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a b s t r a c t

A promising method is proposed systematically to select an accurate resonance frequency band and
separate refined resonance response from periodic excitation in this study. This work expanded the
short-time Fourier transform (STFT)- and wavelet transform (WT)-based Kurtograms and developed
a hybrid signal separation operator (SSO)–spectral kurtosis computational scheme to implement
Kurtogram by introducing the SSO method—SSO-based Kurtogram. The ability to accurately extract the
refined resonance frequency band of SSO greatly improves its adaptivity for engineering applications.
The effectiveness of the SSO-based Kurtogram is studied by using a bearing fault simulation signal,
and the influence of window function on the detection effect of the proposed method is explored.
Furthermore the validity of the SSO-based Kurtogram for bearing fault detection is verified by a set of
railway wheelset-bearing experiments on the wheelset running-in testbed bench. Experimental results
show that the SSO-based Kurtogram performs highly in detecting various kinds of single and compound
faults of bearings. Compared with the WT- and STFT-based Kurtogram, the proposed method has
obvious advantages in terms of effectiveness and visual inspection ability. In engineering practice,
a railway wheelset-bearing-fault experiment on an in-service high-speed train in the real world is
taken as a case study, which makes the verification of SSO-based Kurtogram more convincing and
demonstrates the practical engineering value of the proposed method. The results show that in case
of equal effectiveness, SSO-based Kurtogram has an absolute advantage in the visual inspection ability,
embodied in eliminating other vibrations unrelated to the target fault and making the fault feature
frequency and its harmonics remarkable.

© 2021 ISA. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In all signal-processing-related areas in practice, time-
requency analysis is always the core topic; the application of
ata analysis and processing is based on the effective expan-
ion of time–frequency representation, algorithm, and approach.
ibration-based fault diagnosis of bearings in rotating machinery
s a typical application of time–frequency analysis. Because of
heir long-term high-speed rotating states, bearings are prone
o various faults. Bearing faults are common causes of mechan-
cal failures. The impact of a mechanical failure during machine
ervice can be disastrous, which may cause not only the shut-
own of the entire production line but also injuries to opera-
ors [1,2]; therefore, early and accurate detection and diagnosis
f bearing fault are imperative to ensure the safety of mechan-
cal operation [3]. The fault diagnosis method of rolling bearing
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as rapidly developed and made abundant and fruitful achieve-
ents. Recently, the main methods of high heat are nonstationary
ignal analysis methods – such as variational mode decompo-
ition [4], empirical wavelet transform (WT) [5], and flexible
nalytic WT [6]– cyclostationary methods – such as fast spec-
ral correlation [7] and faster spectral correlation methods [8]–
nd blind deconvolution methods—such as minimum entropy
econvolution [9,10], maximum correlated kurtosis deconvolu-
ion [11,12], and multipoint D-norm index blind convolution [13].
esearchers have gradually found that repetitive transient im-
acts could be detected from feature frequencies. The spectrum
nalysis method based on the frequency domain can effectively
dentify the component and location of abnormal behavior, mak-
ng it widely studied and applied recently. The key of the spec-
rum analysis method is to determine the best demodulation
requency band, also known as resonance frequency band (RFB).
n addition, the detection method of optimal RFB has also made
ignificant progress recently, and the representative work is as
ollows. Tse et al. [14] proposed the Morlet wavelet method
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K

uided by spectral L2/L1, He et al. [15] developed the tunable
-factor WT method guided by harmonic characteristic noise
atio, Zhang et al. [16] studied He et al.’s method using the joint
ndicators of kurtosis entropy, and Wang et al. [17] proposed
he empirical WT method guided by envelope spectrum kurtosis.
ecause the optimal resonance band detection method is difficult
o be analytically modeled, its parameters can only be adjusted
sing a heuristic optimization algorithm.
At present, spectral kurtosis (SK) is widely regarded as a quite

obust and practical method for resonance band identification.
andall and Antoni [18,19] proposed to use the frequency band
ith the largest kurtosis as the RFB of envelope analysis and
eveloped the SK method to identify the RFB. The core idea of
K is to design some predefined bandpass filters to divide the
requency band of a signal and use the kurtosis criterion to select
he most informative frequency band as the RFB. When SK is used
o determine the RFB, signals in each frequency band need to be
eparated from the original vibration signal. To achieve this goal,
arious filters based on signal processing methods are widely
sed in SK analysis, such as finite impulse response filtering
echnology, short-time Fourier transform (STFT), and WT. The fast
urtogram (FK) proposed by Antoni [19,20] uses an STFT filter
o realize signal filtering. In the application of SK theory, the
K estimation algorithm is a key technical problem. Antoni [21]
roposed a classic fast filtering algorithm named FK. To improve
he effectiveness of the FK filtering algorithm, researchers have
lso proposed various fast filtering algorithms [22]. Lei Yaguo
t al. [23] proposed a more accurate improved FK filtering al-
orithm using wavelet packet filter banks instead of 1/3-binary
ree filter banks in the FK filtering algorithm. Inspired by pro-
ram theory and precise wavelet packet filter banks, Wang Dong
t al. [24] proposed an enhanced FK filtering algorithm. Zhipeng
heng et al. [25] proposed a flexible frequency slice WT for
urtogram to expand its range of application. Because FK and
ts various extended algorithms are not optimal filterings for all
ignals, they cannot ensure efficient feature extraction of weak
ault information, especially the vibration signal under strong
oise background. Therefore, the SK method still has room for
mprovement for more practical engineering scenarios.

This study was motivated by a critical issue: railway wheelset-
earing safety monitoring and fault diagnosis. Railway wheelset
earing plays a paramount role in a train running system, which
s mainly used to transmit traction force and bear radial dynamic
oad of the vehicle. The safe operation of a wheelset bearing is
rucial to keep the train running smoothly [26]. The vibration
cceleration signal of railway wheelset bearing has the char-
cteristics of time-varying strong noise in the real world. The
raditional SK method has a significant effect on fault diagnosis in
tatic experiments of railway wheelset bearing, but the effect is
nideal in an actual operating environment [27]. In this study, we
ropose a new SK method, which not only gives full play to the
dvantages of SK in quantifying the impulsivity of nonstationary
yclic pulse signals but also has a more accurate detection ability
or impulsivity in time-varying strong noise signals. The core of
he proposed method lies in the introduction of the signal sepa-
ation operator (SSO) and the reconstruction of the SK method for
etter functionality in separating components in complex signals.
The SSO approach is a local method with strict mathematical

ogic for instantaneous frequency (IF) estimation, introduced by
hui and Mhaskar in 2016 [28]. Combined with the empirical
ode decomposition (EMD) method, they proposed and coined

he method of EMD + SSO named ‘‘superEMD’’ [29], where ‘‘su-
er’’ is the abbreviation of super-resolution. In the SuperEMD
ethod, the SSO with reasonable parameters is separately ap-
lied to each intrinsic mode function (IMF) obtained from EMD

o extract IF. On this basis, the finer signal building blocks of
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IMF are subsequently constructed by using the same parameters
as SSO with IF as inputs. Specifically, SSO is used to replace the
Hilbert transform in EMD. It is used first for frequency extraction
and later for constructing finer signal building blocks. Experi-
ments confirmed that SSO could identify close-by frequencies in
a given IMF as well as recover/reconstruct the individual atoms
associated with these frequencies.

In this study, we propose a novel method developed to select a
more accurate RFB and separate refined resonance response from
periodic excitation. We define a promising and robust method
for fault diagnosis of railway wheelset bearings with a new kur-
togram based on existing works. The novelty of our approach is
as follows.

• Expansion of the WT- and STFT-based Kurtograms to de-
velop a hybrid SSO–SK computational scheme to imple-
ment kurtogram by introducing the SSO method, named
SSO-based Kurtogram.

• This is the first attempt to construct a bearing fault diag-
nosis technology based on SSO and apply it to engineer-
ing practice. The performance difference between existing
and SSO-based Kurtograms is systematically studied and
compared.

• The use of the SSO method to extract refined RFB and
improve its adaptivity for engineering applications.

• This work offered a reliable approach to detect and iden-
tify the railway wheelset-bearing faults that always ap-
pear in high-speed serving environments with multivibra-
tion sources.

The rest of this paper is organized as follows. Theoretical
definitions of the SK and existing Kurtograms are reviewed in
Section 2. A global description of the proposed Kurtogram is
presented in Section 3. In Section 4, the proposed Kurtogram is
applied to the first case study—railway wheelset-bearing experi-
ments in wheelset running-in testbed. Results of the second case
study – diagnosis of railway wheelset-bearing faults in the real-
istic running high-speed train – are described in Section 5, with
a comprehensive comparison with existing Kurtograms, thereby
validating the proposed Kurtogram. Finally, Section 6 concludes
his study.

. Preliminaries

.1. SK

Kurtosis measures the peakedness of signals; hence, it can
ell characterize the signal impulsiveness and is widely used to
xtract the fault feature frequencies of rotating machinery; it is
xpressed as follows:

urtosis (x) =
E
{
(x− µ)4

}
σ 4 − 3 (1)

where µ and σ are the mean and standard deviation of timeseries
x, respectively, and E {■} is the expectation operation. To make
the kurtosis of a positive distribution zero, ‘‘3’’ is subtracted from
the end of the formula. To detect or localize the transients or
hidden-stationarity of timeseries measurements, the frequency
domain kurtosis was proposed and introduced by Dwyer [30],
where kurtosis was applied in the real and imaginary parts of
STFT creatively. Based on this idea, the kurtosis calculation of
each frequency line was realized so that the existence of hidden
nonstationarity in the signal could be further detected, and the
frequency bands in which these nonstationarities occur can be
located. Antoni [19] was the first person to publish the method
and further verified that SK had strong robustness to imposed
noise [20]. The Wold–Cramer representation, a formal definition
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f the SK of nonstationary signals, decomposes any zero-mean
onstationary random process Y (t) as the output of a causal,
inear, and time-varying system:

(t) =
∫

+∞

−∞

ej2π ftH (t, f ) dZY (f ) (2)

here dZY (f ) is an orthonormal spectral increment, and H (t, f )
is the time-varying transfer function and can be understood as
the complex envelope of Y (t) at frequency f . Then, the SK is
clearly expressed as the energy-normalized fourth-order spectral
cumulant of a conditionally nonstationary process

KY (f ) =

⟨
|H(t, f )|4

⟩
⟨|H(t, f )|⟩2

− 2, f ̸= 0 (3)

here KY (f ) is the SK of signal Y (t) around frequency f , and ⟨·⟩

denotes the averaging over time.

2.2. WT-based SK

For a signal x (t) with limited energy, its continuous WT can
e identified as the inner product of wavelet function as fol-
ows [31]:

(a, τ ) = |a|−
1
2

∫
+∞

−∞

x(t)ϕ(
t − τ

a
)dt (4)

whereW (a, τ ) is the wavelet coefficient, a is the scale parameter,
τ is the time shift parameter, ϕ(t) is the wavelet function, and
ϕ(t) is the conjugate of wavelet function ϕ(t).

Therefore, the wavelet coefficient reflects the projection of
the signal x (t) toward the wavelet function. That is, the wavelet
coefficient is the representation of the similarity between the
signal and wavelet function.

Among the existing wavelet functions, the Morlet WT is sim-
ilar to the attenuation component in the impact vibration re-
sponse produced by a faulty bearing, so the Morlet WT is often
used in the fault diagnosis of rolling bearing [32,33]. The idea
of this study emerged when we were investigating the vibration
acceleration signal from railway wheelset bearings. Therefore, the
Morlet WT is represented in the calculation of WT-based SK. The
expression of the Morlet WT is as follows:

ϕ (t) =
δ

√
π
e−δ2t2ei2π f0t (5)

where δ is the envelope factor, and f0 is the center frequency. Its
Fourier transform (FT) is as follows:

ϕ∗ (f ) = ϕ∗ (f ) = e−
π2

δ2
x(f−f0)2 (6)

where ϕ∗ (f ) is the FT of ϕ (t), and ϕ∗ (f ) is the conjugate of
∗ (f ).
From the perspective of signal processing, the Morlet WT is

special bandpass filter. In this study, the frequency band of its
nalysis is limited in [f0 − δ, f0 + δ]. The Morlet WT coefficient of
he signal x (t) is as follows:

x (f0, δ) = F−1 {X(f )ϕ∗ (f )
}

(7)

here F−1 {■} is the inverse FT, and X(f ) is the FT of x (t).
The corresponding SK based on Morlet WT can be expressed

s follows:

x (f0) =
E⟨|Wx (f0, δ)|4⟩{
E⟨|Wx (f0, δ)|2⟩

}2 − 2, f0 ̸= 0 (8)

The value of SK is related to the size of the analysis win-
ow [32]. Generally, the smaller the noise contained in a short
nalysis window, the higher the SK obtained. However, when the
 c
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bandwidth is less than the fault passing frequency, the RFB can no
longer obtain the characteristic frequency, and the bandwidth is
meaningless at this time; however, if the bandwidth is longer, the
possibility that the energy band excited by the fault is completely
covered is greater, but the noise increases accordingly. There-
fore, when using SK to find the RFB adaptively, an appropriate
time-frequency analysis method directly affects the RFB selection
quality.

2.3. STFT-based SK

For a process Y (t) with an analysis window w (n) of length
Nw and a given temporal step-size P , its STFT can be expressed
as follows [34]:

Yw (kP, f ) =
∞∑
−∞

Y (n) w(n− kP)e−j2πnf (9)

Inspired by Eq. (3), the STFT-based estimator of SK can be
defined as follows:

KYw (f ) =

⟨⏐⏐Ĥ(t, f )
⏐⏐4⟩⟨⏐⏐Ĥ(t, f )
⏐⏐⟩2 − 2,

⏐⏐⏐⏐f −mod(
1
2
)
⏐⏐⏐⏐ > N−1

w (10)

here K̂Yw (f ) is the SK of signal Y (t) around frequency f , and ⟨·⟩

enotes the averaging over time.
Eq. (10) has the following properties.

(1) For a stationary process Y (t), the kurtosis index is 0.
(2) For a nonstationary process Y (t) under the interference

of stationary noise signal b (t), SK should be calculated
following Eq. (11).

K̂(Y+b) (f ) =
K̂Y (f )

[1+ ρ(f )]2
(11)

where ρ(f ) is the reciprocal of signal-to-noise ratio (SNR).

Reference [35] details the bias and variance of the STFT-based
K estimator. Notably, the nonstationarity of the signal should
ave a slow time evolution process relative to the window length
f STFT. Since most fault signals are related to fast pulses, and the
rocess is nonstationary, an excellent application of SK estima-
ion technology based on STFT depends largely on the accurate
etermination of the window length used in STFT.

.4. Kurtogram

In Eq. (8), frequency f and band length δ can be found by
aximizing the WT-based SK among all possible choices. The
ap formed by the WT-based SK as a function of f and δ is
alled the WT-based Kurtogram. Similarly, STFT-based Kurtogram
s based on the function of f and Nw forming the map through the
TFT and SK [20].
For nonstationary signals, SK is a function of frequency and

requency resolution. Therefore, the key to detecting the nonsta-
ionary components in the signal using SK is choosing the optimal
requency resolution to obtain the maximum SK. All possible
indow widths should be used to try ascertaining the true center

requency and bandwidth. As such, there will be high compu-
ational costs, which may inhibit applicability. FK emerged as
he compute speed and presentation requires in [21]. A kurtosis
ap calculates the kurtosis value of the frequency band array
overing the entire base frequency band in a predefined strategy
nd forms a color chart of the kurtosis value. All results are intu-
tively presented on a plane in which the horizontal axis indicates
he frequency, the vertical axis indicates the number of internal
omponents divided by the frequency baseband, and the 3D color
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ode indicates the kurtosis value of the envelope signal of each
requency band at each central frequency. Finally, determining
he optimal frequency band is the precondition of narrow-band
mplitude demodulation [20]. This calculation method saves CPU
alculation time and improves the calculation efficiency of kur-
ogram. In addition, the FK can obtain calculation results similar
o the original kurtogram; hence, it is proposed for online running
ondition monitoring and fault diagnosis [34]. To further meet
he actual engineering requirements, the calculation processes of
he WT- and STFT-based Kurtograms are redesigned following the
ramework of FK in this study.

. Global description of the proposed Kurtogram

.1. SSO

For t ∈ R and θ ∈ T, where T is represented as the quotient
pace of R with equivalence relation ϑ ≈ υ defined by (ϑ −υ) ∈
2πZ so that |ϑ − υ| = |(ϑ − υ)|mod2π , and the SSO applied to
f is defined as follows [28]:(
Ta,γ f

)
(t, θ) :=

1
ℏa

∑
k∈Z

h(
k
a
)eikθ f (t − kγ ) (12)

ith

a :=
∑
k∈Z

h(
k
a
) (13)

here h denotes the admissible window function, that is h is an
even function with supp (h) ⊆ [−1, 1] and h > 0 on its support
interval; γ is the sample spacing adjusted based on the separation
of IF’s, and a is window width, γ , a > 0 are parameters, with a
hosen so that ℏa is positive.
After using an appropriate threshold parameter ϑ > 0 for

he SSO output in Eq. (12), a set of exactly n nonempty disjoint
lusters Gk, k = 1, . . . , n, can be obtained. By computing

k(t) := argmax
θ∈Gk

⏐⏐(Ta,γ f
)
(t, θ)

⏐⏐ (14)

or each cluster Gk, k = 1, . . . , n, an estimation ω̃k(t) of the
esired IF φk(t) of the kth subsignal would be obtained, namely,

k (t) =
1

2πγ
ωk (t) , k = 1, . . . , n (15)

hen, the signal building blocks can be estimated by

k (t) := 2Re
(
Ta,γ f

)
(t, ωk) , k = 1, . . . , n (16)

For more details of SSO, refer to [28,29].

3.2. SSO-based Kurtogram

As mentioned in Section 2.1, according to higher-order statis-
tics theory, SK can be defined as the normalized fourth-order
cumulant of FT, and it was used to measure the distance of the
Gaussian process [36,37]. Vavrie et al. [38] summarized some
promising applications of SK to the characterization of harmonic
processes. There is still room to improve the adaptability for
the SK of nonstationary processes, especially in applications. SSO
provided a more advanced method to compute the IF than the tra-
ditional method, such as fast FT (FFT) and Hilbert transform [28].
It has a better advantage than FFT for nonstationary processes
and more accuracy than the Hilbert transform. Thus, we focus
on a new approach to compute kurtogram based on SK and SSO.
The proposed calculation flowchart is expected to be sufficiently
general to apply to any situation with impulsive wide- or narrow-
band masking signals and close space models as well as more
accurate than existing kurtograms.
501
A flowchart scheme describing the implementation of the pro-
posed kurtogram is shown in Fig. 1. According to Eq. (10), when
the fault impact makes ρ(f ) very large and K̂(Y+b) (f ) quite small,
SK cannot characterize the impact feature. Thus, the value of SK of
the nonstationary impact signal under strong noise interference
is closely related to the center frequency and time window width
in Eqs. (8) and (9) in STFT processing. Therefore, selecting the
ppropriate center frequency and frequency resolution is critical
or reflecting the impact characteristics more accurately, which
akes the SK index of nonstationary signal maximization.
SSO Ta,γ is a computational process with suitable lowpass

indow width a > 0 and sampling rate γ > 0, with output
Ta,γ f

)
(t, θ) for thresholding with some appropriate parameter

> 0 that depends on the restriction on the amplitudes of origin
ignal [29]. This method can separate the threshold set

θ :
⏐⏐(Ta,γ F

)
(t, θ)

⏐⏐ ≥ ϑ

2

}
(17)

into Gk clusters using an optimal selection of the parameter η

determined by the time variable at t . Then, the estimates of IFs,
ω1 (t) , ω̃2 (t) , . . . , ω̃n (t), can be obtained by taking the maxi-
mum over θ for each cluster. Next, both the instantaneous am-
plitudes A1 (t) , A2 (t) , . . . , An (t) and signal components f1 (t) ,

f2 (t) , . . . , fn (t) can be obtained by taking the absolute values and
real parts, respectively, of the output of the SSO evaluation.

Subsection 3.2 in [28] gave a more precise definition of the
main parameters a, γ , ϑ , and η, where 0 < γ ≤ 1/4B, B =

max1≤j≤K
⏐⏐∅′j(t)⏐⏐, ϑ = min1≤j≤K

⏐⏐Aj(t)
⏐⏐ > 0, and 0 < η ≤ π/2.

Chui and Mhaskar [28,29] recommended that the parameter η

be 0.01, and γ be the reciprocal of the sampling frequency. The
parameter a represents the width of window. In the abovemen-
tioned STFT-based SK scheme, the width of window width a
changes along with the number of central frequency candidates,
but the width window is obviously too small, and the accuracy
of SSO cannot be guaranteed [28]. Chui and Mhaskar [28,29]
identified parameter a should be sufficiently large, and they set
it to be 1,024 in a series of simulated signals. However, another
critical issue is that our calculation method is only suitable for
stationary processes, which means that the width of the window
cannot be too long. So, there should be a tradeoff between the
accuracy of SSO and the well-defined calculation of SK. After
repeated checking, we suggest that the value of the parameter
a should be less than 27 to the greatest extent, and 7 is the
maximum allowable number of layers in the kurtogram scheme.

3.3. Discussion of the window function in SSO

The bearing fault feature (also called fault impulse) has pe-
riodicity and repeatability. For bearing faults, the length of the
truncated segment could be decided by the passing period cor-
responding to the fault feature frequency to find possible faults.
The bearing fault signal with a fault characteristic frequency of f
could be simulated using the following expression:

y (t) =
N∑
j=0

Ae−ϕ(t−jT ) cos(2πω (t − jT ) h (t − jT )) (18)

where A is the amplitude of the impulses, ϕ is the structure
damper coefficient, ω denotes the excited resonance frequencies,
N denotes the number of impulses, h(t) denotes a unit step
function and T = f −1. According to Eq. (18), a set of bearing fault
signals y0 (t) is constructed, and the corresponding parameters
are A0 = 2, ϕ0 = 0.1, ω0 = 3000, f0 = 100, and N0 = 42.
The sampling frequency fs of the simulation signal is 20 kHz. A
Gaussian noise Nr (t), generated at a 5 dB SNR of y0 (t), is added

to the fault signal to simulate the measurement noise in practical
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Fig. 1. Flowchart scheme of the proposed Kurtogram.
ngineering. The fault signal with noise is y1 (t). The simulation
signals are shown in Fig. 2.

y1 (t) =
N∑
j=0

Ae−ϕ(t−jT ) cos(2πω (t − jT ) h (t − jT ))+ Nr (t) (19)

Referring to the definition of SSO in Eq. (8), SSO can be con-
idered a windowed discrete FT (DFT). The two key points in
q. (8) are the window function h and base functions, consine and
ine functions, in this case. To investigate the effectiveness of the
roposed kurtogram and explore the effect of the window func-
ion on the proposed kurtogram, an admissible window function
rovided in [28,29] with different characters as follows,

α,β (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if |t| ≤

1
α

exp−
exp β

1−α|t|

1− |t|
if

1
α

≤ |t| ≤ 1

0 if |t| ≥ 1

(20)

he rectangular window function, Hann window function, and
lattop window function will be used to compute the SSO; then,
he performances to detect the fault characteristic frequencies in
q. (15) will be discussed.
Fig. 3(a) depicts the admissible window function hα,β (t) with

α = 2 and β = 2, whereas Fig. 3(b) depicts its corresponding
frequency spectrogram with FFT. The simulation signal y1 (t) is
processed following the flowchart scheme shown in Fig. 1, where
the SSO is calculated based on the admissible window function
hα,β (t) with α = 2 and β = 2, and the setting parameters
of SSO are a = 1024, γ =

1
fs
, where fs = 20 kHz, ϑ/2 =

.022, and η = 0.01. The calculation results of the SSO-based
urtogram are shown in Fig. 3(c), mapping the maximum center
requency and corresponding frequency resolution of the signal
urtosis index. The kurtosis maximum center frequency of signal
1 (t) is 2480.62 Hz. Using the same admissible window function
nd the same SSO parameters, just changing the parameter α,
ig. 4(a) shows the admissible window function hα,β (t) with

α = 8 and β = 2, and Fig. 4(b) depicts its corresponding
frequency spectrogram with FFT. The window narrower and the
sidelobe of Fig. 4(b) decreases as α increases. Fig. 4(c) shows
he result of the SSO-based Kurtogram with the same admissible
indow function and parameters, except α. As α increases to 8,
he kurtosis maximum center frequency of the signal y1 (t) of the
SSO-based Kurtogram changes to 3076.92 Hz.
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When the noise and vibration are measured, we commonly
use the Hann window. In general, many operational signals are
random. Compared with other windows, the Hann window has
a certain influence on the frequency resolution and amplitude
accuracy of the calculated spectrum, so it is often used simulta-
neously with random data. The maximum amplitude error of the
Hann window is 15%, whereas the frequency leakage is typically
confined to 1.5 spectral lines to each side of the original sine wave
signal [39]. The Hann window function, formulated as Eq. (21),
can be applied to random data to smoothen abrupt ends and
reduce leakage in the resulting FT (Fig. 5), where Fig. 5(a) shows
the Hann window function hh (t), and Fig. 5(b) depicts its corre-
sponding frequency spectrogram with FFT. The calculation results
of the SSO-based Kurtogram with the Hann window function and
with the abovementioned SSO parameters are shown in Fig. 5(c),
and the kurtosis maximum center frequency of the signal y1 (t)
is 2945.74 Hz.

hh (t) =
{
sin2 (π (t + 0.5)) , if |t| < 0.5;

0, otherwise (21)

Generally, the resolution of spectrum analysis mainly depends
on the main lobe width of the signal window, whereas the vari-
ance estimation is reduced according to the sidelobe leakage of
the window. Therefore, it is assumed that there is an optimal
tradeoff between the main lobe width and sidelobe ripple level,
and a symmetric window is used to find such a balance, which is
widely used in the smoothing weighting of DFT signals [40]. The
rectangular window function may be defined by Eq. (22). Fig. 6(a)
shows how the rectangular window would appear if traced on
an oscilloscope, and Fig. 6(b) depicts its corresponding frequency
spectrogram with FFT. The rectangular window has the smallest
main-lobe width but with the highest peak–sidelobe ratio; no-
tably, lower sidelobe of nonrectangular windows, however, have
been achieved at the cost of the main-lobe width broadening. The
calculation results of the SSO-based Kurtogram with a rectangular
window function and the abovementioned SSO parameters are
shown in Fig. 6(c), and the kurtosis maximum center frequency
of signal y1 (t) is 4341.08 Hz.

hr (t) =
{
1, if |t| < 1;
0, otherwise

(22)

Besides the Hann and rectangular windows, a flattop window is
also a common time window. The frequency resolution of the
flattop window is not as high as that of the Hann window, but

it can accurately measure the amplitude level of a signal at any
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Fig. 2. Simulation signals: (a) y0 (t) and (b) y1 (t).
Fig. 3. Discussion of the window function hα,β (t) with α = 2, β = 2 in SSO: (a) window function hα,β (t) with α = 2 and β = 2; (b) corresponding frequency
spectrogram with FFT of (a); (c) color map of the SSO-based kurtosis with window function shown in (a).. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 4. Discussion of the window function hα,β (t) with α = 8, β = 2 in SSO: (a) window function hα,β (t) with α = 8 and β = 2; (b) corresponding frequency
spectrogram with FFT of (a); (c) color map of the SSO-based kurtosis with window function shown in (a).. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 5. Discussion of the Hann window function in SSO: (a) Hann window function hh (t); (b) corresponding frequency spectrogram with FFT of (a); (c) color map
f the SSO-based kurtosis with window function shown in (a).. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
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Fig. 6. Discussion of the rectangular window function in SSO: (a) rectangular window function hr (t); (b) corresponding frequency spectrogram with FFT of (a); (c)
color map of the SSO-based kurtosis with window function shown in (a).. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 7. Discussion of the flattop window function in SSO: (a) the flattop window function hf (t) with a0 = 1, a1 = 1.93, a2 = 1.29, a3 = 0.388, and a4 = 0.028;
(b) corresponding frequency spectrogram with FFT of (a); (c) color map of the SSO-based kurtosis with window function shown in (a).. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
frequency, even if the frequency is between the lines of FFT anal-
ysis. The maximum amplitude error of the flattop window is less
than 0.01% [41], whereas the Hann window maximum amplitude
error is 15% [39]. These maximum amplitude errors assume that
amplitude correction factors are applied to the frequency spectra.
The flattop window function may be defined as follows:

hf (t) =

⎧⎨⎩
a0 − a1 cos (2π t) + a2 cos (4π t) − a3 cos (6π t)

+a4 cos (8π t) , if |t| < 0.5;
0, otherwise

(23)

Fig. 7(a) shows the flattop window with a0 = 1, a1 = 1.93, a2 =

1.29, a3 = 0.388, and a4 = 0.028, whereas Fig. 7(b) depicts
its corresponding frequency spectrogram with FFT. Like the Hann
window, the flattop window begins and ends with a value of zero.
The value of the center of the window is one. Compared with the
Hann window, the flattop window has lower frequency accuracy,
so it is used to process signals with different frequency peaks and
good separation from each other. When it is impossible to ensure
that the frequency peaks are well separated, it is better to use the
Hann window because it is unlikely to cause a single peak to be
lost in the spectrum calculation process. The calculation results of
the SSO-based Kurtogram with the flattop window function and
the same SSO parameters are shown in Fig. 7(c), and the kurtosis
maximum center frequency of signal y1 (t) is 3720.93 Hz.

The maximum center frequencies and corresponding
frequency resolutions of signal kurtosis index grids are obtained
after implementing the SSO-based Kurtogram with two admissi-
ble window functions hα,β (t), the rectangular window function,
the Hann window function, and the flattop window function

[Figs. 3(c), 4(c), 5(c), 6(c), and 7(c), respectively]. The frequency
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resolution is the bandwidth value of the subsequent parameters
used in the resonant demodulation filter. Based on these filter
parameters, the filters are designed and the signal y1 (t) is an-
alyzed via bandpass filtering and demodulation. The resonance
demodulation spectra of the signal y1 (t) are obtained through
envelope analysis. All results are shown in Fig. 8; different color
curves represent the calculation results of different window func-
tions. When all envelope spectra are illustrated on the same
coordinate axis, most curves are covered by each other, and
the details cannot be compared. Therefore, the coordinate axis
of each envelope spectrum is shifted slightly, which allows the
differences between envelope spectra to be exposed. The fault
characteristic frequency f of the signal y1 (t) and the harmonic
frequencies are well demodulated. Notably, from the previous
sets of plots, varying window functions only have little impact
on the ultimate diagnostic result of the SSO-based Kurtogram. It
is reasonable if we admit the assumption that the signal y1 (t)
is actually stationary and periodic. Since the window function is
always added to reduce the leakage of information to a max-
imum extent and fit the periodic nature of the FT, it will not
influence the signal y1 (t) since it is stable. Despite all these,
there are subtle differences in the performances of the SSO-based
Kurtogram with different window functions. The results based on
the Hann window function have a better SNR than others, next is
the window function hα,β (t), and the diagnostic performances
slightly worse are the those based on flattop and rectangular
window functions. Meanwhile, the Hann window function-based
diagnostic performance has the optimal performance. The STFT-
based Kurtogram method used for comparison below is based
on the Hann window function. If the comparison is performed
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Fig. 8. Envelope spectra of SSO-based Kurtogram with various window functions. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 9. Schematic sketch of the wheelset running-in testbed.

under the same window function, the superiority of the proposed
method would be verified and highlighted. Considering these
two reasons, we will select the Hann window function for SSO
calculation in our case studies and experimental verification.

4. A case study of train axle-box bearing experiments in
wheelset running-in testbed

In this section, a set of railway wheelset-bearing experiments
n a wheelset running-in testbed is implemented to verify the
uperiority of the SSO-based Kurtogram for fault diagnosis of
ailway wheelset bearing. The main components of the wheelset
unning-in testbed include motor, driving wheel, loading de-
ice, and wheelset (Fig. 9). The wheelset running-in testbed can
nly simulate the pure rolling motion of wheelsets. The real
xperiments were conducted in the wheelset running-in testbed
isplayed in Fig. 10. The testbed is installed on the rail to simulate
he infinite running track through two wheels reverse rolling.
n addition, it can simulate different operating conditions and
omponent faults. The accelerometer installed at the upper end
f the axle box is used to obtain the vibration acceleration signal
f the bearing [42,43].
Double-row-tapered roller bearings are mostly used on high-

peed EMUs in China. The main geometric parameters of the
earing used are provided as follows: roller diameter = 26.9 mm,
ontact angle = 9◦, pitch diameter = 180 mm, and the number of
ollers = 19. In the test, we use three replacement bearings with
ifferent faults from an in-service train: the first one with cage
ault, the second one with cage and roller compound fault, the
hird one with outer-race fault. Three faulty bearing components

re highlighted as shown in Fig. 11. Fig. 11(a) shows the faulty
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Fig. 10. Photograph of the wheelset running-in testbed.

cage; Fig. 11(b) shows the faulty pin roller; Fig. 11(c) shows the
outer-race with three defects. Because the cage and roller are
difficult to disassemble and assemble, the individual roller fault
experiment was not conducted; the experimental arrangement
and significant parameters in each experiment are shown in
Table 1. Cases 1 and 3 are the experimental conditions with
a single faulty bearing component, Case 2 is the experimental
condition with two faulty bearing components, and Case 4 is the
experimental condition with three faulty bearing components. In
our experiment design, the single-fault condition, two-fault com-
bined condition, and three-fault compound existence condition
are covered. The sampling frequency used in all experiments is
10 kHz. Notably, the wheelset rotation frequency of the first two
experiments is different from that of the last two experiments.
The experimental bearings come from China’s high-speed train,
and their service speed on the high-speed train is high. Therefore,
the wheelset rotation speed should be as close to the service
speed as possible in our early experimental design. When the
bearing outer-race fault experiment is carried out, the testbed
vibrates violently. Considering the safety of the experimenter
and equipment, we reduce the running speed of the wheelset
and conduct the bearing test with outer-race fault again. This is
the reason the experimental speed of the latter two cases with
outer-race fault is lower.

Fig. 12 shows the vibration signal curves of all cases in the
ime domain and corresponding spectrum and envelope spectrum
n the frequency domain. The vibration signal of bearing with
low-speed and only outer-race fault has a smaller amplitude.
nder the same wheelset running speed, the amplitude of the
ibration signal of bearing with multiple fault components is al-
ays greater than that with a single-fault component. The arrow
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Fig. 11. Wheelset-bearing faults: (a) cage fault; (b) pin roller fault; (c) three outer-race faults.
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Table 1
Experimental arrangement and significant parameters.
Case
No.

Bearing conditions Wheelset
rotation
frequency (Hz)

Fault feature
frequency
(Hz)

1 Cage fault fr = 15.4 fc = 6.58

2 Cage and roller faults fr = 15.43 fc = 6.58
fbs = 50.89

3 Outer-race fault fr = 10.28 f0 = 83.23

4 Cage, roller, and outer-race faults fr = 10.28
fc = 4.39
fbs = 33.93
f0 = 83.23

The sampling frequency of all experiments is 10 kHz.

marks of envelope spectra show some characteristic frequencies.
From the envelope spectrum in Fig. 12(a), besides the multiple
armonics of the wheelset rotation frequency, we can find the
th and 7th harmonics of cage fault feature frequency, but it is not
asy because the two harmonics look so inconspicuous. In the en-
elope spectrum of Fig. 12(b), it can be found that the amplitude
f the cage fault feature frequency, its 3rd harmonics, and the
nd, 4th harmonics of roller fault feature frequency are small and
ifficult to identify. The outer-race fault feature frequency and its
nd harmonic can be found in the envelope of Fig. 12(c); although
he two frequency components have remarkable amplitude, they
re still submerged in the wheelset rotational frequency and its
armonics. From the envelope spectrum in Fig. 12(d), we can
ind the feature frequencies of three types of bearing fault: the
age, roller, and outer-race faults. In this case, the identification
ffect of outer-race fault feature frequency and its 2nd harmonic
s quite remarkable. The feature frequency of cage fault and its
nd, 3rd, and 4th harmonics as well as the roller fault feature
requency and its 2nd, 4th, and 6th harmonics can be found,
ut we need to use a magnifying glass to recognize them all.
enerally, the envelope spectrum may be an effective method
o extract bearing fault feature frequencies, but it is not the
est choice. These nonremarkable frequency components are very
ifficult to identify and are prone to false and missed detection.
Before further analysis, it is necessary to discuss the issue of

arameter assignment of the SSO method that is applied to pro-
ess the nonstationary experimental data. As mentioned above,
he parameter η = 0.01, γ = 1/fs, where fs is the sampling
frequency, and ϑ = min1≤j≤K

⏐⏐Aj(t)
⏐⏐ > 0. To determine the

threshold parameter ϑ , first, the frequency spectrum of the orig-
inal signal is employed; then, the spectrum peaks are found and
sorted; finally, the amplitude of the minimum spectrum peak is
determined as the value of the threshold parameter ϑ . We have
suggested that the value of the parameter a should be less than 27

to balance the accuracy of SSO and the well-defined calculation of
SK. We refer to the scheme of the STFT-based Kurtogram and find
that the maximum number of layers of the above experimental
data shown in Fig. 12 is 6. To simplify the calculation process,
we fixed the window width a to 26. The following repeated tests
506
show that the sensitivity of time-varying a(t) or more parameter
selection to the test results is not too high within limits, as
mentioned in [28].

In the first experiment, the SSO-based Kurtogram is used to
process the bearing vibration signal with cage fault shown in
Fig. 12(a). The original signal in Fig. 12(a) has obvious large
amplitude vibration, which is under a high rotation speed. The
color map of the SSO-based Kurtogram of the vibration signal
collected in this experiment is shown in Fig. 13(a), with the SSO
parameters a = 64, γ =

1
10000 , ϑ/2 = 0.032, and η = 0.01, and

he RFB of the axle-box bearing with the cage fault is highlighted
y the red dashed circle. The envelope spectrum of the axle-box
earing containing the cage fault processed by the SSO-based
urtogram are shown in Fig. 13(b). As shown in Fig. 13(b), the

cage fault characteristic frequency fc and its three harmonics can
e found evidently. The SSO-based Kurtogram can detect the cage
ault of the axle-box bearing effectively. Fig. 14(a) and (b) show
he envelope spectra of the axle-box bearing vibration signal
ith a cage fault using two existing Kurtograms: the WT- and
TFT-based Kurtograms, respectively. Compared with Fig. 13(b),
e cannot find the bearing cage fault feature frequency and its
armonics in Fig. 14(a) and (b), and we cannot judge the physical
eaning of the strong shock spectrum in these two graphs. In this
xperiment, we think that these two existing kurtograms cannot
ffectively detect the axle-box bearing cage fault.
In the second experiment, using the SSO-based Kurtogram to

rocess the axle-box bearing vibration signal with cage and roller
ombined faults. The original signal is shown in Fig. 12(b). The
mplitude of the composite fault signal is larger than that of the
ingle fault signal, and there is a great quantity of strong impact
ignal components in this vibration signal with combined faults
ue to the bearing roller fault. The color map of the SSO-based
urtogram of the vibration signal collected in this experiment is
hown in Fig. 15(a) with the SSO parameters a = 64, γ =

1
10000 ,

ϑ/2 = 0.011, and η = 0.01, and the RFB of the axle-box bearing
with the cage and roller combined faults is highlighted by the
red dashed circle. The envelope spectrum of the axle-box bearing
with the two-compound fault by the SSO-based Kurtogram is
plotted in Fig. 15(b). The cage fault feature frequency fc and its
two harmonics, 3fc and 4fc , are evidently found. The multiple
continuous even harmonic components of the roller fault feature
frequency are also clearly marked in Fig. 15(b). The SSO-based
Kurtogram can detect the cage and roller faults of the axle-box
bearing effectively. Fig. 16(a) and (b) show the envelope spectra
of the axle-box bearing vibration signal with the cage and roller
compound fault by WT- and STFT-based Kurtograms, respectively.
Combined with Fig. 15(b), it is not difficult to see that the three
envelope spectra are like two peas. The three kurtograms are
close in detecting the cage and roller compound fault in this
experiment, which is very effective and obvious.

For the third experiment, the original signal of the axle-
box bearing vibration signal with outer-race fault is shown in
Fig. 12(c). The amplitude of the outer-race fault signal is smaller
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Fig. 12. Waveform, frequency spectrum, and envelope spectrum of the vibration signals of all experiments: (a) axle-box bearing vibration signal with cage fault;
(b) axle-box bearing vibration signal with cage and roller faults; (c) axle-box bearing vibration signal with an outer-race fault; (d) axle-box bearing vibration signal
with cage, roller, and outer-race faults.

Fig. 13. Processed results of the axle-box bearing vibration signal with a cage fault by SSO-based Kurtogram: (a) color map and (b) envelope spectrum of the
SSO-based kurtosis.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Envelope spectra of the axle-box bearing vibration signal with a cage fault by two existing Kurtograms: (a) WT-based Kurtogram and (b) STFT-based
Kurtogram.
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Fig. 15. Processed results of the axle-box bearing vibration signal with the cage and roller compound fault by SSO-based Kurtogram: (a) color map and (b) envelope
spectrum of the SSO-based kurtosis.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 16. Envelope spectra of the axle-box bearing vibration signal with the cage and roller compound fault by two existing Kurtograms: (a) WT-based Kurtogram
and (b) STFT-based Kurtogram.
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than others, which is because this experiment is implemented at
a low rotation speed. The SSO-based Kurtogram is used to process
the axle-box bearing vibration signal containing outer-race fault.
The color map of the SSO-based Kurtogram of the vibration signal
collected in this experiment is shown in Fig. 17(a) with the SSO
arameters a = 64, γ =

1
10000 , ϑ/2 = 0.0099, and η = 0.01,

nd the RFB of the axle-box bearing containing the outer-race
ault is highlighted with the red dashed circle. The envelope spec-
rum of the axle-box bearing vibration signal by the SSO-based
urtogram is plotted in Fig. 17(b). The outer-race fault feature
requency f0 and its two harmonics, 2fo and 3fo, are evidently
ound. The SSO-based Kurtogram can detect the outer-race fault
f the axle-box bearing effectively in this experiment. Fig. 18(a)
nd (b) show the envelope spectra of the axle-box vibration signal
ontaining the outer-race fault processed by the WT- and STFT-
ased Kurtograms, respectively. In Fig. 18(a), the outer-race fault
eature frequency f0 and its harmonic 2fo are highlighted by the
trong impact, but there are other strong shocks in the envelope
pectrum that their significances are unclear. These strong shocks
ill disturb our judgment. Compared with Figs. 17(b) and 18(a),

we cannot find any meaningful fault feature frequency in the
envelope spectrum in Fig. 18(b). In this experiment, it appears the
two existing Kurtograms cannot effectively detect the axle-box
bearing cage fault. For the outer-race fault experiment, according
to the envelope spectrum results, the SSO- and WT-based Kur-
tograms can effectively detect the outer-race fault; the former
is superior to the latter in the visual detection ability, but the
STFT-based Kurtogram fails in this case.

For the last experiment, the original signal of the axle-box
bearing vibration signal with cage, roller, and outer-race three-
compound fault is shown in Fig. 12(d), which is collected at the
same experimental speed as the bearing single fault experiment
with outer-race fault. The SSO-based Kurtogram is used to ana-
lyze the axle-box bearing vibration signal with a three-compound
fault. The color map of the SSO-based Kurtogram of the vibration
508
signal collected in this experiment is shown in Fig. 19(a), with the
SSO parameters a = 64, γ =

1
10000 , ϑ/2 = 0.022, and η = 0.01,

and the RFB of the axle-box bearing with the three-compound
fault is highlighted by the red dashed circle. The color map is
used to find the RFB of the target fault, lock the target fault, and
eliminate other vibrations unrelated to the target fault (including
power frequency interference, noise, impulses of nontarget fault);
the envelope spectrum of the axle-box bearing vibration signal
is plotted in Fig. 19(b). The cage fault feature frequency fc and
its harmonic 4fc are marked with red script evidently, and the
multiple continuous harmonic components of the outer-race fea-
ture frequency fo are clearly marked too in Fig. 19(b). In addition,
we can find multiple continuous even harmonic components of
the roller feature frequency fbs easily. That is, we can detect three
kinds of axle-box bearing faults simultaneously based on this pro-
cessing method. Fig. 20(a) and (b) show the envelope spectra of
the axle-box bearing vibration signal with three-compound fault
by WT- and STFT-based Kurtogram, respectively. The cage fault
feature frequency fc and its harmonic 4fc all are highlighted by the
trong impact in Fig. 20(a) and (b), and the multiple continuous
ven harmonic components of the roller feature frequency, 2fbs to
fbs, are found, whether they are in Fig. 20(a) or (b). The difference
etween Fig. 20(a) and (b) is mainly due to the detection ability
f the feature frequency of the outer-race fault; Fig. 20(b) is supe-
ior. Comparing Figs. 19(b), 20(a), and (b), the effectiveness of the
hree kurtogram methods for axle-box bearing three-compound
ault diagnosis in this experiment is assured, but there are still
ome differences among the three methods in visual detection
bility: the SSO- and STFT-based Kurtograms are superior to the
T-based Kurtogram.
A performance comparative summary of the SSO-, WT-, and

TFT-based Kurtograms in the case study of train axle-box bear-
ng experiments in the wheelset running-in testbed is presented
n Table 2. Case 1 concerns the axle-box bearing vibration signal
ith a cage fault; Case 2 concerns the axle-box bearing vibration
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Fig. 17. Processed results of the axle-box bearing vibration signal with three outer-race faults by SSO-based Kurtogram: (a) color map and (b) envelope spectrum
of the SSO-based kurtosis.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 18. Envelope spectra of the axle-box bearing vibration signal with three outer-race faults by two existing Kurtograms: (a) WT-based Kurtogram and (b) STFT-based
Kurtogram.
Fig. 19. Processed results of the axle-box bearing vibration signal with the cage, roller, and outer-race combined faults by SSO-based Kurtogram: (a) color map of
and (b) envelope spectrum of the SSO-based kurtosis.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 20. Envelope spectra of the axle-box bearing vibration signal with the cage, roller, and outer-race combined faults by two existing Kurtograms: (a) WT-based
Kurtogram and (b) STFT-based Kurtogram.
signal with cage and roller combined faults; Case 3 concerns
the axle-box bearing vibration signal with an outer-race fault;
Case 4 concerns the axle-box bearing vibration signal with cage,
509
roller, and outer-race combined faults. In terms of effectiveness
in detecting axle-box bearing faults, the SSO-based Kurtogram
shows a high detection ability in all four cases, the WT-based
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able 2
erformance comparison of the SSO-, WT-, and STFT-based Kurtograms in the case study of train axle-box bearing experiments in wheelset running-in testbed.
Cases Effectiveness (Yes or No) Presentation (High, Medium, Low, or Null)

SSO-based Kurtogram WT-based Kurtogram STFT-based Kurtogram SSO-based Kurtogram WT-based Kurtogram STFT-based Kurtogram

1 Yes No No High Null Null
2 Yes Yes Yes High High High
3 Yes Yes No High Medium Null
4 Yes Yes Yes High Medium High

Case 1 concerns the axle-box bearing vibration signal with a cage fault; Case 2 concerns the axle-box bearing vibration signal with cage and roller faults; Case 3
concerns the axle-box bearing vibration signal with an outer-race fault; Case 4 concerns the axle-box bearing vibration signal with cage, roller, and outer-race faults.
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Kurtogram detects the fault feature frequency in three cases, with
slightly lower detection performance than the SSO, and STFT-
based Kurtogram only works in two cases. The effectiveness of
different Kurtograms for the same bearing fault detection agrees,
but sometimes, the visual inspection ability differs. The SSO-
based Kurtogram shows a higher visual inspection ability in all
four cases. In addition to the two failed cases, the visual in-
spection ability of the STFT-based Kurtogram remains at a high
level. Compared with the other Kurtograms, in addition to the
high visual inspection ability shown in Case 2, the WT-based
Kurtogram presents medium visual inspection performance in
the other cases. Overall, the SSO-based Kurtogram has obvious
advantages over others in the effectiveness and visual inspection
ability of detection bearing faults, indicating its superiority in
bearing fault diagnosis.

5. A case study of train axle-box bearing fault experiment in a
running high-speed train

As mentioned above, the axle-box bearing test-bed installed
n the double reverse rolling wheelset can simulate the fault
onditions in Fig. 10, but the test bench can only test a single
heelset, not the entire bogie or train. The experimental data

n Section 4 are collected from the wheelset running-in testbed
without considering the track irregularity conditions, suspension
conditions, and vehicle load. The service environment of train
axle-box bearings is far from the real world.

In reality, it is very difficult to collect the vibration signal of the
xle-box bearing with fault from the in-service and running train.
n the one hand, we do not know which train’s axle-box bearing
as failed; on the other hand, there must be data acquisition
quipment on the train in the condition of axle-box bearing with
known minor fault, which requires a very rare opportunity.

ortunately, we got such a set of data. When we installed the
ollection equipment on a train, at some point, we found that
here was a slight fault in the inner race of the axle-box bearing
t the corresponding position of the collection equipment, so we
aved this set of bearing vibration data. This is a set of fault
ata from running trains in the real world, which makes our
ethod verification more convincing and of practical engineering
alue. The installation position of the acquisition equipment on
he actual running train is shown in Fig. 21(a), which is located on
he edge of the axle box. The origin vibration signal was collected
hen the high-speed train was running at a speed of 277 km/h,
ielding the results shown in Fig. 21(b). The sampling frequency
f the vibration signal is 20 kHz. The geometric parameters of
he axle bearing to be tested are: roller diameter = 23 mm, pitch
iameter= 180 mm, contact angle= 10◦, number of rollers= 21,
nd wheel diameter = 880 mm. So, the fault feature frequencies
i of this axle-box bearing is 329.14 Hz. Notably, the amplitude of
he original vibration signal of axle-box bearing in a running high-
peed train in the real world shown in Fig. 21(b) is far smaller
han that in a wheelset running-in testbed shown in Fig. 12.
hina’s high-speed train is very stable in the actual operation,
nd the vertical acceleration on the axle box is relatively small
510
due to the effect of various damping systems. However, owing
to the imperfection of the bogie system and the absence of a
shock absorber, the vertical acceleration of the axle box obtained
on the experimental platform will be relatively large, such as
the vibration signal described in Section 4. From the envelope
spectrum in Fig. 21(b), the inner race feature frequency fi and its
2nd and 3rd harmonics can be discerned. Compared with other
frequency components, they were nonremarkable and difficult to
identify.

The SSO-based Kurtogram is applied to process the vibration
signal of the axle-box bearing with an inner-race fault [Fig. 21(b)].
As mentioned above, the maximum number of layers of the
measured data is 6 and the window width a is fixed to 26. The
olor map of the SSO-based Kurtogram of the vibration signal
ollected in the real world is shown in Fig. 22(a) with the SSO
arameters a = 64, γ =

1
20000 , ϑ/2 = 0.00168, and η = 0.01,

and the RFB of the axle-box bearing containing the inner-race
fault is highlighted with the red dashed circle. The color map is
used to find the RFB of the target fault, lock the target fault, and
eliminate other vibrations unrelated to the target fault (including
power frequency interference, noise, impulses of nontarget fault);
the envelope spectrum of the axle-box bearing vibration signal
is plotted in Fig. 22(b). The inner-race fault feature frequency
fi and its harmonics, 2fi and 3fi, are marked in red. The inner-
ace fault of the axle-box bearing in a running train is well
iagnosed through the SSO-based Kurtogram. Likewise, the WT-
nd STFT-based Kurtograms are used to process the same signal.
he envelope spectra of the WT- and STFT-based Kurtograms
re shown in Fig. 23(a) and (b), respectively, indicating that
heir detection performance agrees, both of which can detect the
nner-race fault feature frequency fi and its 2nd harmonics but
annot detect its 3rd harmonics, which is submerged. In addition,
here are many unintended strong impact components in the two
nvelope spectra, which makes it more difficult for us to perform
ault diagnosis. Therefore, the WT- and STFT-based Kurtograms
re not as good as the SSO-based Kurtogram in terms of visual
nspection ability.

A performance comparative summary of the SSO-, WT-, and
TFT-based Kurtograms in the case study of train axle-box bear-
ng fault experiment in a running high-speed train in the real
orld is also presented in Table 3. In terms of effectiveness

n detecting axle-box bearing faults, all three Kurtograms are
ffective in the case study of detecting the inner-race fault. Al-
hough the effectiveness of different Kurtograms agrees, there is
big gap in visual inspection ability. The SSO-based Kurtogram
hows a relatively high visual inspection ability in the aspect of
ault feature frequency highlighting. Compared with the envelope
pectrum of the SSO-based Kurtogram, the WT- and STFT-based
urtograms show a low visual inspection ability. In addition to
ot detecting the harmonics of the feature frequency of the inner-
ace fault, many other unidentified strong impact components
ave not been eliminated.
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a
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Fig. 21. Train axle-box bearing experiment in a running high-speed train: (a) installation position of the acquisition equipment; (b) waveform, frequency spectrum,
nd envelope spectrum of origin vibration signal of axle-box bearing with an inner-race fault.
Fig. 22. Processed results of the axle-box bearing vibration signal with an inner-race fault by SSO-based Kurtogram: (a) color map and (b) envelope spectrum of the
SO-based kurtosis.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 23. Envelope spectra of the axle-box bearing vibration signal with an inner-race fault by existing Kurtograms: (a) WT-based Kurtogram and (b) STFT-based
Kurtogram.
Table 3
Performance comparison of the SSO-, WT-, and STFT-based Kurtograms in the
case study of train axle-box bearing experiment in a running High-speed train.
Case Effectiveness (Yes or No) Presentation (High,

Medium, Low, or Null)

SSO-based
Kurtogram

WT-based
Kurtogram

STFT-based
Kurtogram

SSO-based
Kurtogram

WT-based
Kurtogram

STFT-based
Kurtogram

1 Yes Yes Yes High Low Low

Case 1 concerns the axle-box bearing vibration signal collected in a running
high-speed train in the real world.

6. Conclusion

The paper is motivated by the critical issue of train axle-box
earing fault diagnosis and originated from research on SK and
urtogram with a novel frequency extraction method named SSO.
511
The idea of an alternative method for the optimal RFB selection
emerged when we were investigating the vibration signal from
train axle-box bearings. A new Kurtogram named SSO-based Kur-
togram was proposed, which is a renewal and better replacement
for WT- and STFT-based Kurtograms.

First, the flowchart of the proposed Kurtogram is presented
based on the SSO. There are two key points in this method—the
window and base functions. Based on a bearing fault simulation
signal, an admissible window function, the rectangular window
function, the Hann window function, and the flattop window
function are used to investigate the effectiveness of the proposed
Kurtogram and explore the effect of the window function. After
comparison, we find that the SSO-based Kurtogram based on the
Hann window is superior in terms of the SNR. Thus, we select the
Hann window function for SSO calculation in our case studies and
experimental verification.
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Second, a set of train axle-box bearing experiments in a
wheelset running-in testbed is implemented to verify the effec-
tiveness of the SSO-based Kurtogram for fault diagnosis, and a
performance comparative summary of the SSO-, WT-, and STFT-
based Kurtograms in this case study is presented. As a result,
the SSO-based Kurtogram shows its effectiveness and possesses
obvious advantages over the WT- and STFT-based Kurtograms.

Third, a case study of a train axle-box bearing fault experiment
in a running high-speed train in the real world is presented
in detail, which makes the proposed method verification more
convincing and proves its engineering value. The abovementioned
three Kurtograms are applied to process the vibration signal of
the axle-box bearing with an inner-race fault collected from a
running high-speed train. This real inner-race fault is detected
by the three methods, but SSO-based Kurtogram has an absolute
advantage in the visual inspection ability by eliminating other
vibrations unrelated to the target fault and making the fault
feature frequency and its harmonics remarkable.
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