreover, we have the
extra benefit of having full access to the posterior distribution
of f . Obtaining samples from the predictive distribution can
also be easily done by regular sampling from normal distribu-
tions without any additional run of the neural network.

The proposed methods involve additional computation dur-
ing training which increases training time. As mentioned in
the case studies in sections V and IV, we run BayPOD-
LM updates only for a few iterations after initializing the
parameters with regular regression, and since all the updates
are in closed forms, the overhead is negligible. For BayPOD-
NN, we observe that each iteration in training takes twice and
five times the iteration time of the baseline for the heated rod
and airfoil examples, respectively. As the iteration times are in
the order of thousandth or hundredth of a second, the overall
training time is reasonable and in the order of a few minutes.
The evolution of training error versus training iterations is
shown in Figure 7 for the heated rod example and one training
run of the airfoil case study.
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Fig. 7: Normalized training sum of squared errors (SSE) for BayPOD-NN
versus the training iteration

APPENDIX B
ADDITIONAL BASELINE FOR AIRFOIL EXAMPLE

In this section we provide results for an additional baseline
for the airfoil example, where Neural Network Regression is
combined with MC Dropout [5]. In particular, we add dropout
to the hidden layers of the neural network architecture used

for the map from inputs to the POD coefficients in Neural
Network Regression, where dropout is active both during
training and prediction. The dropout rates are tuned based on
the data. In this approach, the POD bases are learned first
and fixed as in Neural Network Regression, but the map from
inputs to coefficients can provide some form of uncertainty
estimate, albeit in a limited fashion. This is in contrast
to BayPOD-NN which learns the bases and the coefficient
mapping simultaneously in a principled probabilistic way. We
refer to this baseline as Neural Network Regression + MC
Dropout.
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Fig. 8: The minimum, mean, and maximum mean absolute error across lift
coefficients for each Mach number by Neural Network Regression + MC
Dropout

The field prediction error statistics across the lift coefficients
for each Mach number are shown in Figure 8. We can see from
the Figure and by comparing it to Figure 3 that for some of
the Mach numbers the error statistics across the different lift
coefficients are worse than BayPOD-NN and Neural Network
Regression. Moreover, in Figure 9, point-wise absolute error
of the field predictions and the predictive standard deviation
times two as a measure of uncertainty are shown for Mach
number M = 0.7 and lift coefficient ¢; = 0.7. The Figure
is directly comparable with Figure 6, which shows the same
results for BayPOD-NN. It is clear that the error of Neural
Network Regression + MC Dropout is somewhat larger than
BayPOD-NN and its uncertainty estimate is very wide, even
in locations with very small prediction errors.
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(a) Error field

Uncertainty

(b) Uncertainty map

Fig. 9: The prediction results by Neural Network Regression + MC Dropout
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