Check for
Updates

Passport: Improving Automated Formal Verification Using Identifiers

ALEX SANCHEZ-STERN™, University of Massachusetts Amherst, USA
EMILY FIRST?, University of Massachusetts Amherst, USA

TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA
ZHANNA KAUFMAN, University of Massachusetts Amherst, USA
YURIY BRUN, University of Massachusetts Amherst, USA

TALIA RINGER, University of Illinois Urbana-Champaign, USA

Formally verifying system properties is one of the most effective ways of improving system quality, but its high manual effort
requirements often render it prohibitively expensive. Tools that automate formal verification by learning from proof corpora
to synthesize proofs have just begun to show their promise. These tools are effective because of the richness of the data the
proof corpora contain. This richness comes from the stylistic conventions followed by communities of proof developers,
together with the powerful logical systems beneath proof assistants. However, this richness remains underexploited, with
most work thus far focusing on architecture rather than on how to make the most of the proof data. This paper systematically
explores how to most effectively exploit one aspect of that proof data: identifiers.

We develop the Passport approach, a method for enriching the predictive Coq model used by an existing proof-synthesis
tool with three new encoding mechanisms for identifiers: category vocabulary indexing, subword sequence modeling, and
path elaboration. We evaluate our approach’s enrichment effect on three existing base tools: ASTactic, Tac, and Tok. In
head-to-head comparisons, Passport automatically proves 29% more theorems than the best-performing of these base tools.
Combining the three tools enhanced by the Passport approach automatically proves 38% more theorems than combining the
three base tools. Finally, together, these base tools and their enhanced versions prove 45% more theorems than the combined
base tools. Overall, our findings suggest that modeling identifiers can play a significant role in improving proof synthesis,
leading to higher-quality software.

Additional Key Words and Phrases: proof assistants, proof engineering, proof synthesis, machine learning

1 INTRODUCTION

Verifying software with proof assistants gives engineers the potential to prove the absence of costly and possibly
dangerous bugs, leading toward more reliable software systems. Teams of specialized experts have already realized
this potential for large and critical systems, such as operating system microkernels [Klein et al. 2009], distributed
systems [Wilcox et al. 2015], and compilers [Leroy 2009], among hundreds of other formally verified software
systems [Ringer et al. 2019]. These advances have already had significant impact on industry. For example, Airbus
France uses the CompCert [Leroy 2009] C compiler to ensure safety and improve performance [Souyris 2014];
Chrome and Android both use cryptographic code formally verified in Coq to secure communication [Erbsen

* Co-first authors.

Authors’ addresses: Alex Sanchez-Stern*, University of Massachusetts Amherst, USA, sanchezstern@cs.umass.edu; Emily First*, University of
Massachusetts Amherst, USA, efirst@cs.umass.edu; Timothy Zhou, University of Illinois Urbana-Champaign, USA, ttz2@illinois.edu; Zhanna
Kaufman, University of Massachusetts Amherst, USA, zhannakaufma@cs.umass.edu; Yuriy Brun, University of Massachusetts Amherst, USA,
brun@cs.umass.edu; Talia Ringer, University of Illinois Urbana-Champaign, USA, tringer@illinois.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0164-0925/2023/4-ART $15.00

https://doi.org/10.1145/3593374

ACM Trans. Program. Lang. Syst.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593374&domain=pdf&date_stamp=2023-04-24

Alex Sanchez-Stern®, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

et al. 2019]. But the full potential of these proof assistants still remains far from realized, as the costs of verified
software development and maintenance remain high, even for experts [Ringer et al. 2020].

To prove theorems in these proof assistants, proof engineers typically write high-level sequences of strategies
called proof scripts, which guide the proof assistant toward low-level, machine-checkable representations called
proof objects [Ringer et al. 2019]. In recent years, techniques that use machine learning to synthesize these proof
scripts have shown promise in alleviating some of the effort of verification [First and Brun 2022; First et al.
2020; Paliwal et al. 2020; Sanchez-Stern et al. 2020; Yang and Deng 2019]. These proof-synthesis tools learn from
corpora of existing proof scripts and theorems to automate the construction of proof scripts for new theorems. In
particular, these tools build predictive models of proof scripts, and then use search to explore the proof-script
space. This process uses the proof assistant to guide the search and evaluate ultimate success.

In this paper, we explore ways of improving these predictive models by better exploiting the richness of
the proof data that they learn from. We focus in particular on modeling identifiers: the names that uniquely
identify theorems, datatypes, functions, type constructors, and local variables. Previous machine-learning-guided
proof-synthesis tools have either ignored the names of individual identifiers completely and only encoded
basic categorical information about them, or given common identifiers unique indices and marked all others as
unknown, without category information. In this paper, we develop the Passport approach, which enhances the
models used by existing proof-synthesis tools with three new encoding mechanisms for identifiers: category
vocabulary indexing, subword sequence modeling, and path elaboration. We implement our approach for tools
that synthesize proofs for the Coq proof assistant [Coq Development Team 2021] and show that all three of these
encodings improve performance of the end-to-end tool.

The term “Passport approach” refers to our approach of enhancing the model of an existing proof-synthesis
tool with identifier information. Most of our evaluation focuses on the application of Passport to a single existing
tool, Tok [First et al. 2020]; where unambiguous, we refer to the resulting tool as Passport. Where necessary for
clarity, we make explicit the distinction between the approach and the tool resulting from enhancing existing the
model of Tok with our approach.

Identifiers in Passport. The Passport approach encodes identifiers with three different encoding mechanisms
(described in detail in Sections 3 and 4):

(1) Category Vocabulary Indexing: we encode each identifier with the category it comes from (global
definition, local variable, or type constructor); and for the most common identifiers in each category,
we encode indices corresponding to their names. That is, each common identifier is given a unique tag,
associating it with all other uses of that exact identifier.

(2) Subword Sequence Modeling: For all identifiers, we use a subword sequence model to draw bridges
between related names. That is, identifiers are broken down into common word-pieces, and processed with
a sequence model.

(3) Path Elaboration: For type constructors and global definitions, we encode their fully-qualified paths —
the names of directories, files, and modules within which they are contained.

While we focus on Coq in this paper, similar techniques should apply for other proof assistants, includ-
ing Lean [Lean Development Team 2021], Isabelle/HOL [Isabelle Development Team 2021], and Agda [Agda
Development Team 2021].

Results. We evaluate the Passport approach using the CoqGym benchmark [Yang and Deng 2019] of 124
open-source Coq projects. We compare to three existing search-based proof-synthesis tools, ASTactic [Yang
and Deng 2019], Tac, and Tok [First et al. 2020]. We find that all three of our encoding mechanisms improve
tool performance, in terms of being able to prove more theorems fully automatically. For example, adding path

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using ldentifiers «

Theorem
Statement

Proof Step
Training Data

candidate
- next tactics
Prediction
Model proof states &
tactic history

tactics
Proof

proof states

induction n

eauto

Fig. 1. The system architecture of a machine-learning-prediction-guided proof-synthesis tool.

elaboration leads to proving 12.6% more theorems. We also measure the impact of adding identifier information
to each of the categories of identifiers individually, and find that the Passport approach is useful for each.
Together with the three prior tools, tools enhanced with the Passport approach are able to fully automatically
prove 1,820 of the 10,782 theorems in our benchmark test set, whereas without the enhancements, these prior
tools combined can prove 1,259 theorems. That is an increase of 45% theorems proven over this prior work.

Contributions. The main contributions of our work are:

(1) The Passport approach (Section 4) consisting of a set of techniques for encoding identifiers in a proof
assistant context.

(2) The Passport implementation of that approach as a standalone tool within an existing proof-synthesis
framework. Passport is open-source: https://github.com/LASER-UMASS/Passport

(3) An evaluation (Section 5) showing that (1) the Passport approach improves proof synthesis when applied
to three prior tools, (2) each mechanism for encoding identifiers helps model proof scripts more precisely
and improves performance of proof synthesis, and (3) encoding each identifier category alone is still an
improvement over not encoding any.

(4) A forward-looking discussion (Section 6) of the challenges that we faced when building Passport (relative
to building symbolic proof automation), along with potential solutions to those challenges. Our evaluation
includes an experiment measuring the impact of nondeterministic training variance (Section 5.6).

2 BACKGROUND ON PROOFS AND PROOF SYNTHESIS

To write proofs in Coq, the proof engineer starts by stating a theorem to prove. They then write a proof that this
theorem holds. Every theorem in Coq is a type definition, described in a rich type system; writing a proof in Coq
amounts to finding a term with the stated theorem type.!

But doing this directly can be challenging, so instead, proof engineers write these proofs interactively with
Coq’s help. At each step, proof engineers pass Coq high-level strategies called tactics, and Coq responds with the
current proof obligations after executing each tactic. Each tactic guides Coq in a search for a term with the stated
type, refining the state until no new obligations hold. At that point, the proof engineer has written a sequence of
tactics called a proof script (like the one in Figure 3a) — and Cogq, for its part, has constructed a proof term or proof

IThis refers to the Curry-Howard correspondence, which shows type systems and proof systems to be equivalent.

ACM Trans. Program. Lang. Syst.

Alex Sanchez-Stern®, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

object with the stated type. The language of proof scripts in Coq is called Ltac, and the language of proof terms
in Coq, as well as programs and definitions, is called Gallina.

In recent years, machine-learning-guided proof-synthesis tools have been developed which aim to make the
burden of proving easier by automatically generating the proof script, instead of asking the user to write it. While
the approaches of these tools can differ, most share similar components and structure.

Figure 1 shows the common architecture of most machine-learning-guided proof-synthesis tools. At the heart
of these tools is the prediction model, which guides the proof search by producing tactic predictions, or candidate
next tactics, at every step. Every prediction model takes as input some set of information about the proof state or
proof script, and produces a set of candidate tactics. The tool uses the prediction model to predict one or more
likely first tactics and then uses the proof assistant to get feedback on those tactics (e.g., rejecting ones that result
in an error or fail to modify the proof state). Then, the tool explores the space of possible proofs by iterating
using the prediction model to predict the next tactic and the proof assistant to get feedback and prune the search.
As a result, the prediction model’s accuracy is critical to the potential success of the search procedure, and for the
model to have a chance of being accurate, it must effectively capture the current proof state, and use it to make
predictions. The Passport approach works by enhancing the quality of the prediction model, in turn, leading to a
better exporation of the proof space.

ASTactic and TacTok. Passport’s tactic model architecture inherits the design choices of ASTactic’s model [Yang
and Deng 2019] for encoding the proof obligations and TacTok’s model [First et al. 2020] for encoding the proof
script.

Proof obligations consist of the goals to be proven, local context, and the environment. Each term of the proof
state has an underlying abstract syntax tree (AST) representation. ASTactic serializes these ASTs and uses a
TreeLSTM [Tai et al. 2015] to encode them [Yang and Deng 2019]. TacTok’s model adopts this encoding for the
proof state.

The proof script consists of a sequence of tokens in Ltac. Before encoding these tokens, each proof script
is preprocessed to remove high-frequency low-signal tokens, such as punctuation. TacTok’s model uses a
Bidirectional LSTM [Peters et al. 2018] to encode this sequence of tokens [First et al. 2020].

ASTactic’s and TacTok’s models are trained using supervised learning with a set of human-written proofs to
predict the next proof step (tactic and arguments) of an incomplete proof. A limited generative tree-grammar
tactic model, adopted from ASTactic [Yang and Deng 2019], makes these downstream predictions. While there
may be many valid proofs for a single theorem statement, there is no clear way of determining how appropriate
an alternative tactic or proof is, so the model is taught to imitate human-written proofs.

3 OVERVIEW OF THE PASSPORT APPROACH

The proof state is made up of many Gallina terms; modeling these terms well is key to producing accurate models.
However, previous models have left out much of the essential information about identifiers in terms, when they
have encoded identifiers at all. Encoding identifiers well is essential because proof corpora in Coq are rich with
identifier information. One reason that identifiers are particularly important in Coq is that Coq has no primitive
datatypes; every referenced type is an identifier. These names can carry a lot of meaning — and that meaning can
be reflected in the names of theorems that refer to them. This paper describes and evaluates improvements to
identifier encodings in the tactic prediction model.

Zhttps://github.com/adampetcher/fcf
3https://vst.cs.princeton.edu/

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using ldentifiers «

Definition posnat' := {n?> : nat | n > 0}.

Inductive posnatEq' : posnat -> posnhat -> Prop :=
| posnatEq_intro® :

Definition posnatMult'(p1? p2? : posnat) : posnat := ...

Fig. 2. Definitions related to the posnat type, a type of pairs of natural numbers and proofs that they are greater than
zero. These definitions are found in the Foundational Cryptography Framework, 2 retrieved as part of the Verified Software
Toolchain. 3

X : nat
g: x>0
X0 : nat

g0 : x0 > 0

Lemma posnatMult_comm' : forall p1? p2?,

(posnatEq (posnatMult pl1 p2) posnatEq' (exist® (fun n? : nat => n > @)
(posnatMult p2 p1)). (Nat.mul' x? x@2)

Proof. (mult_gt_0' g2 g02))
intuition. (exist (fun n : nat => n > Q)
unfold posnatMult. (Nat.mul x@ x)
destruct pl1; destruct p2. (mult_gt_0 g0 g))

(a) A partial proof of posnatMult_comm. (b) The proof state at this point in the proof.

Fig. 3. A proof using the definitions in Figure 2, from the same file.

Categories of Identifiers. To begin to harness the latent information in identifiers, the Passport approach adds
three categories of identifiers to the term model. To understand these identifier categories, consider the definitions
in Figure 2, from a verified cryptography library.

(1) The identifier posnat is a global definition (highlighted in red!), it can be used by datatypes, functions,
theorems, or proof scripts, to reference the globally defined posnat datatype.

(2) The identifier n is a local variable (highlighted in orange?), as it can be referenced within the local context
of this term, but not outside of it.

(3) The identifier posnatEq_intro is a type constructor (highlighted in yellow®) as it can be referenced in
datatypes, functions, theorems, and proof scripts to construct a new posnatEq object.

Appendix A further details these categories of identifiers (global definitions, local variables, and constructor
names) and provides intuition through examples for why each category may be useful to encode in a tactic
prediction model. Appendix A.4 details the implementation effort required for enriching a model with these three
categories of identifiers.

Encodings. Figure 3 shows a proof over these definitions, posnatMult_comm. This proof says that multiplication
of posnats is commutative, meaning you can switch the order of the arguments and the result will always be the
same. Making progress in this proof state requires understanding several things about the identifiers involved.

(1) The exist type constructor is a common constructor for sigma (existential) types, and there are specialized
tactics (like exists and eexists) for reasoning with those objects.
(2) The goal type, posnatEq is related to posnats and equality.

ACM Trans. Program. Lang. Syst.

Alex Sanchez-Stern®, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

(3) The Nat.mul function is defined in the Coq’s standard library, whereas mult_gt_o is a theorem about it
defined in the current project.

Understanding these things requires three different approaches: attaching special signifiers to common
identifiers, processing the individual pieces of identifiers to understand where they connect to different concepts,
and remembering where the definitions being referenced are defined.

Tree of
Category Encoded Nodes

: : Vocabulary

: Global | Indexing Encoded

; Variables ! ' > T
Subword it

T o R Sequence
I ° Do ’ Constructor Model

- Local ‘AT
Varlables

’:> Path
Elaborator

100101110100
Tree LSTM 011001001101

Fig. 4. The architecture of Passport’s identifier processing.

The crux of this paper is the enrichment of a proof-synthesis model for Coq with rich information about
identifiers. Figure 4 shows an overview of how the Passport approach encodes identifiers. To fully take advantage
of the richness of these identifiers, our design employs three key encoding mechanisms:

(1) Category Vocabulary Indexing (Section 4.1), which separately considers different kinds of common identifiers
in a proof development,

(2) Subword Sequence modeling (Section 4.2), which draws bridges between all identifiers, and

(3) Path Elaboration (Section 4.3), which encodes the location where the object referred to by each identifier is
defined.

Category vocabulary indexing allows us to assign unique labels to common identifiers in the code. In this case,
that means giving a unique label to the exist type constructor, so that we can use knowledge from previous
proofs which used that precise constructor. Subword sequence modeling allows us to break identifiers up into
common pieces, and process those pieces with a sequence model. In this case, that means breaking the posnatEq
identifier into the chunks posnat and Eq, so that we can use knowledge from previous proofs that had identifiers
with similar pieces. Finally, path elaboration allows us to consider the directories, files, and modules in which the
object referenced by the identifier is defined. Here, that means understanding that the multiply identifier refers
to a function defined within Coq.Init.Nat, but the mult_gt_o refers to a lemma defined in the current file.

Armed with the knowledge from these three encoding mechanisms, our model has everything it needs to
suggest tactics that the tool can use to complete the proof of posnatMult_comm.

4 PASSPORT ENCODINGS

Identifiers are proxies for semantic information not by accident, but by design. By taking advantage of the
information in identifiers, term models can learn from the design principles the proof engineer has already
followed to make proof developments easier to read, understand, and build on. To extract this information from
identifiers, the Passport approach uses three encoding mechanisms: category vocabulary indexing (Section 4.1),
subword sequence modeling (Section 4.2), and path elaboration (Section 4.3).

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using ldentifiers «

In the implementation, Passport uses Coq query commmands to access the full Coq environment when
extracting identifier information, so it is not limited to any particular subset of the environment.

4.1 Category Vocabulary Indexing

In each identifier category (global definitions, local variables, and type constructors), there are many common
identifiers used across proof developments. These identifiers are so common that we can learn a significant
amount about how to understand them from their previous uses. For instance, in the example from Figure 3, the
exist type constructor is part of the standard library, and many proofs in our training data reason with it. Even
when an identifier is not very common, we can still understand a lot about it by knowing what category it is in.

To take advantage of these properties of identifiers, we developed category vocabulary indexing. This
encoding mechanism tags every identifier with the category it comes from and, if the identifier is commonly used
enough, a unique tag for that particular identifier. By giving common identifiers a unique tag, we can generalize
across their many appearances, and predict tactics that worked well with them in the past. And by marking
identifiers with their category, either global definition, local variable, or type constructor, we can disambiguate
identifiers with the same name from different categories, and learn useful information about even uncommon
identifiers.

The models in some previous tools for machine-learning-guided proof-synthesis, such as Proverbot9001 [Sanchez-
Stern et al. 2020] and Tactician [Blaauwbroek et al. 2020], use vocabulary indexing for common identifiers, but
make no category distinctions. This is a reasonable approach, because in Coq, the names of global definitions,
local variables, and type constructors share a common namespace. However, in the Passport approach, we decided
to distinguish between identifiers of different categories, in part because manual analysis of the training data
revealed different naming conventions for different categories. For example, single-letter identifiers seemed to
almost exclusively represent local variables, with uppercase for types (like A in Figure 10), and lowercase for
terms (like x in Figure 3); longer uppercase identifiers generally refer either to sort names (like Set or Prop) or
type constructors (like Some or None). This means that when human provers see an identifier, even if they have
not seen it before, they often have a sense of what category it belongs to.

The models in other previous tools for machine-learning-guided proof-synthesis, such as ASTactic and TacTok,
make category distinctions, but do not index vocabulary. We learned early on that the possibility of performance
regression due to uninformative local variables like x had concerned the ASTactic authors, and contributed to
their decision not to encode identifiers.* However, upon closer inspection of the data, we determined that even
when a particular name does not always refer to the same definition, common names can carry information of
their own. For instance, variables named hd and t1 consistently refer to the head and tail of a list. These names,
too, can benefit from a unique tag which generalizes across their usages. Our manual inspection determined that
this can often hold even for single-character variable names.

Implementation. To decide which identifiers are common enough to be indexed, we use our training data
set to create a fixed identifier vocabulary. That is, we count the occurrences of each identifier, and include
in our vocabulary those whose count is above an experimentally chosen, fixed threshold (see Section 5.7 for
an evaluation of different thresholds). Using separate vocabularies for each category of identifier allows us to
use different thresholds across different categories; since type constructors are less common overall than local
variables, they might require having a lower threshold for being included in the vocabulary.

4https://github.com/princeton-vl/CoqGym/discussions/60

ACM Trans. Program. Lang. Syst.

Alex Sanchez-Stern®, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

4.2 Subword Sequence Modeling

Identifier information can be useful not just for learning about individual datatypes, theorems, and functions, but
also for drawing bridges between them. Developers often organize development using parts of names to group
theorems and functions which refer to common definitions. It turns out these naming conventions can be useful
to a model, too.

Many variable names are not simply single unique words, but are made up of multiple parts. These parts
could be multiple english words in camel case, such as the case in something like firstItemInList broken into
“first”, “item”, “in”, and “list”. Or they could be components of a single word that carry individual meaning, like
prelocalizations broken into “pre” “local” “ization” “s”. By breaking these identifiers into pieces, a model built
using the Passport approach can learn the meaning of shared pieces and generalize across identifiers.

In the example from Section 3, Passport breaks posnatMult into [pos, nat, Mult]; with a different subword
vocabulary, from a different set of variable occurrences in the training data, it might produce [posnat, Multl.
These tokens are processed with a sequence model, so that the identifier’s ultimate feature vector reflects the fact
that the identifier relates to the “posnat” type, and that it primarily relates to the multiplication operation.

To get a sense for this, let us consider another example. The Coq standard library includes operations about
the real numbers R, like addition:

Rplus' : R - R — R.

The library contains proofs of theorems about Rplus, like this proof (highlighting just one Rplus for presentation):

Lemma Rplus_eq_compat_1l : V (r r1 r2 : R),
ri =r2 — Rplus' r r1 = Rplus r r2.
Proof.
intros r r1 r2.
apply f_equal.
Qed.
which proves the theorem that right addition preserves equality.
Suppose we wish to prove the analogous theorem about the natural numbers nat, using the addition function
plus defined over nat. We can do this the same way:

Lemma plus_eqg_compat_l : V (n n1 n2 : nat),
nl = n2 — plus' n n1 = plus n n2.
Proof.
intros n n1 n2.
apply f_equal.
Qed.
simply renaming the local variables for style (though the original proof with r, r1, and r2 also works with no
changes).

The fact that Rplus and plus are related is explicit in the identifier names: Rplus behaves like plus over R. A
model that can draw connections between plus and Rplus can in some cases reuse proofs about one to derive
analogous proofs about the other.

The key here is subword sequence modeling which excels at drawing connections between related words [Gage
1994; Sennrich et al. 2016]. Subword sequence modeling allows us to break the identifier Rplus into the chunks R
and plus, and index them separately, connecting them to the identifier plus. By drawing these connections, we
expect that a model can suggest intros and f_equal in the body of plus_eq_compat_1, by connecting the hypothesis
plus n n1 = plus n n2tothe hypothesisRplus n n1 = Rplus n n2. With subword sequence modeling, the model

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using ldentifiers «

can learn all of this with no need for semantic information about what each of the reals and naturals represent,
or how their addition functions are related.

In the Passport approach, identifiers are broken into subwords using a byte-pair encoding algorithm (BPE) [Gage
1994; Sennrich et al. 2016], an algorithm that has seen success in code completion models for program synthe-
sis [Karampatsis et al. 2020; Svyatkovskiy et al. 2020]. The algorithm uses the training corpus to make a list of
common subwords by starting with a vocabulary of single characters, and iteratively merging common pairs.
Then, each identifier is tokenized by greedily consuming the longest matching vocabulary element.

The Passport approach incorporates these tokens as embeddings in a syntax model. Program syntax can
generally be modeled in two ways. The simplest way is to model it as an unstructured sequence of words
(or more generally, tokens). The alternative is to parse the syntax into a tree, and use a tree based model to
process it. One of the advantages of the former is that you can tokenize strings in a number of different ways,
including with multiple tokens per identifier (sub-word tokenization). However, our implementation of Passport
builds on a parsed-tree-based model, so there is no existing string tokenizer that could be used for subword
tokenization. Instead, we embed a sequence model within the leaves of the tree-based syntax model. This means
that our subword sequence model only learns how to combine parts of an identifier into a fixed embedding for
the identifier, and does not need to learn about other parts of program syntax.

With our category vocabulary indexing, we used separate vocabularies for identifiers of different categories.
However, proof developments sometimes demonstrate connections between identifiers from different categories.
These connections are lost in using separate vocabularies, so subword encoding is used to maintain these
connections. The Passport approach uses a single subword vocabulary, derived from the global variable corpus,
to encode identifiers from all categories.

Implementation. There are several subtleties to the implementation of our subword tokenization algorithm, and
the byte-pair encoding which generates its vocabulary. Sometimes there were several possible ways to implement
the approach; in general, we made our choices based on the performance of the resulting tool on our benchmarks.

As indicated by the name, byte-pair tokenization often starts with a vocabulary of bytes, not characters,
to allow a reasonable base vocabulary size when working with unicode. However this has the downside of
sometimes indicating that two identifiers are similar because they share bytes within a unicode character, even if
no characters are in common. In our implementation, we use characters as our base vocabulary. To keep our base
vocabulary of a reasonable size, we only include those characters which are present in the training corpus. Since
Coq programmers generally only use a small subset of possible unicode characters, this works well. However,
there are in rare cases unicode characters present in the test data which are not present in the training data. To
address this, our subword tokenizer drops characters which are not present at all in the vocabulary; this behavior
can be changed with a flag to instead produce a special <unknown> element.

Many different neural architectures have been used to process sequences of tokens. For language modeling,
the most effective models are often those with attention and forgetfulness mechanisms, to capture the long-
range dependencies present in text. However, the identifiers we work with are generally short, often only a
few subwords long, so we instead use the simplest sequence model, a Recurrent Neural Network, without any
attention mechanism.

As with any sequence-based model, there is a question of how to cap the size of sequences so that their lengths
can be normalized. With Passport, we found empirically that capping at four tokens per identifier during training,
but eight tokens per identifier when synthesizing proofs, is most effective on our evaluation suite. Four subwords
is enough to encode the entire name of 98.74% of identifiers in our training data, and eight subwords is enough to
encode the entire name 99.97% of the time.

We trained the subword encoder end-to-end alongside the rest of the term encoder and tactic decoder, so that
the encoder is trained to retain information about subwords particularly relevant to the task of tactic prediction.

ACM Trans. Program. Lang. Syst.

Alex Sanchez-Stern®, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

4.3 Path Elaboration

The final encoding mechanism in the Passport approach is path elaboration: the encoding of fully-qualified
paths of different identifiers. By paying attention to the fully-qualified paths of different identifiers, the tools
using the Passport approach can take advantage of any grouping of identifiers into common modules and files
already used by Coq developers to organize development. Tools using Passport approach can also capitalize on
proof development styles that dispatch proofs for entire classes of related theorems using powerful tactics — a
proof development style recommended by, for example, the popular Coq textbook Certified Programming with
Dependent Types [Chlipala 2013].
To gain some intuition for what this means in action, consider this proof of a theorem from the Coq standard
library:
Theorem not_in_cons A (x a : A) (1 : list A):
~In x (a::1) & x<>a A ~ In x 1.
Proof.
simpl. intuition.
Qed.
The proof of not_in_cons goes through by just two tactics: simpl and intuition. The simpl tactic simplifies
the initial goal (no assumptions, with the theorem type as the sole proof obligation) to make it easier to reason
about, producing this proof state:

A : Type
X, a: A
1 : list A

a/mn
~(a=xViInxl) ex<>aA~Inxl
In this case, the simpl tactic has unfolded the In x (a::1) on the left side of the identifier into (a = x vV In x 1).

But the resulting goal is still a bit complex because it chains together a number of logical connectives: if and
only if (<), negation (~), inequality (<>), conjunction (A), and disjunction (V). So the intuition tactic breaks
down logical connectives into simpler subgoals, and dispatches each subgoal automatically.

Taking a step back, it is natural to wonder how the proof engineer could have known to use the intuition
tactic to dispatch the remaining goals. Intuitively, it made sense to use intuition here because the goal consisted
of simple statements linked by logical connectives, which intuition excels at. It turns out that the fact that these
operators are logical connectives is explicit in the paths of the identifiers in the goal — they all reside in the
Coqg.Init.Logic module — so we can pass it on to our models by encoding paths.

We can see this by expanding the paths of the identifiers in the theorem statement of not_in_cons (Figure 5).
All of the operators in not_in_cons are syntactic sugar for identifiers, which themselves refer to types defined
inductively in Coq. For example, conjunction (A) refers to the inductive type and in the path Coq.Init.Logic.
Internally, Coq stores the elaborated theorem with all of these identifiers (like and) and their fully-qualified paths
(like Cog.Init.Logic) explicit. Inspecting the elaborated version of not_in_cons shows that the fact that these are
logical connectives requires no semantic understanding to deduce — it is explicit in the grouping of identifiers in
the Logic module.

We determined that a simple way to pass this intuition on to our models was to encode each of the file and
module names inside of fully-qualified paths, taking advantage of the organization of large proof developments
to infer tactics used to dispatch related goals.

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using ldentifiers «

not_in_cons'
:V (A% @ Type) (x a2 : A) (1% : list A),
Coq.Init.Logic.iff!
(Coqg.Init.Logic.not!
(In' A x (cons® A a 1)))
(Coqg.Init.Logic.and'
(Coqg.Init.Logic.not
(Coqg.Init.Logic.eq' A x a))
(Cog.Init.Logic.not (In A x 1))).

Fig. 5. The theorem statement not_in_cons, elaborated with paths. Highlighted using the same conventions as in Figure 2,
with other paths omitted for brevity.

Implementation. To implement this, we created a dedicated vocabulary and corresponding <unknown> token for
file and module names inside of fully-qualified paths, much like we did for each category of identifier. We then
used this vocabulary for encoding paths.

As with identifiers, Coq includes fully-qualified paths inside of the ASTs by default, but TacTok and ASTactic
had erased those paths from the AST. For example, in Figure 12, the fully-qualified path Coq.Init.Datatypes of
the option inductive type shows up in the AST as a directory_path node, with data [Datatypes; Init; Coql.

Elaborating paths was thus similar to adding each of the categories of identifiers: First, we modified the
post-processing code to avoid erasing paths. Then, we built a separate vocabulary for common files or modules
that paths consisted of, like Datatypes, Init, and Coq in Figure 12. We then encoded each file or module along
the path separately, mapping to a dedicated <unknown> token for files or modules in paths that occurred less
frequently than the chosen threshold.

5 PASSPORT EVALUATION

We evaluated Passport’s ability to successfully prove theorems using the CoqGym benchmark [Yang and Deng
2019], following the evaluation methodology used by several recent papers [First and Brun 2022; First et al. 2020;
Yang and Deng 2019].

In summary, our results show:

e The Passport approach improves proving power. By comparing to previous tools — ASTactic and the
two base tools, Tac and Tok, that make up TacTok — we measured additional proving power provided by
the Passport approach’s encoding of identifiers. The combined proving power of the tools enhanced by
the Passport approach exceeds that of the original tools by 38%, and combining both the enhanced and
un-enhanced tools outperforms the combined un-enhanced tools by 45% (Section 5.2).

o Identifiers improve performance. All three categories of identifiers improve performance, in aggregate
proving 64% more theorems than the individual un-enhanced tool (Section 5.3).

e All three encoding mechanisms improve performance. All three categories of identifiers in the
Passport approach improve performance in Passport with each of the three encoding mechanisms (Sec-
tions 5.4 and 5.5).

e Our results are meaningful beyond variance introduced by nondeterminism. Proof synthesis
success rate varies by 0.4% for individual tools, and combining many varying runs can improve results by
22% (Section 5.6).

o Hyperparameter choices impact performance. We choose our hyperparameters experimentally based
on these results (Section 5.7).

ACM Trans. Program. Lang. Syst.

Alex Sanchez-Stern®, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

All our experiments are affected by nondeterminism, and while the bulk of our experiments only use a single
trial, Section 5.6 explores the effect on nondeterminism on the variance of our results and argues that that effect
is small.

5.1 Experimental Setup

Benchmark. The CoqGym benchmark includes 124 open-source Coq projects, split into three sets. For our
evaluation, we trained on 97 projects (containing a total of 57,719 theorems) and synthesized proofs for 26
projects (containing a total of 10,782 theorems). We exclude one project, coq-library-undecidability, from our
evaluation because TacTok’s evaluation [First et al. 2020] was unable to reproduce prior results for ASTactic’s
performance [Yang and Deng 2019] on that project due to internal Coq errors when processing the proof scripts.

Projects in the CoqGym benchmark are a mixture of mathematical formalizations, proven correct programs,
and Coq automation libraries. They include several compilers of varying sizes (such as CompCert [Leroy 2009]),
distributed systems (such as Verdi [Wilcox et al. 2015]), formalizations of set theory, and more. Some of the
projects in CoqGym (such as the automation libraries) do not contain any proofs, but we included them for
completeness.

Machines. We ran this paper’s experiments using two clusters: a GPU cluster for training and a CPU cluster
for synthesizing proofs.

Each node in the GPU cluster has between two and eight NVIDIA GPU cards. There are four nodes with
two NVIDIA Tesla V100 GPUs, and thirty-three nodes with eight NVIDIA RTX 2080ti GPUs. The nodes in
the GPU cluster all run on a shared ZFS file system, run CentOS Linux, and use Slurm for job scheduling and
resource management. We found that training time varied between 12 and 14 hours per epoch, and did not differ
significantly between the Passport implementation and the baseline model.

Each node in the CPU cluster has between 24 and 36 cores, with 4 hyperthreads per core. There are:

e 1 head node with 24 cores of Xeon E5-2680 v4 @ 2.40GHz, 128GB RAM and 200GB local SSD disk.

e 50 compute nodes with 28 cores of Xeon E5-2680 v4 @ 2.40GHz, 128GB RAM and 200GB local SSD disk.

e 50 compute nodes with 28 cores of Xeon Gold 6240 CPU @ 2.60GHz, 192GB RAM and 240GB local SSD
disk.

e 5 compute nodes with 56 cores of Xeon E5-2680 v4 @ 2.40GHz, 264GB RAM and 307TB local disk.

The nodes in the CPU cluster also all run on a shared ZFS file system, run CentOS Linux, and use Slurm for job
scheduling and resource management. The average inference time for a random sample of generated proofs was
0.4 seconds per tactic for the Passport implementation, compared to 0.3 seconds for the baseline model.

Experimental Parameters. Passport attempts to synthesize each proof for a preset amount of time, timing out if
it fails to to reach Qed in that time. Our evaluation used 10 minutes for this timeout, following the choice made by
ASTactic [Yang and Deng 2019] and TacTok [First et al. 2020]. Following a design decision made by ASTactic, we
limited our search to a total of 300 attempted tactics, and restrict solutions to be no longer than 50 tactics long.
Our experiments use 200 as the default category vocabulary threshold (recall Section 4.1) and 4,096 as the default
byte-pair merge threshold (recall Section 4.2). We use 128 as the default vector dimension for term, grammar,
and terminal/non-terminal symbol embeddings, as well as the dimension of the LSTM controller. For all other
parameters, we follow those used by ASTactic [Yang and Deng 2019] and TacTok [First et al. 2020].

Implementation. Overall, the Passport approach implementation is 1.5K lines of code and took four developers
about a year to build. While the conceptual and design aspects of the Passport approach can extend to all
prediction-model-driven, search-based, proof-synthesis tools, the current implementation is straightforwardly
applicable to all such tools built within the CoqGym environment [Yang and Deng 2019].

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using ldentifiers «

This implementation adds three embeddings for category indexes and one for paths, with 428, 136, 27, and 262
items for global definitions, locals, constructors, and paths, respectively. This results in a corresponding increase
to the first layer of Tok’s term encoder. The new subword embedding contains 4,164 items and is encoded with an
RNN using a hidden size of 32. When implementing these new model components, we optimized for simplicity
over model size, so we believe that the model size could be decreased further without significantly impacting
accuracy.

The original ASTactic, Tok, and Tac models used a 256-float symbol embedding size. However, we observed no
significant difference between those models using a 256-float symbol embedding, and using a 128-float symbol
embedding. As a result, our model uses 128-float symbol embeddings, and, where appropriate, we compared
to versions of other models with a 128-float symbol embedding. Overall, these changes to model size had no
significant impact on training time, as described above.

5.2 The Passport Approach’s Effect on Proof-Synthesis Tools

In this section, we show that the addition of our identifier information improves the end-to-end performance of
proof search tools. Since Passport is implemented in the ASTactic/TacTok framework, we were able to evaluate
our changes against three base tools: An ASTactic-like® tool, Tac, and Tok. ASTactic was developed as part of
the CoqGym project [Yang and Deng 2019], and uses only proof contexts as input to their prediction model. By
contrast, the models in Tac and Tok (developed as part of the TacTok project [First et al. 2020]) additionally model
the proof script up to the current point, with Tac’s model encoding the tactics in the proof script, and the Tok’s
model encoding all the tokens except punctuation in the proof script.

Figure 6 shows the results of adding identifier information to all three of these tools. Adding identifiers to each
of the three tools significantly improves their ability to prove theorems. Adding identifier information improves
our ASTactic-like tool by 29% (304 additional theorems proved), Tac by 14% (136 additional theorems proved),
and Tok by 33% (318 additional theorems proved).

Following TacTok’s [First et al. 2020] and Diva’s [First and Brun 2022] evaluations, we also explore how the
differences in theorems proven by multiple tools lead to more theorems proven overall, and how adding identifier
information increases that improvement. When we compute the union of the theorems proven by all our tools
enhanced by the Passport approach, and compare that set to the union of the theorems proven by the base
tools, we find an improvement of 38%. Comparing the union of theorems proven by all the tools to the union of
theorems proven by the three base tools, we find an improvement of 45%.

Next, we examine the complexity of the proofs that Passport generated. Using human-written proof-script
length as a rough proxy for complexity, we note that Passport successfully synthesized proof scripts for 351
theorems for which the human-written proof scripts were at least 5 tactics long. For 54 of those theorems, the
human-written proof scripts were at least 10 tactics long. This observation suggests that Passport is able to
synthesize a significant number of nontrivial proofs. For 280 theorems, Passport was able to synthesize proof
scripts that were shorter than the human-written ones. In one particular case, the human-written script was 139
tactics long, while Passport’s script was only 2 tactics long. The baseline tool produced 239 proofs for which
the human-written proof scripts were at least 5 tactics long, so Passport proved 46.9% more theorems with
human-written proofs of that length. For theorems with human-written proofs of length 10 or more, the baseline
tool produced 37 proofs, so Passport proved 45.9% more such theorems. Finally, the baseline model produced
proofs shorter than the human-written proofs for 171 theorems, so Passport did so for 63.7% more theorems.

Examining the time it takes Passport to synthesize a proof script, the successfully generated proof scripts took
between 0.08 and 86.6 seconds to generate, with the mean of 2.9 seconds.

SWe were not able to replicate the original results of ASTactic [Yang and Deng 2019], so for our evaluations we trained a model with the same
embedding vector dimensions as our own models. For this reason we are using the term ASTactic-like when we describe our results.

ACM Trans. Program. Lang. Syst.

Alex Sanchez-Stern®, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

2000
17407820
g 1500 1370
3] 1279 1259
a2 1066 1116
E 1000 980 958
o}
(O]
£
* 500
*
'7\9) 'V\S}‘ %50)"ox)5,; /c\%x Oo,)) % Y7
D D)) 6. C, “o
G C 7 o)
% %, % %, %
2 ’)@O,
o4

Fig. 6. The effect of adding all of the three encodings for three identifier types to several proof-synthesis tools. The purple
crosshatch bars represent baseline tools based on ASTactic, Tok, and Tac. The orange bars represent our new contributions.
The rightmost crosshatch bar, labeled “Combined”, is the number of theorems successfully proven by at least one of the
baseline tools. The orange bar next to that, labeled “*+P Combined”, is the number of theorems successfully proven by at
least one of the tools enhanced by the Passport approach. Finally, the orange and crosshatched bar on the far right is the
number of theorems proven by at least one of all the presented tools.

5.3 Identifier Categories

In the Passport approach, we model three categories of identifiers. While the experiment in Section 5.2 showed
that modeling identifiers from these categories are effective together, we also want to show the utility of the
identifier categories individually.

Figure 7a shows the individual results of just adding local variables, type constructors, and global definitions.
For consistency, this experiment compares to a Tok-like tool with a model with smaller embedding sizes, as
Passport uses that model to add identifier information to.

Each of the identifier types added individually increases the number of theorems proven, though the increase
from local variables alone is marginal. Adding type constructors alone proves 8% more theorems than the baseline,
adding global definitions alone proves 16% more theorems, and adding local variables alone proves 0.5% more
theorems.

However, no identifier category added individually is close to the impact of adding all three. Adding all three
identifier types, without subword information, proves 33% more theorems.

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using ldentifiers «

2000 2000 79
+
c 1590 c
g 1500 g 1500 +87
o o7p 10s6 L7 a w71 42 8
£ 1000 £ 1000
I} I}
Q Q
S 500 S 500
H* H*
0 0
N \o ') \o W Q \o ') \o N QO
VNb o o0 o Qx o D oS “3 R e
(d* x\p e 03 \ Cp «© x\p “ G§ x° cp«®

X X

(a) The impact of category vocabulary indexing on three (b) The impact of subword encoding on each of the cate-
identifier categories (without subwords or paths): local gories of identifiers (with category vocabulary indexing

variables, type constructors, and global definitions. but without paths).
2000
g +179
1500
5 +105 +102 *161
2 1000
o
o
E 500
3
0 \} S
\,o° oo\o‘ oo \P‘\ N o
o
xoo Oo(\
o™

(c) The impact of fully-qualified path encoding of type
constructors and global definitions (with category vo-
cabulary indexing but without subwords).

Fig. 7

Finally, though none of the tools with individual identifier types prove as many theorems as the one with
all of them together, some of these individual identifier-enriched tools prove theorems that the all-identifiers-
enriched tool does not. The union of the theorems proven by the individual identifier-enriched tools and the
all-identifiers-enriched tool contains 64% more theorems than the baseline tool.

These experiments show that each identifier category is useful for producing a more effective proof-synthesis
tool, and that the identifier categories help with a diverse set of theorems, so combining the results of adding
different subsets of identifiers helps further.

5.4 Subwords

Figure 7b shows the impact of adding subword encodings to our identifier-enriched tools (Section 4.2). Adding
the subword encoding does not benefit all types of identifiers individually. In fact, it makes two (type constructors
and global definitions) out of the three identifier categories perform worse than when those identifiers are used

individually, possibly due to overfitting.
However, when subwords are added to the full tool with all the identifier categories, they improve results by 7%.

This improvement is greater than what the cumulative impact of adding subwords to individual identifier-enriched

ACM Trans. Program. Lang. Syst.

Alex Sanchez-Stern®, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

tools, suggesting that subwords particularly help with making connections between multiple identifier types. In
fact, even though subword sequence modeling does not help global definitions alone, when global definitions are
combined with the other identifier types, removing subword encoding significantly hurts results.

The most likely explanation for these results is that for subwords to be effective, a sufficiently large number of
identifiers is necessary to encounter a non-trivial number of repeated subwords, allowed for learning semantics
of those subwords. Adding subwords to only a single type of identifier likely does not meet that threshold, but
using all identifiers leads to a significant improvement in the tool’s proving power.

5.5 Paths

Figure 7c shows the impact of removing path elaboration (Section 4.3) from various identifier types in the Passport
model. Since local variables do not have paths, there is no impact of removing path elaboration. Subwords were
not included in this experiment, as we wanted to isolate the impact of paths.

Path elaboration benefits both type constructors and global definitions: increasing theorems proven for type
constructors alone by 10% and increasing theorems proven for global definitions alone by 9%. The union of the
theorems proven using these categories alone and the theorems proven with local variables alone (for which the
paths improvement is 0%), is 7% larger than without path elaboration. However, when we add path elaboration to
Passport’s model with all three identifier categories, it increases the number of theorems proven by 12.6%.

These results indicate that the impact of adding path elaboration to a model that implements local variables,
type constructors, and global definitions is greater than the combined effect on individual models. Similarly to
the subword experiment above, these results suggest that encoding fully-qualified paths helps connect identifiers
across categories; learning about how type constructors from a particular module behave helps in dealing with
global definitions from that module, and visa versa. However, unlike the subword experiment, paths seem to
benefit all identifiers for which they are implemented individually as well as in combination.

5.6 Nondeterministic Model Variance

During the course of our evaluation, we found that models trained in the ASTactic framework had significant
variance in their downstream proof-synthesis success rate, even when the model code and training data were
identical. While part of this variance could be attributed to different hardware and other hard-to-control factors
(see Section 6), even when controlling for all those factors, there was still variance. After months of investigation,
we found that the cause was nondeterminism at the hardware and framework level, some of it undocumented [Gao
2022; Reichel 2022].

Nondeterminism in model training is not specific to proof search, and has in fact been documented in the ML
community at large [Pham et al. 2020a; Qian et al. 2021; Shamir and Lin 2022]. However, it is not immediately
obvious how these effects would impact proof search, since they are usually measured as inaccuracy in the top
prediction of a model, while proof-search tools generally use multiple model predictions, smoothing out some
inaccuracy.

To measure the impact of nondeterministic training variance on proof search, we trained our model with
identifiers added to Tok’s model 20 times. On average, the tool using one of these models proved 11.9% (1,279
theorems), with the maximum proving 12.0% (1,294 theorems) and the minimum proving 11.6% (1,256 theorems).
The 0.4% spread (38 theorems) shows that training the same model can lead to small differences in overall success
rates. Our result for adding local variables alone (with no other identifiers) and without subword encoding is
within this variance range. However, the impact of local variables is better captured with the addition of subwords
and together with other identifiers, which yields results significantly outside of this range.

Interestingly, the union of the theorems proven by the tool using these 20 models is 14.5% (1,564 theorems), an
improvement of 22% over the average. This demonstrates that the scale of the differences in which theorems

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using ldentifiers «

1600 1600
§ 1500 § 1500
© 1400 © 1400
o o
g 1300 g 1300
g 1200 g 1200
8 1100 8 1100
< £
% 1000 % 1000
900 900
150 200 250 300 350 400 150 200 250 300 350 400
(a) Global definitions (b) Local variables
1600 1400
$ 1500
S 1400 g 13%0
S S
0 1300 a
& 1200 g 1%
3 2
@ 1100 2
< & 1250
% 1000
900 1200
150 200 250 300 350 400 256 512 1024 2048 4096 8192
(c) Type constructors (d) BPE merges

Fig. 8. The impact of different vocabulary thresholds for the various categories of identifiers. A smaller threshold means the
vocabulary is larger.

model-based tools can prove as a result of nondeterministic training variance is much larger than the scale of the
differences in how many they prove. Thus, the variance from training nondeterminism serves as a dimension for
model diversity, which can be used to improve proof synthesis, similarly to the approach taken by Diva [First
and Brun 2022].

5.7 Hyperparameters

As discussed in Section 4.1, each of the identifier types we add has a vocabulary of the most common identifiers
of that type, giving a fixed encoding of those identifiers in addition to the subword encoding. We count the
occurrences of the identifiers in the training set to determine which identifiers occur more than a specified
threshold, and then only include those identifiers in our vocabulary. For example, if we have a threshold of
100, then all the identifiers that occur at least 100 times in the training set will be included in the vocabulary.
That threshold is a hyperparameter that we can vary for each type of identifier, and it determines the size of the
vocabulary.

Figure 8 shows the performance impact of different values of that hyperparameter for different identifiers.
As you can see the performance of various vocabulary sizes for global definitions, local variables, and type
constructors are all fairly jagged, though they all peak at around 200 occurrences, which we set as the default in
the rest of our experiments.

ACM Trans. Program. Lang. Syst.

Alex Sanchez-Stern®, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

It is interesting to note that, while the thresholds which produce the best results are the same for the different
identifier categories, this results in drastically different vocabulary sizes: 427 global definitions meet the threshold,
but only 135 local variables and 26 type constructors do. This justifies our decision to use a fixed occurrence
threshold to pick vocabulary rather than using the n most common identifiers from each category.

However, there are signs that our method of picking vocabulary to index could be improved. Sometimes, adding
identifiers with fewer occurrences, such as the global definitions with between 180 and 200 occurrences, helps;
while adding those with more occurrences, such as the global definitions with between 200 and 220 occurrences,
hurts. This suggests that the number of occurrences does not monotonically predict the usefulness of indexing
a particular identifier, even though it is the most common approach. Future systems should investigate new
metrics to pick vocabulary for indexing. Finally, these experiments indicate that the model — and therefore
the proof-search tool — is sensitive to small changes in hyperparameters, similar to how model-based tool
performance varies greatly from nondeterminism at the hardware level in model training.

The subword encoding we use also has several hyperparameters which can be varied; principle among these
is the number of byte-pair merges, which determines the size of the subword vocabulary. Figure 8d shows the
effect of different subword vocabulary sizes on success rate. The default byte-pair merge threshold of 4,096 is
represented as the the highest point on the graph.

6 DISCUSSION

We believe that it is prudent to broaden the discourse around machine learning for proofs to consider not just
the tool produced, but also the development processes in building these tools. It is for this reason that we step
back and discuss our experiences, centering challenges that we encountered in three areas: the feedback cycle,
reproducibility, debugging.

Feedback Cycle. The feedback cycle for developing Passport was slow. Every time we changed an encoding, we
had to retrain the model, a process that took around two days. Mistakes in the code or in the training parameters
would often not manifest until evaluation, at which point we would need to retrain once more. This slow feedback
cycle quickly added up, so that even a small change could take weeks.

In traditional supervised learning, training dominates development time, as evaluating a model means running
it just once on the test set. However, in the context of proof search, evaluation on a large benchmark set often
takes as many or more computational resources as training, though it is usually more parallelizable across
machines.

In the machine-learning literature, techniques have been proposed to make training faster [Lepikhin et al.
2020; Li et al. 2022b; Popel and Bojar 2018; Rajbhandari et al. 2020], which could be directly applied in proof
search. And more tooling like data trackers [Biewald 2020], data validation, and static types can help catch bugs
sooner, resulting in fewer training runs needed during development. Finally, some work in combining multiple
models [First and Brun 2022] has shown an ability to speed up proof search, and other search optimizations could
also shorten that part of the feedback cycle.

Reproducibility. As discussed and measured in our evaluation (Section 5.6), many current learning frame-
works and APIs behave nondeterministically, resulting in nondeterministic variance in our end-to-end proof
results. Much of the nondeterminism we encountered is difficult but possible to control, when it stems from
hardware differences, random seeds, or OS-level file ordering. However, even when controlling for those factors
and all documented nondeterminism, we found our model training was still nondeterministic. During the
course of our development, we discovered some PyTorch APIs that were documented as deterministic behaved
nondeterministically; we reported that bug, and the developers marked it as high-priority. ®

Shttps://github.com/pytorch/pytorch/issues/75240

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using ldentifiers «

A recent paper found this variance in performance across identical training runs to be pervasive in an evaluation
of six popular neural networks on three datasets [Pham et al. 2020b]. This paper found that very few of the
researchers or practitioners surveyed in were aware of possible nondeterminism in these systems. We recommend
that future researchers using machine-learning for proof search document the hardware and software used to
train, and report some measure of the variance in their models results.

Debugging. The debugging of systems that mix machine learning and symbolic manipulation, such as Passport,
inherits the challenges of both. Instead of failing to compile or throwing a runtime error, bugs in Passport often
manifested solely as drops in evaluation numbers. It was challenging to identify whether these drops were caused
by bugs to begin with, let alone in which part of the system the bug occurred when there was one.

We are unable to find any work on debugging machine learning systems outside of (potentially very useful) folk
knowledge encoded in blog posts’ and other informal sources. Perhaps a more formal exploration of debugging
machine learning systems is warranted. Both better practices [Popel and Bojar 2018] and techniques for improved
stability [Liu et al. 2020] may improve the debugging experience. We suspect that improvements to the challenges
surrounding the feedback cycle and reproducibility will be not just helpful for but in fact essential to improving
debugging, as many debugging difficulties are consequences of these challenges.

Other Difficulties. These were only a few of the difficulties we faced as researchers applying machine learning
to proof search. These systems are also known to have poor modularity [Sculley et al. 2014] (modifying one
component can significantly affect the performance of others); poor explainability [Barredo Arrieta et al. 2020;
Gilpin et al. 2018; Guidotti et al. 2018; Lebese et al. 2021] (trained models do not lend themselves to high-level
interpretation); and large hardware costs [Heim 2022] (expensive hardware is required to train these models,
limiting who can develop them, and often requiring the use of shared clusters which can slow development).

None of these weaknesses are shared by purely symbolic approaches to proof tasks such as proof repair [Ringer
et al. 2021], or first-order theorem proving [Czajka and Kaliszyk 2018]. However, current work indicates that
tools using these machine learning models can sometimes overcome limitations that current existing purely
symbolic tools cannot [First et al. 2020], especially when the solution space is large.

7 RELATED WORK

We discuss related work in neural proof synthesis, proof corpora, and neural program synthesis.

Neural Proof Synthesis

There have been several other neural proof-synthesis tools for the Coq proof assistant. Figure 9 compares
Passport’s features to those of prior work. Our work directly enriches the TacTok [First et al. 2020] proof-
synthesis tool for Coq (which is in turn an enrichment of ASTactic [Yang and Deng 2019]), and evaluates the
enriched tool on the CogGym benchmark suite. TacTok models both proof scripts and proof states to predict
tactics. In doing so, however, it erases all tokens from the AST — effectively erasing all syntactic identifier
information, including path and file names, local variables, theorem names, type names, and type constructor
names. We add these tokens back and explore different design decisions in encoding them, revealing meaningful
information about their contributions, and improving over TacTok on the CoqGym benchmark suite. Our insights
about syntactic information may provide ideas for dealing with variables used as arguments to tactics in future
iterations of TacTok.

Other machine learning tools for Coq include Tactician [Blaauwbroek et al. 2020], Gamepad [Huang et al. 2019],
ML4PG [Komendantskaya et al. 2012], and Proverbot9001 [Sanchez-Stern et al. 2020] (which has a web-based
frontend, Proofster [Agrawal et al. 2023]). To the best of our knowledge, none of the models in these tools

"http://karpathy.github.io/2019/04/25/recipe/

ACM Trans. Program. Lang. Syst.

« Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

Proverbot- ASTactic TacTok Passport

9001

Proof search v v v v
Proof state v v v v
Tactic history — - v v
Tree-based — v v v
term encoder

Type Constructors v - - v
Global Definitions v — — v
Local Variables v — — v
Paths — - - v
Subwords — — — v

Fig. 9. A comparison of the features of several proof-synthesis tools.

explicitly encode the category a particular identifier belongs to (one of local variable, global definition, or type
constructor), none of them encode the path that an identifier comes from, and none of them apply sub-word
tokenization. Our insights may help further improve performance of these tools.

We enrich an existing model to explore the impacts of different design decisions for including syntactic
information. While the particular architecture of the model we enriched is not the focus of our work, these design
decisions may have different impacts depending on the architecture. The model we enriched uses a Tree-LSTM
architecture; other models in this space use sequences [Bansal et al. 2019; Blaauwbroek et al. 2020; Sanchez-Stern
et al. 2020], other tree architectures [Huang et al. 2019], and graph architectures [Paliwal et al. 2020], with the
latter showing significant improvement over previous tree architectures.

Proof-synthesis tools using transformer-based large language models have also begun to emerge [Polu and
Sutskever 2020], recently showing promising capabilities for benchmarks in Isabelle/HOL [Jiang et al. 2021; Wu
et al. 2022] and Lean [Polu et al. 2022]. These techniques can be used both in a search-based tool [Jiang et al.
2022] (like Passport), and for whole-proof generation [First et al. 2023]. Transformer models that only use the
local proof context, such as GPT-f [Polu and Sutskever 2020], cannot derive the identifier information Passport
encodes. Capturing that information requires either considering much larger samples of text to process the
definitions of each variable (as well as understanding directory structure to derive paths), or running queries
against the Coq proof engine, as Passport does. However, future work could enhance transformer models with
identifier information, similarly to our approach. Exploring the trade-offs of different encodings of syntactic
information in all of these models may provide interesting insights.

Recent work shows that the decision of whether or not to encode variable names has a significant impact on
the performance of a graph neural network for proof synthesis in HOL on the HOList benchmark suite [Paliwal
et al. 2020]. Our work explores this trade-off at a higher level of granularity, looking at the impacts of including
different kinds of variables and other syntactic information like paths, and exploring different tokenization
decisions and vocabulary sizes. Running a similar experiment on that tool may also prove enlightening.

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers

Proof Corpora

A recent study of proof corpora [Hellendoorn et al. 2018] applying language models found high degrees of
naturalness in proofs, and discussed implications for proof engineering tools that could capitalize on that
naturalness. The study also found higher degrees of locality than in other programming languages, suggesting
that cache-based approaches already helpful in neural program synthesis [Tu et al. 2014] (especially when used in
combination with BPE [Karampatsis et al. 2020]) may prove particularly useful for synthesizing proofs. Building
a cache on top of BPE is a promising path toward further improving our model performance.

The importance of identifiers is also consistent with recent findings from the REPLicA user study of Coq proof
engineers [Ringer et al. 2020], which showed a pattern of proof engineers refactoring the names of definitions in
predictable and repetitive ways. Furthermore, several of the REPLica benchmarks include syntactic changes
in proofs that correspond to semantic changes made alongside them, which points toward syntactic changes
possibly revealing useful semantic information that a machine learning tool may be able to pick up on. The
REPLIica benchmarks may also motivate BPE: one benchmark, for example, shows a change in a type constructor
name, along with a change of a substring of the name of a broken lemma that referred to that type constructor
name in a way that corresponded to the change. Exploring the performance of Passport on those benchmarks
may prove interesting.

Nie et al. [Nie et al. 2020b] developed a model for auto-formatting Coq code by encoding spacing information
in proof scripts and incorporating techniques from Natural Language Processing. Their work on Roosterize, a
toolchain for generation of lemma names [Nie et al. 2020a, 2021] leverages both syntactic and semantic information
by combining data from multiple phases of the Coq compiler — tokens, parse trees, and fully elaborated terms.
Similar multi-representation approaches may prove an effective means of encoding syntactic information for
proof-synthesis models as well.

Specification-mutation analysis can help demonstrate weak specifications, when mutating the definitions does
not break the proofs [Celik et al. 2019; Jain et al. 2020]. iCoq [Celik et al. 2017, 2018], and its parallelized version
PiCoq [Palmskog et al. 2018], find failing proof scripts in evolving projects by prioritizing proof scripts affected
by a revision. These tools track fine-grained dependencies between Coq definitions, propositions, and proof
scripts, to narrow down the potentially affected proof scripts.

Neural Program Synthesis

Neural proof synthesis is similar to neural program synthesis, but adapted to the world of proofs. Neural program
synthesis has seen a renaissance of sorts in recent years. The model beneath Github’s Copilot code auto-complete
tool — Codex — is trained on a large corpus of Github projects, and treats all programs and proofs as text,
regardless of the language [Chen et al. 2021]. Another work by DeepMind, AlphaCode, solves a similar task [Li
et al. 2022a], as does PaLM-Coder from Google [Chowdhery et al. 2022]. Work at Google [Austin et al. 2021]
showed that large language models of this flavor are promising, but struggle to understand the semantics of
programs.

A recent YouTube video [Ringer and Cutler 2021] explores the applications of Copilot to proofs, suggesting
that even a model trained on raw syntax may suggest helpful hints for small proofs in repetitive files in the
CompCert [Leroy 2009] verified C compiler. However, it appears to have limited value for larger, more original
proofs with the current data available.

There is a lot we can learn about variable representations and tokenization decisions in neural program
synthesis, some of which may be applicable for proofs. Recent work [Tu et al. 2014] shows the benefits of a cache-
based model for code completion that exploits locality properties of programs. More recent work [Karampatsis
et al. 2020] demonstrates the benefits of BPE tokenization for code completion, especially in combination with
cache-based models. Another recent paper [Svyatkovskiy et al. 2020] introduces a framework for evaluating

ACM Trans. Program. Lang. Syst.

Alex Sanchez-Stern®, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

different design decisions for integrating the structure within identifiers within a code completion model, and
shows similar benefits for BPE, plus additional benefits from integrating a static analysis to limit the search space.
We find similar benefits to BPE in the context of a neural proof-synthesis model, and furthermore show the
benefits of tagging different kinds of identifiers and paths differently depending on what kind of information
they encode.

Several different models have also been proposed for modeling code, such as AST-like trees [Mou et al. 2014],
long-term language models [Dam et al. 2016], and probabilistic grammars [Bielik et al. 2016]. Program synthesis
is also widely studied using non-learning based methods, both from types alone [Gvero et al. 2013] and examples
and types [Frankle et al. 2016; Osera and Zdancewic 2015].

Identifiers in Code Models

Previous work has been done on providing semantic information for identifiers in code, outside of the context of
proof-synthesis. The VarCLR paper explored using contrastive learning to learn which identifiers have similar
meanings, in contrast to simply being related [Chen et al. 2022]. It does this by mining variable renamings
from GitHub edits, and enables effective use of general purpose language models. Another paper [Karampatsis
et al. 2020] explored extensively the tradeoffs of various techniques for dealing with the large vocabulary issues
that come from modeling identifiers in code. Several of our design decisions, such as case-sensitivity, and not
attempting to split words based on common conventions, are inspired by the results of this paper. This paper
also explores the use of subword tokenizing to handle identifiers in code, and finds it effective. However, their
subword architecture is significantly different than ours, since it uses a flat sequence model to model unstructured
subword units, while we instead embed a subword model for identifiers inside of a parsed-tree model of the code
structure.

8 CONTRIBUTIONS

Our Passport approach enriches a model used for proof synthesis with three different identifier encoding
mechanisms: category vocabulary indexing, subword sequence modeling, and path elaboration. We empirically
demonstrate that each encoding mechanism improves proof-synthesis performance on the CoqGym benchmark
suite. Furthermore, we measured the impact of adding information for each individual category of identifier:
global definitions, local variables, and type constructors. Again, empirically, each category improved performance.

These results are consistent with our intuition that identifiers matter for proofs, that the category of an
identifier is useful information, and that drawing connections between identifiers is useful for proof synthesis.
Passport automatically proves 12.7% of the theorems in CoqGym, an improvement of 38% over Tok (an example
proof-synthesis tool), without changing the core architecture beyond the encoding of identifiers. Combining
the new tools developed using the Passport approach with three baseline tools automatically proves 17.2% of
the theorems in CoqGym, an improvement of 45% over the baseline tools combined. This intuition and these
results will help developers of other tools for program and proof synthesis in other languages beyond Coq, and is
a fruitful step toward better tools for engineering robust and reliable formally verified software systems.

ACKNOWLEDGMENTS

This work is supported by the Defense Advanced Research Projects Agency under grant no. HR0011-22-9-006,
and by the National Science Foundation under grant no. CCF-2210243.

REFERENCES
Agda Development Team. 2007-2021. The Agda Wiki. http://wiki.portal.chalmers.se/agda/pmwiki.php

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers «

Arpan Agrawal, Emily First, Zhanna Kaufman, Tom Reichel, Shizhuo Zhang, Timothy Zhou, Alex Sanchez-Stern, Talia Ringer, and Yuriy
Brun. 2023. Proofster: Automated Formal Verification. In Proceedings of the Demonstrations Track at the 45th International Conference on
Software Engineering (ICSE) (14-20). Melbourne, Australia.

Andrew W. Appel. 2011. Verified Software Toolchain. In Programming Languages and Systems, Gilles Barthe (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 1-17.

Emilio Jesus Gallego Arias. 2016. SerAPI: Machine-Friendly, Data-Centric Serialization for COQ.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry,
Quoc V. Le, and Charles Sutton. 2021. Program Synthesis with Large Language Models. CoRR abs/2108.07732 (2021). arXiv:2108.07732
https://arxiv.org/abs/2108.07732

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. 2019. HOList: An Environment for Machine Learning
of Higher-Order Theorem Proving (extended version). CoRR abs/1904.03241 (2019). arXiv:1904.03241 http://arxiv.org/abs/1904.03241

Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio
Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020. Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible Al Information Fusion 58 (2020), 82-115. https://doi.org/10.1016/j.inffus.
2019.12.012

Pavol Bielik, Veselin Raychev, and Martin Vechev. 2016. PHOG: Probabilistic Model for Code. In Proceedings of The 33rd International
Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.).
PMLR, New York, New York, USA, 2933-2942. http://proceedings.mlr.press/v48/bielik16.html

Lukas Biewald. 2020. Experiment Tracking with Weights and Biases. https://www.wandb.com/ Software available from wandb.com.

Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. 2020. Tactic Learning and Proving for the Coq Proof Assistant. In International
Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR) (EPiC Series in Computing, Vol. 73), Elvira Albert and
Laura Kovacs (Eds.). 138-150. https://doi.org/10.29007/wglq

Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2017. ICoq: Regression proof selection for large-scale verification projects. In IEEE/ACM
International Conference on Automated Software Engineering (ASE). Urbana-Champaign, IL, USA, 171-182. https://doi.org/10.1109/ASE.
2017.8115630

Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2018. A Regression Proof Selection Tool for Coq. In International Conference on Software
Engineering Demonstrations Track (ICSE DEMO). Gothenburg, Sweden, 117-120. https://doi.org/10.1145/3183440.3183493

Ahmet Celik, Karl Palmskog, Marinela Parovic, Emilio Jests Gallego Arias, and Milos Gligoric. 2019. Mutation Analysis for Coq. In IEEE/ACM
International Conference on Automated Software Engineering (ASE). San Diego, California, 539-551. https://doi.org/10.1109/ASE.2019.00057

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse,
Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating
Large Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan Vasilescu, and Claire Le Goues. 2022. VarCLR: Variable Semantic
Representation Pre-Training via Contrastive Learning. In Proceedings of the 44th International Conference on Software Engineering (Pittsburgh,
Pennsylvania) (ICSE "22). Association for Computing Machinery, New York, NY, USA, 2327-2339. https://doi.org/10.1145/3510003.3510162

Adam Chlipala. 2013. Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant. The MIT Press.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander
Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie
Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,
Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2022.
PaLM: Scaling Language Modeling with Pathways. https://doi.org/10.48550/ARXIV.2204.02311

Coq Development Team. 1989-2021. The Coq Proof Assistant. http://coq.inria.fr

Thierry Coquand and Gérard Huet. 1986. The calculus of constructions. Technical Report RR-0530. INRIA. https://hal.inria.fr/inria-00076024

Thierry Coquand and Christine Paulin. 1990. Inductively defined types. In COLOG-88, Per Martin-Lof and Grigori Mints (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 50-66.

ACM Trans. Program. Lang. Syst.

« Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

Lukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automation for Dependent Type Theory. Journal of Automated Reasoning 61, 1
(01 Jun 2018), 423-453. https://doi.org/10.1007/s10817-018-9458-4

Hoa Khanh Dam, Truyen Tran, and Trang Pham. 2016. A deep language model for software code. CoRR abs/1608.02715 (2016). arXiv:1608.02715
http://arxiv.org/abs/1608.02715

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. 2019. Simple High-Level Code for Cryptographic Arithmetic —
With Proofs, Without Compromises. In IEEE Symposium on Security and Privacy (S&P). 1202-1219. https://doi.org/10.1109/SP.2019.00005

Emily First and Yuriy Brun. 2022. Diversity-Driven Automated Formal Verification. In Proceedings of the 44th International Conference on
Software Engineering (ICSE) (22-27). Pittsburgh, PA, USA. https://doi.org/10.1145/3510003.3510138

Emily First, Yuriy Brun, and Arjun Guha. 2020. TacTok: Semantics-Aware Proof Synthesis. Proceedings of the ACM on Programming
Languages (PACMPL) Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA) issue 4 (November 2020), 231:1-231:31.
https://doi.org/10.1145/3428299 DOI: 10.1145/3428299.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. 2023. Baldur: Whole-Proof Generation and Repair with Large Language Models.
CoRR abs/2303.04910 (2023). https://arxiv.org/abs/2303.04910.

Jonathan Frankle, Peter-Michael Osera, David Walker, and S Zdancewic. 2016. Example-directed synthesis: a type-theoretic interpretation.
ACM SIGPLAN Notices 51 (01 2016), 802-815. https://doi.org/10.1145/2914770.2837629

Philip Gage. 1994. A New Algorithm for Data Compression. C Users }. 12, 2 (feb 1994), 23-38.

Xiang Gao. 2022. cub device scan is not deterministic as described in the documentation #454. https://github.com/NVIDIA/cub/issues/454.

Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael A. Specter, and Lalana Kagal. 2018. Explaining Explanations: An Approach
to Evaluating Interpretability of Machine Learning. CoRR abs/1806.00069 (2018). arXiv:1806.00069 http://arxiv.org/abs/1806.00069

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi. 2018. A Survey of Methods for
Explaining Black Box Models. ACM Comput. Surv. 51, 5, Article 93 (aug 2018), 42 pages. https://doi.org/10.1145/3236009

Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013. Complete Completion using Types and Weights. PLDI 2013 (2013), 12.
27-38. http://infoscience.epfl.ch/record/188990

Lennart Heim. 2022. Estimating PaLM’s training cost. https://blog.heim.xyz/author/lennart/.

Vincent J. Hellendoorn, Premkumar T. Devanbu, and Mohammad Amin Alipour. 2018. On the naturalness of proofs. In ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE) New Ideas and Emerging
Results track. Orlando, FL, USA, 724-728.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. 2019. GamePad: A Learning Environment for Theorem Proving. In
International Conference on Learning Representations. https://openreview.net/forum?id=r1xwKoR9Y7

Isabelle Development Team. 1994-2021. Isabelle. http://isabelle.in.tum.de

Kush Jain, Karl Palmskog, Ahmet Celik, Emilio Jesus Gallego Arias, and Milos Gligoric. 2020. MCoq: Mutation Analysis for Coq Verification
Projects. In International Conference on Software Engineering Demonstrations Track (ICSE DEMO). Seoul, South Korea, 89-92. https:
//doi.org/10.1145/3377812.3382156

Albert Jiang, Konrad Czechowski, Mateja Jamnik, Piotr Milos, Szymon Tworkowski, Wenda Li, and Yuhuai Tony Wu. 2022. Thor: Wielding
Hammers to Integrate Language Models and Automated Theorem Provers. In Neural Information Processing Systems (NeurIPS). New
Orleans, LA, USA.

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. 2021. LISA: Language models of ISAbelle proofs. In Conference on
Artificial Intelligence and Theorem Proving (AITP). Aussois, France, 17.1-17.3.

Rafael Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea Janes. 2020. Big Code != Big Vocabulary: Open-Vocabulary
Models for Source code. In Proceedings of the 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE °20). ACM.
https://doi.org/10.1145/3377811.3380342

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles (Big Sky, Montana, USA) (SOSP *09). ACM, New York, NY,
USA, 207-220. https://doi.org/10.1145/1629575.1629596

Ekaterina Komendantskaya, Jonathan Heras, and Gudmund Grov. 2012. Machine Learning in Proof General: Interfacing Interfaces. In
Proceedings 10th International Workshop On User Interfaces for Theorem Provers, UITP 2012, Bremen, Germany, July 11th, 2012 (EPTCS,
Vol. 118), Cezary Kaliszyk and Christoph Liith (Eds.). 15-41. https://doi.org/10.4204/EPTCS.118.2

Lean Development Team. 2014-2021. Theorem Proving in Lean. http://leanprover.github.io/tutorial/

Thabang Lebese, Ndivhuwo Makondo, Cristina Cornelio, and Naweed Khan. 2021. Proof Extraction for Logical Neural Networks. In Advances
in Programming Languages and Neurosymbolic Systems Workshop. https://openreview.net/forum?id=Xw3kb6UyA31

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng
Chen. 2020. GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding. In International Conference on Learning
Representations.

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107-115. https://doi.org/10.1145/1538788.1538814

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using Identifiers «

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno,
Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes
Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,
Koray Kavukcuoglu, and Oriol Vinyals. 2022a. Competition-Level Code Generation with AlphaCode. https://doi.org/10.48550/ARXIV.
2203.07814

Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu, and Junjie Yan. 2022b. Supervision Exists
Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. In International Conference on Learning Representations.
https://openreview.net/forum?id=zq1iJkNk3uN

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. 2020. Understanding the Difficulty of Training Transformers.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Online, 5747-5763. https://doi.org/10.18653/v1/2020.emnlp-main.463

Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang. 2014. TBCNN: A Tree-Based Convolutional Neural Network for Programming Language
Processing. CoRR abs/1409.5718 (2014). arXiv:1409.5718 http://arxiv.org/abs/1409.5718

Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. 2020a. Deep Generation of Coq Lemma Names Using Elaborated Terms. In
International Joint Conference on Automated Reasoning (IJCAR). Paris, France, 97-118.

Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. 2020b. Learning to Format Coq Code Using Language Models. In The Cog
Workshop. Aubervilliers, France.

Pengyu Nie, Karl Palmskog, Junyi Jessy Li, and Milos Gligoric. 2021. Roosterize: Suggesting Lemma Names for Coq Verification Projects
Using Deep Learning. In International Conference on Software Engineering Demonstrations Track (ICSE DEMO). Madrid, Spain, 21-24.
https://doi.org/10.1109/ICSE-Companion52605.2021.00026

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed Program Synthesis. SIGPLAN Not. 50, 6 (June 2015), 619-630.
https://doi.org/10.1145/2813885.2738007

Aditya Paliwal, Sarah Loos, Markus Rabe, Kshitij Bansal, and Christian Szegedy. 2020. Graph representations for higher-order logic and
theorem proving. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 2967-2974.

Karl Palmskog, Ahmet Celik, and Milos Gligoric. 2018. PiCoq: Parallel Regression Proving for Large-Scale Verification Projects. In ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). Amsterdam, Netherlands, 344-355. https://doi.org/10.1145/
3213846.3213877

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep
Contextualized Word Representations. In Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), Vol. 1. Association for Computational Linguistics, New Orleans, LA, USA, 2227-2237.
https://doi.org/10.18653/v1/N18-1202

Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan.
2020a. Problems and Opportunities in Training Deep Learning Software Systems: An Analysis of Variance. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering (Virtual Event, Australia) (ASE "20). Association for Computing
Machinery, New York, NY, USA, 771-783. https://doi.org/10.1145/3324884.3416545

Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan.
2020b. Problems and Opportunities in Training Deep Learning Software Systems: An Analysis of Variance. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering (Virtual Event, Australia) (ASE "20). Association for Computing
Machinery, New York, NY, USA, 771-783. https://doi.org/10.1145/3324884.3416545

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Catalin Hritcu, Vilhelm Sjéberg, and
Brent Yorgey. 2021. Software Foundations. Vol. 1: Logical Foundations. https://softwarefoundations.cis.upenn.edu/If-current/index.html

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya Sutskever. 2022. Formal Mathematics Statement
Curriculum Learning. CoRR abs/2202.01344 (2022). https://arxiv.org/abs/2202.01344

Stanislas Polu and Ilya Sutskever. 2020. Generative Language Modeling for Automated Theorem Proving. CoRR abs/2009.03393 (2020).
arXiv:2009.03393 https://arxiv.org/abs/2009.03393

Martin Popel and Ondfej Bojar. 2018. Training Tips for the Transformer Model. The Prague Bulletin of Mathematical Linguistics 110, 1 (2018),
43-70.

Shangshu Qian, Viet Hung Pham, Thibaud Lutellier, Zeou Hu, Jungwon Kim, Lin Tan, Yaoliang Yu, Jiahao Chen, and Sameena Shah. 2021.
Are My Deep Learning Systems Fair? An Empirical Study of Fixed-Seed Training. In Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., 30211-30227.
https://proceedings.neurips.cc/paper/2021/file/fdda6e957f1e5ee2f3b311fe4f145ae1-Paper.pdf

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO: Memory Optimizations toward Training Trillion Parameter
Models. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (Atlanta, Georgia)
(SC °20). IEEE Press, Article 20, 16 pages.

Tom P Reichel. 2022. Large cumulative sums appear to be nondeterministic. #75240. https://github.com/pytorch/pytorch/issues/75240.

ACM Trans. Program. Lang. Syst.

« Alex Sanchez-Stern*, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

Talia Ringer and Joe Cutler. 2021. Talia and Joe chat about proof engineering with copilot. https://youtu.be/jFL-ftywPiM

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. 2019. QED at Large: A Survey of Engineering of Formally
Verified Software. Foundations and Trends®in Programming Languages 5, 2-3 (2019), 102-281. https://doi.org/10.1561/2500000045

Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman. 2021. Proof repair across type equivalences. In Proceedings of
the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. ACM. https://doi.org/10.1145/
3453483.3454033

Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner. 2020. REPLica: REPL Instrumentation for Coq Analysis. In Proceedings
of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs (New Orleans, LA, USA) (CPP 2020). Association for
Computing Machinery, New York, NY, USA, 99-113. https://doi.org/10.1145/3372885.3373823

Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. 2020. Generating Correctness Proofs with Neural Networks. In Machine
Learning in Programming Languages. ACM SIGPLAN.

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, and Michael Young. 2014. Machine
Learning: The High Interest Credit Card of Technical Debt. In SE4ML: Software Engineering for Machine Learning (NIPS 2014 Workshop).

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
Berlin, Germany, 1715-1725. https://doi.org/10.18653/v1/P16-1162

Gil Shamir and Dong Lin. 2022. Reproducibility in Deep Learning and Smooth Activations. https://ai.googleblog.com/2022/04/reproducibility-
in-deep-learning-and.html?m=1.

Jean Souyris. 2014. Industrial Use of CompCert on a Safety-Critical Software Product. http://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_
Souyiris.pdf.

Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana Franco, and Miltiadis Allamanis. 2020. Fast and Memory-Efficient
Neural Code Completion. CoRR abs/2004.13651 (2020). https://arxiv.org/abs/2004.13651

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved Semantic Representations From Tree-Structured Long Short-
Term Memory Networks. In Annual Meeting of the Association for Computational Linguistics (ACL), Vol. 1. Beijing, China, 1556-1566.
https://doi.org/10.3115/v1/P15-1150

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On the Localness of Software. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association for Computing Machinery,
New York, NY, USA, 269-280. https://doi.org/10.1145/2635868.2635875

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Framework
for Implementing and Formally Verifying Distributed Systems. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Portland, OR, USA) (PLDI ’15). ACM, New York, NY, USA, 357-368. https://doi.org/10.1145/2737924.
2737958

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. 2022. Memorizing Transformers. In International Conference
on Learning Representations. https://openreview.net/forum?id=TrjbxzRcnf-

Kaiyu Yang and Jia Deng. 2019. Learning to prove theorems via interacting with proof assistants. In International Conference on Machine
Learning (ICML). Long Beach, CA, USA. http://proceedings.mlr.press/v97/yang19a/yang19a.pdf

A CATEGORIES OF IDENTIFIERS

Before we implemented Passport, we manually inspected the proof corpora in our training dataset, walking
through proofs and analyzing the kinds of information needed to make decisions about which tactic to apply next
in a proof. The choice to include identifiers was a product of realizing how much proof engineers rely on naming
information to reason about these decisions. But the choice of which identifiers to include was less clear. Consider,
for example, local variables: many common local variable names are used in a variety of contexts which may
have little relation with one another. A variable named x can carry a totally different meaning than the x from
Figure 3 in Section 3. Without empirical evidence, it was unclear whether an enriched model could potentially
suffer performance degradation from drawing fallacious connections like this. As a result, experimental data was
an important factor in our selection of which identifiers to include.

Our experiments in Section 5 show that all three categories of identifiers help. In particular, search using the
Tok model Passport-enriched with any one of the three categories of identifiers alone outperforms search using
that model with no identifier information. Furthermore, a search using the Tok model Passport-enriched with all

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using ldentifiers «

three categories of identifiers at once outperforms a search using a Passport-enriched Tok model with just one
category of identifiers, for all categories.

The remainder of this Appendix details each of these three categories — global definitions (Appendix A.1),
local variables (Appendix A.2), and type constructors (Appendix A.3) — and gives intuition for why each of them
may be useful for a tactic prediction model. Finally, Appendix A.4 discusses Passport implementation details.

A.1 Global Definitions

The most straightforward of our categories to include was identifiers referencing global definitions. These
identifiers refer to objects defined globally directly by the user, using the keywords Definition, Theorem, Inductive,
or one of their variants. Global definitions are generally either an inductive type name, or a name given to some
Gallina term (function, constant value, etc). Crucially, since proof objects themselves are terms, theorems are
global definitions with their names bound to their proof objects.

In Coq, most code amounts to creating new global definitions, through a variety of means. The simplest is
by writing the term which corresponds to the name explicitly, and using a vernacular command to bind it to
the name, as in Definition n := 5.. This is commonly how the Definition keyword is used, both in defining
constant values and in defining functions. When a definition needs to refer to its own name within its body, that
is done either using a fix in the term, or using the special vernacular keyword Fixpoint, which is essentially
syntactic sugar for the former.

Global definitions can also be defined interactively, using Coq’s tactic system. For example, the proof script in
Figure 3 specifies a sequence of tactics which produce a Gallina term referred to by its identifier posnatMult_comm.
In Gallina, this is indistinguishable from a plain definition — in fact, any term in Coq can be defined using tactics,
though this is most common for proofs of lemmas and theorems.

Finally, inductive types can be created using Coq’s Inductive command. This command creates a new inductive
type or type family, given a set of “type constructors,” or ways to build objects of the type. When complete, this
command defines several objects, including the type itself, its type constructors, and recursion and induction
principles for the type. Type constructors are explored in more detail in Appendix A.3.

Encoding the usage of global definitions in terms is extremely useful for predicting tactics. Often, a particular
common identifier will signify that certain lemmas will be useful. For instance, in the proof context:

n : nat

le (div2 n) n
the presence of the div2 and le identifiers indicates that lemmas involving those operators will be useful; in
fact, the correct next step is to apply a lemma named div2_decr, which applies to goals of the form le (div2 _)_.
Both div2 and 1le identifiers correspond to global definitions.

A.2 Local Variables

Besides global definitions, local variables are the most common type of identifier in Coq terms. Local variables
can be bound to an explicit term, as in a let definition, but in many cases (function parameters, forall bindings,
and existential pairs) are given only a type binding. This is in contrast to global definitions, which are always
bound directly to terms.

Encoding local variables is often critical to determining the correct next step in a proof, or even understanding
its basic structure. Even when the local variable’s name is not particularly informative, knowing when local
variables repeat is often critical. For example, consider the following proof context (from VST [Appel 2011]):

ACM Trans. Program. Lang. Syst.

Alex Sanchez-Stern®, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

n : nat

n >= div2 n + div2 n
If the n variable were not the same in all three occurrences, this goal would be impossible to prove without more
information. However, because the n variable is repeated, this goal holds by the definition of div2, which is
round-down division by two.

While local variable names often provide useful information, as mentioned above, common names are often
overloaded in their usage. We learned early on that the possibility of performance regression due to uninformative
local variables like x had concerned the ASTactic authors, and contributed to their decision not to encode
identifiers.> However, upon closer inspection of the data we determined that even single-letter identifier names
often carry consistent semantic meaning across proofs. The identifier names hd and t1, for instance, seemed to
uniformly refer to the head and tail of a list; because they carried consistent semantic meaning, these identifiers
were treated similarly within proofs.

Because of these consistencies in naming, we decided to include local variables.

A.3 Type Constructors

Unlike global definitions and local variables, type constructors are not bound on their own, but are instead defined
as part of inductive type definitions. As an example of how type constructors are defined, Figure 10 shows the
definition of the option type.

(* Library Coq, directory Init, file Datatypes.v *)
Inductive option' (A? : Type) : Type :=

| Some3 : A — option A

| None® : option A

Fig. 10. The polymorphic option datatype in Cogq, found in the fully-qualified path Coq.Init.Datatypes. Given a type
parameter A, an option A in Coq is one of two things: either it is Some a given an element a of type A, or it is None. For
consistency, identifiers are highlighted using the same conventions from Figure 2.

The type definition for option has two type constructors: Some, which creates an option A for any object of
type A, and None, which is a constant value of type option A for any A. There are many examples of such type
constructors in common inductive types: S and 0 for natural numbers, cons and nil for lists, and others. Logically,
just as type definitions correspond to theorems, type constructors are analogous to introduction rules for types.
In the option type in Figure 10, Some and None encode all possible ways of introducing terms of type option.
Because of this, type constructors play a special role in deconstructing types — in particular, they appear inside
match statements, which act on the structure of a type by having one branch per type constructor. Similarly,
proofs by induction in Coq prove propositions about inductive types by having one case per type constructor.

Knowledge of type constructors can be incredibly useful in determining the next proof step in a proof. In
the example from Figure 11, the goal states that S (S (n + m)) is even, where m and n are natural numbers. The
context shows (n + m) is even, but does not include information about S. The knowledge that S is a successor type
constructor of nat, and that there exists an ev type constructor ev_SS of type ev n -> ev (S (S n)), is necessary
to solve the goal. Here, running the constructor tactic results in the goal ev (n + m), which matches one of the
hypotheses (IH1).

8https://github.com/princeton-vl/CoqGym/discussions/60

ACM Trans. Program. Lang. Syst.

Passport: Improving Automated Formal Verification Using ldentifiers «

1 subgoal
m, n : nat
ET : evn
E2 : evm
IH1 : ev (n + m)

ev (S (S (n+m))
Fig. 11. A mid-proof context from the first volume of the logical foundations series [Pierce et al. 2021]

(constructor
(inductive
(file_path
(directory_path [Datatypes; Init; Coq])
(label option')))
(int 13))

Fig. 12. An unprocessed AST representing a use of the Some type constructor for the option inductive type from Figure 10,
simplified for the sake of presentation. For consistency, identifiers are highlighted using the same conventions from Figure 2,
and the index 1 of the Some type constructor is highlighted in yellow®. Note that the identifier of the Some type constructor
itself is not present.

A4 Passport Enrichment Implementation

Enriching the data with these three categories of identifiers amounted to modifying inherited data processing code
from TacTok and ASTactic that had erased all information about those identifiers from the data. The inherited
code had used the SerAPI [Arias 2016] library to serialize Coq proof objects (terms) as well as proof states
and theorems (types), then processed the serialized ASTs returned by SerAPI to erase all identifier information.
Enriching the data with two of the three categories of identifiers — definition and local variable names — was a
straightforward modification of the post-processing code.

By contrast, adding type constructor names was a more involved process, as Gallina ASTs do not directly store
type constructor names. Instead, like its parent type theory, the calculus of inductive constructions [Coquand
and Huet 1986; Coquand and Paulin 1990], Coq represents each type constructor in the AST as a tuple consisting
of the name of its inductive type together with the index of the particular type constructor.

Figure 12 shows the AST for Some, which is the first (type constructors are 1-indexed) type constructor of the
option datatype. Notably, the AST by default stores the fully-qualified path and name of the inductive type that
the type constructor constructs. Thus, the only remaining step is to look up the type constructor from the global
environment by passing the fully-qualified name of the inductive type and the index of the type constructor —
here, Coq.Init.Datatypes.option and 1 — then place it back into the AST where the index is.

To do this, between parsing and encoding, the Passport implementation unparses subterms that correspond
to type constructor nodes into string representations of the ASTs of the subterms. It then feeds those string
representations back through SerAPI, which performs an environment lookup to recover the type constructor
name. As with the other identifiers, Passport then inserts a child node containing the identifier into the AST
before encoding.

Overall, the Passport approach implementation is 1.5K lines of code and took four developers about a year to
build. While the conceptual and design aspects of the Passport approach can extend to all prediction-model-driven,

ACM Trans. Program. Lang. Syst.

Alex Sanchez-Stern®, Emily First*, Timothy Zhou, Zhanna Kaufman, Yuriy Brun, and Talia Ringer

search-based, proof-synthesis tools, the current implementation is straightforwardly applicable to all such tools
built within the CoqGym environment [Yang and Deng 2019].

ACM Trans. Program. Lang. Syst.

