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Kurtogram by introducing the SSO method—SSO-based Kurtogram. The ability to accurately extract the

Keywords: refined resonance frequency band of SSO greatly improves its adaptivity for engineering applications.
Signal separation operator The effectiveness of the SSO-based Kurtogram is studied by using a bearing fault simulation signal,
Spectral kurtosis and the influence of window function on the detection effect of the proposed method is explored.
Kurtogram Furthermore the validity of the SSO-based Kurtogram for bearing fault detection is verified by a set of
Bearing fault diagnosis railway wheelset-bearing experiments on the wheelset running-in testbed bench. Experimental results

High-speed train show that the SSO-based Kurtogram performs highly in detecting various kinds of single and compound

faults of bearings. Compared with the WT- and STFT-based Kurtogram, the proposed method has
obvious advantages in terms of effectiveness and visual inspection ability. In engineering practice,
a railway wheelset-bearing-fault experiment on an in-service high-speed train in the real world is
taken as a case study, which makes the verification of SSO-based Kurtogram more convincing and
demonstrates the practical engineering value of the proposed method. The results show that in case
of equal effectiveness, SSO-based Kurtogram has an absolute advantage in the visual inspection ability,
embodied in eliminating other vibrations unrelated to the target fault and making the fault feature
frequency and its harmonics remarkable.

© 2021 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction has rapidly developed and made abundant and fruitful achieve-
ments. Recently, the main methods of high heat are nonstationary

In all signal-processing-related areas in practice, time-  signal analysis methods - such as variational mode decompo-
frequency analysis is always the core topic; the application of  sjtion [4], empirical wavelet transform (WT) [5], and flexible
d.ata ana_lysis and processing is be}sed on the effective expan- analytic WT [6]- cyclostationary methods - such as fast spec-
sion of time-frequency representation, algorithm, and approach.  ¢r3] correlation [7] and faster spectral correlation methods [8]-

Vibration-based fault diagnosis of bearings in rotating machinery
is a typical application of time-frequency analysis. Because of
their long-term high-speed rotating states, bearings are prone
to various faults. Bearing faults are common causes of mechan-
ical failures. The impact of a mechanical failure during machine
service can be disastrous, which may cause not only the shut-

and blind deconvolution methods—such as minimum entropy
deconvolution [9,10], maximum correlated kurtosis deconvolu-
tion [11,12], and multipoint D-norm index blind convolution [13].
Researchers have gradually found that repetitive transient im-
pacts could be detected from feature frequencies. The spectrum
down of the entire production line but also injuries to opera-  analysis method based on the frequency domain can effectively
tors [1,2]; therefore, early and accurate detection and diagnosis  identify the component and location of abnormal behavior, mak-
of bearing fault are imperative to ensure the safety of mechan- ing it widely studied and applied recently. The key of the spec-

ical operation [3]. The fault diagnosis method of rolling bearing ~ trum analysis method is to determine the best demodulation
frequency band, also known as resonance frequency band (RFB).

* Corresponding author In addition, the detection method of optimal RFB has also made
E-mail addresses: yicai@swjtu.edu.cn (C. Yi), yiqunli1991@gmail.com significant progress recently, and the representative work is as
(Y. Li), huo@isye.gatech.edu (X. Huo), kitsui@cityu.edu.hk (K.-L. Tsui). follows. Tse et al. [14] proposed the Morlet wavelet method
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guided by spectral L2/L1, He et al. [15] developed the tunable
Q-factor WT method guided by harmonic characteristic noise
ratio, Zhang et al. [16] studied He et al.’s method using the joint
indicators of kurtosis entropy, and Wang et al. [17] proposed
the empirical WT method guided by envelope spectrum kurtosis.
Because the optimal resonance band detection method is difficult
to be analytically modeled, its parameters can only be adjusted
using a heuristic optimization algorithm.

At present, spectral kurtosis (SK) is widely regarded as a quite
robust and practical method for resonance band identification.
Randall and Antoni [18,19] proposed to use the frequency band
with the largest kurtosis as the RFB of envelope analysis and
developed the SK method to identify the RFB. The core idea of
SK is to design some predefined bandpass filters to divide the
frequency band of a signal and use the kurtosis criterion to select
the most informative frequency band as the RFB. When SK is used
to determine the RFB, signals in each frequency band need to be
separated from the original vibration signal. To achieve this goal,
various filters based on signal processing methods are widely
used in SK analysis, such as finite impulse response filtering
technology, short-time Fourier transform (STFT), and WT. The fast
kurtogram (FK) proposed by Antoni [19,20] uses an STFT filter
to realize signal filtering. In the application of SK theory, the
SK estimation algorithm is a key technical problem. Antoni [21]
proposed a classic fast filtering algorithm named FK. To improve
the effectiveness of the FK filtering algorithm, researchers have
also proposed various fast filtering algorithms [22]. Lei Yaguo
et al. [23] proposed a more accurate improved FK filtering al-
gorithm using wavelet packet filter banks instead of 1/3-binary
tree filter banks in the FK filtering algorithm. Inspired by pro-
gram theory and precise wavelet packet filter banks, Wang Dong
et al. [24] proposed an enhanced FK filtering algorithm. Zhipeng
Sheng et al. [25] proposed a flexible frequency slice WT for
kurtogram to expand its range of application. Because FK and
its various extended algorithms are not optimal filterings for all
signals, they cannot ensure efficient feature extraction of weak
fault information, especially the vibration signal under strong
noise background. Therefore, the SK method still has room for
improvement for more practical engineering scenarios.

This study was motivated by a critical issue: railway wheelset-
bearing safety monitoring and fault diagnosis. Railway wheelset
bearing plays a paramount role in a train running system, which
is mainly used to transmit traction force and bear radial dynamic
load of the vehicle. The safe operation of a wheelset bearing is
crucial to keep the train running smoothly [26]. The vibration
acceleration signal of railway wheelset bearing has the char-
acteristics of time-varying strong noise in the real world. The
traditional SK method has a significant effect on fault diagnosis in
static experiments of railway wheelset bearing, but the effect is
unideal in an actual operating environment [27]. In this study, we
propose a new SK method, which not only gives full play to the
advantages of SK in quantifying the impulsivity of nonstationary
cyclic pulse signals but also has a more accurate detection ability
for impulsivity in time-varying strong noise signals. The core of
the proposed method lies in the introduction of the signal sepa-
ration operator (SSO) and the reconstruction of the SK method for
better functionality in separating components in complex signals.

The SSO approach is a local method with strict mathematical
logic for instantaneous frequency (IF) estimation, introduced by
Chui and Mhaskar in 2016 [28]. Combined with the empirical
mode decomposition (EMD) method, they proposed and coined
the method of EMD + SSO named “superEMD” [29], where “su-
per” is the abbreviation of super-resolution. In the SuperEMD
method, the SSO with reasonable parameters is separately ap-
plied to each intrinsic mode function (IMF) obtained from EMD
to extract IF. On this basis, the finer signal building blocks of
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IMF are subsequently constructed by using the same parameters
as SSO with IF as inputs. Specifically, SSO is used to replace the
Hilbert transform in EMD. It is used first for frequency extraction
and later for constructing finer signal building blocks. Experi-
ments confirmed that SSO could identify close-by frequencies in
a given IMF as well as recover/reconstruct the individual atoms
associated with these frequencies.

In this study, we propose a novel method developed to select a
more accurate RFB and separate refined resonance response from
periodic excitation. We define a promising and robust method
for fault diagnosis of railway wheelset bearings with a new kur-
togram based on existing works. The novelty of our approach is
as follows.

e Expansion of the WT- and STFT-based Kurtograms to de-
velop a hybrid SSO-SK computational scheme to imple-
ment kurtogram by introducing the SSO method, named
SSO-based Kurtogram.

This is the first attempt to construct a bearing fault diag-
nosis technology based on SSO and apply it to engineer-
ing practice. The performance difference between existing
and SSO-based Kurtograms is systematically studied and
compared.

The use of the SSO method to extract refined RFB and
improve its adaptivity for engineering applications.

This work offered a reliable approach to detect and iden-
tify the railway wheelset-bearing faults that always ap-
pear in high-speed serving environments with multivibra-
tion sources.

The rest of this paper is organized as follows. Theoretical
definitions of the SK and existing Kurtograms are reviewed in
Section 2. A global description of the proposed Kurtogram is
presented in Section 3. In Section 4, the proposed Kurtogram is
applied to the first case study—railway wheelset-bearing experi-
ments in wheelset running-in testbed. Results of the second case
study - diagnosis of railway wheelset-bearing faults in the real-
istic running high-speed train - are described in Section 5, with
a comprehensive comparison with existing Kurtograms, thereby
validating the proposed Kurtogram. Finally, Section 6 concludes
this study.

2. Preliminaries
2.1. SK

Kurtosis measures the peakedness of signals; hence, it can
well characterize the signal impulsiveness and is widely used to
extract the fault feature frequencies of rotating machinery; it is
expressed as follows:

E{(x— )}

ot -3

Kurtosis (x) = (1)
where 1 and o are the mean and standard deviation of timeseries
x, respectively, and E {M} is the expectation operation. To make
the kurtosis of a positive distribution zero, “3” is subtracted from
the end of the formula. To detect or localize the transients or
hidden-stationarity of timeseries measurements, the frequency
domain kurtosis was proposed and introduced by Dwyer [30],
where kurtosis was applied in the real and imaginary parts of
STFT creatively. Based on this idea, the kurtosis calculation of
each frequency line was realized so that the existence of hidden
nonstationarity in the signal could be further detected, and the
frequency bands in which these nonstationarities occur can be
located. Antoni [19] was the first person to publish the method
and further verified that SK had strong robustness to imposed
noise [20]. The Wold-Cramer representation, a formal definition
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of the SK of nonstationary signals, decomposes any zero-mean
nonstationary random process Y(t) as the output of a causal,
linear, and time-varying system:

+00
Y = f PTH (¢, f) dzy (f) @)

(o]
where dZy(f) is an orthonormal spectral increment, and H (t, f)
is the time-varying transfer function and can be understood as
the complex envelope of Y (t) at frequency f. Then, the SK is
clearly expressed as the energy-normalized fourth-order spectral
cumulant of a conditionally nonstationary process

(IH(, )IY)
(IH(t, )))?

where Ky (f) is the SK of signal Y (t) around frequency f, and (-)
denotes the averaging over time.

Ky (f) = —2,f#0 (3)

2.2. WT-based SK

For a signal x (t) with limited energy, its continuous WT can
be identified as the inner product of wavelet function as fol-
lows [31]:

Wi(a, )= |a|_% /

—00

+00 t—-1

xX(t)e(

)dt (4)

a
where W (a, 7) is the wavelet coefficient, a is the scale parameter,
T is the time shift parameter, ¢(t) is the wavelet function, and
@(t) is the conjugate of wavelet function ¢(t).

Therefore, the wavelet coefficient reflects the projection of
the signal x (t) toward the wavelet function. That is, the wavelet
coefficient is the representation of the similarity between the
signal and wavelet function.

Among the existing wavelet functions, the Morlet WT is sim-
ilar to the attenuation component in the impact vibration re-
sponse produced by a faulty bearing, so the Morlet WT is often
used in the fault diagnosis of rolling bearing [32,33]. The idea
of this study emerged when we were investigating the vibration
acceleration signal from railway wheelset bearings. Therefore, the
Morlet WT is represented in the calculation of WT-based SK. The
expression of the Morlet WT is as follows:
—582¢2 oi2nfot

8
t) = ——e 5
@) N (5)
where § is the envelope factor, and fj is the center frequency. Its
Fourier transform (FT) is as follows:

72

. TS F_f\2
0 () =9 () =e 2 (6)
where ¢* (f) is the FT of ¢ (t), and ¢* (f) is the conjugate of
@* ().
From the perspective of signal processing, the Morlet WT is
a special bandpass filter. In this study, the frequency band of its
analysis is limited in [fy — 8, fo + &]. The Morlet WT coefficient of
the signal x (t) is as follows:

Wy (fo. 8) = F~H {X(Fle* (N}

where F~! {m} is the inverse FT, and X(f) is the FT of x (t).
The corresponding SK based on Morlet WT can be expressed
as follows:

(7)

Ky (fo) =

X 78 4
EQW, (.0, o -

[EGWx (o, 9)17))

The value of SK is related to the size of the analysis win-
dow [32]. Generally, the smaller the noise contained in a short
analysis window, the higher the SK obtained. However, when the
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bandwidth is less than the fault passing frequency, the RFB can no
longer obtain the characteristic frequency, and the bandwidth is
meaningless at this time; however, if the bandwidth is longer, the
possibility that the energy band excited by the fault is completely
covered is greater, but the noise increases accordingly. There-
fore, when using SK to find the RFB adaptively, an appropriate
time-frequency analysis method directly affects the RFB selection
quality.

2.3. STFT-based SK

For a process Y (t) with an analysis window w (n) of length
N, and a given temporal step-size P, its STFT can be expressed
as follows [34]:

o0
Yy (kP, f) = DY (n) w(n — kP)e > 9)
—00
Inspired by Eq. (3), the STFT-based estimator of SK can be
defined as follows:

~ 4
([Ace.n[’)
-~ 2
{[HE. N])
where Eyw (f) is the SK of signal Y (t) around frequency f, and (-)
denotes the averaging over time.
Eq. (10) has the following properties.

Ky, (f) = -2, f—mod(%) >N (10)

(1) For a stationary process Y (t), the kurtosis index is 0.

(2) For a nonstationary process Y (t) under the interference
of stationary noise signal b (t), SK should be calculated
following Eq. (11).

o K
K1) (f) = TE o +Y/§f(;)]2 (11)

where p(f) is the reciprocal of signal-to-noise ratio (SNR).

Reference [35] details the bias and variance of the STFT-based
SK estimator. Notably, the nonstationarity of the signal should
have a slow time evolution process relative to the window length
of STFT. Since most fault signals are related to fast pulses, and the
process is nonstationary, an excellent application of SK estima-
tion technology based on STFT depends largely on the accurate
determination of the window length used in STFT.

2.4. Kurtogram

In Eq. (8), frequency f and band length § can be found by
maximizing the WT-based SK among all possible choices. The
map formed by the WT-based SK as a function of f and § is
called the WT-based Kurtogram. Similarly, STFT-based Kurtogram
is based on the function of f and N,, forming the map through the
STFT and SK [20].

For nonstationary signals, SK is a function of frequency and
frequency resolution. Therefore, the key to detecting the nonsta-
tionary components in the signal using SK is choosing the optimal
frequency resolution to obtain the maximum SK. All possible
window widths should be used to try ascertaining the true center
frequency and bandwidth. As such, there will be high compu-
tational costs, which may inhibit applicability. FK emerged as
the compute speed and presentation requires in [21]. A kurtosis
map calculates the kurtosis value of the frequency band array
covering the entire base frequency band in a predefined strategy
and forms a color chart of the kurtosis value. All results are intu-
itively presented on a plane in which the horizontal axis indicates
the frequency, the vertical axis indicates the number of internal
components divided by the frequency baseband, and the 3D color
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code indicates the kurtosis value of the envelope signal of each
frequency band at each central frequency. Finally, determining
the optimal frequency band is the precondition of narrow-band
amplitude demodulation [20]. This calculation method saves CPU
calculation time and improves the calculation efficiency of kur-
togram. In addition, the FK can obtain calculation results similar
to the original kurtogram; hence, it is proposed for online running
condition monitoring and fault diagnosis [34]. To further meet
the actual engineering requirements, the calculation processes of
the WT- and STFT-based Kurtograms are redesigned following the
framework of FK in this study.

3. Global description of the proposed Kurtogram
3.1. SSO

For t € R and € € T, where T is represented as the quotient
space of R with equivalence relation ¢ ~ v defined by (¢ —v) €

277 so that |9 — v| = |(¢¥ — v)| mod27w, and the SSO applied to
f is defined as follows [28]'

(Tayf) (£, 0) := Zh( e f(t — ky) (12)
a keZ
with
k
fiq ::Zh(a) (13)
keZ

where h denotes the admissible window function, that is h is an
even function with supp (h) € [—1, 1] and h > 0 on its support
interval; y is the sample spacing adjusted based on the separation
of IF’s, and a is window width, y, a > 0 are parameters, with a
chosen so that 7, is positive.

After using an appropriate threshold parameter ¥ > 0 for
the SSO output in Eq. (12), a set of exactly n nonempty disjoint
clusters Gk, k = 1, ..., n, can be obtained. By computing

w(t) = arg max (Tapf) (£, 0)] (14)

for each cluster G,k = 1,...,n, an estimation wy(t) of the
desired IF ¢(t) of the kth subsignal would be obtained, namely,

~ 1

o) =—awp(t),k=1,...,n (15)
2y

Then, the signal building blocks can be estimated by

B (1) :=2Re (T, f) (), k=1,....n (16)

For more details of SSO, refer to [28,29].
3.2. SSO-based Kurtogram

As mentioned in Section 2.1, according to higher-order statis-
tics theory, SK can be defined as the normalized fourth-order
cumulant of FT, and it was used to measure the distance of the
Gaussian process [36,37]. Vavrie et al. [38] summarized some
promising applications of SK to the characterization of harmonic
processes. There is still room to improve the adaptability for
the SK of nonstationary processes, especially in applications. SSO
provided a more advanced method to compute the IF than the tra-
ditional method, such as fast FT (FFT) and Hilbert transform [28].
It has a better advantage than FFT for nonstationary processes
and more accuracy than the Hilbert transform. Thus, we focus
on a new approach to compute kurtogram based on SK and SSO.
The proposed calculation flowchart is expected to be sufficiently
general to apply to any situation with impulsive wide- or narrow-
band masking signals and close space models as well as more
accurate than existing kurtograms.
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A flowchart scheme describing the implementation of the pro-
posed kurtogram is shown in Fig. 1. According to Eq. (10), when
the fault impact makes p(f) very large and Ky ) (f) quite small,
SK cannot characterize the impact feature. Thus, the value of SK of
the nonstationary impact signal under strong noise interference
is closely related to the center frequency and time window width
in Egs. (8) and (9) in STFT processing. Therefore, selecting the
appropriate center frequency and frequency resolution is critical
for reflecting the impact characteristics more accurately, which
makes the SK index of nonstationary signal maximization.

SSO Ty, is a computational process with suitable lowpass
window width a > 0 and sampling rate y > 0, with output
(‘.Ta,yf ) (t, 6) for thresholding with some appropriate parameter
¥ > 0 that depends on the restriction on the amplitudes of origin
signal [29]. This method can separate the threshold set

{0: |(Tay F) (t,0)| > g}

into G clusters using an optimal selection of the parameter 7
determined by the time variable at t. Then, the estimates of IFs,
wq (), @y (t), ..., dy, (t), can be obtained by taking the maxi-
mum over 6 for each cluster. Next, both the instantaneous am-
plitudes Ay (t),A; (t),..., A, (t) and signal components f (t),
(@), ..., fa(t) can be obtained by taking the absolute values and
real parts, respectively, of the output of the SSO evaluation.
Subsection 3.2 in [28] gave a more precise definition of the
main parameters a, y, ¥, and 1, where 0 < y < 1/4B,B =
maxi<j<g ’@]’(t)’, v = miH]S'SK ‘A](f)’ > 0,and 0 < 5 < /2.
Chui and Mhaskar [28,29] recommended that the parameter 7
be 0.01, and y be the reciprocal of the sampling frequency. The
parameter a represents the width of window. In the abovemen-
tioned STFT-based SK scheme, the width of window width a
changes along with the number of central frequency candidates,
but the width window is obviously too small, and the accuracy
of SSO cannot be guaranteed [28]. Chui and Mhaskar [28,29]
identified parameter a should be sufficiently large, and they set
it to be 1,024 in a series of simulated signals. However, another
critical issue is that our calculation method is only suitable for
stationary processes, which means that the width of the window
cannot be too long. So, there should be a tradeoff between the
accuracy of SSO and the well-defined calculation of SK. After
repeated checking, we suggest that the value of the parameter
a should be less than 27 to the greatest extent, and 7 is the
maximum allowable number of layers in the kurtogram scheme.

(17)

3.3. Discussion of the window function in SSO

The bearing fault feature (also called fault impulse) has pe-
riodicity and repeatability. For bearing faults, the length of the
truncated segment could be decided by the passing period cor-
responding to the fault feature frequency to find possible faults.
The bearing fault signal with a fault characteristic frequency of f
could be simulated using the following expression:

N

y(©) =Y Ae IV cos2me (t — T) h (t — JT))
j=0

(18)

where A is the amplitude of the impulses, ¢ is the structure
damper coefficient, w denotes the excited resonance frequencies,
N denotes the number of impulses, h(t) denotes a unit step
function and T = f~!. According to Eq. (18), a set of bearing fault
signals yq (t) is constructed, and the corresponding parameters
dare Ao = 2, Yo = 0.1, wy = 3000, fo = 100, and No = 42.
The sampling frequency f; of the simulation signal is 20 kHz. A
Gaussian noise N,(t), generated at a 5 dB SNR of yj (t), is added
to the fault signal to simulate the measurement noise in practical
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Fig. 1. Flowchart scheme of the proposed Kurtogram.

engineering. The fault signal with noise is y; (t). The simulation
signals are shown in Fig. 2.

N
yi(0) =Y Ae™#TI cos(2me (t — T) h (t — T)) + Ni(t)
j=0

Referring to the definition of SSO in Eq. (8), SSO can be con-
sidered a windowed discrete FT (DFT). The two key points in
Eq. (8) are the window function h and base functions, consine and
sine functions, in this case. To investigate the effectiveness of the
proposed kurtogram and explore the effect of the window func-
tion on the proposed kurtogram, an admissible window function
provided in [28,29] with different characters as follows,

(19)

1 if |t] < —
B
— exp ——
he g (£) _©XP gy ifl <tl<1 (20)
1— |t o -
0 if |t] >1

the rectangular window function, Hann window function, and
flattop window function will be used to compute the SSO; then,
the performances to detect the fault characteristic frequencies in
Eq. (15) will be discussed.

Fig. 3(a) depicts the admissible window function h, g () with
o = 2and B = 2, whereas Fig. 3(b) depicts its corresponding
frequency spectrogram with FFT. The simulation signal y; (t) is
processed following the flowchart scheme shown in Fig. 1, where
the SSO is calculated based on the admissible window function
he.p (t) with o 2 and 8 = 2, and the setting parameters
of SSO are a 1024, y i, where f; = 20 kHz, 9/2 =
0.022, and n = 0.01. The calculation results of the SSO-based
Kurtogram are shown in Fig. 3(c), mapping the maximum center
frequency and corresponding frequency resolution of the signal
kurtosis index. The kurtosis maximum center frequency of signal
y1 (t) is 2480.62 Hz. Using the same admissible window function
and the same SSO parameters, just changing the parameter «,
Fig. 4(a) shows the admissible window function h, g (t) with
o 8 and B 2, and Fig. 4(b) depicts its corresponding
frequency spectrogram with FFT. The window narrower and the
sidelobe of Fig. 4(b) decreases as « increases. Fig. 4(c) shows
the result of the SSO-based Kurtogram with the same admissible
window function and parameters, except «. As « increases to 8,
the kurtosis maximum center frequency of the signal y; (t) of the
SSO-based Kurtogram changes to 3076.92 Hz.
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When the noise and vibration are measured, we commonly
use the Hann window. In general, many operational signals are
random. Compared with other windows, the Hann window has
a certain influence on the frequency resolution and amplitude
accuracy of the calculated spectrum, so it is often used simulta-
neously with random data. The maximum amplitude error of the
Hann window is 15%, whereas the frequency leakage is typically
confined to 1.5 spectral lines to each side of the original sine wave
signal [39]. The Hann window function, formulated as Eq. (21),
can be applied to random data to smoothen abrupt ends and
reduce leakage in the resulting FT (Fig. 5), where Fig. 5(a) shows
the Hann window function hy, (t), and Fig. 5(b) depicts its corre-
sponding frequency spectrogram with FFT. The calculation results
of the SSO-based Kurtogram with the Hann window function and
with the abovementioned SSO parameters are shown in Fig. 5(c),
and the kurtosis maximum center frequency of the signal y; (t)
is 2945.74 Hz.

P02
By (6) = {sm (r ((t)—i— 0.5)),

Generally, the resolution of spectrum analysis mainly depends
on the main lobe width of the signal window, whereas the vari-
ance estimation is reduced according to the sidelobe leakage of
the window. Therefore, it is assumed that there is an optimal
tradeoff between the main lobe width and sidelobe ripple level,
and a symmetric window is used to find such a balance, which is
widely used in the smoothing weighting of DFT signals [40]. The
rectangular window function may be defined by Eq. (22). Fig. 6(a)
shows how the rectangular window would appear if traced on
an oscilloscope, and Fig. 6(b) depicts its corresponding frequency
spectrogram with FFT. The rectangular window has the smallest
main-lobe width but with the highest peak-sidelobe ratio; no-
tably, lower sidelobe of nonrectangular windows, however, have
been achieved at the cost of the main-lobe width broadening. The
calculation results of the SSO-based Kurtogram with a rectangular
window function and the abovementioned SSO parameters are
shown in Fig. 6(c), and the kurtosis maximum center frequency
of signal yq (t) is 4341.08 Hz.

1,
0,

if|t] < 0.5;

otherwise 1)

if|t| < 1;

22
otherwise (22)

hy (8) = {
Besides the Hann and rectangular windows, a flattop window is
also a common time window. The frequency resolution of the
flattop window is not as high as that of the Hann window, but
it can accurately measure the amplitude level of a signal at any
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frequency, even if the frequency is between the lines of FFT anal-
ysis. The maximum amplitude error of the flattop window is less
than 0.01% [41], whereas the Hann window maximum amplitude
error is 15% [39]. These maximum amplitude errors assume that
amplitude correction factors are applied to the frequency spectra.
The flattop window function may be defined as follows:

ap — aq cos (2mt) + a; cos (4rt) — as cos (6rrt)
+a4 cos (8xwt), if|t| < 0.5;
otherwise

hy (t) = (23)

0,

Fig. 7(a) shows the flattop window with ap = 1,a; = 1.93,a;, =
1.29, a3 0.388, and a4 0.028, whereas Fig. 7(b) depicts
its corresponding frequency spectrogram with FFT. Like the Hann
window, the flattop window begins and ends with a value of zero.
The value of the center of the window is one. Compared with the
Hann window, the flattop window has lower frequency accuracy,
so it is used to process signals with different frequency peaks and
good separation from each other. When it is impossible to ensure
that the frequency peaks are well separated, it is better to use the
Hann window because it is unlikely to cause a single peak to be
lost in the spectrum calculation process. The calculation results of
the SSO-based Kurtogram with the flattop window function and
the same SSO parameters are shown in Fig. 7(c), and the kurtosis
maximum center frequency of signal y; (t) is 3720.93 Hz.

The maximum center frequencies and corresponding
frequency resolutions of signal kurtosis index grids are obtained
after implementing the SSO-based Kurtogram with two admissi-
ble window functions hy g (t), the rectangular window function,
the Hann window function, and the flattop window function
[Figs. 3(c), 4(c), 5(c), 6(c), and 7(c), respectively]. The frequency
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resolution is the bandwidth value of the subsequent parameters
used in the resonant demodulation filter. Based on these filter
parameters, the filters are designed and the signal y; (t) is an-
alyzed via bandpass filtering and demodulation. The resonance
demodulation spectra of the signal y; (t) are obtained through
envelope analysis. All results are shown in Fig. 8; different color
curves represent the calculation results of different window func-
tions. When all envelope spectra are illustrated on the same
coordinate axis, most curves are covered by each other, and
the details cannot be compared. Therefore, the coordinate axis
of each envelope spectrum is shifted slightly, which allows the
differences between envelope spectra to be exposed. The fault
characteristic frequency f of the signal y; (t) and the harmonic
frequencies are well demodulated. Notably, from the previous
sets of plots, varying window functions only have little impact
on the ultimate diagnostic result of the SSO-based Kurtogram. It
is reasonable if we admit the assumption that the signal y; (t)
is actually stationary and periodic. Since the window function is
always added to reduce the leakage of information to a max-
imum extent and fit the periodic nature of the FT, it will not
influence the signal y; (t) since it is stable. Despite all these,
there are subtle differences in the performances of the SSO-based
Kurtogram with different window functions. The results based on
the Hann window function have a better SNR than others, next is
the window function h, g (t), and the diagnostic performances
slightly worse are the those based on flattop and rectangular
window functions. Meanwhile, the Hann window function-based
diagnostic performance has the optimal performance. The STFT-
based Kurtogram method used for comparison below is based
on the Hann window function. If the comparison is performed
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Fig. 9. Schematic sketch of the wheelset running-in testbed.

under the same window function, the superiority of the proposed
method would be verified and highlighted. Considering these
two reasons, we will select the Hann window function for SSO
calculation in our case studies and experimental verification.

4. A case study of train axle-box bearing experiments in
wheelset running-in testbed

In this section, a set of railway wheelset-bearing experiments
in a wheelset running-in testbed is implemented to verify the
superiority of the SSO-based Kurtogram for fault diagnosis of
railway wheelset bearing. The main components of the wheelset
running-in testbed include motor, driving wheel, loading de-
vice, and wheelset (Fig. 9). The wheelset running-in testbed can
only simulate the pure rolling motion of wheelsets. The real
experiments were conducted in the wheelset running-in testbed
displayed in Fig. 10. The testbed is installed on the rail to simulate
the infinite running track through two wheels reverse rolling.
In addition, it can simulate different operating conditions and
component faults. The accelerometer installed at the upper end
of the axle box is used to obtain the vibration acceleration signal
of the bearing [42,43].

Double-row-tapered roller bearings are mostly used on high-
speed EMUs in China. The main geometric parameters of the
bearing used are provided as follows: roller diameter = 26.9 mm,
contact angle = 9°, pitch diameter = 180 mm, and the number of
rollers = 19. In the test, we use three replacement bearings with
different faults from an in-service train: the first one with cage
fault, the second one with cage and roller compound fault, the
third one with outer-race fault. Three faulty bearing components
are highlighted as shown in Fig. 11. Fig. 11(a) shows the faulty
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Accelerometer

Fig. 10. Photograph of the wheelset running-in testbed.

cage; Fig. 11(b) shows the faulty pin roller; Fig. 11(c) shows the
outer-race with three defects. Because the cage and roller are
difficult to disassemble and assemble, the individual roller fault
experiment was not conducted; the experimental arrangement
and significant parameters in each experiment are shown in
Table 1. Cases 1 and 3 are the experimental conditions with
a single faulty bearing component, Case 2 is the experimental
condition with two faulty bearing components, and Case 4 is the
experimental condition with three faulty bearing components. In
our experiment design, the single-fault condition, two-fault com-
bined condition, and three-fault compound existence condition
are covered. The sampling frequency used in all experiments is
10 kHz. Notably, the wheelset rotation frequency of the first two
experiments is different from that of the last two experiments.
The experimental bearings come from China’s high-speed train,
and their service speed on the high-speed train is high. Therefore,
the wheelset rotation speed should be as close to the service
speed as possible in our early experimental design. When the
bearing outer-race fault experiment is carried out, the testbed
vibrates violently. Considering the safety of the experimenter
and equipment, we reduce the running speed of the wheelset
and conduct the bearing test with outer-race fault again. This is
the reason the experimental speed of the latter two cases with
outer-race fault is lower.

Fig. 12 shows the vibration signal curves of all cases in the
time domain and corresponding spectrum and envelope spectrum
in the frequency domain. The vibration signal of bearing with
a low-speed and only outer-race fault has a smaller amplitude.
Under the same wheelset running speed, the amplitude of the
vibration signal of bearing with multiple fault components is al-
ways greater than that with a single-fault component. The arrow
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Table 1
Experimental arrangement and significant parameters.
Case Bearing conditions Wheelset Fault feature
No. rotation frequency
frequency (Hz) (Hz)
1 Cage fault =154 fe =6.58
_ fe =6.58
2 Cage and roller faults fr =15.43 fioe = 50.89
3 Outer-race fault fr =10.28 fo=283.23
fe=439
4 Cage, roller, and outer-race faults  f, = 10.28 fos = 33.93
fo=83.23

The sampling frequency of all experiments is 10 kHz.

marks of envelope spectra show some characteristic frequencies.
From the envelope spectrum in Fig. 12(a), besides the multiple
harmonics of the wheelset rotation frequency, we can find the
6th and 7th harmonics of cage fault feature frequency, but it is not
easy because the two harmonics look so inconspicuous. In the en-
velope spectrum of Fig. 12(b), it can be found that the amplitude
of the cage fault feature frequency, its 3rd harmonics, and the
2nd, 4th harmonics of roller fault feature frequency are small and
difficult to identify. The outer-race fault feature frequency and its
2nd harmonic can be found in the envelope of Fig. 12(c); although
the two frequency components have remarkable amplitude, they
are still submerged in the wheelset rotational frequency and its
harmonics. From the envelope spectrum in Fig. 12(d), we can
find the feature frequencies of three types of bearing fault: the
cage, roller, and outer-race faults. In this case, the identification
effect of outer-race fault feature frequency and its 2nd harmonic
is quite remarkable. The feature frequency of cage fault and its
2nd, 3rd, and 4th harmonics as well as the roller fault feature
frequency and its 2nd, 4th, and 6th harmonics can be found,
but we need to use a magnifying glass to recognize them all.
Generally, the envelope spectrum may be an effective method
to extract bearing fault feature frequencies, but it is not the
best choice. These nonremarkable frequency components are very
difficult to identify and are prone to false and missed detection.

Before further analysis, it is necessary to discuss the issue of
parameter assignment of the SSO method that is applied to pro-
cess the nonstationary experimental data. As mentioned above,
the parameter n 0.01, y = 1/f;, where f; is the sampling
frequency, and ¥ = mini<j< |Aj(t)] > 0. To determine the
threshold parameter #, first, the frequency spectrum of the orig-
inal signal is employed; then, the spectrum peaks are found and
sorted; finally, the amplitude of the minimum spectrum peak is
determined as the value of the threshold parameter . We have
suggested that the value of the parameter a should be less than 27
to balance the accuracy of SSO and the well-defined calculation of
SK. We refer to the scheme of the STFT-based Kurtogram and find
that the maximum number of layers of the above experimental
data shown in Fig. 12 is 6. To simplify the calculation process,
we fixed the window width a to 2°. The following repeated tests

(b)

Fig. 11. Wheelset-bearing faults: (a) cage fault; (b) pin roller fault; (c) three outer-race faults.
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show that the sensitivity of time-varying a(t) or more parameter
selection to the test results is not too high within limits, as
mentioned in [28].

In the first experiment, the SSO-based Kurtogram is used to
process the bearing vibration signal with cage fault shown in
Fig. 12(a). The original signal in Fig. 12(a) has obvious large
amplitude vibration, which is under a high rotation speed. The
color map of the SSO-based Kurtogram of the vibration signal
collected in this experiment is shown in Fig. 13(a), with the SSO
parameters a = 64,y = ﬁ' /2 = 0.032, and n = 0.01, and
the RFB of the axle-box bearing with the cage fault is highlighted
by the red dashed circle. The envelope spectrum of the axle-box
bearing containing the cage fault processed by the SSO-based
Kurtogram are shown in Fig. 13(b). As shown in Fig. 13(b), the
cage fault characteristic frequency f. and its three harmonics can
be found evidently. The SSO-based Kurtogram can detect the cage
fault of the axle-box bearing effectively. Fig. 14(a) and (b) show
the envelope spectra of the axle-box bearing vibration signal
with a cage fault using two existing Kurtograms: the WT- and
STFT-based Kurtograms, respectively. Compared with Fig. 13(b),
we cannot find the bearing cage fault feature frequency and its
harmonics in Fig. 14(a) and (b), and we cannot judge the physical
meaning of the strong shock spectrum in these two graphs. In this
experiment, we think that these two existing kurtograms cannot
effectively detect the axle-box bearing cage fault.

In the second experiment, using the SSO-based Kurtogram to
process the axle-box bearing vibration signal with cage and roller
combined faults. The original signal is shown in Fig. 12(b). The
amplitude of the composite fault signal is larger than that of the
single fault signal, and there is a great quantity of strong impact
signal components in this vibration signal with combined faults
due to the bearing roller fault. The color map of the SSO-based
Kurtogram of the vibration signal collected in this experiment is
shown in Fig. 15(a) with the SSO parameters a = 64, y = 1515,
/2 =0.011, and n = 0.01, and the RFB of the axle-box bearing
with the cage and roller combined faults is highlighted by the
red dashed circle. The envelope spectrum of the axle-box bearing
with the two-compound fault by the SSO-based Kurtogram is
plotted in Fig. 15(b). The cage fault feature frequency f. and its
two harmonics, 3f. and 4f,, are evidently found. The multiple
continuous even harmonic components of the roller fault feature
frequency are also clearly marked in Fig. 15(b). The SSO-based
Kurtogram can detect the cage and roller faults of the axle-box
bearing effectively. Fig. 16(a) and (b) show the envelope spectra
of the axle-box bearing vibration signal with the cage and roller
compound fault by WT- and STFT-based Kurtograms, respectively.
Combined with Fig. 15(b), it is not difficult to see that the three
envelope spectra are like two peas. The three kurtograms are
close in detecting the cage and roller compound fault in this
experiment, which is very effective and obvious.

For the third experiment, the original signal of the axle-
box bearing vibration signal with outer-race fault is shown in
Fig. 12(c). The amplitude of the outer-race fault signal is smaller
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than others, which is because this experiment is implemented at
a low rotation speed. The SSO-based Kurtogram is used to process
the axle-box bearing vibration signal containing outer-race fault.
The color map of the SSO-based Kurtogram of the vibration signal
collected in this experiment is shown in Fig. 17(a) with the SSO
parameters a = 64,y = 1505, ¥/2 = 0.0099, and n = 0.01,
and the RFB of the axle-box bearing containing the outer-race
fault is highlighted with the red dashed circle. The envelope spec-
trum of the axle-box bearing vibration signal by the SSO-based
Kurtogram is plotted in Fig. 17(b). The outer-race fault feature
frequency fy and its two harmonics, 2f, and 3f,, are evidently
found. The SSO-based Kurtogram can detect the outer-race fault
of the axle-box bearing effectively in this experiment. Fig. 18(a)
and (b) show the envelope spectra of the axle-box vibration signal
containing the outer-race fault processed by the WT- and STFT-
based Kurtograms, respectively. In Fig. 18(a), the outer-race fault
feature frequency fo and its harmonic 2f, are highlighted by the
strong impact, but there are other strong shocks in the envelope
spectrum that their significances are unclear. These strong shocks
will disturb our judgment. Compared with Figs. 17(b) and 18(a),
we cannot find any meaningful fault feature frequency in the
envelope spectrum in Fig. 18(b). In this experiment, it appears the
two existing Kurtograms cannot effectively detect the axle-box
bearing cage fault. For the outer-race fault experiment, according
to the envelope spectrum results, the SSO- and WT-based Kur-
tograms can effectively detect the outer-race fault; the former
is superior to the latter in the visual detection ability, but the
STFT-based Kurtogram fails in this case.

For the last experiment, the original signal of the axle-box
bearing vibration signal with cage, roller, and outer-race three-
compound fault is shown in Fig. 12(d), which is collected at the
same experimental speed as the bearing single fault experiment
with outer-race fault. The SSO-based Kurtogram is used to ana-
lyze the axle-box bearing vibration signal with a three-compound
fault. The color map of the SSO-based Kurtogram of the vibration
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signal collected in this experiment is shown in Fig. 19(a), with the
SSO parameters a = 64, y = T(lmo ¥/2 = 0.022, and n = 0.01,
and the RFB of the axle-box bearing with the three-compound
fault is highlighted by the red dashed circle. The color map is
used to find the RFB of the target fault, lock the target fault, and
eliminate other vibrations unrelated to the target fault (including
power frequency interference, noise, impulses of nontarget fault);
the envelope spectrum of the axle-box bearing vibration signal
is plotted in Fig. 19(b). The cage fault feature frequency f. and
its harmonic 4f, are marked with red script evidently, and the
multiple continuous harmonic components of the outer-race fea-
ture frequency f, are clearly marked too in Fig. 19(b). In addition,
we can find multiple continuous even harmonic components of
the roller feature frequency fys easily. That is, we can detect three
kinds of axle-box bearing faults simultaneously based on this pro-
cessing method. Fig. 20(a) and (b) show the envelope spectra of
the axle-box bearing vibration signal with three-compound fault
by WT- and STFT-based Kurtogram, respectively. The cage fault
feature frequency f. and its harmonic 4f, all are highlighted by the
strong impact in Fig. 20(a) and (b), and the multiple continuous
even harmonic components of the roller feature frequency, 2fy; to
8fps, are found, whether they are in Fig. 20(a) or (b). The difference
between Fig. 20(a) and (b) is mainly due to the detection ability
of the feature frequency of the outer-race fault; Fig. 20(b) is supe-
rior. Comparing Figs. 19(b), 20(a), and (b), the effectiveness of the
three kurtogram methods for axle-box bearing three-compound
fault diagnosis in this experiment is assured, but there are still
some differences among the three methods in visual detection
ability: the SSO- and STFT-based Kurtograms are superior to the
WT-based Kurtogram.

A performance comparative summary of the SSO-, WT-, and
STFT-based Kurtograms in the case study of train axle-box bear-
ing experiments in the wheelset running-in testbed is presented
in Table 2. Case 1 concerns the axle-box bearing vibration signal
with a cage fault; Case 2 concerns the axle-box bearing vibration
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Kurtogram and (b) STFT-based Kurtogram.

signal with cage and roller combined faults; Case 3 concerns roller, and outer-race combined faults. In terms of effectiveness
the axle-box bearing vibration signal with an outer-race fault; in detecting axle-box bearing faults, the SSO-based Kurtogram
Case 4 concerns the axle-box bearing vibration signal with cage, shows a high detection ability in all four cases, the WT-based
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Table 2

ISA Transactions 128 (2022) 498-512

Performance comparison of the SSO-, WT-, and STFT-based Kurtograms in the case study of train axle-box bearing experiments in wheelset running-in testbed.

Cases  Effectiveness (Yes or No) Presentation (High, Medium, Low, or Null)
SSO-based Kurtogram  WT-based Kurtogram  STFT-based Kurtogram SSO-based Kurtogram  WT-based Kurtogram  STFT-based Kurtogram
1 Yes No No High Null Null
2 Yes Yes Yes High High High
3 Yes Yes No High Medium Null
4 Yes Yes Yes High Medium High

Case 1 concerns the axle-box bearing vibration signal with a cage fault; Case 2 concerns the axle-box bearing vibration signal with cage and roller faults; Case 3
concerns the axle-box bearing vibration signal with an outer-race fault; Case 4 concerns the axle-box bearing vibration signal with cage, roller, and outer-race faults.

Kurtogram detects the fault feature frequency in three cases, with
slightly lower detection performance than the SSO, and STFT-
based Kurtogram only works in two cases. The effectiveness of
different Kurtograms for the same bearing fault detection agrees,
but sometimes, the visual inspection ability differs. The SSO-
based Kurtogram shows a higher visual inspection ability in all
four cases. In addition to the two failed cases, the visual in-
spection ability of the STFT-based Kurtogram remains at a high
level. Compared with the other Kurtograms, in addition to the
high visual inspection ability shown in Case 2, the WT-based
Kurtogram presents medium visual inspection performance in
the other cases. Overall, the SSO-based Kurtogram has obvious
advantages over others in the effectiveness and visual inspection
ability of detection bearing faults, indicating its superiority in
bearing fault diagnosis.

5. A case study of train axle-box bearing fault experiment in a
running high-speed train

As mentioned above, the axle-box bearing test-bed installed
on the double reverse rolling wheelset can simulate the fault
conditions in Fig. 10, but the test bench can only test a single
wheelset, not the entire bogie or train. The experimental data
in Section 4 are collected from the wheelset running-in testbed
without considering the track irregularity conditions, suspension
conditions, and vehicle load. The service environment of train
axle-box bearings is far from the real world.

In reality, it is very difficult to collect the vibration signal of the
axle-box bearing with fault from the in-service and running train.
On the one hand, we do not know which train’s axle-box bearing
has failed; on the other hand, there must be data acquisition
equipment on the train in the condition of axle-box bearing with
a known minor fault, which requires a very rare opportunity.
Fortunately, we got such a set of data. When we installed the
collection equipment on a train, at some point, we found that
there was a slight fault in the inner race of the axle-box bearing
at the corresponding position of the collection equipment, so we
saved this set of bearing vibration data. This is a set of fault
data from running trains in the real world, which makes our
method verification more convincing and of practical engineering
value. The installation position of the acquisition equipment on
the actual running train is shown in Fig. 21(a), which is located on
the edge of the axle box. The origin vibration signal was collected
when the high-speed train was running at a speed of 277 km/h,
yielding the results shown in Fig. 21(b). The sampling frequency
of the vibration signal is 20 kHz. The geometric parameters of
the axle bearing to be tested are: roller diameter = 23 mm, pitch
diameter = 180 mm, contact angle = 10°, number of rollers = 21,
and wheel diameter = 880 mm. So, the fault feature frequencies
fi of this axle-box bearing is 329.14 Hz. Notably, the amplitude of
the original vibration signal of axle-box bearing in a running high-
speed train in the real world shown in Fig. 21(b) is far smaller
than that in a wheelset running-in testbed shown in Fig. 12.
China’s high-speed train is very stable in the actual operation,
and the vertical acceleration on the axle box is relatively small
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due to the effect of various damping systems. However, owing
to the imperfection of the bogie system and the absence of a
shock absorber, the vertical acceleration of the axle box obtained
on the experimental platform will be relatively large, such as
the vibration signal described in Section 4. From the envelope
spectrum in Fig. 21(b), the inner race feature frequency f; and its
2nd and 3rd harmonics can be discerned. Compared with other
frequency components, they were nonremarkable and difficult to
identify.

The SSO-based Kurtogram is applied to process the vibration
signal of the axle-box bearing with an inner-race fault [Fig. 21(b)].
As mentioned above, the maximum number of layers of the
measured data is 6 and the window width a is fixed to 2°. The
color map of the SSO-based Kurtogram of the vibration signal
collected in the real world is shown in Fig. 22(a) with the SSO
parameters a = 64, y = T(lm, /2 = 0.00168, and n = 0.01,
and the RFB of the axle-box bearing containing the inner-race
fault is highlighted with the red dashed circle. The color map is
used to find the RFB of the target fault, lock the target fault, and
eliminate other vibrations unrelated to the target fault (including
power frequency interference, noise, impulses of nontarget fault);
the envelope spectrum of the axle-box bearing vibration signal
is plotted in Fig. 22(b). The inner-race fault feature frequency
fi and its harmonics, 2f; and 3f;, are marked in red. The inner-
race fault of the axle-box bearing in a running train is well
diagnosed through the SSO-based Kurtogram. Likewise, the WT-
and STFT-based Kurtograms are used to process the same signal.
The envelope spectra of the WT- and STFT-based Kurtograms
are shown in Fig. 23(a) and (b), respectively, indicating that
their detection performance agrees, both of which can detect the
inner-race fault feature frequency f; and its 2nd harmonics but
cannot detect its 3rd harmonics, which is submerged. In addition,
there are many unintended strong impact components in the two
envelope spectra, which makes it more difficult for us to perform
fault diagnosis. Therefore, the WT- and STFT-based Kurtograms
are not as good as the SSO-based Kurtogram in terms of visual
inspection ability.

A performance comparative summary of the SSO-, WT-, and
STFT-based Kurtograms in the case study of train axle-box bear-
ing fault experiment in a running high-speed train in the real
world is also presented in Table 3. In terms of effectiveness
in detecting axle-box bearing faults, all three Kurtograms are
effective in the case study of detecting the inner-race fault. Al-
though the effectiveness of different Kurtograms agrees, there is
a big gap in visual inspection ability. The SSO-based Kurtogram
shows a relatively high visual inspection ability in the aspect of
fault feature frequency highlighting. Compared with the envelope
spectrum of the SSO-based Kurtogram, the WT- and STFT-based
Kurtograms show a low visual inspection ability. In addition to
not detecting the harmonics of the feature frequency of the inner-
race fault, many other unidentified strong impact components
have not been eliminated.
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Table 3
Performance comparison of the SSO-, WT-, and STFT-based Kurtograms in the
case study of train axle-box bearing experiment in a running High-speed train.

Case Effectiveness (Yes or No) Presentation (High,
Medium, Low, or Null)

SSO-based WT-based STFT-based SSO-based WT-based STFT-based
Kurtogram Kurtogram Kurtogram Kurtogram Kurtogram Kurtogram

High

1 Yes Yes Yes Low Low

Case 1 concerns the axle-box bearing vibration signal collected in a running
high-speed train in the real world.

6. Conclusion

The paper is motivated by the critical issue of train axle-box
bearing fault diagnosis and originated from research on SK and
kurtogram with a novel frequency extraction method named SSO.
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The idea of an alternative method for the optimal RFB selection
emerged when we were investigating the vibration signal from
train axle-box bearings. A new Kurtogram named SSO-based Kur-
togram was proposed, which is a renewal and better replacement
for WT- and STFT-based Kurtograms.

First, the flowchart of the proposed Kurtogram is presented
based on the SSO. There are two key points in this method—the
window and base functions. Based on a bearing fault simulation
signal, an admissible window function, the rectangular window
function, the Hann window function, and the flattop window
function are used to investigate the effectiveness of the proposed
Kurtogram and explore the effect of the window function. After
comparison, we find that the SSO-based Kurtogram based on the
Hann window is superior in terms of the SNR. Thus, we select the
Hann window function for SSO calculation in our case studies and
experimental verification.
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Second, a set of train axle-box bearing experiments in a
wheelset running-in testbed is implemented to verify the effec-
tiveness of the SSO-based Kurtogram for fault diagnosis, and a
performance comparative summary of the SSO-, WT-, and STFT-
based Kurtograms in this case study is presented. As a result,
the SSO-based Kurtogram shows its effectiveness and possesses
obvious advantages over the WT- and STFT-based Kurtograms.

Third, a case study of a train axle-box bearing fault experiment
in a running high-speed train in the real world is presented
in detail, which makes the proposed method verification more
convincing and proves its engineering value. The abovementioned
three Kurtograms are applied to process the vibration signal of
the axle-box bearing with an inner-race fault collected from a
running high-speed train. This real inner-race fault is detected
by the three methods, but SSO-based Kurtogram has an absolute
advantage in the visual inspection ability by eliminating other
vibrations unrelated to the target fault and making the fault
feature frequency and its harmonics remarkable.
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