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ABSTRACT
This paper defines software fairness and discrimination and devel-
ops a testing-basedmethod formeasuring if and howmuch software
discriminates, focusing on causality in discriminatory behavior.
Evidence of software discrimination has been found in modern
software systems that recommend criminal sentences, grant access
to financial products, and determine who is allowed to participate
in promotions. Our approach, Themis, generates efficient test suites
to measure discrimination. Given a schema describing valid system
inputs, Themis generates discrimination tests automatically and
does not require an oracle. We evaluate Themis on 20 software
systems, 12 of which come from prior work with explicit focus
on avoiding discrimination. We find that (1) Themis is effective at
discovering software discrimination, (2) state-of-the-art techniques
for removing discrimination from algorithms fail in many situa-
tions, at times discriminating against as much as 98% of an input
subdomain, (3) Themis optimizations are effective at producing
efficient test suites for measuring discrimination, and (4) Themis is
more efficient on systems that exhibit more discrimination. We thus
demonstrate that fairness testing is a critical aspect of the software
development cycle in domains with possible discrimination and
provide initial tools for measuring software discrimination.
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• Software and its engineering → Software testing and de-
bugging
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1 INTRODUCTION
Software has become ubiquitous in our society and the importance
of its quality has increased. Today, automation, advances in ma-
chine learning, and the availability of vast amounts of data are
leading to a shift in how software is used, enabling the software to
make more autonomous decisions. Already, software makes deci-
sions in what products we are led to buy [53], who gets a loan [62],
self-driving car actions that may lead to property damage or human
injury [32], medical diagnosis and treatment [74], and every stage
of the criminal justice system including arraignment and sentencing
that determine who goes to jail and who is set free [5, 28]. The im-
portance of these decisions makes fairness and nondiscrimination
in software as important as software quality.

Unfortunately, software fairness is undervalued and little at-
tention is paid to it during the development lifecycle. Countless
examples of unfair software have emerged. In 2016, Amazon.com,
Inc. used software to determine the parts of the United States to
which it would offer free same-day delivery. The software made
decisions that prevented minority neighborhoods from participat-
ing in the program, often when every surrounding neighborhood
was allowed to participate [36, 52]. Similarly, software is being
used to compute risk-assessment scores for suspected criminals.
These scores— an estimated probability that the person arrested for
a crime is likely to commit another crime— are used to inform deci-
sions about who can be set free at every stage of the criminal justice
system process, from assigning bond amounts, to deciding guilt,
to sentencing. Today, the U.S. Justice Department’s National Insti-
tute of Corrections encourages the use of such assessment scores.
In Arizona, Colorado, Delaware, Kentucky, Louisiana, Oklahoma,
Virginia, Washington, and Wisconsin, these scores are given to
judges during criminal sentencing. The Wisconsin Supreme Court
recently ruled unanimously that the COMPAS computer program,
which uses attributes including gender, can assist in sentencing de-
fendants [28]. Despite the importance of these scores, the software
is known to make mistakes. In forecasting who would reoffend, the
software is “particularly likely to falsely flag black defendants as fu-
ture criminals, wrongly labeling them this way at almost twice the
rate as white defendants; white defendants were mislabeled as low
risk more often than black defendants” [5]. Prior criminal history
does not explain this difference: Controlling for criminal history,
recidivism, age, and gender shows that the software predicts black
defendants to be 77% more likely to be pegged as at higher risk
of committing a future violent crime than white defendants [5].
Going forward, the importance of ensuring fairness in software
will only increase. For example, “it’s likely, and some say inevitable,
that future AI-powered weapons will eventually be able to operate
with complete autonomy, leading to a watershed moment in the
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history of warfare: For the first time, a collection of microchips and
software will decide whether a human being lives or dies” [34]. In
fact, in 2016, the U.S. Executive Office of the President identified
bias in software as a major concern for civil rights [27]. And one of
the ten principles and goals Satya Nadella, the CEO of Microsoft
Co., has laid out for artificial intelligence is “AI must guard against
bias, ensuring proper, and representative research so that the wrong
heuristics cannot be used to discriminate” [61].

This paper defines causal software discrimination and proposes
Themis, a software testing method for evaluating the fairness of
software. Our definition captures causal relationships between in-
puts and outputs, and can, for example, detect when sentencing
software behaves such that “changing only the applicant’s race af-
fects the software’s sentence recommendations for 13% of possible
applicants.” Prior work on detecting discrimination has focused on
measuring correlation or mutual information between inputs and
outputs [79], discrepancies in the fractions of inputs that produce a
given output [18, 19, 39–42, 87–89, 91], or discrepancies in output
probability distributions [51]. These approaches do not capture
causality and can miss discrimination that our causal approach de-
tects, e.g., when the software discriminates negatively with respect
to a group in one settings, but positively in another. Restricting the
input space to real-world inputs [1] may similarly hide software
discrimination that causal testing can reveal. Unlike prior work
that requires manually written tests [79], Themis automatically
generates test suites that measure discrimination. To the best of
our knowledge, this work is the first to automatically generate test
suites to measure causal discrimination in software.

Themis would be useful for companies and government agen-
cies relying on software decisions. For example, Amazon.com, Inc.
received strong negative publicity after its same-day delivery al-
gorithm made racially biased decisions. Politicians and citizens
in Massachusetts, New York, and Illinois demanded that the com-
pany offer same-day delivery service to minority neighborhoods in
Boston, New York City, and Chicago, and the company was forced
to reverse course within mere days [72, 73]. Surely, the company
would have preferred to test its software for racial bias and to de-
velop a strategy (e.g., fixing the software, manually reviewing and
modifying racist decisions, or not using the software) prior to de-
ploying it. Themis could have analyzed the software and detected
the discrimination prior to deployment. Similarly, a government
may need to set nondiscrimination requirements on software, and
be able to evaluate if software satisfies those requirements before
mandating it to be used in the justice system. In 2014, the U.S.
Attorney General Eric Holder warned that steps need to be taken
to prevent the risk-assessment scores injecting bias into the courts:
“Although these measures were crafted with the best of intentions,
I am concerned that they inadvertently undermine our efforts to
ensure individualized and equal justice [and] they may exacerbate
unwarranted and unjust disparities that are already far too com-
mon in our criminal justice system and in our society.” [5]. As with
software quality, testing is likely to be the best way to evaluate
software fairness properties.

Unlike prior work, this paper defines discrimination as a causal
relationship between an input and an output. As defined here, dis-
crimination is not necessarily bad. For example, a software system

designed to identify if a picture is of a cat should discriminate be-
tween cats and dogs. It is not our goal to eliminate all discrimination
in software. Instead, it is our goal to empower the developers and
stakeholders to identify and reason about discrimination in soft-
ware. As described above, there are plenty of real-world examples
in which companies would prefer to have discovered discrimina-
tion earlier, prior to release. Specifically, our technique’s job is to
identify if software discriminates with respect to a specific set of
characteristics. If the stakeholder expects cat vs. dog discrimination,
she would exclude it from the list of input characteristics to test.
However, learning that the software frequently misclassifies black
cats can help the stakeholder improve the software. Knowing if
there is discrimination can lead to better-informed decision making.

There are two main challenges to measuring discrimination via
testing. First, generating a practical set of test inputs sufficient for
measuring discrimination, and second, processing those test inputs’
executions to compute discrimination. This paper tackles both chal-
lenges, but the main contribution is computing discrimination from
a set of executions. We are aware of no prior testing technique,
neither automated nor manual, that produces a measure of a soft-
ware system’s causal discrimination. The paper also contributes
within the space of efficient test input generation for the specific
purpose of discrimination testing (see Section 4), but some prior
work, specifically in combinatorial testing, e.g., [6, 44, 47, 80], may
further help the efficiency of test generation, though these tech-
niques have not been previously applied to discrimination testing.
We leave a detailed examination of how combinatorial testing and
other automated test generation can help further improve Themis
to future work.

This paper’s main contributions are:

(1) Formal definitions of software fairness and discrimination, in-
cluding a causality-based improvement on the state-of-the-art
definition of algorithmic fairness.

(2) Themis, a technique and open-source implementation—
https://github.com/LASER-UMASS/Themis— formeasuring dis-
crimination in software.

(3) A formal analysis of the theoretical foundation of Themis, in-
cluding proofs of monotonicity of discrimination that lead to
provably sound two-to-three orders of magnitude improve-
ments in test suite size, a proof of the relationship between
fairness definitions, and a proof that Themis is more efficient
on systems that exhibit more discrimination.

(4) An evaluation of the fairness of 20 real-world software instances
(based on 8 software systems), 12 of which were designed with
fairness in mind, demonstrating that (i) even when fairness is a
design goal, developers can easily introduce discrimination in
software, and (ii) Themis is an effective fairness testing tool.

Themis requires a schema for generating inputs, but does not
require an oracle. Our causal fairness definition is designed specif-
ically to be testable, unlike definitions that require probabilistic
estimation or knowledge of the future [38]. Software testing offers
a unique opportunity to conduct causal experiments to determine
statistical causality [67]: One can run the software on an input (e.g.,
a defendant’s criminal record), modify a specific input character-
istic (e.g., the defendant’s race), and observe if that modification
causes a change in the output. We define software to be causally
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fair with respect to input characteristic χ if for all inputs, varying
the value of χ does not alter the output. For example, a sentence-
recommendation system is fair with respect to race if there are
no two individuals who differ only in race but for whom the sys-
tem’s sentence recommendations differs. In addition to capturing
causality, this definition requires no oracle— the equivalence of the
output for the two inputs is itself the oracle—which helps fully
automate test generation.

The rest of this paper is structured as follows. Section 2 provides
an intuition to fairness measures and Section 3 formally defines
software fairness. Section 4 describes Themis, our approach to
fairness testing. Section 5 evaluates Themis. Finally, Section 6
places our work in the context of related research and Section 7
summarizes our contributions.

2 SOFTWARE FAIRNESS MEASURES
Suppose a bank employs loan software to decide if loan applicants
should be given loans. loan inputs are each applicant’s name,
age, race, income, savings, employment status, and requested loan
amount, and the output is a binary “give loan” or “do not give loan”.
For simplicity, suppose age and race are binary, with age either <40
or >40, and race either green or purple.

Some prior work on measuring and removing discrimination
from algorithms [18, 19, 39–42, 88, 89, 91] has focused on what we
call group discrimination, which says that to be fair with respect to
an input characteristic, the distribution of outputs for each group
should be similar. For example, the loan software is fair with re-
spect to age if it gives loans to the same fractions of applicants
<40 and >40. To be fair with respect to multiple characteristics,
for example, age and race, all groups with respect to those char-
acteristics — purple <40, purple >40, green <40, and green >40—
should have the same outcome fractions. The Calders-Verwer (CV)
score [19] measures the strength of group discrimination as the
difference between the largest and the smallest outcome fractions;
if 30% of people <40 get the loan, and 40% of people >40 get the
loan, then loan is 40% − 30% = 10% group discriminating.

While group discrimination is easy to reason about and measure,
it has two inherent limitations. First, group discrimination may fail
to observe some discrimination. For example, suppose that loan
produces different outputs for two loan applications that differ in
race, but are otherwise identical. While loan clearly discriminates
with respect to race, the group discrimination score will be 0 if loan
discriminates in the opposite way for another pair of applications.
Second, software may circumvent discrimination detection. For
example, suppose loan recommends loans for a random 30% of the
purple applicants, and the 30% of the green applicants who have
the most savings. Then the group discrimination score with respect
to race will deem loan perfectly fair, despite a clear discrepancy in
how the applications are processed based on race.

To address these issues, we define a new measure of discrimi-
nation. Software testing enables a unique opportunity to conduct
causal experiments to determine statistical causation [67] between
inputs and outputs. For example, it is possible to execute loan on
two individuals identical in every way except race, and verify if
changing the race causes a change in the output. Causal discrimina-

tion says that to be fair with respect to a set of characteristics, the

software must produce the same output for every two individuals
who differ only in those characteristics. For example, the loan
software is fair with respect to age and race if for all pairs of indi-
viduals with identical name, income, savings, employment status,
and requested loan amount but different race or age characteristics,
loan either gives all of them or none of them the loan. The fraction
of inputs for which software causally discriminates is a measure of
causal discrimination.

Thus far, we have discussed software operating on the full input
domain, e.g., every possible loan application. However, applying
software to partial input domains may mask or effect discrimi-
nation. For example, while software may discriminate on some
loan applications, a bank may care about whether that software
discriminates only with respect to applications representative of
their customers, as opposed to all possible human beings. In this
case, a partial input domain may mask discrimination. If a partial
input domain exhibits correlation between input characteristics, it
can effect discrimination. For example, suppose older individuals
have, on average, higher incomes and larger savings. If loan only
considers income and savings in making its decision, even though
it does not consider age, for this population, loan gives loans to
a higher fraction of older individuals than younger ones. We call
the measurement of group or causal discrimination on a partial
input domain apparent discrimination. Apparent discrimination de-
pends on the operational profile of the system system’s use [7, 58].
Apparent discrimination is important to measure. For example,
Amazon.com, Inc. software that determined where to offer free
same-day delivery did not explicitly consider race but made race-
correlated decisions because of correlations between race and other
input characteristics [36, 52]. Despite the algorithm not looking
at race explicitly, Amazon.com, Inc. would have preferred to have
tested for this kind of discrimination.

3 FORMAL FAIRNESS DEFINITIONS
We make two simplifying assumptions. First, we define software
as a black box that maps input characteristics to an output char-
acteristic. While software is, in general, more complex, for the
purposes of fairness testing, without loss of generality, this defini-
tion is sufficient: All user actions and environmental variables are
modeled as input characteristics, and each software effect is mod-
eled as an output characteristic. When software has multiple output
characteristics, we define fairness with respect to each output char-
acteristic separately. The definitions can be extended to include
multiple output characteristics without significant conceptual re-
formulation. Second, we assume that the input characteristics and
the output characteristic are categorical variables, each having a set
of possible values (e.g., race, gender, eye color, age ranges, income
ranges). This assumption simplifies our measure of causality. While
our definitions do not apply directly to non-categorical input and
output characteristics (such as continuous variables, e.g., int and
double), they, and our techniques, can be applied to software with
non-categorical input and output characteristics by using binning
(e.g., age<40 and age>40). The output domain distance function
(Definition 3.3) illustrates one way our definitions can be extended
to continuous variables. Future work will extend our discrimination
measures directly to a broader class of data types.
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A characteristic is a categorical variable. An input type is a set
of characteristics, an input is a valuation of an input type (assign-
ment of a value to each characteristic), and an output is a single
characteristic.

Definition 3.1 (Characteristic). Let L be a set of value labels. A
characteristic χ over L is a variable that can take on the values in L.

Definition 3.2 (Input type and input). For all n ∈ N, let L1,L2, . . . ,
Ln be sets of value labels. Then an input type X over those value
labels is a sequence of characteristics X = ⟨χ1, χ2, . . . , χn⟩, where
for all i ≤ n, χi is a characteristic over Li .

An input of type X is k = ⟨l1 ∈ L1, l2 ∈ L2, . . . , ln ∈ Ln⟩, a
valuation of an input type.

We say the sizes of input k and of input type X are n.

Discrimination can bemeasured in software thatmakes decisions.
When the output characteristic is binary (e.g., “give loan” vs. “do not
give loan”) the significance of the two different output values is clear.
When outputs are not binary, identifying potential discrimination
requires understanding the significance of differences in the output.
For example, if the software outputs an ordering of hotel listings
(that may be influenced by the computer you are using, as was the
case when software used by Orbitz led Apple users to higher-priced
hotels [53]), domain expertise is needed to compare two outputs
and decide the degree to which their difference is significant. The
output domain distance function encodes this expertise, mapping
pairs of output values to a distance measure.

Definition 3.3 (Output domain distance function). Let Lo be a set of
value labels. Then for all lo1, lo2 ∈ Lo , the output distance function
is δ : Lo × Lo → [0..1] such that lo1 = lo2 =⇒ δ (lo1, lo2) = 0.

The output domain distance function generalizes our work be-
yond binary outputs. For simplicity of exposition, for the remainder
of this paper, we assume software outputs binary decisions— a nat-
ural domain for fairness testing. While true or false outputs
(corresponding to decisions such as “give loan” vs. “do not give
loan”) are easier to understand, the output domain distance func-
tion enables comparing non-binary outputs in two ways. First, a
threshold output domain distance function can determine when two
outputs are dissimilar enough to warrant potential discrimination.
Second, a relational output domain distance function can describe
how different two inputs are and how much they contribute to
potential discrimination. Definitions 3.5, 3.6, 3.8, and 3.7, could be
extended to handle non-binary outputs by changing their exact
output comparisons to fractional similarity comparisons using an
output domain distance function, similar to the way inputs have
been handled in prior work [24].

Definition 3.4 (Decision software). Let n ∈ N be an input size, let
L1,L2, . . . ,Ln be sets of value labels, let X = ⟨χ1, χ2, . . . , χn⟩ be
an input type, and let K be the set of all possible inputs of type
X . Decision software is a function S : K → {true, false}. That is,
when software S is applied to an input ⟨l1 ∈ L1, l2 ∈ L2, . . . , ln ∈
Ln⟩, it produces true or false.

The group discrimination score varies from 0 to 1 and measures
the difference between fractions of input groups that lead to the
same output (e.g., the difference between the fraction of green and

purple individuals who are given a loan). This definition is based
on the CV score [19], which is limited to a binary input type or a
binary partitioning of the input space. Our definition extends to
the more broad categorical input types, reflecting the relative com-
plexity of arbitrary decision software. The group discrimination
score with respect to a set of input characteristics is the maximum
frequency with which the software outputs true minus the mini-
mum such frequency for the groups that only differ in those input
characteristics. Because the CV score is limited to a single binary
partitioning, that difference represents all the encoded discrimi-
nation information in that setting. In our more general setting
with multiple non-binary characteristics, the score focuses on the
range—difference between the maximum and minimum—as op-
posed to the distribution. One could consider measuring, say, the
standard deviation of the distribution of frequencies instead, which
would better measure deviation from a completely fair algorithm,
as opposed to the maximal deviation for two extreme groups.

Definition 3.5 (Univariate group discrimination score d̃). Let K be
the set of all possible inputs of size n ∈ N of type X = ⟨χ1, χ2, . . . ,
χn⟩ over label values L1,L2, . . . ,Ln . Let software S : K → {true,
false}.

For all i ≤ n, fix one characteristic χi . That is, letm = |Li | and
for all m̂ ≤ m, let Km̂ be the set of all inputs with χi = lm̂ . (Km̂ is
the set of all inputs with the χi

th characteristic fixed to be lm̂ .) Let
pm̂ be the fraction of inputs k ∈ Km̂ such that S(k ) = true. And
let P = ⟨p1,p2, . . . ,pm⟩.

Then the univariate group discrimination score with respect to
χi , denoted d̃χi (S), is max(P ) −min(P ).

For example, consider loan software that decided to give loan
to 23% of green individuals, and to 65% of purple individuals.
When computing loan’s group discrimination score with respect
to race, d̃race (loan) = 0.65 − 0.23 = 0.42.

The multivariate group discrimination score generalizes the uni-
variate version to multiple input characteristics.

Definition 3.6 (Multivariate group discrimination score d̃). For all
α , β , . . . ,γ ≤ n, fix the characteristics χα , χβ , . . . , χγ . That is, let
mα = |Lα |, mβ = |Lβ |, . . ., mγ = |Lγ |, let m̂α ≤ mα , m̂β ≤ mβ ,
. . . , m̂γ ≤ mγ , andm = mα ×mβ × · · · ×mγ , let Km̂α ,m̂β , ...,m̂γ

be the set of all inputs with χα = lm̂α , χβ = lm̂β , . . ., χγ = lm̂γ .
(Km̂α ,m̂β , ...,m̂γ is the set of all inputs with the χα characteristic
fixed to be lm̂α , χβ characteristic fixed to be lm̂β , and so on.) Let
pm̂α ,m̂β , ...,m̂γ be the fraction of inputs k ∈ Km̂α ,m̂β , ...,m̂γ such
that S(k ) = true. And let P be an unordered sequence of all
pm̂α ,m̂β , ...,m̂γ .

Then the multivariate group discrimination score with respect
to χα , χβ , . . . , χγ , denoted d̃χα , χβ , ..., χγ (S) is max(P ) −min(P ).

Our causal discrimination score is a stronger measure of discrimi-
nation, as it seeks out causality in software, measuring the fraction
of inputs for which changing specific input characteristics causes
the output to change [67]. The causal discrimination score identi-
fies changing which characteristics directly affects the output. As a
result, for example, while the group and apparent discrimination
scores penalize software that gives loans to different fractions of
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individuals of different races, the causal discrimination score penal-
izes software that gives loans to individuals of one race but not to
otherwise identical individuals of another race.

Definition 3.7 (Multivariate causal discrimination score d⃗). Let
K be the set of all possible inputs of size n ∈ N of type X =
⟨χ1, χ2, . . . , χn⟩ over label values L1,L2, . . . ,Ln . Let software S :
K → {true, false}. For all α , β, . . . ,γ ≤ n, let χα , χβ , . . . , χγ be
input characteristics.

Then the causal discrimination score with respect to χα , χβ , . . . ,
χγ , denoted d⃗χα , χβ , ..., χγ (S) is the fraction of inputs k ∈ K such
that there exists an input k ′ ∈ K such that k and k ′ differ only in
the input characteristics χα , χβ , . . . , χγ , and S(k ) , S(k ′). That
is, the causal discrimination score with respect to χα , χβ , . . . , χγ
is the fraction of inputs for which changing at least one of those
characteristics causes the output to change.

Thus far, we have measured discrimination of the full input do-
main, considering every possible input with every value of every
characteristic. In practice, input domains may be partial. A com-
pany may, for example, care about whether software discriminates
only with respect to their customers (recall Section 2). Apparent
discrimination captures this notion, applying group or causal dis-
crimination score measurement to a subset of the input domain,
which can be described by an operational profile [7, 58].

Definition 3.8 (Multivariate apparent discrimination score). Let
K̈ ⊆ K be a subset of the input domain to S. Then the apparent
group discrimination score is the group discrimination score applied
to K̈ , and the apparent causal discrimination score is the causal dis-
crimination score applied to K̈ (as opposed to applied to the full K ).

Having defined discrimination, we now define the problem of
checking software for discrimination.

Definition 3.9 (Discrimination checking problem). Given an input
type X , decision software S with input type X , and a threshold
0 ≤ θ ≤ 1, compute all X ′ ⊆ X such that d̃X ′ (S) ≥ θ or d⃗X ′ (S) ≥ θ .

4 THE THEMIS SOLUTION
This section describes Themis, our approach to efficient fairness
testing. To use Themis, the user provides a software executable, a
desired confidence level, an acceptable error bound, and an input
schema describing the format of valid inputs. Themis can then be
used in three ways:
(1) Themis generates a test suite to compute the software group or

causal discrimination score for a particular set of characteristics.
For example, one can use Themis to check if, and how much, a
software system discriminates against race and age.

(2) Given a discrimination threshold, Themis generates a test suite
to compute all sets of characteristics against which a software
group or causally discriminates more than that threshold.

(3) Given a manually-written or automatically-generated test suite,
or an operational profile describing an input distribution [7, 58],
Themis computes the apparent group or causal discrimination
score for a particular set of characteristics. For example, one
can use Themis to check if a system discriminates against race
on a specific population of inputs representative of the way the

Algorithm 1: Computing group discrimination. Given a soft-
ware S and a subset of its input characteristics X ′, GroupDis-
crimination returns d̃X ′ (S), the group discrimination score
with respect to X ′, with confidence conf and error margin ϵ .
GroupDiscrimination(S, X ′, conf , ϵ )

1 minGroup ← ∞, maxGroup ← 0, testSuite ← ∅ ▷Initialization

2 foreach A, where A is a value assignment for X ′ do
3 r ← 0 ▷Initialize number of samples

4 count ← 0 ▷Initialize number of positive outputs

5 while r < max_samples do
6 r ← r + 1
7 k ← NewRandomInput (X ′ ← A) ▷New input k with

k .X ′ = A
8 testSuite ← testSuite ∪ {k } ▷Add input to the test suite

9 if notCached (k ) then ▷No cached executions of k exist

10 Compute(S(k )) ▷Evaluate software on input k
11 CacheResult (k, S(k )) ▷Cache the result

12 else ▷Retrieve cached result

13 S(k ) ← RetrieveCached (k )

14 if S(k ) then
15 count ← count + 1

16 if r > sampling_threshold then
▷After sufficient samples, check error margin

17 p ← count

r ▷Current proportion of positive outputs

18 if conf .zValue
√
p (1−p )

r < ϵ then
19 break ▷Achieved error < ϵ , with confidence conf

20 maxGroup ← max(maxGroup, p )
21 minGroup ← min(minGroup, p )

22 return testSuite, d̃X ′ (S) ← maxGroup −minGroup

system will be used. This method does not compute the score’s
confidence as it is only as strong as the developers’ confidence
that test suite or operational profile is representative of real-
world executions.

Measuring group and causal discrimination exactly requires ex-
haustive testing, which is infeasible for nontrivial software. Solving
the discrimination checking problem (Definition 3.9) further re-
quires measuring discrimination over all possible subsets of charac-
teristics to find those that exceed a certain discrimination threshold.

Themis addresses these challenges by employing three optimiza-
tions: (1) test caching, (2) adaptive, confidence-driven sampling, and
(3) sound pruning. All three techniques reduce the number of test
cases needed to compute both group and causal discrimination. Sec-
tion 4.1 describes how Themis employs caching and sampling, and
Section 4.2 describes how Themis prunes the test suite search space.

4.1 Caching and Approximation
GroupDiscrimination (Algorithm 1) and CausalDiscrimination
(Algorithm 2) present the Themis computation of multivariate
group and causal discrimination scores with respect to a set of
characteristics. These algorithms implement Definitions 3.6 and 3.7,
respectively, and rely on two optimizations. We first describe these
optimizations and then the algorithms.
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Test caching. Precisely computing the group and causal discrimi-
nation scores requires executing a large set of tests. However, a lot
of this computation is repetitive: tests relevant to group discrimina-
tion are also relevant to causal discrimination, and tests relevant to
one set of characteristics can also be relevant to another set. This
redundancy in fairness testing allows Themis to exploit caching to
reuse test results without re-executing tests. Test caching has low
storage overhead and offers significant runtime gains.
Adaptive, confidence-driven sampling. Since exhaustive test-
ing is infeasible, Themis computes approximate group and causal
discrimination scores through sampling. Sampling in Themis is
adaptive, using the ongoing score computation to determine if a
specified margin of error ϵ with a desired confidence level conf has
been reached. Themis generates inputs uniformly at random using
an input schema, and maintains the proportion of samples (p) for
which the software outputs true (in GroupDiscrimination) or for
which the software changes its output (in CausalDiscrimination).
The margin of error for p is then computed as:

error = z∗
√

p (1 − p)
r

where r is the number of samples so far and z∗ is the normal distri-
bution z∗ score for the desired confidence level. Themis returns if
error < ϵ , or generates another test otherwise.
GroupDiscrimination (Algorithm 1) measures the group discrim-
ination score with respect to a subset of its input characteristics X ′.
As per Definition 3.6, GroupDiscrimination fixes X ′ to particular
values (line 2) to compute what portion of all tests with X ′ values
fixed produce a true output. The while loop (line 5) generates
random input assignments for the remaining input characteristics
(line 7), stores them in the test suite, and measures the count of
positive outputs. The algorithm executes the test, if that execution
is not already cached (line 9); otherwise, the algorithm retrieves
the software output from the cache (line 12). After passing the
minimum sampling threshold (line 16), it checks if ϵ error margin
is achieved with the desired confidence (line 18). If it is, GroupDis-
crimination terminates the computation for the current group
and updates the max and min values (lines 20–21).
CausalDiscrimination (Algorithm 2) similarly applies test caching
and adaptive sampling. It takes a random test k0 (line 4) and tests
if changing any of its X ′ characteristics changes the output. If k0
result is not cached (line 6), the algorithm executes it and caches the
result. It then iterates through tests k that differ from k0 in one or
more characteristics in X ′ (line 11). All generated inputs are stored
in the test suite. The algorithm typically only needs to examine a
small number of tests before discovering causal discrimination for
the particular input (line 18). In the end, CausalDiscrimination
returns the proportion of tests for which the algorithm found causal
discrimination (line 25).

4.2 Sound Pruning
Measuring software discrimination (Definition 3.9) involves execut-
ing GroupDiscrimination and CausalDiscrimination over each
subset of the input characteristics. The number of these executions
grows exponentially with the number of characteristics. Themis re-
lies on a powerful pruning optimization to dramatically reduce the

Algorithm 2: Computing causal discrimination. Given a soft-
ware S and a subset of its input characteristics X ′, CausalDis-
crimination returns d⃗X ′ (S), the causal discrimination score
with respect to X ′, with confidence conf and error margin ϵ .
CausalDiscrimination(S, X ′, conf , ϵ )

1 count ← 0; r ← 0, testSuite ← ∅ ▷Initialization

2 while r < max_samples do
3 r ← r + 1
4 k0 ← NewRandomInput ▷New input without value restrictions

5 testSuite ← testSuite ∪ {k0 } ▷Add input to the test suite

6 if notCached (k0) then ▷No cached executions of k0 exist
7 Compute(S(k0)) ▷Evaluate software on input k0
8 CacheResult (k0, S(k0)) ▷Cache the result

9 else ▷Retrieve cached result

10 S(k0) ← RetrieveCached (k0)

11 foreach k ∈ {k | k , k0; ∀χ < X ′, k .χ = k0 .χ } do
▷All inputs that match k0 in every characteristic χ < X ′

testSuite ← testSuite ∪ {k } ▷Add input to the test suite

1313 if notCached (k ) then ▷No cached executions of k exist

14 Compute(S(k )) ▷Evaluate software on input k
15 CacheResult (k, S(k )) ▷Cache the result

16 else ▷Retrieve cached result

17 S(k ) ← RetrieveCached (k )

18 if S(k ) , S(k0) then ▷Causal discrimination

19 count = count + 1
20 break

21 if r > sampling_threshold then
▷Once we have sufficient samples, check error margin

22 p ← count

r ▷Current proportion of positive outputs

23 if conf .zValue
√
p (1−p )

r < ϵ then
24 break ▷Achieved error < ϵ , with confidence conf

25 return testSuite, d⃗X ′ (S) ← p

number of evaluated characteristics subsets. Pruning is based on a
fundamental monotonicity property of group and causal discrimina-
tion: if a software S discriminates over threshold θ with respect to
a set of characteristics X ′, then S also discriminates over threshold
θ with respect to all superset of X ′. Once Themis discovers that S
discriminates against X ′, it can prune testing all supersets of X ′.

Next, we formally prove group (Theorem 4.1) and causal (The-
orem 4.2) discrimination monotonicity. These results guarantee
that Themis pruning strategy is sound. DiscriminationSearch
(Algorithm 3) uses pruning in solving the discrimination checking
problem. As Section 5.4 will evaluate empirically, pruning leads
to, on average, a two-to-three order of magnitude reduction in test
suite size.

Theorem 4.1 (Group discrimination monotonicity). LetX be

an input type and let S be a decision software with input typeX . Then

for all sets of characteristics X ′,X ′′ ⊆ X , X ′′ ⊇ X ′ =⇒ d̃X ′′ (S) ≥

d̃X ′ (S).

Proof. Let d̃X ′ (S) = θ ′. Recall (Definition 3.6) that to compute
d̃X ′ (S), we partition the space of all inputs into equivalence classes
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Algorithm 3: Discrimination search. Given a software S with
input type X and a discrimination threshold θ , Discrimina-
tionSearch identifies all minimal subsets of characteristics
X ′ ⊆ X such that the (group or causal) discrimination score
of S with respect to X ′ is greater than θ with confidence conf
and error margin ϵ .
DiscriminationSearch(S, θ , conf , ϵ )

1 D← ∅ ▷Initialize discriminating subsets of characteristics

2 for i = 1 . . . |X | do
3 foreach X ′ ⊆ X , |X ′ | = i do ▷Check subsets of size i
4 discriminates ← false

5 for X ′′ ∈ D do
6 if X ′′ ⊆ X ′ then

▷Supersets of a discriminating set discriminate

(Theorems 4.1 and 4.2)

7 discriminates ← true

8 break

9 if discriminates then
10 continue ▷Do not store X ′; D already contains a subset

11 {testSuite, d } = Discrimination(S, X ′, conf , ϵ )
▷Test S for (group or causal) discrimination with respect to X ′

12 if d > θ then ▷X ′ is a minimal discriminating set

13 D.append (X ′)

such that all elements in each equivalence class have identical
value labels assigned to each characteristic in X ′, then, compute
the frequencies with which inputs in each equivalence class lead
S to a true output, and finally compute the difference between
the minimum and maximum of these frequencies. Let p̂′ and p̌′ be
those maximum and minimum frequencies, and K̂ ′ and Ǩ ′ be the
corresponding equivalence classes of inputs.

Now consider the computation of θ ′′ = d̃X ′′ (S). Note that the
equivalence classes of inputs for this computations will be strict
subsets of the equivalence classes in the θ ′ computation. In par-
ticular, the equivalence subset K̂ ′ will be split into several equiv-
alence classes, which we call K̂ ′′1 , K̂

′′
2 , . . . There are two possibil-

ities: (1) either the frequency with which the inputs in each of
these subclasses lead S to a true output equal the frequency of
K̂ ′, or (2) some subclasses have lower frequencies and some have
higher than K̂ ′ (since when combined, they must equal that of
K̂ ′). Either way, the maximum frequency of the K̂ ′′1 , K̂

′′
2 , . . . , K̂

′′
j

subclasses is ≥ K̂ ′. And therefore, the maximum overall frequency
p̂′′ for all the equivalence classes in the computation of θ ′′ is
≥ p̂′. By the same argument, the minimum overall frequency
p̌′′ for all the equivalence classes in the computation of θ ′′ is
≤ p̌′. Therefore, θ ′′ = (p̂′′ − p̌′′) ≥ (p̂′ − p̌′) ≤= θ ′, and there-
fore, X ′′ ⊇ X ′ =⇒ d̃X ′′ (S) ≥ d̃X ′ (S). □

Theorem 4.2 (Causal discrimination monotonicity). Let X
be an input type and let S be a decision software with input type

X . Then for all sets of characteristics X ′,X ′′ ⊆ X , X ′′ ⊇ X ′ =⇒

d⃗X ′′ (S) ≥ d⃗X ′ (S).

Proof. Recall (Definition 3.7) that the causal discrimination
score with respect toX ′ is the fraction of inputs for which changing

the value of at least one characteristic in X ′ changes the output.
Consider K ′, the entire set of such inputs for X ′, and similarly K ′′,
the entire set of such inputs for X ′′. Since X ′′ ⊇ X ′, every input in
K ′must also be inK ′′ because if changing at least one characteristic
in X ′ changes the output and those characteristics are also in X ′′.
Therefore, the fraction of such inputs must be no smaller for X ′′

than for X ′, and therefore, X ′′ ⊇ X ′ =⇒ d⃗X ′′ (S) ≥ d⃗X ′ (S). □

A further opportunity for pruning comes from the relationship
between group and causal discrimination. As Theorem 4.3 shows,
if software group discriminates against a set of characteristics, it
must causally discriminate against that set at least as much.

Theorem 4.3. Let X be an input type and let S be a decision

software with input typeX . Then for all sets of characteristicsX ′ ⊆ X ,

d̃X ′ (S) ≤ d⃗X ′ (S).

Proof. Let d̃X ′ (S) = θ . Recall (Definition 3.6) that to compute
d̃X ′ (S), we partition the space of all inputs into equivalence classes
such that all elements in each equivalence class have identical value
labels assigned to each characteristic in X ′. It is evident that same
equivalence class inputs have same values for characteristics in X ′

and the ones in different equivalence classes differ in at least one
of the characteristics in X ′.

Now, d̃X ′ (S) = θ means that for θ fraction of inputs, the output
is true, and after changing just some values of X ′ (producing an
input in another equivalence class), the output is false. This is
because if there were θ ′ < θ fraction of inputs with a different
output when changing the equivalence classes, then d̃X ′ (S) would
have been θ ′. Hence d⃗X ′ (S) > θ . □

5 EVALUATION
In evaluating Themis, we focused on two research questions:
RQ1: Does research on discrimination-aware algorithm design

(e.g., [18, 40, 88, 91]) produce fair algorithms?
RQ2: How effective do the optimizations from Section 4 make

Themis at identifying discrimination in software?
To answer these research questions, we carried out three exper-

iments on twenty instances of eight software systems that make
financial decisions.1 Seven of the eight systems (seventeen out of
the twenty instances) are written by original system developers; we
reimplemented one of the systems (three instances) because origi-
nal source code was not available. Eight of these software instances
use standard machine learning algorithms to infer models from
datasets of financial and demographic data. These systems make
no attempt to avoid discrimination. The other twelve instances
are taken from related work on devising discrimination-aware al-
gorithms [18, 40, 88, 91]. These software instances use the same
datasets and attempt to infer discrimination-free solutions. Four of
them focus on not discriminating against race, and eight against
gender. Section 5.1 describes our subject systems and the two
datasets they use.

1We use the term system instance to mean instantiation of a software system with
a configuration, using a specific dataset. Two instances of the same system using
different configurations and different data are likely to differ significantly in their
behavior and in their discrimination profile.
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5.1 Subject Software Systems
Our twenty subject instances use two financial datasets. The Adult
dataset (also known as the Census Income dataset)2 contains fi-
nancial and demographic data for 45K individuals; each individ-
ual is described by 14 attributes, such as occupation, number of
work hours, capital gains and losses, education level, gender, race,
marital status, age, country of birth, income, etc. This dataset is
well vetted: it has been used by others to devise discrimination-
free algorithms [18, 88, 89], as well as for non-discrimination pur-
poses [3, 43, 86]. The Statlog German Credit dataset3 contains
credit data for 1,000 individuals, classifying each individual as hav-
ing “good” or “bad” credit, and including 20 other pieces of data
for each individual, such as gender, housing arrangement, credit
history, years employed, credit amount, etc. This dataset is also well
vetted: it has been used by others to devise discrimination-free algo-
rithms [18, 89], as well as for non-discrimination purposes [25, 31].

We use a three-parameter naming scheme to refer to our software
instances. An example of an instance name is A census

race . The “A”
refers to the system used to generate the instance (described next).
The “census” refers to the dataset used for the system instance. This
value can be “census” for the Adult Census Income dataset or “credit”
for the Statlog German Credit dataset. Finally, the “race” refers to a
characteristic the software instance attempts to not discriminate
against. In our evaluation, this value can be “race” or “gender” for
the census dataset and can only be “gender” for the credit dataset.4
Some of the systems make no attempt to avoid discrimination and
their names leave this part of the label blank.

Prior research has attempted to build discrimination-free sys-
tems using these two datasets [18, 40, 88, 91]. We contacted the
authors and obtained the source code for three of these four sys-
tems, A [88], C [18], and D [91], and reimplemented the other,
B [40], ourselves. We verified that our reimplementation pro-
duced results consistent with the the evaluation of the original
system [40]. We additionally used standard machine learning li-
braries as four more discrimination-unaware software systems E ,
F , G , and H , on these datasets. We used scikit-learn [68] for E
(naive Bayes), G (logistic regression), and H (support vector ma-
chines), and a publicly available decision tree implementation [90]
for F and for our reimplementation of B .

The four discrimination-free software systems use differentmeth-
ods to attempt to reduce or eliminate discrimination:

A is a modified logistic regression approach that constrains the
regression’s loss function with the covariance of the characteristics’
distributions that the algorithm is asked to be fair with respect
to [88].

B is a modified decision tree approach that constrains the split-
ting criteria by the output characteristic (as the standard decision
tree approach does) and also the characteristics that the algorithm
is asked to be fair with respect to [40].

C manipulates the training dataset for a naive Bayes classi-
fier. The approach balances the dataset to equate the number of

2https://archive.ics.uci.edu/ml/datasets/Adult
3https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
4The credit dataset combines marital status and gender into a single characteristic; we
refer to it simply as gender in this paper for exposition. The credit dataset does not
include race.

inputs that lead to each output value, and then tweaks the dataset
by introducing noise of flipping outputs for some inputs, and by
introducing weights for each datapoint [18].

D is amodified decision tree approach that balances the training
dataset to equate the number of inputs that lead to each output
value, removes and repeats some inputs, and flips output values of
inputs close to the decision tree’s decision boundaries, introducing
noise around the critical boundaries [91].
Configuring the subject systems. The income characteristic of
the census dataset is binary, representing the income being above
or below $50,000. Most prior research developed systems that use
the other characteristics to predict the income; we did the same.
For the credit dataset, the systems predict if the individual’s credit
is “good” or “bad”. We trained each system, separately on the cen-
sus and credit datasets. Thus, for example, the G credit instance is
the logistic-regression-based system trained on the credit dataset.
For the census dataset, we randomly sampled 15.5K individuals to
balance the number who make more than and less than $50,000,
and trained each system on the sampled subset using 13 character-
istics to classify each individual as either having above or below
$50,000 income. For the credit dataset, we similarly randomly sam-
pled 600 individuals to balance the number with “good” and “bad”
credit, and trained each system on the sampled subset using the 20
characteristics to classify each individual’s credit as “good” or “bad”.

Each discrimination-aware system can be trained to avoid dis-
crimination against sensitive characteristics. In accord with the
prior work on building these systems [18, 40, 88, 91], we chose gen-
der and race as sensitive characteristics. Using all configurations
exactly as described in the prior work, we created 3 instances of
each discrimination-aware system. For example, for system A , we
have A census

gender and A census
race , two instances trained on the census

data to avoid discrimination on gender and race, respectively, and
A credit

gender, an instance trained on the credit data to avoid discrimina-
tion on gender. The left column of Figure 1 lists the twenty system
instances we use as subjects.

5.2 Race and Gender Discrimination
We used Themis to measure the group and causal discrimination
scores for our twenty software instances with respect to race and,
separately, with respect to gender. Figure 1 presents the results. We
make the following observations:
• Themis is effective. Themis is able to (1) verify that many

of the software instances do not discriminate against race and
gender, and (2) identify the software that does.

• Discrimination is present even in instances designed to
avoid discrimination. For example, a discrimination-aware
decision tree approach trained not to discriminate against gen-
der, B census

gender, had a causal discrimination score over 11%: more
than 11% of the individuals had the output flipped just by alter-
ing the individual’s gender.

• The causal discrimination score detected critical evidence
of discrimination missed by the group score. Often, the
group and causal discrimination scores conveyed the same in-
formation, but there were cases in which Themis detected causal
discrimination even though the group discrimination score was
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System Race Gender
Instance group causal group causal

A credit
gender — 3.78% 3.98%

A census
gender 2.10% 2.25% 3.80% 3.80%

A census
race 2.10% 1.13% 8.90% 7.20%

B credit
gender — 0.80% 2.30%

B census
gender 36.55% 38.40% 0.52% 11.27%

B census
race 2.28% 1.78% 5.84% 5.80%

C credit
gender — 0.35% 0.18%

C census
gender 2.43% 2.91% < 0.01% < 0.01%

C census
race 0.08% 0.08% 35.20% 34.50%

D credit
gender — 0.23% 0.29%

D census
gender 0.21% 0.26% < 0.01% < 0.01%

D census
race 0.12% 0.13% 4.64% 4.94%

E credit — 0.32% 0.37%
E census 0.74% 0.85% 0.26% 0.32%
F credit — 0.05% 0.06%
F census 0.11% 0.05% < 0.01% < 0.01%
G credit — 3.94% 2.41%
G census 0.02% 2.80% < 0.01% < 0.01%
H credit — < 0.01% < 0.01%
H census < 0.01% 0.01% < 0.01% < 0.01%

Figure 1: The group and causal discrimination scores with respect
to race and gender. Some numbers are missing because the credit
dataset does not contain information on race.

low. For example, for B census
gender, the causal score was more than

21× higher than the group score (11.27% vs. 0.52%).
• Today’s discrimination-aware approaches are insufficient.

The B approach was designed to avoid a variant of group dis-
crimination (as are other discrimination-aware approaches), but
this design is, at least in some conditions, insufficient to prevent
causal discrimination. Further, focusing on avoiding discrim-
inating against one characteristic may create discrimination
against another, e.g., B census

gender limits discrimination against gen-
der but discriminates against race with a causal score of 38.40%.

• There is no clear evidence that discrimination-awaremeth-
ods outperform discrimination-unaware ones. In fact, the
discrimination-unaware approaches typically discriminated less
than their discrimination-aware counterparts, with the excep-
tion of logistic regression.

5.3 Computing Discriminated-Against
Characteristics

To evaluate how effective Themis is at computing the discrimination
checking problem (Definition 3.9), we used Themis to compute the
sets of characteristics each of the twenty software instances discrim-
inates against causally. For each instance, we first used a threshold
of 75% to find all subsets of characteristics against which the in-
stance discriminated. We next examined the discrimination with

A census
race d⃗ {д,r } = 13.7% C census

gender d⃗ {m } = 35.2%

B census
gender d⃗ {д,m,r } = 77.2% D census

gender d⃗ {m } = 12.9%

d⃗ {д,r } = 52.5% d⃗ {c } = 7.6%
d⃗ {д } = 11.2% D census

race d⃗ {m } = 16.2%
d⃗ {m } = 36.1% d⃗ {m,r } = 52.3%
d⃗ {r } = 36.6% E census d⃗ {m } = 7.9%

B census
race d⃗ {д } = 5.8% F census d⃗ {c,r } = 98.1%

C credit
gender d⃗ {a } = 7.6% d⃗ {r,e } = 76.3%

C census
race d⃗ {a } = 25.9% G census d⃗ {e } = 14.8%

d⃗ {д } = 35.2%
d⃗ {д,r } = 41.5%

Figure 2: Sets of sensitive characteristics that the subject instances
discriminate against causally at least 5% and that contribute to sub-
sets of characteristics that are discriminated against at least 75%.
We abbreviate sensitive characteristics as: (a)ge, (c)ountry, (g)ender,
(m)arital status, (r)ace, and r(e)lation.

respect to each of the characterists in those sets individually. Finally,
we checked the causal discrimination scores for pairs of those char-
acteristics that are sensitive, as defined by prior work [18, 40, 88, 91]
(e.g., race, age, marital status, etc.). For example, if Themis found
that an instance discriminated causally against {capital gains, race,
marital status}, we checked the causal discrimination score for
{capital gains}, {race}, {marital status}, and then {race, marital sta-
tus}. Figure 2 reports which sensitive characteristics each instance
discriminates against by at least 5%.

Themis was able to discover significant discrimination. For ex-
ample, B census

gender discriminates against gender, marital status, and
race with a causal score of 77.2%. That means for 77.2% of the indi-
viduals, changing only the gender, marital status, or race causes the
output of the algorithm to flip. Even worse, F census discriminates
against country and race with a causal score of 98.1%.

It is possible to build an algorithm that appears to be fair with
respect to a characteristic in general, but discriminates heavily
against that characteristic when the input space is partitioned by
another characteristic. For example, an algorithm may give the
same fraction of white and black individuals loans, but discriminate
against black Canadian individuals as compared to white Canadian
individuals. This is the case with B census

gender, for example, as its
causal discrimination score against gender is 11.2%, but against
gender, marital status, and race is 77.2%. Prior work on fairness has
not considered this phenomenon, and these findings suggest that
the software designed to produce fair results sometimes achieved
fairness at the global scale by creating severe discrimination for
certain groups of inputs.

This experiment demonstrates that Themis effectively discov-
ers discrimination and can test software for unexpected software
discrimination effects across a wide variety of input partitions.

5.4 Themis Efficiency and the Pruning Effect
Themis uses pruning to minimize test suites (Section 4.2). We eval-
uated the efficiency improvement due to pruning by comparing
the number of test cases needed to achieve the same confidence
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Group Causal

A credit
gender

934,230
167,420 = 5.6× 29,623

15,764 = 1.9×
A census

race
7,033,150

672 = 10, 466 × 215,000
457 = 470 ×

B credit
gender

934,230
3,413 = 274 × 29,623

1,636 = 18 ×
B census

race
6,230,000
80,100 = 78 × 20,500

6,300 = 33 ×
C credit

gender
934,230
113 = 8, 268 × 29,623

72 = 411 ×
C census

race
7,730,120
75,140 = 103 × 235,625

6,600 = 36 ×
D credit

gender
934,230
720 = 1, 298 × 29,623

472 = 63 ×
D census

race
7,730,120
6,600,462 = 1.2× 235,625

200,528 = 1.2×
E credit 934,230

145 = 6, 443 × 29,623
82 = 361 ×

E census 7,730,120
84,040 = 92 × 235,625

7,900 = 30 ×
F credit 934,230

3,410 = 274 × 29,623
2,647 = 11 ×

F census 6,123,000
461 = 13, 282 × 205,000

279 = 735 ×
G credit 934,230

187 = 4, 996 × 29,623
152 = 195 ×

G census 7,730,120
5,160,125 = 1.5× 235,625

190,725 = 1.2×
H credit 934,230

412,020 = 2.3× 29,623
10,140 = 2.9×

H census 1,530,000
1,213,500 = 1.3× 510,000

324,582 = 1.6×

arithmetic mean 2, 849 × 148 ×
geometric mean 151 × 26.4×

Figure 3: Pruning greatly reduces the number of tests needed to
compute both group and causal discrimination. We present here
the computation that is needed for the experiment of Figure 2: find-
ing all subsets of characteristics for which the software instances
discriminate with a score of at least 75%, for a 99% confidence and
error margin 0.05. For each technique, we show the number of tests
neededwithout pruning divided by the number of tests neededwith
pruning, and the resulting factor reduction in the number of tests.
For example, reducing the number of tests needed to compute the
group discrimination score from 7,033,150 to 672 (2nd row) is an im-
provement of a factor of 10,466.

and error bound with and without pruning. Figure 3 shows the
number of test cases needed for each of the twenty software in-
stances to achieve a confidence level of 99% and 0.05 error bound,
with and without pruning. Pruning reduces the number of test
cases by, on average, a factor of 2, 849 for group and 148 for causal
discrimination.

The more a system discriminates, the more effective pruning
is, making Themis more efficient because pruning happens when
small sets of characteristics discriminate above the chosen threshold.
Such sets enable pruning away larger supersets of characteristics.
Theorem 5.1 formalizes this statement.

Theorem 5.1 (Pruning monotonicity). Let X be an input type

and S and S′ be decision software with input typesX . If for allX ′ ⊆ X ,

d⃗X ′ (S) ≥ d⃗X ′ (S
′) (respectively, d̃X ′ (S) ≥ d̃X ′ (S

′)), then for allX ′′ ⊆
X , if Themis can pruneX ′′when computingDiscriminationSearch(S′,
θ , conf , ϵ), then it can also prune X ′′ when computing Discrimina-

tionSearch(S,θ , conf , ϵ).

Proof. For Themis to prune X ′′ when computing Discrimina-
tionSearch(S′, θ , conf , ϵ), there must exist a set X̂ ′′ ⊊ X ′′ such
that d⃗X̂ ′′ (S

′) ≥ θ . Since d⃗X̂ ′′ (S) ≥ d⃗X̂ ′′ (S
′) ≥ θ , when computing

DiscriminationSearch(S, θ , conf ), Themis can also prune X ′′.
The same argument holds for group discrimination d̃ . □

We measured this effect by measuring pruning while decreasing
the discrimination threshold θ ; decreasing θ effectively simulates in-
creasing system discrimination. We verified that pruning increased
when θ decreased (or equivalently, when discrimination increased).
For example, Themis needed 3,413 tests to find sets of characteris-
tics that B credit

gender discriminated with a score of more than θ = 0.7,
but only 10 tests when we reduced θ to 0.6. Similarly, the number
of tests for F credit dropped from 920 to 10 when lowering θ from
0.6 to 0.5. This confirms that Themis is more efficient when the ben-
efits of fairness testing increase because the software discriminates
more.

5.5 Discussion
In answering our two research questions, we found that (1) State-
of-the-art approaches for designing fair systems often miss dis-
crimination and Themis can detect such discrimination via fairness
testing. (2) Themis is effective at finding both group and causal
discrimination. While we did not evaluate this directly, Themis
can also measure apparent discrimination (Definition 3.8) via a
developer-provided test suite or operational profile. (3) Themis
employs provably sound pruning to reduce test suite size and be-
comes more effective for systems that discriminate more. Overall,
pruning reduced test suite sizes, on average, two to three orders of
magnitude.

6 RELATEDWORK
Software discrimination is a growing concern. Discrimination
shows up in many software applications, e.g., advertisements [75],
hotel bookings [53], and image search [45]. Yet software is entering
domains in which discrimination could result in serious negative
consequences, including criminal justice [5, 28], finance [62], and
hiring [71]. Software discrimination may occur unintentionally,
e.g., as a result of implementation bugs, as an unintended property
of self-organizing systems [11, 13, 15, 16], as an emergent property
of component interaction [12, 14, 17, 49], or as an automatically
learned property from biased data [18, 19, 39–42, 88, 89, 91].

Some prior work on measuring fairness in machine learning
classifiers has focused on the Calders-Verwer (CV) score [19] to
measure discrimination [18, 19, 39–42, 87–89, 91]. Our group dis-
crimination score generalizes the CV score to the software domain
with more complex inputs. Our causal discrimination score goes
beyond prior work by measuring causality [67]. An alternate defi-
nition of discrimination is that a “better” input is never deprived of
the “better” output [24]. That definition requires a domain expert
to create a distance function for comparing inputs; by contrast, our
definitions are simpler, more generally applicable, and amenable
to optimization techniques, such as pruning. Reducing discrimi-
nation (CV score) in classifiers [18, 40, 88, 91], as our evaluation
has shown, often fails to remove causal discrimination and discrim-
ination against certain groups. By contrast, our work does not
attempt to remove discrimination but offers developers a tool to
identify and measure discrimination, a critical first step in removing
it. Problem-specific discrimination measures, e.g., the contextual
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bandits problem, have demonstrated that fairness may result in
otherwise suboptimal behavior [38]. By contrast, our work is gen-
eral and we believe that striving for fairness may be a principal
requirement in a system’s design.

Counterfactual fairness requires output probability distributions
to match for input populations that differ only in the label value of a
sensitive input characteristic [51]. Counterfactual fairness is related
to causal fairness but can miss some instances of discrimination,
e.g., if loan shows preferential treatment for some purple inputs,
but at the same time against some other similar purple inputs.

FairTest, an implementation of the unwarranted associations
framework [79] uses manually written tests to measure four kinds
of discrimination scores: the CV score and a related ratio, mutual
information, Pearson correlation, and a regression between the
output and sensitive inputs. By contrast, our approach generates
tests automatically and measures causal discrimination.

Causal testing computes pairs of similar inputs whose outputs
differ. However, input characteristics may correlate, e.g., education
correlates with age, so perturbing some characteristics without
perturbing others may create inputs not representative of the real
world. FairML [1] uses orthogonal projection to co-perturb charac-
teristics, which can mask some discrimination, but find discrimi-
nation that is more likely to be observed in real-world scenarios,
somewhat analogously to our apparent discrimination measure.

Combinatorial testing minimizes the number of tests needed
to explore certain combinations of input characteristics. For ex-
ample, all-pairs testing generates tests that evaluate every pos-
sible value combination for every pair of input characteristics,
which can be particularly helpful when testing software product
lines [6, 44, 46, 47]. The number of tests needed to evaluate every
possible value pair can be significantly smaller than the exhaustive
testing alternative since each test can simultaneously contribute to
multiple value pairs [22, 44, 80]. Such combinatorial testing opti-
mizations are complementary to our work on discrimination testing.
Our main goal is to develop a method to process test executions to
measure software discrimination, whereas that is not a goal of com-
binatorial testing. Advances in combinatorial testing, e.g., using
static or dynamic analyses for vacuity testing [8, 33] or to identify
configuration options that cannot affect a test’s output [48], can
directly improve efficiency of discrimination testing by identifying
that changing a particular input characteristic cannot affect a par-
ticular test’s output, and thus no causal discrimination is possible
with respect to that particular input. We leave such optimizations
to future work.

It is possible to test for discrimination software without explicit
access to it. For example, AdFisher [23] collects information on how
changes in Google ad settings and prior visited webpages affect the
ads Google serves. AdFisher computes a variant of group discrimi-
nation, but it could be integrated with Themis and its algorithms
to measure causal discrimination.

Themis measures apparent discrimination by either executing
a provided test suite, or by generating a test suite following a
provided operational profile. Operational profiles [58] describe
the input distributions likely to be observed in the field. Because
developer-written test suites are often not as representative of field
executions as developers would like [81], operational profiles can

significantly improve the effectiveness of testing by more accu-
rately representing real-world system use [7, 50] and the use of
operational profiles has been shown to more accurately measure
system properties, such as reliability [35]. The work on operational
profiles is complementary to ours: Themis uses operational pro-
files and work on more efficient test generation from operational
profiles can directly benefit discrimination testing. Meanwhile no
prior work on operational profile testing has measured software
discrimination.

Causal relationships in data management systems [54, 55] can
help explain query results [57] and debug errors [82–84] by tracking
and using data provenance [56]. For software systems that use data
management, such provenance-based reasoning may aid testing
for causal relationships between input characteristics and outputs.
Our prior work on testing software that relies on data management
systems has focused on data errors [59, 60], whereas this work
focuses on testing fairness.

Automated testing research has produced tools to generate tests,
including random testing, such as Randoop [63, 64], NightHawk [4],
JCrasher [20], CarFast [65], and T3 [69]; search-based testing,
such as EvoSuite [29], TestFul [9], and eToc [78]; dynamic sym-
bolic execution tools, such as DSC [37], Symbolic PathFinder [66],
jCUTE [70], Seeker [76], Symstra [85], and Pex [77], among others;
and commercial tools, such as Agitar [2]. The goal of the generated
tests is typically finding bugs [29] or generating specifications [21].
These tools deal with more complex input spaces than Themis, but
none of them focus on testing fairness and they require oracles
whereas Themis does not need oracles as it measures discrimination
by comparing tests’ outputs. Future work could extend these tools
to generate fairness tests, modifying test generation to produce
pairs of inputs that differ only in the input characteristics being
tested. While prior work has tackled the oracle problem [10, 26, 30]
typically using inferred pre- and post-conditions or documenta-
tion, our oracle is more precise and easier to compute, but is only
applicable to fairness testing.

7 CONTRIBUTIONS
We have formally defined software fairness testing and introduced
a causality-based measure of discrimination. We have further de-
scribed Themis, an approach and its open-source implementation
for measuring discrimination in software and for generating effi-
cient test suites to perform these measurements. Our evaluation
demonstrates that discrimination in software is common, even
when fairness is an explicit design goal, and that fairness testing
is critical to measuring discrimination. Further, we formally prove
soundness of our approach and show that Themis effectively mea-
sures discriminations and produces efficient test suites to do so.
With the current use of software in society-critical ways, fairness
testing research is becoming paramount, and our work presents an
important first step in merging testing techniques with software
fairness requirements.
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