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ABSTRACT Nutrient availability can significantly influence microbial genomic and
proteomic streamlining, for example, by selecting for lower nitrogen to carbon ratios.
Oligotrophic open ocean microbes have streamlined genomic nitrogen requirements
relative to those of their counterparts in nutrient-rich coastal waters. However, steep
gradients in nutrient availability occur at meter-level, and even micron-level, spatial
scales. It is unclear whether such gradients also structure genomic and proteomic stoi-
chiometry. Focusing on the eastern tropical North Pacific oxygen minimum zone (OMZ),
we use comparative metagenomics to examine how nitrogen availability shapes micro-
bial and viral genome properties along the vertical gradient across the OMZ and
between two size fractions, distinguishing free-living microbes versus particle-associated
microbes. We find a substantial increase in the nitrogen content of encoded proteins in
particle-associated over free-living bacteria and archaea across nitrogen availability
regimes over depth. Within each size fraction, we find that bacterial and viral genomic
nitrogen tends to increase with increasing nitrate concentrations with depth. In contrast
to cellular genes, the nitrogen content of virus proteins does not differ between size
fractions. We identified arginine as a key amino acid in the modulation of the C:N ratios
of core genes for bacteria, archaea, and viruses. Functional analysis reveals that particle-
associated bacterial metagenomes are enriched for genes that are involved in arginine
metabolism and organic nitrogen compound catabolism. Our results are consistent with
nitrogen streamlining in both cellular and viral genomes on spatial scales of meters to
microns. These effects are similar in magnitude to those previously reported across scales
of thousands of kilometers.

IMPORTANCE The genomes of marine microbes can be shaped by nutrient cycles,
with ocean-scale gradients in nitrogen availability being known to influence microbial
amino acid usage. It is unclear, however, how genomic properties are shaped by nu-
trient changes over much smaller spatial scales, for example, along the vertical transi-
tion into oxygen minimum zones (OMZs) or from the exterior to the interior of detrital
particles. Here, we measure protein nitrogen usage by marine bacteria, archaea, and
viruses by using metagenomes from the nitracline of the eastern tropical North Pacific
OMZ, including both particle-associated and nonassociated biomass. Our results show
higher genomic and proteomic nitrogen content in particle-associated microbes and
at depths with higher nitrogen availability for cellular and viral genomes. This discov-
ery suggests that stoichiometry influences microbial and viral evolution across multiple
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scales, including the micrometer to millimeter scale associated with particle-associated
versus free-living lifestyles.

KEYWORDS stoichiometry, comparative metagenomics, microbial genome evolution,
viral genome evolution, marine particles

Adiverse consortium of marine microorganisms drive global biogeochemistry (1) and
form the foundation of the marine food web. Major efforts have been undertaken to

characterize the diversity and biogeographical patterns of marine microorganisms (2, 3) as
well as their potential and realized metabolic output (4, 5). Emergent differences in the bio-
availability of nutrients that are shaped by microbial activity in turn shape the evolution of
microbial genomes and metabolism. Nutrient availability is an important mechanism in the
evolution of gene content (6, 7), and it has been implicated as the driver of observed pat-
terns of genomic streamlining for bacterioplankton living in oligotrophic marine waters (8).
Reduced nitrogen availability is thought to select for genomes with lower guanine-cytosine
(GC) content as well as for proteins with lower nitrogen to carbon ratios (9). More generally,
the study of “stochio-genomics” addresses how resource conditions can influence microbial
genomic and proteomic elemental composition (7). For example, a survey of the North
Pacific Subtropical Gyre at Station ALOHA (A long-term oligotrophic habitat assessment)
found increasing genomic lengths, GC content, and nitrogen utilization in amino acid side
chains, from the mixed layer to the mesopelagic, corresponding to increasing nitrogen
availability (10). Global marine metagenomes exhibit increased nitrogen content in arginine
synthesis genes when found along the coasts, as opposed to in the open ocean, where
nitrogen is presumed to be more limiting (6). On a global scale, marine metagenomic nitro-
gen content appears to correlate to nitrate concentrations (11). Studies linking nutrient
availability to genomic streamlining have tended to focus on macro-scale patterns (e.g.,
spanning kilometers of depth changes or tens to thousands of kilometers between the
coast and open water) (7). A fertilization experiment that simulated a large change in nutri-
ent availability also showed an increased average GC content and genome length of the
associated microbial community (12).

Steep chemical gradients can occur along much smaller spatial scales. Micron-scale
chemical heterogeneity imposes stark ecological transitions from the frame of reference
of microorganisms (13). In marine environments, small particles, such as sinking dust and
phytoplankton cells, constitute pockets of high availability and diversity of substrates for
microbial metabolism (14). Taxonomic surveys of estuarine (15), coastal (16), and offshore
(17) environments show that free-living microbial communities are taxonomically distinct
from those on particles. Across these studies, particle-associated fractions are generally
enriched in Gammaproteobacteria, such as Vibrio and Pseudoalteromonas, whereas free-
living communities contain more Alphaproteobacteria, such as the ubiquitous SAR11
group (15, 17). A study at Station ALOHA found that metagenome-assembled genomes
(MAGs) that were associated with sinking particles were longer, had higher GC content,
and had predicted proteins with higher N-usage than those of MAGs from free-living
communities at the same depth (18).

OMZs exhibit large differences in nutrient availability on small spatial scales, sug-
gesting that they are model ecosystems for exploring genomic and proteomic stream-
lining. OMZs form in areas of enhanced nutrient loading, typically from upwelling (19).
In these regions, nutrients fuel high surface primary production (20). The respiration of
sinking organic matter by heterotrophs, coupled with the limited vertical mixing,
drives oxygen depletion at midwater depths, often to levels below detection (a few nM
dissolved O2 [20, 21]). These dynamics result in stark vertical transitions between an
oxic photic layer and a functionally anoxic, subphotic OMZ layer. This transition is
defined by several important and co-occurring chemical regime shifts. For example, or-
ganic carbon may become limiting for denitrification among heterotrophic bacteria in
the suboxic zone (22). The transition from aerobic respiration to denitrification is also
slightly less energy-yielding, changing the bioenergetics in this ecosystem. Critically, in
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the suboxic layer, nitrite accumulates as nitrate becomes the dominant oxidant for mi-
crobial respiration (23). The OMZ environment is ideal for testing stochio-genomic
questions, given that vertical gradients in bioavailable nitrogen and other key water
chemistry parameters (e.g., total dissolved organic matter) are steeper in OMZ regions
than in almost any other ocean environment (24, 25).

Despite evidence showing taxonomic and functional differences in particle-associated ver-
sus free-living marine microorganisms, such as the enrichment of copiotrophic gammaproteo-
bacteria and the increased prevalence of carbohydrate-degrading enzymes (2, 18, 26), there
are limited data on how such differences affect stoichiogenomic properties (18). Based on prior
research focused on macroscale spatial gradients, we hypothesize that stochiogenomic prop-
erties are also shaped by microscale resource variation between particle-associated versus
nonassociated niches. Specifically, we hypothesize that, compared to particle-associated
microbes, free-living microbes exhibit genome-wide reductions in the (i) GC content and (ii)
nitrogen content of encoded amino acids. We also hypothesize that these stoichiogenomic
differences occur regardless of depth in the water column. That is, the genomic effects of
resource heterogeneity (in this case, nitrogen) between particle and nonparticle niches persist
alongside changes in dissolved nitrate1 nitrite concentrations with depth.

In this study, we analyzed 58 metagenomes sampled in 2013 and 2014 from the
world’s largest OMZ, which is located in the eastern tropical North Pacific (ETNP) (27).
These metagenomes span the oxic surface, anoxic OMZ, and suboxic upper mesopela-
gic below the OMZ, as well as both particulate (.1.6 mm) and free-living (0.2 to 1.6
mm) size fractions. We investigated drivers of the metagenomic GC content as well as
the stoichiometric properties of bacterial, archaeal, and viral genes across depths and
between size classes. We found trends in the metagenome-level and gene-level GC
content and amino acid nitrogen contents that correspond to nitrate 1 nitrite concen-
trations, and these are similar to those seen in non-OMZ environments (10). We also
found higher GC content and amino acid N contents in particle-associated metage-
nomes for bacterial and archaeal genes. Viral genes do not exhibit stoichiogenomic dif-
ferences between size fractions, although viral genes increase in nitrogen content with
depth, similarly to bacteria. We selected an example core gene for bacteria, archaea,
and bacteriophages, and we found patterns in amino acid composition that drive dif-
ferences in bulk genetic and proteomic C:N ratios. For bacteria, functional analysis
identified the enrichment of genes involved in the synthesis of arginine, one of the
amino acid drivers of bacterial core gene nitrogen content, on particle-associated sam-
ples in which nitrogen remineralization and availability may be high. These results sug-
gest that heterogeneity in nitrogen availability on the microscopic scale in the vicinity
of particles and on the meters scale of the oxycline in an OMZ can have as substantial
an impact on microbial and viral genome evolution as does large-scale variability
across ocean environments (e.g., pelagic versus coastal) or ocean basins.

RESULTS
Biogeochemical gradients in the ETNP OMZ. Metagenomic samples were taken

from five stations in the region of the ETNP OMZ on two cruises in June 2013 and May
2014 (Fig. 1A). Samples were serially filtered onto particle-associated (.1.6 mm) and
free-living (.0.2 mm) size fractions across depths ranging from the surface to 2,600 m
(see Materials and Methods). Oxygen saturation levels (see Materials and Methods)
were between 95 and 101% for all stations in the surface mixed layer. The oxic-anoxic
interface increases with depth offshore, but it occurs in the top 100 m of the water col-
umn, with an average depth of approximately 80 m (Fig. 1B contains a representative
profile). Dissolved nutrient profiles had canonical OMZ characteristics (23) (Fig. 1B and
C). Using data from station 6 as an example (Fig. 1C), in the surface mixed layer, nitrite
concentrations were undetected, and nitrate concentrations were below 1 mM. Between
the base of the mixed layer (20 m) and the oxic-anoxic interface (80 m), nitrate concen-
trations increase to 20 mM. Nitrite concentrations decline after peaking at 6.06 mM at
125 m, whereas nitrate concentrations continue to increase to above 40mM at 1,000 m.
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FIG 1 Environmental contextual data and sampling locations for this study. (A) Map showing sampling station
locations for the 2013 and 2014 field collection efforts. (B) Representative oxygen saturation profile from Station 6 in
the upper 300 m. (C) Dissolved nitrate and nitrite profile for Station 6, measured in 2013. (D) Average GC content of
the metagenomic reads from all of the metagenomic samples that were taken from the upper 300 m, representing a
.1.6 mm particle-associated size fraction and a planktonicd size fraction of .0.2 mm.
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Genomic streamlining shaped by nitrogen availability at small spatial scales.
We analyzed the GC content of metagenomic reads to evaluate the potential for genomic
streamlining, given the dissolved nitrate1 nitrite differences across the water column and
the putative differences in nitrogen availability between size fractions. For both size frac-
tions and across all samples, the average GC content of the metagenomic reads (see
Materials and Methods) is lowest in the oxycline, increases in alignment with nitrate con-
centrations in the anoxic OMZ core until approximately 150 m and remains roughly con-
stant at lower depths (Fig. 1D). While this trend was consistent between size fractions,
particle-associated metagenomes had consistently higher GC content at all depths, com-
pared to free-living fraction metagenomes. Using a mixed effects model, controlling for
sequencing depth and spatial correlation in depth, we identified a significant effect of a
5.32% (60.587%) increase in metagenomic GC content between size fractions (see
Materials and Methods; model parameters are described in Table S1).

We investigated 16S rRNA genes that were extracted from the metagenomes to
explore the relationship between the changing GC content and the taxonomic compo-
sition (see Materials and Methods). The taxonomic patterns are summarized in Fig. S1
and match those reported in previous 16S-based surveys of the ETNP OMZ (2, 28). Key
trends include a predominance of SAR11 Alphaproteobacteria at all depths throughout
the water column, an abundance of nitrifying Thaumarchaeota along the oxycline, and
an enrichment of Deltaproteobacteria and Gammaproteobacteria in particle-associated
communities (Fig. S1). Notably, samples from the particle-associated fraction contained
reads matching the mitochondria of picoeukaryotes, primarily obligate endosymbiotic
dinoflagellates from the Syndiniales group. The eukaryotic taxa that we observed are
consistent with 18S rRNA gene-based surveys in the ETNP OMZ (29).

Spatial structure in stoichiogenomic properties vary between bacteria, arch-
aea, and viruses. Next, we investigated the stoichiometric properties of nucleotide and
amino acid sequences of microbial and viral genes throughout the water column and
between size fractions. Metagenomes were assembled, and we generated a gene cata-
logue of 718,947 gene clusters from the assembled contigs (see Materials and Methods).
We annotated 713,019/718,947 (99.1%) of the gene clusters by using the KEGG Orthology
database (30). Annotated genes were divided between bacterial, archaeal, and viral genes
for further analysis, based on the KEGG Orthology search taxonomic assignments.

We hypothesized that the nitrogen content of the amino acid sequences of pre-
dicted genes would follow trends similar to those of the bulk metagenomic GC con-
tent. For each predicted gene, we calculated stoichiogenomic properties, including the
GC content, the abundance of each amino acid in the encoded protein, the N:C ratios
of the amino acid side chains in the sequence, and the codon usage bias (10). We gen-
erated “stoichiogenomic profiles” for bacterial, archaeal, and viral gene data sets via a
coverage-weighted average of these properties over all of the genes within a sample.
For each data set, we conducted a redundancy analysis (RDA), controlling for variable
sequencing depth, to identify the “domain” (bacteria, archaea, or virus)-specific drivers
of the covariation in the stoichiogenomic properties (Fig. 2). We modeled the relative
explanatory effects of particle fraction and depth by using a permutational analysis of
variance (see Materials and Methods).

The results of our ordination analysis are presented in Fig. 2. The bacterial stoichio-
genomic profiles (Fig. 2A) split into two groups along the first RDA axis (64.46% of the
total variance). Positive values are associated with communities from the surface mixed
layer (yellow points), and negative values are associated with OMZ and mesopelagic
samples (blue points). The second axis (20.77%) separated free-living samples (trian-
gles) with high values from particle-associated samples (circles) with lower values. The
estimated R2 value for size fraction is 14.0% (P , 0.001) whereas the estimated R2 for
sample depth is 22.1% (P , 0.001). For archaeal profiles (Fig. 2B), the first axis (49.43%
of the variance) separated the particle-associated samples at low values mostly from
the mesopelagic free-living samples at high values. The second axis (22.91%) places
the OMZ samples at higher values and the surface mixed layer samples at lower values.
The estimated R2 values for size fraction and depth are 14.1% (P , 0.001) and 13.1% (P ,
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0.001), respectively. For the viral profiles (Fig. 2C), most of the variance is explained by the
first axis (74.12%), which separates the surface mixed layer communities from the OMZ
communities, with the mesopelagic samples (dark blue) being in the middle. For viruses,
the R2 for size fraction is 1.2% (P = 0.363), whereas the R2 for depth is 29.5% (P , 0.001).
While each domain has a unique underlying variance structure in its stoichiogenomic pro-
files, all three reveal patterns corresponding to the water column depth, and, in the cases
of Bacteria and Archaea, the size fraction.

Particle fraction drives stoichiogenomic differences for Bacteria and Archaea.
We constructed linear mixed effects models of the GC content, amino acid N:C ratio, and
number of nitrogen atoms in amino acid residue side chains (N-ARSC) to quantitatively
test for differences between the size fraction for each domain (see Materials and Methods).
Our model structure included depth as a random effect to account for spatial autocorrela-
tion and nonlinearity in the water column chemistry (Fig. 1B and C). So, the depth effect

FIG 2 Stoichiogenomic profiles identify the size fraction and depth structure across domains.
Redundancy analysis (RDA) ordination was constrained by the sequencing depth, and the first two
axes uncorrelated with sequencing depth are presented. The panels are separated by the putative
taxonomic assignment of the genes that were used to construct the ordinations: (A) bacterial genes,
(B) archaeal genes, (C) viral genes. Point color indicates the sample depth, where yellow is above the
average depth of the oxic-anoxic interface (80 m) and blue is below the interface. Point shape
indicates particle-associated (circle) versus free-living (triangle) samples.
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cannot be expressed as a single parameter. Instead, we assessed the significance of
depth via likelihood ratio tests against a null model without a depth effect (see Materials
and Methods; estimated profiles in Fig. S2). For Bacteria, our models found significantly
higher GC content (3.82%6 0.479%), NC ratios (0.005166 0.000406), and N-ARSC values
(0.01346 0.00102) in particle-associated communities (Table S2; data plotted in Fig. 3A–
C). We also found that depth had a significant effect for all three parameters and that
the depth effects increase GC and N-ARSC until reaching a maximum near 150 m, after
which they remain relatively constant with increasing depth, following the pattern of ni-
trate 1 nitrite (Fig. S2). For Bacteria, we also used the coverages of single copy core

FIG 3 Microbial and viral genes exhibit stoichiogenomic structure across size fraction and depth. Each point represents a metagenome, where the value is
the coverage-weighted average GC content (A), the nitrogen content of the amino acid side chains (B), and the total side chain N:C ratio (C) of all archaeal,
bacterial, or viral annotated genes in that metagenome. Boxplots indicate the median, 25th, and 75th percentiles of the metagenomes within a size
fraction. (D) The distribution of estimated average bacterial genome length between size fractions, as determined by the relative abundances of the single
copy core genes in each metagenome.
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genes to estimate the average genome length for each sample (see Materials and Methods),
and we found a significant increase in genome length (0.615 Mb6 0.124 Mb, P, 1E25) in
the particle fraction samples (Fig. 3D).

We found significant increases in archaeal GC content (4.58% 6 0.677%), NC ratios
(0.00539 6 0.000602), and N-ARSC values (0.0128 6 0.00152) in the particle fraction
samples (Table S2). We also found a significant depth effect for the N-ARSC values and
the NC ratios for archaeal genes, but a significant effect was not observed for the gene
GC content. These effects are highest at the surface and decrease with depth, in con-
trast to those of the bacteria (Fig. 3A). For the viruses, we did not find a significant
increase in any stoichiometric parameter in the particle fraction. However, we did find
a significant depth effect in the NC ratios and N-ARSC values for viral genes. The viral
NC ratio and N-ARSC depth effects increased with depth, similarly to bacteria (Fig. 3B;
Fig. S2).

Stoichiogenomic differences are characterized by unique amino acid frequen-
cies. We chose one core functional gene for each domain to explore whether metage-
nome-wide differences in stoichiogenomic properties were detectable on the single
gene level. Single gene-level analyses remove the potential effects that are associated
with differences in the functional gene content between communities and focus on
gene products that should have similar biochemical constraints to maintain the same
function. We scanned the annotations of gene clusters for core functional genes that
had many diverse representatives in the gene catalogue, had high coverage in the
metagenomes, and were detected in all samples (see “Amino acid analysis” in Materials
and Methods). There were 154 unique gene clusters that were annotated as bacterial
rpoZ, the DNA-directed RNA polymerase omega subunit, 119 gene clusters that were
annotated as archaeal ftsZ, the cell division protein, and 129 gene clusters that were
annotated as phage structural protein Gp23. We selected Gp23 as a representative
gene of the T4-like bacteriophages, an abundant and ecologically relevant group of
marine viruses that all have dsDNA genomic structure (31). We used the coverage of
the unique gene clusters in each sample to create a weighted average N:C ratio for
rpoZ, ftsZ, and Gp23 for each sample. Then, we compared those weighted averages by
using the same mixed effects model framework to look for significant effects of the
particle size fraction on the gene-specific N:C ratios. For the bacterial rpoZ, we found
an increase of 0.0304 (60.00891) in the N:C ratios for the particle-associated samples.
For the archaeal ftsZ, we found an increase of 0.00373 (60.00153). For the viral Gp23,
we found no significant difference in the N:C ratio between size fractions. These single
gene-level patterns match those of our model of genome-wide stoichiogenomic pro-
files (Fig. S3; model information is presented in Table S3).

Then, we investigated the amino acid composition of the gene clusters to under-
stand the mechanisms governing their N:C ratios. We used the amino acid frequencies
of each gene cluster to create a weighted average amino acid distribution for rpoZ,
ftsZ, and Gp23 for each sample. We specified multiresponse linear models with a lasso
penalty to simultaneously identify the amino acids that were most predictive of the
size fraction, protein N:C ratio, and N-ARSC (see Materials and Methods). The parame-
ters for these models are shown in Fig. 4. Regularized regression allowed us to identify
and rank the most important amino acids in predicting the size fraction, protein N:C ra-
tio, and N-ARSC for each domain, excluding the amino acids that did not contribute
much information. The top driver of increased N:C ratios for all three domains is argi-
nine, which is the only amino acid with three additional N atoms on its side chain
(Fig. 4). High bacterial rpoZ N:C ratios are also driven by asparagine, lysine, and histi-
dine. Archaeal ftsZ N:C ratios are more strongly associated with histidine than is bacte-
rial rpoZ, and are also associated with increased tryptophan, unlike rpoZ. High viral Gp23 N:
C ratios are also associated with increased histidine and asparagine, but they are more
strongly associated with glutamine than are ftsZ and rpoZ. Interestingly, methionine is also
associated with an increased Gp23 N:C ratio, despite methionine having no N atoms on its
side chain. This evidence shows that increased arginine is a common driver of stoichioge-
nomic variation across marker genes from all three of the domains in our data set.
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However, there is variability in which other amino acids contribute to increased protein
nitrogen content.

Virus structural protein amino acid frequencies shift with oxygen concentra-
tion. Viral genes increased in GC, N-ARSC, and NC ratios with depth, similarly to bacte-
rial genes, although there were no significant differences for viral genes between size
fractions for these parameters (Fig. 3A–C; Table S2). While we did not find a significant
difference between the size fractions in the stoichiometry of a phage structural protein
(Table S4), we found that viral Gp23 and bacterial rpoZ N:C ratios both increase with
increasing arginine, asparagine, histidine, lysine, and glutamine (Fig. 4C).

FIG 4 Domains have unique amino acid usage patterns to structure protein nitrogen content. The regularized amino acid regression parameters on the
average N:C ratios of widely conserved functional proteins across samples are presented. Positive values indicate increases in the protein N:C ratio, and
negative values indicate decreases. Amino acids are colored by the numbers of N atoms in their side chains. Note the differences in scale between
domains. (A) Results from bacterial rpoZ sequences. (B) Results from archaeal ftsZ sequences. (C) Results from viral Gp23 sequences.
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We plotted the profiles for the amino acids that were identified by the multires-
ponse regularized regression model (presented in Fig. 4C) to increase the average
Gp23 N:C ratios (Fig. 5A–E). Most of these amino acids have a peak in abundance
slightly above 100 m, which corresponds to the average oxic-anoxic interface depth
across stations. Three of these amino acids had significant negative rank correlations
with oxygen levels. Histidine (r = 20.487, P , 1E25), an amino acid with two N atoms
on its side chain, was negatively correlated with oxygen concentration, as was methio-
nine (r = 20.311, P = 0.0334). From our previous ordination of viral stoichiogenomic
properties (Fig. 2C), we recalled that the primary axis clustered samples from depths
around the oxic-anoxic interface at negative values, whereas samples from the surface
mixed layer as well as mesopelagic samples were clustered at positive values. Then, we
looked for other amino acids that were inversely correlated with oxygen concentration,
indicating enrichment in high nitrogen anoxic water, and we found cysteine (r =
20.228, P = 0.0334). Our amino acid-level analysis shows that the overall increase of vi-
ral N:C ratios with depth matches trends in bacteria and can be explained by a similar

FIG 5 Viral Gp23 amino acid composition varies with depth. The x axis represents the coverage-weighted average frequency of each
amino acid in a Gp23 sequence for each sample. Amino acids are labeled as polar (hydrophilic) (A to C), neutral (D), or hydrophobic
(E and F). The smoothed lines, which are used to demonstrate overall trends, were fitted via general additive model smoothing, with
shaded regions representing the 95% confidence intervals of the smoothing.
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set of amino acids. Methionine and cysteine, the two hydrophobic and sulfur-contain-
ing amino acids, are specifically associated with the anoxic core of the OMZ, and they
may contribute to the separation of that depth layer from the mesopelagic waters in
our earlier multivariate analysis of all viral genes.

Particles are enriched for functional genes utilizing organic nitrogen sub-
strates. Our analysis of the stoichiometric properties of bacterial genomes indicates higher
genomic and proteomic nitrogen content for particle-associated communities. This may be
because some organic particles can act either directly as an organic nitrogen source or as a
hot spot of nitrogen remineralization (32, 33). We compared the relative abundances of 412
bacterial KEGG orthologues between size fractions to identify which functional genes were
enriched in particle fraction samples. We used a model based on the log-ratios of the rela-
tive abundances of each orthologue to a common “baseline” orthologue to mitigate the
negative constrained covariance and detection biases of compositional metagenomic data
(34). Setting the false discovery rate to 10%, we found 69 (16.8%) KEGG orthologues that
were enriched in particle-associated bacterial communities (Fig. 6).

Our analysis included 12 transporters, 5 of which take up branched-chain amino
acids or polyamines. The particle fraction was enriched in 4/12 transporters, including
3/5 transporters for organic nitrogen substrates. The particle fraction was also enriched
in 9 genes related to amino acid degradation, including 4/13 studied genes that are
involved in the degradation of branched-chain amino acids. The amino acid-level anal-
ysis identified arginine utilization as an important driver of protein-level N:C ratios for
bacteria (Fig. 4A). The functional analysis also shows that 3/5 studied genes in the argi-
nine biosynthesis pathway are enriched in particle fraction bacteria (Fig. 6E). We also
found enrichment on the particle fractions for 3/4 protein excretion genes and 3/4
flagellum/pilus-related genes. For comparison, 8/30 genes involved in carbon metabo-
lism were enriched in the particle fraction. Our results suggest that genes for the
uptake and degradation of organic nitrogen molecules are more abundant within par-
ticle-associated bacterial communities, and this is consistent with the hypothesis that
particles may offer usable, organic nitrogen-containing substrates.

DISCUSSION

Stoichiogenomic studies have identified genome streamlining-type evolutionary
adaptations to nitrogen limitation across diverse marine microorganisms at spatial
scales that span kilometers of depth to thousands of kilometers across the ocean sur-
face (7). Here, we examined the principles of stoichiogenomic streamlining at smaller
spatial scales, that is, across tens of meters surrounding the nitracline of the ETNP OMZ
and across microns separating planktonic and particle-associated microbes. The differ-
ence in nitrate 1 nitrite at the surface and at the oxic-anoxic interface (20 mM over 60
m) is equivalent to the difference in nitrate concentrations between the surface and
500 m, as found by a previous stoichiogenomic study in the North Pacific subtropical
gyre (NPSG) (10), and it mirrors the average differences in nitrate 1 nitrite measure-
ments between the surface and 350 to 400 m in the Station ALOHA NPSG climatology
(https://hahana.soest.hawaii.edu/hot/hot-dogs/). 20 mM is also similar to the total nitro-
gen differences in surface concentrations between open ocean regions and high nitrate
coastal upwelling regions (35). Our observed differences of nitrate 1 nitrite concentra-
tions between the surface mixed layer and the anoxic core are similar to the differences
that were examined by previous stoichiogenomic studies at larger spatial scales.

Our analysis estimates that the bacterial genomic and proteomic nitrogen content
is enriched on particles and increases with increasing depth (thus, increasing nitrate 1

nitrite). We found that arginine, asparagine, and lysine were associated with higher
nitrogen-content protein sequences. There was a corresponding enrichment in arginine
biosynthesis genes in particle-associated communities, along with other genes with func-
tions associated with particle-associated bacterial lifestyles (2). Archaeal genes were also
enriched in nitrogen in particle-associated samples, with protein sequences having
increased arginine, asparagine, and lysine. However, archaeal genes decreased in nitrogen
content with increasing depth. We cannot guarantee that changes in nitrogen availability
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drove these stoichiogenomic trends, as the OMZ environment has a complicated chemis-
try, in that changes in inorganic nitrogen availability correlate with changes in the domi-
nant metabolic strategy (e.g., aerobic respiration versus denitrification) and the availability
of organic carbon for heterotrophs. These changes may exert a pressure for genomic
streamlining on the basis of reduced free energy being available for synthesizing recep-
tors, gathering nutrients, and constructing macromolecules. We note that the decrease in
the free energy yield between aerobic respiration and denitrification is relatively small.
So, bioenergetic effects may not be as important as nutrient availability. Our results here
suggest a role for the nitrate1 nitrite supply in stoichiogenomic variation.

FIG 6 Bacterial functional gene content differences between size fractions. KEGG orthologues are grouped by metabolic pathways and are identified by
KEGG gene nomenclature (y axis). The log ratios of the relative abundance of each gene to sdhC, a core functional gene that is present across all of the
samples, are plotted on the x axis (see Materials and Methods). Point color indicates the size fraction.
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Beyond bacterial and archaeal populations, corresponding depth-related differen-
ces exist (although not differences between size fractions) in the nitrogen content of
viral genes and protein sequences. Our sampling protocol was designed to collect bio-
mass or particles greater than 0.2 mm in size. Therefore, it likely did not recover free vi-
rions. The viral sequences that were detected in our data set are therefore likely to be
host-associated. Whether by viral attachment to host cell membranes, active infections,
or potentially through lysogenic integration, these mechanisms would suggest that
the viral genes in our study belong to ecologically active components of the viral com-
munity. Our analyses suggest stoichiogenomic adaptation to environmental nitrate 1

nitrite concentrations in viruses, adding to the body of stoichiogenomic literature that
has thus far focused on cellular life. Economizing the viral elemental content to reflect
the nitrogen limitation conditions of the host may be important for facilitating efficient
infection (36, 37). Surveys of viral auxiliary metabolic genes in the eastern tropical
South Pacific (ETSP) OMZ include viral genes for nitrogen cycling processes, such as
denitrification and assimilatory nitrate reduction (38), suggesting that nitrogen metab-
olism influences viral adaptation in OMZ environments. We supplement this functional
evidence by suggesting that nitrate 1 nitrite concentrations may also correlate to the
nitrogen quota of viral genomes. We also found the stoichiogenomic parameters for vi-
ral genes in the anoxic core of the OMZ to be distinct from those at other depths via
ordination analysis. This result contributes further evidence from an elemental compo-
sition and structural perspective to functional and taxonomic evidence that shows
unique viral communities in the eastern tropical South Pacific (ETSP) OMZ (31, 38, 39).
Our evidence suggests that the uniqueness of OMZ viruses is present not only in the
taxonomy and functional gene content but also in the genomic and amino acid chemi-
cal composition of viral particles.

Our amino acid-level analysis of the variability of a phage structural protein also
identified elevated methionine and cysteine as a unique signature that is specific to
the anoxic core. These amino acids are both hydrophobic and sulfur-containing. The
increase of sulfur-containing amino acids in this layer may be related to complex sulfur
cycling dynamics in OMZs (40). Hydrophobic residues, specifically methionine, have
been demonstrated to be important for phage capsid stability (41, 42). In the anoxic
core of the ETNP OMZ, aerobic respiration rates are low (20), and less efficient terminal
electron acceptors are used (2). Furthermore, in the ETNP anoxic core, cell numbers
decrease, and the virus to microbe ratio increases (39). These factors suggest that
encountering hosts with sufficient metabolic activity to support an infection may be
more difficult at anoxic depths. Evidence exists for the long-term (annual scale) persist-
ence of viruses in the absence of hosts in the Red Sea (43), suggesting that marine
viruses may use persistence outside hosts as an ecological strategy. The speculation
that low metabolic rates may influence viral evolutionary strategies in the ETSP OMZ
anoxic core is supported by genomic evidence that viruses have adaptations for slow
and intermittent replication (39). The replacement of structural protein amino acid resi-
dues with stabilizing hydrophobic residues, such as the cysteine and methionine
enrichments we found, may be a novel mechanism that aids in viral structural stability
and thereby allows for longer residence times between host encounters to overcome
low host abundance and metabolic rates.

Despite finding viral genomic streamlining with depth, we were unable to detect a
significant difference in the stoichiogenomic properties of viral genes between particle-
associated and planktonic metagenomes. This leads us to at least two hypotheses: (i)
selective forces for streamlining differ between planktonic viral and particle-associated
viral communities and are potentially weaker for viruses that infect hosts that exhibit
planktonic and particle-associated lifestyles; (ii) viruses detected on particles do not nec-
essarily infect particle-associated hosts and instead passively aggregate onto particles.
To the latter hypothesis, recent molecular studies of particulate metagenomic commun-
ities have recovered cyanophage DNA in abyssal depths (44), suggesting that viral DNA
can potentially be vertically transported on particles and persist where hosts may not be
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metabolically active. Our finding that the stoichiometric properties of planktonic and
particle-associated viral genes are similar lends further evidence to the idea that viruses
with planktonic-adapted hosts may passively aggregate to particles.

In summary, this study demonstrates that stoichiogenomic differences occur on spa-
tial scales that are much smaller than the spatial scales that have previously been studied
(6, 10). We show genomic differences in the GC content of 3 to 5% between particle-
associated and free-living metagenomes from the same depth, similar to previously
reported differences that were observed over ranges of hundreds of meters from Mende
et al. (10). The increase in N-ARSC that was observed in particle-associated versus free-liv-
ing metagenomes is within the range (4 to 7% difference) that was observed between
coastal and open ocean proteins (6). Macromolecules with compositions that are suscep-
tible to stoichiometric forcing (e.g., proteins and genomes) can comprise a substantial
proportion the of cell contents for small cells (45). Therefore, evolutionary flexibility in
these traits may have important emergent biogeochemical effects at larger scales. Viral
infection can also shape the ecology and biogeochemistry of microbial communities
(37). The elemental composition of viruses can generate lysate with distinct elemental
ratios, compared to the host (46). Here, we show evidence of viral streamlining occurring
in parallel to hosts along nitrate 1 nitrite concentration gradients with depth, despite
viruses lacking independent metabolism and nutrient uptake mechanisms. A better
means of identification for the factors that shape the nutrient requirements of marine
microbes and their viruses is vital to understanding the mechanisms that shape marine
ecology and biogeochemistry. Likewise, determining the influence of viral infection can
also shape the ecology and biogeochemistry of microbial communities (37). For exam-
ple, the elemental composition of viruses can generate lysate with distinct elemental
ratios, compared to the host (46). Modeling and predicting the influence of viral infection
on the stoichiometry of marine detrital organic matter, and therefore carbon cycling,
requires theory describing the evolutionary relationships between the host and viral ele-
mental composition (47). Including stoichiogenomic effects, such as those described in
this study, in future ecosystem models may offer an important route to our future com-
prehension of the roles of microbial adaptation and macromolecular contents in biogeo-
chemical cycling.

MATERIALS ANDMETHODS
Metagenomic data. All of the metagenomic data from the ETNP were sequenced on the Illumina

platform and are associated with BioProject ID PRJNA632347.
CTD and nutrient data. Sea-Bird conductivity, temperature, and depth (CTD) sensors were deployed

with Niskin rosettes during sample collection on a package that included a fluorometer, a transmissome-
ter, and a Sea-Bird SBE43 oxygen sensor (48). Samples for the nitrate and nitrite nutrient analyses were
collected, and the year 2013 samples were processed as described in Ganesh et al. (2) and Glass et al.
(48). Samples for the nitrate and nitrite analysis for the 2014 cruise were processed as described in
Ganesh et al. (49).

For this study, down-casts of CTD profiles were analyzed using TEOS’s Python Gibbs Seawater (gsw)
toolbox v. 3.4.0, which was loaded into R via the reticulate library v. 3.38.0. Using latitude, longitude,
pressure, temperature, and salinity readings, corrected height relative to sea level was calculated along
with absolute salinity and conservative temperature. Absolute salinity and conservative temperature
were used to derive density anomaly sigma0 with a reference pressure of 0 decibar. These properties
were also used to calculate oxygen solubility, and oxygen saturation was derived from the oxygen solu-
bility and oxygen readings from the CTD instrumentation package. The data were then smoothed via
binned averaging to the nearest 1 m of height.

Sequence data quality control, taxonomic assessment, and assembly. Interleaved reads were
deinterleaved using Nathan Haigh’s deinterleaving script from github https://gist.github.com/nathanhaigh/
3521724. Reads for all metagenomes were then adapter trimmed and quality filtered using TrimGalore
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/, using a Phred quality cutoff score
of 25 and a minimum read length of 100 bp. After trimming and filtering, the reads were merged using
FLASH (50), with the expected read length adjusted to 200 bp to minimize the exclusion of mostly
overlapping reads.

Before the paired-end reads were merged, putative small subunit (SSU) ribosomal reads were identi-
fied using Metaxa2 (51). All of the identified 16S reads were then extracted from the forward and reverse
reads for each metagenome, and the sequences were quality assessed and dereplicated using dada2, as
implemented in R (52). Sequence variants were then assigned taxonomy using the SILVA v1.3.2 database
(53) from dada2’s assignTaxonomy function.
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Parameters on the distributions of the merged paired-end reads (average length, mean and variance
of GC content, total merged reads) were calculated for each metagenome using BioPython utilities. We
modeled the average GC content of the metagenomic reads for each sample by using a mixed-effects
linear model with the log10 total number of reads and size fraction as fixed effects and depth as a ran-
dom effect, using an exponential correlation structure to account for the spatial autocorrelation in the
water column.

Metagenomes were assembled using megahit (54) with a starting kmer length of 27 and the default
parameters. Contig statistics were then calculated using custom Python and R scripts.

Gene catalogue. Using BioPython (55) utilities, the assemblies were filtered for all contigs with a
length of .1,000. Then, genes were predicted for every metagenome using Prodigal v. 2.6.3 with the
standard parameters on the metagenome setting (56). Partial genes were removed.

After combining all predicted genes from all metagenomes, a nonredundant catalog of genes was
creating using CD-HIT with amino acid sequences, clustering genes with an identity of greater than 95%
and an alignment of 90% with the shorter sequence (57). To identify the COGs represented in the clus-
ters, FetchMG’s COG extraction script was used with the standard parameters (58).

Calculating gene characteristics. Using functionalities from scripts provided in Mende et al. (10) as
well as additional BioPython utilities, the gene length, gene GC content, molecular weight of summed
amino acids coded by each gene, codon usage (as defined in Mende et al., a ranking scheme for deter-
mining the diversity of codons used for a particular amino acid in a given gene), codon bias, number of
nitrogen and carbon atoms in residue side chains for all coded amino acids (N/C-ARSC), NC-ratios of
those side chains, and individual amino acid counts were calculated for each gene. Additionally, the
bulk GC content of each metagenome was calculated for all merged reads using BioPython.

Read mapping for abundance and genome size estimation. The BWA-MEM algorithm was used
to map individual metagenomes to the assembled gene catalog, using the standard parameters (59).
After mapping, the results were filtered for only alignments with an identity of 95% or higher (calculated
as 1 2 number of mismatches / alignment length) and an alignment length of greater than 60 bp, using
a mix of samtools (60) and the pysam Python package (https://www.osti.gov//servlets/purl/1559931).
The resulting alignments were then converted into the coverage for each gene, dividing the total num-
ber of base pairs mapped to each reference gene by the gene length. To estimate the average genome
copy number, these coverages were normalized to the average coverage of 10 single-copy COGs (61),
following the same method used in (10). The average numbers of genes per genome were then calcu-
lated by summing the copy numbers for all genes for each metagenome, using a custom script in R. The
average weighted gene coverage was then calculated by dividing the coverages for each gene in a
metagenome by the sum coverage of all of the genes in that metagenome so as to mitigate the differen-
ces of sequencing depth between samples.

To translate the gene properties to a metagenome-wide summary, the gene properties for each
gene were then multiplied by their weighted coverages and summed for each metagenome. This cre-
ated a “gene property profile” for each metagenome, which was then used in further statistical analyses.

Statistical analyses. (i) Ordination analysis. Because our samples were sequenced across a wide
range of depths, and because Illumina sequencing has been shown to display molecular bias in
sequencing (62, 63), we aimed to carefully undergo statistical analyses, keeping this effect in mind.
Therefore, for the ordination analyses, we conducted RDA using sequencing depth as a covariate. We
then removed that axis from the ordination to ensure that all of the patterns in the underlying data
structure were uncorrelated with sequencing depth. For all of the regression models, sequencing depth
was included as an independent variable so as to reduce the potential impact of confounding on param-
eter estimation.

To first explore the differences in the covariation between metagenomic gene properties, an RDA
was constructed using the vegan package v.2.5-7 in R (64), based on all of the properties listed in
“Calculating gene characteristics”. Two axes were found to be associated with eigenvalues that were
larger than the eigenvalue associated with sequencing depth. So, these were selected for presentation.
Post hoc permutational analysis of variance tests were conducted to find the percent variance explained
by size fraction and the asinh-transformed depth for each group, independently. We transformed the
depth in order to account for the nonlinearity in the chemical structure of the water column, which
changes more gradually with increasing depth below the anoxic core of the OMZ.

(ii) Modeling stoichiogenomic parameters. We structured the comparison between the size frac-
tions for the stoichiogenomic parameters among bacteria, archaea, and viruses as separate linear mixed
effects models. We specified depth as a random effect with an exponential correlation structure so as to
represent the spatial autocorrelation in the water column chemistry and to capture nonlinear relation-
ships between depth and stoichiogenomic parameters. Sequencing depth was also used as a covariate
in this model to control for the aforementioned biases. Model parameters were learned using maximum
likelihood methods via R’s nlme package v 3.1-155. For each model, to assess significance, another
model was learned using only fixed effects, including depth. Model comparisons were conducted via
likelihood ratio tests and comparisons of the Akaike information criterion (AIC) values so as to control
for differences in model complexity. For models in which there was a significant likelihood gain, includ-
ing depth, the random effect estimate that was learned for each depth was correlated with depth via
Spearman’s r .

(iii) Amino acid analysis. First, the coverages of all of the KEGG orthologues and the number of
gene cluster representatives in the gene catalogue were assessed. For each domain, we selected the
orthologue with the highest total coverage, coverage in all samples, the greatest number of gene cluster
representatives in the gene catalogue, and a general function presumed to be universal to diverse taxa

Genomic Nitrogen Demand in an OMZ mSystems

March/April 2023 Volume 8 Issue 2 10.1128/msystems.01095-22 15

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/m
sy

st
em

s o
n 

10
 S

ep
te

m
be

r 2
02

3 
by

 2
60

1:
c2

:1
60

0:
e8

b0
:8

80
9:

5d
17

:1
c7

7:
ff

bc
.

https://www.osti.gov//servlets/purl/1559931
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01095-22


within each domain. These genes, namely, rpoZ for bacteria, ftsZ for archaea, and Gp23 for viruses, were
considered to be our “marker genes” for an amino acid frequency analysis. For the case of Bacteria, we chose
rpoZ for its generic role in RNA polymerixation. For Archaea, we chose ftsZ for its involvement in cell division.
For viruses, we chose the structural protein for T4-like bacteriophages Gp23. Gp23 is a core structural gene
for an abundant and (relatively) taxonomically cohesive group of viruses in the family Myoviridae. We specifi-
cally chose this structural gene as the virus representative so as to avoid the substantial differences in macro-
molecular and chemical composition between viruses with different genomic architectures (dsDNA versus
ssDNA versus RNA) while still including a large, abundant, and likely ecologically relevant group. The amino
acid counts for the representative sequence of each gene cluster for each marker gene were then used to
construct a weighted average amino acid profile for each sample, using the coverage of each gene cluster in
that sample as the weight.

The weighted amino acid averages for each domain were centered and scaled to account for the dif-
ferent dynamic ranges. We generated one model for each domain. The models used the scaled amino
acid ranges as predictors and the sample size fraction (binarized as particle fraction = 1, planktonic = 0),
the scaled weighted average N-ARSC for the domain protein, and the scaled weighted average N:C ratio
of the domain protein as multiresponses. For example, for bacteria, we used the average number of ala-
nine, cysteine, etc., for each rpoZ in each sample, weighted by the abundance of each rpoZ sequence, to
simultaneously predict the size fraction, average N-ARSC of rpoZ sequences, and average N:C ratio of
rpoZ sequences for that sample. We learned the parameters of a linear model via a maximum likelihood
framework with an L1 regularization to reduce redundancy among amino acids. 70% of the metage-
nomes were used for model learning and cross validation, whereas 30% were used for testing. The mod-
els were learned using the R glmnet package 4.13 “multigaussian” family of models. Cross validation
using 10 folds was conducted to optimize the regularization parameter, and the model with the mini-
mum average mean squared error across all 10 folds of the test data was selected. The model was fit
and then assessed against the remaining 30% of test data (see Fig. S4 for the model evaluation).

(iv) Functional analysis. A log-ratio approach was used to compare the relative abundances of
functional genes between samples. Log-ratios have been specifically recommended for use in metage-
nomic data sets to account for sequencing bias and to overcome negative constrained covariance struc-
tures surrounding compositional data (34). In order to construct the log-ratios, we selected sdhC, one of
the components of succinate dehydrogenase from the TCA cycle, as the focal gene to be the denomina-
tor. This gene is part of a central metabolic pathway that is widely distributed across bacteria, and it had
among the highest coverage in all of our samples. This left 412 remaining KEGG orthologues that had at
least some reads mapping in all samples. For each orthologue, we summed the coverages of all gene
clusters annotated as that orthologue for each sample, divided it by the summed coverage of sdhC in
that sample, and then took the log to reduce the variance. Then, a linear model was constructed for
each orthologue by using the log-ratio as the response, and the size fraction, the depth, and a size frac-
tion/depth interaction term as predictors. The estimates for all three of these parameters were retained,
and then an FDR threshold of 10% was applied to the P values of all of the parameters across all of the
models to account for multiple testing.

Data availability. All of the metagenomic data from the ETNP were sequenced on an Illumina plat-
form and are associated with BioProject ID PRJNA632347. The intermediate and final data products as
well as the code are available in repository https://github.com/dmuratore/omz_stoichiometry with
archival hosting at doi: https://zenodo.org/badge/latestdoi/560085581.
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