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Abstract 18 

Imperceptible wireless wearable devices are critical to advance digital medicine with the 19 

goal to capture clinical-grade biosignals continuously. Design of these systems is complex because 20 

of unique interdependent electromagnetic, mechanic and system level considerations that directly 21 

influence performance. Typically, approaches consider body location, related mechanical loads 22 

and desired sensing capabilities, however, design for real world application context is not 23 

formulated. Wireless power casting eliminates user interaction and the need to recharge batteries, 24 

however implementation is challenging because the use case influences performance. To facilitate 25 

a data-driven approach to design we demonstrate a method for personalized, context-aware 26 

antenna, rectifier and wireless electronics design that considers human behavioral patterns and 27 

physiology to optimize electromagnetic and mechanical features for best performance across an 28 

average day of the target user group.  Implementation of these methods result in devices that enable 29 

continuous recording of high-fidelity biosignals over weeks without the need for human 30 

interaction. 31 
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Introduction 35 

Progression towards digital medicine such as early automated diagnostics, personalized 36 

therapeutics, and individualized disease management are key developments that promise to 37 

modernize the way we diagnose and treat patients. However, progression is slow due to limitations 38 

in current wearable device systems (Heikenfeld et al., 2018; T. R. Ray et al., 2019; Stuart et al., 39 

2022, 2021). Conventional wearable devices exhibit several unfavorable characteristics, including 40 

poor data reliability (Cho et al., 2021), frequent user interaction (Mercer et al., 2016), and battery-41 

recharging requirements (Kekade et al., 2018), which prohibit device application with clinically 42 

relevant fidelity and fail to promote long-term user engagement needed for realization of the digital 43 

medicine concept (Stuart et al., 2022). Key to active disease prevention and treatment at home are 44 

wearables that enable continuous, 24/7 clinical data streams with unobtrusive hardware that is 45 

accepted by users, even in absence of immediate health issue (Fensli et al., 2008; Spagnolli et al., 46 

2015; Yin et al., 2022). Development of wearable devices aimed at addressing these shortcomings 47 

have focused on implementation of soft mechanical structures (Rogers et al., 2010; Dang et al., 48 

2020; Lim et al., 2020; T. Ray et al., 2019; Sunwoo et al., 2021) and wireless power transfer (WPT) 49 

(Shadid and Noghanian, 2018; Stuart et al., 2022, 2021), as well as energy harvesting from motion, 50 

heat and biofluids (Choi et al., 2017; Nozariasbmarz et al., 2020; Stuart et al., 2022, 2021; Xu et 51 

al., 2021; Zou et al., 2021) to provide skin like mechanics and eliminate the need for bulky battery 52 

supplies and user interaction, respectively (Kim et al., 2017, 2015; Krishnan et al., 2018; Rahman 53 

et al., 2022; Stuart et al., 2021). Among these device-powering modalities, magnetic resonance 54 

coupling (MRC) is the most popular in use for wearable devices due to its established 55 

infrastructure, high power transfer efficiency and compatibility with established near-field 56 

communication protocols and enabled devices (Stuart et al., 2021; Yu et al., 2019). However, 57 

operational constraints of MRC limit device function to sedentary or noncontinuous scenarios. 58 

More recently, implementation of far-field power casting has been demonstrated as a viable 59 

approach with introduction of soft materials schemes leveraging extended operational ranges of 60 

up to 2 meters (Huang et al., 2016; Stuart et al., 2021). Despite its extended functional range, 61 

adoption of far-field power casting has been hindered due to poor efficiency resulting from large 62 
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casting volumes (Xia and Aissa, 2015; Yedavalli et al., 2017), interference with surrounding materials 63 

(Dobkin, 2012), and spatial alignment requirements of the antenna structures (Huang et al., 2016). 64 

Methods such as beam-steering (Eid et al., 2021; Lee et al., 2019; Shuai et al., 2021) and 65 

deployment of antenna arrays (Sun et al., 2008; Tong and Geyi, 2016) have aimed to address these 66 

hurdles, but are limited in application due to cost, energy consumption, and large volume occupied 67 

by casting infrastructure. 68 

To enable wearable devices that are almost imperceptible and deliver clinical-grade 69 

biosignals continuously without user burden, schemes to enable far-field power casting are critical. 70 

In current electromagnetic designs, environmental factors, distance to power casting units, worn 71 

antenna gain radiation pattern, and physiological characteristics of the intended wearer are 72 

considered. However, a critical parameter that is often neglected is human behavior and variance 73 

thereof, because information has been traditionally hard to quantify. Specifically, for far-field 74 

power casting systems, precise and statistically relevant characterization of the application 75 

scenario and full system optimization are critical to enable next generation wearables. Recent 76 

Fig. 1 Behaviorally Driven Antenna Design for Continuously Wearable Biosymbiotic Devices: Schematically 

illustrated working principle showing behavioral pattern identification and subsequent antenna design for 

collection of uninterrupted, high-fidelity data streams. 
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developments in automated behavioral analysis based on neural nets paired with advances in 3D 77 

printed wearable device creation allow for highly personalized and application-specific designs 78 

that are completely digitally designed and manufactured. This emerging design paradigm enables 79 

data-driven and highly optimized solutions for several applications. 80 

Materials and Methods 81 

Detailed descriptions of the methods and system used in these experiments can be found 82 

in the Methods section. This includes information on device fabrication and characterization, 83 

behavioral data collection and analysis, mechanical and electromagnetic finite element analysis, 84 

and long-term experimental procedures. 85 

Results and Discussion 86 

Data-Driven and Context-aware Digital Rectenna and System Design 87 

In this work we introduce the concept to utilize behavioral analysis for optimized antenna 88 

and rectifier designs. This approach facilitates optimized wireless powering solutions with tailored 89 

mechanics to realize personalized wearables for the indefinite collection of high-fidelity biosignals 90 

(Fig. 1). To achieve this, we employ deep neural net analysis of a cohort of subjects in application 91 

scenarios, such as office work with an active lifestyle, which can be analyzed to extract 92 

characteristic parameters such as orientation, distance, angular offset, and relative spatial location 93 

to the power casting devices with statistical significance. These parameters are critical in 94 

determining electromagnetic characteristics of antennas and rectifiers to create context-aware 95 

designs that tune key parameters, such as impedance of these components to achieve optimum 96 

system performance. This information, paired with digital manufacturing techniques (Stuart et al., 97 

2021), enables creation of personalized rectennas that are realized through fusion deposition 98 

modeling (FDM) printing according to the specifications obtained from behavioral observations. 99 

This concept improves far-field power casting for wearable sensing devices, allowing robust 100 

device operation without the need for large energy storage or restrictions to user mobility. The 101 

system design process enables deployment of wearable sensor systems that can collect 102 

uninterrupted steams of high-fidelity biosignals over multiple weeks without the need for user 103 

interaction. This can be achieved through powering using consistent wireless energy influx, which 104 

theoretically enables years of use without user hardware interaction.  105 

 106 
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Human Behavioral Studies 107 

Human behavioral patterns can be exploited in rectenna (rectifier and antenna) design to 108 

optimize average power casting efficiency by tailoring to most statistically relevant scenarios of 109 

use. Deep neural net enabled video analysis typically used in neuroscience research (Wei and 110 

Kording, 2018) can be employed to capture a large majority of the modern workforce behavior, 111 

which includes prolonged hours of desk work, offering settings with potential to cast energy to 112 

power wearable sensing devices. The process to acquire behavior from a cohort of test subjects 113 

(n=10) is described schematically in Fig. 2A and begins with video collection of subject activity. 114 

Relevant physiological features, including the head, shoulders, and hands are labeled manually to 115 

train a deep neural network model (Mathis et al., 2018), enabling feature extraction as described 116 

in the Methods section. 117 

Resulting location scatterplots of head, shoulders, and hands are shown for two subjects in 118 

Fig. 2B and represent 8 hours of office work. Prior to data collection, participants are instructed to 119 

position the power caster and given a brief information on its function. A dummy wearable is 120 

placed on the right, proximal region of the arm of the participants. After collection, characteristics 121 

such as distance to the power caster and angular offset are subsequently computed (see Methods 122 

section). Resulting data for the cohort, shown in Fig. 2C and 2D, represent insight for localization 123 

parameters relevant for rectenna design. Fig. 2C shows the average of wearable to power casting 124 

system distance with a 95% confidence interval (shaded red). An average distance of 60.13 cm 125 

with a standard deviation of 20.30 cm is computed. This distribution is skewed towards shorter 126 

distance, showing a median value of 55.38 cm. Fig. 2D shows the average distribution of the 127 

orientation angle of the wearable to the power caster with an average of 54.09 degrees and a 128 

standard deviation of 26.73 degrees (confidence interval shaded blue).  129 

For an office worker, a prolonged period of stationary behavior (86.4%) (Pollard et al., 130 

2022) is recorded in literature. In our cohort, subject occupancy during the 8-hour experiments is 131 

defined as time spent within 150 cm of the transmitter. Fig. 2E demonstrates this feature extraction 132 

for one participant, with data indicating 7.12 hours spent within 150 cm of the transmitter, which 133 

accounts for 89.9% stationary time during the experiment. Across the cohort, an average of 72.68% 134 

of the day spent in the test location (standard deviation = 10.57%) and average occupancy time of 135 

5.81 hours (standard deviation = 0.84 hours) is recorded (see Fig. 2F). Domain occupancy, when  136 
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paired with spatial location information, provides the fundamental framework for optimizing 137 

rectenna design for optimized energy harvesting.  138 

A realistic estimation of power transfer to the device is shown in Fig. 2G for an ideal 139 

isotropic (0 dBi gain) antenna receiver as a function of distance to the power casting transmitter 140 

(see Methods section). The complex field behavior in the radiating near-field region of the 141 

transmitter cannot be adequately approximated using the classical Friis equation, which is only 142 

valid in the far-field. Therefore, the near-field power density distribution of a transmitter antenna 143 

with 3W EIRP and a similar size as the power caster is obtained from full-wave simulations (see 144 

Methods section). For the average distance of 60.13 cm obtained by the behavioral analysis, a 145 

power of 4.59 mW could be harvested as estimated under ideal conditions. To provide the best 146 

possible rectenna and wearable system design, the scenario specific information can be used to 147 

create hardware optimized to match the statistical average user. This is achieved through matching 148 

antenna, rectifier, load impedance, and spatial placement in the mesh based on angular statistics 149 

derived from behavioral data (see Fig. S1 and Fig. S2). 150 
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 151 

Fig. 2 Human Behavior Collection and Analysis: A) Illustration showing working principle of human behavior 

capture and analysis to drive antenna design. B) Parameter extraction from 2 participants showing heat mapped 

location of relevant physiological markers and subsequent distribution of key parameters, namely distance from 

the power caster (red) and angle offset from the power caster (blue). C) Distribution of distance from of the right 

shoulder to the power caster for individuals in an office setting (n=10) with 95% confidence interval (shaded red). 

D) Distribution of angle from of the right shoulder to the power caster for individuals in an office setting (n=10) 

with 95% confidence interval (shaded blue). E) Plot showing occupancy time of subject in the office space. F) 

Plots showing percentage of time during a workday occupying office space (red) and time spent in the office space 

(blue). G) Graph showing the maximum power received as a function of distance by an ideal isotropic antenna 

under power caster illumination (3W EIRP RF power), as obtained from full-wave electromagnetic simulations. 
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Context-aware Rectenna design 152 

To make use of design considerations extracted from behavioral data, system level 153 

requirements for energy consumption, operational voltage and peak current requirements must also 154 

be considered. Fig. 3A shows an example of transient power requirements for a biosymbiotic 155 

wearable device that features a Bluetooth Low-Energy (BLE) system on a chip (SoC) and a variety 156 

of biosensors. Using increasing polling intervals for the sensors, power requirements can vary 157 

substantially, resulting in an average equivalent system load between 1-7 kΩ (see Fig 3A inset). 158 

Because devices include a small energy storage (either small battery or supercapacitor), average 159 

load is determined by sensor configuration and polling intervals for the biomedical application. 160 

Pairing this information with behavioral information, power casting systems can be optimized to 161 

deliver optimal power.  162 

For the wearable configuration used in this work, a two-stage Dickson rectifier circuit is 163 

adopted (as shown in Fig. 3B) based on the operational parameters illustrated in Fig. 3A. To 164 

maximize WPT from the power caster to the rectifier circuit, complex conjugate matching is 165 

required between the antenna and the rectifier circuit. Input impedance of the rectifier circuit in its 166 

common operation modes (1 kΩ and 7 kΩ) is used to design the antenna. The input impedance of 167 

the rectifier circuit significantly depends on: 1) the available distance-dependent RF power level 168 

(shown in Fig. 2G), 2) the system load (shown in Fig. 3A), and 3) the diode specifications (BAT24-169 

02LS, Infineon). The simulated input impedances of the rectifier circuit for the two extreme 170 

loading cases are compared in Fig. 3C, which shows real and imaginary part of the rectifier 171 

impedance as a function of distance from the transmitter. From 0 to 1.5 m the rectifier impedance 172 

changes steadily for both loads of 1 kΩ and 7 kΩ. The antenna can only be optimized to match a 173 

particular rectifier circuit input impedance; therefore, it is critical to select the impedance to be 174 

matched for power transfer efficiency over the distance range acquired from behavioral analysis.  175 

To provide radiation patterns fitting the behavioral analysis, as well as to satisfy 176 

mechanical and wearability considerations, a planar antenna design is selected. Specifically, a 177 

planar inverted-F antenna (PIFA), which encompasses shorting pins, a feed point, and a dielectric 178 

insulating layer that separates the ground and a quarter-wave (shorted) resonant patch on the top 179 

surface. The device structure shown in Fig. 3D utilizes a digital design and manufacturing process 180 

(3D FDM printing) to achieve a customizable PIFA structure with flexible mechanics. The PIFA 181 
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structure is comprised of multiple layers of conductive and insulating dielectrics embedded into 182 

3D printed thermoplastic polyurethane (TPU) (εTPU = 3.3, tan δ = 0.09, see Methods). The ground 183 

plane is comprised of a laser-structured copper-clad polyimide (Pyralux AG185018RY, Dupont) 184 

(details in the Methods section) and is spaced from the resonating plane with a 3D pillar structure 185 

designed to support the resonating plane with minimal dielectric loss while utilizing soft materials 186 

that can be structured into almost imperceptible designs. The laser-structured resonating plane is 187 

also encapsulated in a top layer of TPU to provide protection during everyday wear. Stretchable 188 

curvilinear 3D stretchable connections (C3Cs) link the resonant top patch and ground (Fig. 3D-E). 189 

A similar C3C structure is used to guide the feedline of the antenna into the rectifier circuit (Fig. 190 

3E). Further details on material composition and device design can be found in Fig. S1. 191 

Optimization of impedance and mechanics is accomplished with modulation of the serpentine 192 

mesh arc angle, defining the ground and radiation plane, and location of C3Cs (see Fig. S1). 193 

Combined with a matched rectifier, a maximum power point (MPP) tailored to operational distance 194 

and system load is accomplished. Two antennas are individually optimized for the representative 195 

rectifier input impedance values of 1 kΩ and 7 kΩ. The corresponding rectifier performance is 196 

shown in Fig. 3F, output voltage and power are simulated at a 50 cm distance from the power 197 

casting unit and displayed against system load matching the designed 1 and 7 kΩ (MPP) target. 198 

The 7 kΩ matched antenna design provides a higher output power over a broader range with an 199 

output of ~3.4 mW over a range of 5-10 kΩ system load, enabling flexibility in firmware design 200 

and current limitation for battery recharge schemes. 201 

Based on behavioral analysis in Fig. 2C, operation at 40-80 cm from the power casting unit 202 

with an estimated system load of 7 kΩ is chosen for optimization. The resulting rectenna 203 

performance is shown in Fig. 3G-I, with further details in Fig. S3. Fig. 3G shows load sweep data 204 

for the rectenna at 0.5 m from the transmitter. The results measured in an anechoic chamber 205 

(Reference) environment achieve a good agreement with the corresponding results simulated in 206 

free space. It is important to note is that application performance can vary depending on 207 

environment through variation of casting angle, multipath effects (see Fig. S4) or shadowing from 208 

the human body (see Methods section). Fig. 3H shows power output of the device as a function of 209 

distance from the transmitter. Similarly, simulations offer a good prediction of performance in the 210 

anechoic environment, with performance discrepancies in the application scenario arising from the 211 
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use of commercially available power casting systems that feature higher gain transmission 212 

antennas (see Fig. S4). Fig. 3I shows rotational axis performance of the antenna structure in free 213 

space. Variations in performance about the yaw and pitch axis match simulated and recorded data, 214 

while corresponding data for the roll axis show discrepancies due to limitations on experimental 215 

set up. Results from these experiments show that design choices extracted from system level and 216 

behavioral information can be integrated into the digital design process to produce an antenna 217 

structure and orientation that can be carefully engineered in a simulated environment to yield 218 

rectennas that performs well over a broad range of application environments and scenarios (See 219 

Fig. S2 and Fig. S5). If application scenarios demand a larger angle of power harvesting, behavioral 220 

data can be consulted to design dual rectenna devices that enable bidirectional or nearly 221 

omnidirectional WPT with improved performance at the cost of increased system complexity and 222 

electronics footprint (See Fig. S2). 223 
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  224 

Fig. 3 Context-aware designed antenna performance: A) Plotting showing time-dependent system load with 

varying sampling rates. The bar graph shows the resulting average power consumption. B) Schematic showing 

Dickson circuit used for matching and rectification. C) Real and imaginary antenna impedances for two load 

values at increasing distances. D) Rendering showing constituent layers of the personalized on-body PIFA 

structure. E) Image showing 3D printed PIFA structure, highlighting ramps and shorting strips used to connect the 

resonating plane to the ground plane. F) Voltage and power curves of two antenna structures showing modulation 

of maximum power point of the system. G) Simulated and recorded values for load sweeps of the rectenna system 

at 0.5 m. H) Simulated and recorded voltage output as a function of distance from the transmitter for the 7 kΩ load 

design. I) Plot of simulated and recorded PIFA rectenna performance as a function of angular rotation along each 

x,y, and z axis in free space. 
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Mechanical Design and Fabrication 225 

Integration of the 3D printed on-body antenna into a biosymbiotic wearable devices is 226 

carried out using design strategies and manufacturing schemes previously described in Stuart et 227 

al. (Stuart et al., 2021). The fabrication schemes enable tailoring of electromagnetics and 228 

mechanics for context-aware antenna design and allow for precise positioning of the antenna and 229 

personalized fit for the wearer, even on highly mobile regions of the body such as the shoulder 230 

(See Fig. S2 and Fig. S6) (Stuart et al., 2021). Important considerations are wearability and comfort 231 

that enables uninterrupted use over weeks.  Fig. 4A details this process, where the personalized 232 

PIFA is integrated in biosymbiotic electronics using 3D data from scans of the user. Devices are 233 

manufactured using FDM printing with details presented in the Methods section and Fig. S7. Key 234 

to the realization of the on-body PIFA with relatively lossy TPU, which is incurred to enable 235 

mechanical structures that serve overall system performance goals, is the use of 3D printed pillar 236 

structures to support the resonating plane of the antenna above the ground plane (see Fig. 4B) with 237 

a minimum amount of material. Modulation of pillar density, as seen in Fig. S8, enables complex 238 

features that would not be obtainable with conventional fabrication techniques. 239 

The structural makeup of the pillar drives both mechanical and electromagnetic 240 

performance of the antenna, with tradeoffs between mechanical stiffness and effective permittivity 241 

of the insulating layer. Fig. 4C shows results simulated at 915 MHz for the effective relative 242 

permittivity of the layer separating radiation and ground plane with increasing pillar density. As 243 

the amount of material decreases, the effective permittivity and correspondingly the effective 244 

dielectric constant loss decrease. Therefore, from the point of view of electromagnetic radiation, 245 

lower pillar density is preferred because of lower dielectric loss; however, limitations of the 246 

fabrication process result in a 10% pillar density limit required for structural integrity. 247 

Additionally, mechanical considerations for practical applications limit stiffness and therefore 248 

pillar density due to external forces such as compression from clothing, that can cause variation in 249 

antenna performance (see Fig. S9). Fig. 4D shows the force required for structural deformation of 250 

the antenna with 15, 25, and 50% pillar density over increasing applied force (see Methods 251 

section). Pillar collapse occurs with as little as 5N, which in turn detunes the antenna resulting in 252 

reduced power output. For our design a pillar density 16% was used, which together with the PIFA 253 
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antenna is electromagnetically robust and presents a good compromise between antenna 254 

performance and robustness in real life scenarios.  255 

In addition to antenna compression, lateral deformation in integrated mesh structures must 256 

also be considered in the design and implementation of the final device. Fig. 4E shows finite-257 

element-analysis (FEA) of a mesh structure with embedded PIFA oriented along the X axis (results 258 

with the PIFA oriented in the Y axis can be found in Fig. S10). In the FEA models, system strain, 259 

which is applied to the mesh housing the antenna, is primarily distributed within peripheral linear 260 

structure, which yields minor deformation in the antenna structure when strained to 30% 261 

displacement. It is important to note limitations of the analysis with large deformation of 262 

elastomeric material that result in edge effects seen in Fig. S10, which may not be present in an 263 

integration in a wearable. In either orientation, the placement of the antenna structure demonstrates 264 

minimal effect on the mechanical properties of the system (as shown in Fig. S10). Minor 265 

deformations in the ground plane result in minimal effect on electromagnetic properties, as shown 266 

in Fig. 4F. In the most extreme case, power output of the antenna is reduced by 2.3%. The scenarios 267 

covered in this figure demonstrate the worst-case scenario for wearable applications such as 268 

placement on highly mobile locations such as the elbow (30% strain) (Sun et al., 2018; Stuart et 269 

al., 2021). During normal daily activity, the strain experienced by the device has no measurable 270 

impact on the performance of the system, as detailed in cyclic strain tests (100k cycles) Fig. S11. 271 
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 272 

Long-term Data Acquisition Without User Interaction 273 

With concepts introduced here, significant power transfer to the wearable is expected, 274 

enabling continuous operation and multimodal high-fidelity recording of biosignals. To 275 

demonstrate this capability, a system with BLE SoC, multimodal sensors, context-aware antenna 276 

designs, and soft mechanics is created (see Fig. S1). Fig. 5A-B shows device composition, 277 

simplified electrical schematic, image of the device located on the proximal region of the upper 278 

arm, and images of sensing nodes with corresponding characteristic performance graphs. The 279 

Fig. 4 Mechanical Considerations for Personalized Antenna Structures: A) Illustration showing mechanical 

design process that utilizes behavioral analysis and digital design to form location and mechanical optimization of 

personalized biosymbiotic devices. B) Photo of 3D printed pillar structure used to support the resonating plane 

from the ground plane. C) Plot of effective permittivity of the insulating layers as a function of 3D printed pillar 

density. D) Plot of compression force needed to collapse pillar structure with varying pillar density. E) FEA of 

PIFA embedded into mesh design in a horizontal orientation. F) Change in power as a function of strain applied 

on the system for PIFA embedded in various orientations. 
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device features the PIFA and associated rectifiers introduced in Fig. 3. Power from the rectification 280 

circuit is sent to a power management IC, which includes maximum power point tracking (MPPT) 281 

control. A small (9 mm x 9 mm) battery (25 mAh) is used to provide power to the device during 282 

operation outside of the power casting area. A BLE SoC controls peripheral sensors and relays 283 

collected data via a 2.45 GHz antenna (see methods section). This device hosts multimodal sensing 284 

capabilities including a sub millikelvin resolution temperature sensor, a 3D-printed circumferential 285 

strain gauge, and a relative humidity sensor. Each sensor utilizes commercially available 286 

components integrated on rigid islands of no more than 6 mm in diameter to enable system level 287 

soft mechanics (Stuart et al., 2021), and is connected using serpentine interconnects placed at 288 

physiologically relevant locations extracted from the 3D data as detailed in Fig. 4A. Sensor 289 

performance, which benefits from conformal and circumferential attachment to the body is 290 

characterized with simple experiments analog to our previous work (Stuart et al., 2021). In the 291 

graphs shown in Fig. S12-S14, red shaded area shows biceps contraction, exercise induced 292 

temperature and humidity changes with characteristic performance of muscle strain sensors 293 

(7.14x10-4 %Strain/Ω), thermography sensors (2.12 K/V) and skin humidity (33.9 %RH/V). The 294 

sensors show robust operation and the ability to detect small changes in physiological signals 295 

independent of changes to ambient conditions (see Fig. S15) 296 

To demonstrate long-term, uninterrupted operation capabilities of the device a 14-day 297 

experiment is performed. The device was deployed on the proximal region of the bicep for 298 

imperceptible use with several types of daily outfits including summer wear such as tank tops and 299 

t-shirts, as well as winter wear such as thick jackets and sweatshirts that showed a negligible effect 300 

(± 4%) on WPT efficiency (see Fig. S16). No effects on the underlying epidermis, such as irritation, 301 

are observed (see Fig. S17).  Data is summarized in Fig. 5C showing continuously captured raw 302 

data over 2 weeks. During the test, the device is only recharged when in proximity of a power 303 

caster located at the work location on the desk, as outlined in the behavioral analysis section. 304 

Battery voltage is monitored at regular intervals, with regions shaded in green indicating proximity 305 

to a power casting unit. Recorded battery voltage never falls below 3.49 V during the experiment, 306 

demonstrating robust operation without reliance on human interaction for recharging. Operation 307 
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with a constant sensing duty cycle of 10 Hz is constant throughout the entirety of the test with only 308 

10 instances of data drop out (indicated with a red dot) over 2 weeks of operation. This data dropout 309 

Fig. 5 Long-term System Demonstration and Performance: A) Image showing biosymbiotic device used for 

long-term collection of biodata with sensors highlighted. B) Simplified electronic circuit schematic showing 

composition of biosymbiotic device. C) Data collected from 14-day experiment showing collection of sampling 

rate (top graph), battery voltage (middle graph), temperature (red), humidity (blue), strain (black), and 

corresponding continuous wavelet transform. D) Image of device operation in an office setting. E) Plot of 4 hours 

of data collected during office occupancy, showing passive battery recharge over time with continuously collection 

of temperature, humidity, and strain. 
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primarily occurs during periods of sleep or intense daily activity, with a mean dropout time of 79.5 310 

seconds and a median time of 49 seconds (See Fig. S18). The total sample time lost is 15 minutes, 311 

equating to a loss of 0.06% of total data during the experimental period.  Strain data is visualized 312 

in the frequency domain using a continuous wavelet transform to show periods of increased bicep 313 

contraction frequency, matching periods of physical exercise (shaded red). Similarly, incidences 314 

of increased activity overlap with increases in humidity, showing the capability to monitor 315 

perspiration.  Device usage in a typical office setting is shown in Fig. 5D with transmitter located 316 

approximately 50 cm from the device.  The corresponding data shown in Fig. 5E highlights a 317 

charging period where battery voltage is increased by 100 mV in ~ 3h at the desk corresponding 318 

to a charge rate of 2.2 mW (average system power consumption of 2.15 mW, resulting in 4.35 mW 319 

of average power transfer to the wearable). Fig. S19 shows device operation in a gym setting with 320 

the subject performing a bicep curl. Corresponding data also displayed in Fig. S19, which shows 321 

2 hours of data before, during, and after the training session, demonstrating the capability to record 322 

high-fidelity biosignals in highly air-conditioned environments with high amount of air movement. 323 

In this graph, a steady increase in body temperature is observed during the period of activity, 324 

correlating with an increase in localized humidity. Additionally, continuous activity of bicep strain 325 

is observed (6 contractions/min), with periods of increased frequency (50 contractions/min) 326 

denoting exercises that specifically target that muscle group. 327 

Conclusion 328 

Development of wearable devices intended for continuous recording on the body such as 329 

digital medicine applications still grapple with user acceptance and face many technological 330 

hurdles that impede performance, impacting their use as diagnostic and therapeutic tools. One of 331 

the most challenging aspects is user retention of wearable devices, which only have an average use 332 

time of 12 months (Lazar et al., 2015; Ledger and McCaffrey, 2014; Maher et al., 2017; Stuart et 333 

al., 2022). Imperceptible devices that eliminate recharging and interaction requirements with 334 

wearable technologies are core to advance digital medicine applications. 335 

Accomplishing advances electromagnetically and mechanically is highly complex because 336 

performance gains in one area likely impact others. Critical is balanced system level performance 337 

to enable operation over weeks and months without impacting daily activities. The framework 338 

introduced here using behavioral analysis and digital manufacturing techniques to enable context-339 
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aware antenna and rectifier designs to optimize power transfer with an on-body antenna to enable 340 

indefinite device operation. The resulting system level insight provides a performance envelope 341 

that takes electromagnetic, mechanical, and sensing performance into account to deliver a balanced 342 

data-driven design approach with context-aware solutions to enable indefinitely operating 343 

wearables. 344 

Deployment of these design strategies for on-body antennas also introduces a methodology 345 

to assist in development of antennas, rectifiers and systems for wireless devices that is transferrable 346 

to contexts other than wearables and applies to many scenarios that involve technologies used in 347 

proximity or by human subjects. For example, context-aware designs can aid WPT design for 348 

human interfaces such as wireless mice, keyboards, game controllers, headphones etc. and other 349 

wearables such as wrist mounted fitness devices.  350 
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