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Testing for independence plays a fundamental role in many statistical techniques. Among
the nonparametric approaches, the distance-based methods (such as the distance
correlation-based hypotheses testing for independence) have many advantages,
compared with many other alternatives. A known limitation of the distance-based
method is that its computational complexity can be high. In general, when the sample
size is n, the order of computational complexity of a distance-based method, which
typically requires computing of all pairwise distances, can be O(n?). Recent advances have
discovered that in the univariate cases, a fast method with O(nlog n) computational
complexity and O(n) memory requirement exists. In this paper, we introduce a test of
independence method based on random projection and distance correlation, which
achieves nearly the same power as the state-of-the-art distance-based approach,
works in the multivariate cases, and enjoys the O(nKlog n) computational complexity
and O(max{n, K}) memory requirement, where K is the number of random projections.
Note that saving is achieved when K < n/log n. We name our method a Randomly
Projected Distance Covariance (RPDC). The statistical theoretical analysis takes
advantage of some techniques on the random projection which are rooted in
contemporary machine learning. Numerical experiments demonstrate the efficiency of
the proposed method, relative to numerous competitors.

Keywords: independence test, distance covariance, random projection, hypotheses test, multivariate hypothesis
test

1 INTRODUCTION

Test of independence is a fundamental problem in statistics, with many existing work including the
maximal information coefficient (MIC) [1], the copula based measures [2,3], the kernel based
criterion [4] and the distance correlation [5,6], which motivated our current work. Note that the
above works as well as ours focus on the testing for independence, which can be formulated as
statistical hypotheses testing problems. On the other hand, interesting developments (e.g., [7]) aim at
a more general framework for interpretable statistical dependence, which is not the goal of this paper.

Distance correlation proposed by [6] is an important method in the test of independence. The
direct implementation of distance correlation takes O(n?) time, where n is the sample size. The time
cost of distance correlation could be substantial when the sample size is just a few thousand. When
the random variables are univariate, there exist efficient numerical algorithms of time complexity

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1

January 2022 | Volume 7 | Article 779841


http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2021.779841&domain=pdf&date_stamp=2022-01-13
https://www.frontiersin.org/articles/10.3389/fams.2021.779841/full
https://www.frontiersin.org/articles/10.3389/fams.2021.779841/full
https://www.frontiersin.org/articles/10.3389/fams.2021.779841/full
https://www.frontiersin.org/articles/10.3389/fams.2021.779841/full
http://creativecommons.org/licenses/by/4.0/
mailto:huo@gatech.edu
https://doi.org/10.3389/fams.2021.779841
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2021.779841

Huang and Huo

O(nlog n) [8]. However, for the multivariate random variables,
we have not found any efficient algorithms in existing papers after
an extensive literature survey.

Independence tests of multivariate random variables could have
a wide range of applications. In many problem settings, as
mentioned in [9], each experimental unit will be measured
multiple times, resulting in multivariate data. Researchers are
often interested in exploring potential relationships among
subsets of these measurements. For example, some
measurements may represent attributes of  physical
characteristics while others represent attributes of psychological
characteristics. It may be of interest to determine whether there
exists a relationship between the physical and psychological
characteristics. A test of independence between pairs of vectors,
where the vectors may have different dimensions and scales,
becomes crucial. Moreover, the number of experimental units,
or equivalently, sample size, could be massive, which requires the
test to be computationally efficient. This work will meet the
demands for numerically efficient independence tests of
multivariate random variables.

The newly proposed test of independence between two
(potentially multivariate) random variables X and Y works as
follows. Firstly, both X and Y are randomly projected to one-
dimensional spaces. Then the fast computing method for distance
covariances between a pair of univariate random variables is
adopted to compute for a surrogate distance covariance. The
above two steps are repeated numerous times. The final estimate
of the distance covariance is the average of all aforementioned
surrogate distance covariances.

For numerical efficiency, we will show (in Theorem 3.1) that
the newly proposed algorithm enjoys the O(Knlog n)
computational complexity and O(max{n, K}) memory
requirement, where K is the number of random projections
and # is the sample size. On the statistical efficiency, we will
show (in Theorem 4.19) that the asymptotic power of the test of
independence by utilizing the newly proposed statistics is as
efficient as its original multivariate counterpart, which achieves
the state-of-the-art rates.

The rest of this paper is organized as follows. In Section 2, we
review the definition of distance covariance, its fast algorithm in
univariate cases, and related distance-based independence tests.
Section 3 gives the detailed algorithm for distance covariance of
random vectors and corresponding independence tests. In
Section 4, we present some theoretical properties on distance
covariance and the asymptotic distribution of the proposed
estimator. In Section 5, we conduct numerical examples to
compare our method against others in the existing literature.
Some discussions are presented in Section 6. We conclude in
Section 7. All technical proofs, as well as the formal
presentation of algorithms, are relegated to the appendix
when appropriate.

Throughout this paper, we adopt the following notations. We

_ ﬂ(pﬂ)/z _ ﬂ(q+l)/2
denote ¢, = (R and ¢; = F@m two constants, where

I'() denotes the Gamma function. We will also need the following

constants: C, = —Cfi" - 4%2(((;;1)/ D and Cy=2Lt = VAl lg+r/2)
t

For any vector v, let v denote its transpose.

¢ T'(g/2)

Randomly Projected Distance Covariance

2 REVIEW OF DISTANCE COVARIANCE:
DEFINITION, FAST ALGORITHM, AND
RELATED INDEPENDENCE TESTS

In this section, we review some related existing works. In
Section 2.1, we recall the concept of distance variances
and correlations, as well as some of their properties. In
Section 2.2, we discuss the estimators of distance
covariances and correlations, as well as their computation.
We present their applications in the test of independence in
Section 2.3.

2.1 Definition of Distance Covariances
Measuring and testing the dependency between two random
variables is a fundamental problem in statistics. The classical
Pearson’s correlation coefficient can be inaccurate and even
misleading when nonlinear dependency exists [6]. propose the
novel measure-distance correlation-which is exactly zero if and
only if two random variables are independent. A limitation is
that if the distance correlation is implemented based on its
original  definition, the corresponding computational
complexity can be as high as O(n®), which is not desirable
when # is large.

We review the definition of the distance correlation in [6].
Let us consider two random variables X € R?,
Y eR%, p>1,9>1. Let the complex-valued functions ¢x y(-),
¢x(-), and ¢y(-) be the characteristic functions of the joint
density of X and Y, the density of X, and the density of Y,
respectively. For any function ¢, we denote |¢|* = ¢¢, where ¢ is
the conjugate of ¢; in words, |¢| is the magnitude of ¢ at a
particular point. For vectors, let us use || to denote the
Euclidean norm. In [6], the definition of distance covariance
between random variables X and Y is

|¢X,Y (t, S) - (px (t)(py (S)|2

RP* cpcqlt|P]s|7!

dtds,

V2(X,Y) = J 2.1)

where two constants ¢, and ¢, have been defined at the end of
Section 1. The distance correlation is defined as

V2(X,Y)
VWX, X)VVA(Y,Y)

R*(X,Y) =

The following property has been established in the

aforementioned paper.

Theorem 2.1. Suppose X € R?,p>1and Y € R%,g>1 are two
random variables, the following statements are equivalent:

1) X is independent of Y;

2) ¢xy(t, s) = ¢x(D¢y(s), for any t € R? and s € RY;
3) V2(X,Y) =0;

4) R*(X,Y) =0.

Given sample (X;, Y7), ..., (X,, Y,), we can estimate the
distance covariance by replacing the population characteristic
function with the sample characteristic function: for
i=+-1,t € R?,s € R%, we define
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- e

j=1

iie' i, and

j=1

1 ¢ iXit+iYls
- )it
n
j=1
Consequently one can have the following estimator for V (X,Y):

By (£:5) = by (D ()

1 1
cpcqltP 5|7

¢Y (s)=

(Z)X,Y (t,s) =

dt - ds. (2.2)

V2(X,Y) = j
RP*

Note that the above formula is convenient to define a quantity,
however, is not convenient for computation, due to the
integration on the right-hand side. In the literature, other
estimates have been introduced and will be presented in the
following.

2.2 Fast Algorithm in the Univariate Cases
The paper [10] gives an equivalent definition for the distance
covariance between random variables X and Y:

=E[d(X,X)d(Y,Y)]
=E[X-XIY Y]] -2E[IX - XY - Y]]
+E[|X - X'|]E[]Y -Y"|], (2.3)

V2(X,Y)

where the double centered distance d(-, -) is defined as

d(X,X) = X=X |-Ex[IX-X]-E [IX-X]
+E[X - X],
where Ex, E,, and I are expectations over X, X’ and (X, X),
respectively.

Motivated by the above definition, one can give an unbiased
estimator for V?(X,Y). The following notations will be utilized:
for1<ij<mn,

aij = |X; —X,L bij =Y; YJ|)
a;. = Zaiz, b. = Zbib

=1 =1 (2.4)
a. = Z axl, and b. = z bkl

Kl=1 k=1

It has been proven [8, 28] that

Q,(X,Y) = Z

z#]

Fi% = 2)(n 3)2“’

a.b.
- (n-2)(n-3)

(2.5)

is an unbiased estimator of V?(X,Y). In addition, a fast
algorithm has been proposed [8] for the aforementioned
sample distance covariance in the univariate cases with

Randomly Projected Distance Covariance

complexity order O(nlog n) and storage O(n). We list the
result below for reference purpose.

Theorem 2.2. (Theorem 3.2 & Corollary 4.1 in [8]). Suppose Xj,
L X,andYy,...,Y, € R. The unbiased estimator (), defined in
(2.5) can be computed by an O(nlog n) algorithm.
In addition, as a byproduct, the following result is established
in the same paper.

Corollary 2.3. The quantity

a.b. D1 -1 br

nn-1)(n-2)(n-3) nn-1)(n-2)(n-3)

can be computed by an O(nlog n) algorithm.

We will use the above result in our test of independence.
However, as far as we know, in the multivariate cases, there does
not exist any work on the fast algorithm of the order of
complexity O(nlog n). This paper will fill in this gap by
introducing an order O(nKlog n) complexity algorithm in
multivariate cases.

2.3 Distance Based Independence Tests

Ref. [6] proposed an independence test using the distance
covariance. We summarize it below as a theorem, which
serves as a benchmark. Our test will be aligned with the
following one, except that we introduced a new test statistic,
which can be more efficiently computed, and it has comparable
asymptotic properties with the test statistic that is used below.

Theorem 2.4. ([6], Theorem 6). For potentially multivariate
random variables X and Y, a prescribed level o, and sample
size n, one rejects the independence if and only if

) (X,Y)
S,
where Vﬁ (X,Y) has been defined in (2.2), ®(-) denote the

cumulative distribution function of the standard normal
distribution and

> (‘Dil (1 - “5/2))2:

—Z|x X|Z|Y Y.

i,j=1 i,j=1

Moreover, let a(X, Y, n) denote the achieved significance level of
the above test. If E[| X]| + |Y]] < 0o, then for all 0 < &, < 0.215, one
can show the following:

lim a(X,Y,n) <« and

sup{lim a(X,Y,n): V(X,Y) = 0} = a,.

X,Y n—o00

Note that the quantity V2 (X, Y) that is used above as in [6] differs
from the one that will be used in our proposed method. As
mentioned, we use the above as an illustration for distance-based
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tests of independence, as well as the theoretical/asymptotic
properties that such a test can achieve.

3 NUMERICALLY EFFICIENT METHOD FOR
RANDOM VECTORS

This section is made of two components. We present a random-
projection-based distance covariance estimator that will be
proven to be unbiased with a computational complexity that is
O(Knlog n) in Section 3.1. In Section 3.2, we describe how the
test of independence can be done by utilizing the above estimator.
For users’ convenience, stand-alone algorithms are furnished in
the Supplementary Appendix.

3.1 Random Projection Based Methods for
Approximating Distance Covariance

We consider how to use a fast algorithm for univariate random
variables to compute or approximate the sample distance
covariance of random vectors. The main idea works as follows:
first, projecting the multivariate observations on some random
directions; then, using the fast algorithm to compute the distance
covariance of the projections; at last, averaging distance
covariances from different projecting directions.

More specifically, our estimator can be computed as follows. For
potentially multivariate X1, ..., X, € R andYy,...,Y, € RY, let
K be a predetermined number of iterations, we do:

1) For each k (1 < k < K), randomly generate uy and v, from
Uniform (§7™') and Uniform (S7™"), respectively. Here S~
and 87" are the unit spheres in R? and RY, respectively.

2) Let uj X and v,Y denote the projections of X and Y to the
space that are orthogonal to vectors uy and vy, respectively.
That is we have

u,iX = (uin, .. ,uth,,), and vth = (vthl, e vﬁ(Yn).

Note that samples u} X and v{Y are now univariate.

3) Utilize the fast (i.e., order O(nlog n)) algorithm that was mentioned
in Theorem 2.2 to compute for the unbiased estimator in Eq. 2.5
with respect to 4} X and v;Y. Formally, we denote

Q¥ = C,C,Q, (U X, V,Y),

where C, and C, have been defined at the end of Section 1.

(4) The above three steps are repeated for K times. The final
estimator is
1

Q, == ) o, (3.1)

To emphasize the dependency of the above quantity with K, we
sometimes use a notation Q, x = Q,.

See Algorithm 1 in the Supplementary Appendix for a stand-
alone presentation of the above method. In the light of Theorem
2.2, we can handily declare the following.

Randomly Projected Distance Covariance

Theorem 3.1. For potentially multivariate X, . . ., X,, € R” and
Yi,...,Y, € RY, the order of computational complexity of
computing the aforementioned Q, is O(Knlog n) with
storage O(max{n, K}), where K is the number of random
projections.

The proof of the above theorem is omitted because it is
straightforward from Theorem 2.2. The statistical properties of
the proposed estimator (), will be studied in the subsequent
section (specifically in Section 4.4).

3.2 Test of Independence

By a later result (cf. Theorem 4.19), we can apply Q, in the
independence  tests. The corresponding asymptotic
distribution of the test statistic {,, can be approximated by
a Gamma(a, f3) distribution with & and f given in Eq. 4.7. We
can compute the significance level of the test statistic by
permutation and conduct the independence test
accordingly. Recall that we have potentially multivariate
Xi,..., X, €RP and Yy,...,Y, € R9. Recall that K denotes
the number of Monte Carlo iterations in our previous
algorithm. Let a; denote the prescribed significance level of
the independence test. Let L denote the number of random
permutations that we will adopt. We would like to test the null
hypothesis Hy—X and Y are independent—against its
alternative. Recall Q, is our proposed estimator in Eq. 3.1.
The following algorithm describes a test of independence,
which applies permutation to generate a threshold.

1) For each ¢, 1 < € < L, generate a random permutation of
Y: Y= (Y5, Y0

2) Using the algorithm in Section 3.1, one can compute the
estimator (), as in Eq. 3.1 for X and Y™ denote the outcome
to be V, = Q, (X, V™). Note under random permutations, X
and Y ! are independent.

3) The above two steps are executed for all £ = 1, ..., L. One
rejects H, if and only if we have

1+ Y, 1(Q,> V) o
1+L

See Algorithm 2 in the Supplementary Appendix for a stand-
alone description.

It is notified that one can use the approximate asymptotic
distribution  information to estimate a threshold in the
independence test. The following describes such an approach.
Recall that random vectors Xi,..., X, € R and Yy,...,Y, € RY,
number of random projections K, and a prescribed significance level
have been mentioned earlier.

1) For each k (1 < k < K), randomly generate uy and v, from
uniform (SP7!) and uniform (897Y), respectively.

2) Use the fast algorithm in Theorem 2.2 to compute the
following quantities:

Q¥ = C,C,Q (UL X, Y),
Sy = o0, (U X, i X)Q,, (MY, 1Y),

V]
wW_o_ 2 W _ b
n2 Pn(n_ 1) n3 qn(n_ 1)
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where C, and C, have been defined at the end of Section 1 and in
the last equation, the a“ and b’ are defined as follows:

Iuk(X X, b = (Y -Y))l,
“k—Zak,, w—Zb
kl=1 kl=1

3) For the aforementioned k, randomly generate u; and vi. from
uniform (S7!) and uniform (S77!), respectively. Use the fast
algorithm that is mentioned in Theorem 2.2 to compute the

following.
0% =CO, WX, u X), Qf =C0,0Y,viY).

where C, and C, have been defined at the end of Section 1.

4) Repeat the previous steps for all k = .» K. Then we
compute the following quantities:
zuo s _lsew o li(m
QO n,l = — Sn,l > Sn,Z =7 Sn,Z’
Kia Ki3
) Ly Ly
Sn,3 = S,Y;)) On,X = Qflk))() Qn,Y = Q,(,k;,
K3 Ka " Kg "
1 S5
*=3K-1_ T
—— 0, xQuy + ES
(3.2)
/3 _ 1 Sn,ZSn,S
“2K-1- _ 1- (3.3)
—— QuxQuy + =S,
K Xy + 20
5) Reject H, if nQ, + S,.28,.3 > Gamma (a, B; 1 — as); otherwise,

accept it. Here Gamma(a, ;1 -
distribution Gamma(a, f3).

a,)isthe 1 — a quantﬂe of the

The above procedure is motivated by the observation that the
asymptotic distribution of the test statistic nQ), can be
approximated by a Gamma distribution, whose parameters can
be estimated by Eq. 3.2 and Eq. 3.3. A stand-alone description of
the above procedure can be found in Algorithm 3 in the
Supplementary Appendix.

4 THEORETICAL PROPERTIES

In this section, we establish the theoretical foundation of the
proposed method. In Section 4.1, we study some
properties of the random projections and the subsequent
average estimator. These properties will be needed in
studying the properties of the proposed estimator. We
study the properties of the proposed distance covariance
estimator (Q,) in Section 4.2, taking advantage of the fact
that Q, is a U-statistic. It turns out that the properties of
eigenvalues of a particular operator play an important role.

Randomly Projected Distance Covariance

We present the relevant results in Section 4.3. The main
properties of the proposed estimator ((),) are presented in
Section 4.4.

4.1 Using Random Projections in

Distance-Based Methods

In this section, we will study some properties of distance
covariances of randomly projected random vectors. We begin
with a necessary and sufficient condition of independence.

Lemma 4.1. Suppose u and v are points on the hyper-spheres:
ueSP ! ={ueRP: |ul =1} and v € ST!. We have

random vectors X € RP andY € R?areindependent

if and only if

VE(u' X, v'Y) =0, foranyu € S"',v e ST,

The proof is relatively straightforward. We relegate a formal
proof to the appendix. This lemma indicates that the
independence is somewhat preserved under projections. The
main contribution of the above result is to motivate us to
think of using random projection, to reduce the multivariate
random vectors into univariate random variables. As mentioned
earlier, there exist fast algorithms of distance-based methods for
univariate random variables.

The following result allows us to regard the distance covariance
of random vectors of any dimension as an integral of distance
covariance of univariate random variables, which are the
projections of the aforementioned random vectors. The
formulas in the following lemma provide the foundation for our
proposed method: the distance covariances in the multivariate
cases can be written as integrations of distance covariances in the
univariate cases. our proposed method essentially adopts the
principle of Monte Carlo to approximate such integrals. We
again relegate the proof to the Supplementary Appendix.

Lemma 4.2. Suppose u and v are points on unit hyper-spheres:
ueSPl'={ueRP: |u/=1}andve ST Let 4 and v denote the
uniform probability measure on SP™' and S77', respectively.
Then, we have for random vectors X € R? and Y € RY,
V2(X,Y)=C qu V2 (! X, v'Y)du (u)dv (v),
SPIxsT!
where C, and C, are two constants that are defined at the end of
Section 1. Moreover, a similar result holds for the sample distance
covariance:
V2(X,Y)=C qu V2 (' X, v'Y)dp (u)dv (v).
SP1x§11
Besides the integral equations in the above lemma, we can also
establish the following result for the unbiased estimator. Such a
result provides the direct foundation of our proposed method.
Recall that Q,,, which is in Eq. 2.5, is an unbiased estimator of the

distance covariance V*(X,Y). A proof is provided in the
Supplementary Appendix.
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Lemma 4.3. Suppose u and v are points on the hyper-spheres:
ueSP! ={ueRP: |ul = 1}and v € ST, Let u and » denote the
measure corresponding to the uniform densities on the surfaces
SP! and 877, respectively. Then, we have

Q, W X, v'Y)du (w)dv(v),

SP1xsa!

0,(X,Y) = cpcqj

where C, and C, are constants that were mentioned at the end of
Section 1.

From the above lemma, recalling the design of our
proposed estimator Q, as in Eq. 3.1, it is straightforward
to see that the proposed estimator Q,, is an unbiased estimator
of O, (X, Y). For completeness, we state the following without

a proof.

Corollary 4.4. The proposed estimator Q, in Eq. 3.1) is an
unbiased estimator of the estimator Q,,(X, Y) that was defined
in Eq. 2.5.

Note that the estimator Q,, in Eq. 3.1 evidently depends on the
number of random projections K. Recall that to emphasize such a
dependency, we sometimes use a notation Q,x = Q,. The
following concentration inequality shows the speed that Q,x
can converge to ), as K — oo.

Lemma 4.5. Suppose E[|X|*] < 0o and E[|Y]?] < co. For any € > 0,
we have

_ CK¢é?
P(|1Q.x — Q.| >€)<2 i el o
(o= Ol >) eXP{ T”[ZX]TV[ZY]}
where Xy and Xy are the covariance matrices of X and Y,
respectively, Tr[Zx] and Tr[Xy] are their matrix traces, and C =
—zsczf, a is a constant.

The proof is a relatively standard application of
Hoeffding’s inequality [11], which has been relegated to
the appendix. The above lemma essentially indicates that
the quantity [Q, x — Q| converges to zero at a rate no worse
than O(1/VK).

4.2 Asymptotic Properties of the Sample

Distance Covariance Q,

The asymptotic behavior of the sample distance covariance Q,,
in Eq. 2.5 of this paper, has been studied in many places, seeing
[5,8,10,12]. We found that it is still worthwhile to present them
here, as we will use them to establish the statistical properties
of our proposed estimator. The asymptotic distributions of Q,,
will be studied under two situations: 1) a general case and 2)
when X and Y are assumed to be independent. We will see that
the asymptotic distributions are different in these two
situations.

It has been showed in ([8], Theorem 3.2) that Q, is a
U-statistic. In the following, we state the result without
formal proof. We will need the following function, denoted
by hy, which takes four pairs of input variables:

Randomly Projected Distance Covariance

h4 ( (Xl’Yl)a (XZaYZ)a (X3’Y3)) (X4’ Y4))

1
== Y IXi-XjllY; -]
1<i, j<4,i#j
1 4
-3 Y X=Xl Y Ivi-yl
i=1 \ 1<j<4,j#i 1<j<4, j#i

1
t 25 YoXi-Xil Y IVi-Yl

1<i,j<d,it] 1<i,j<d,itj

(4.1)

Note that the definition of &, coincides with Q, when the
number of observations n = 4.

Lemma 4.6. (U-statistics). Let ¥, denote all distinct 4-subset of
{1, ..., n} andlet us define X,, = {Xj|i € y} and Y,, = {Y}|i € y}, then
Q, is a U-statistic and can be expressed as

0, =(5) 3 m(x,r,)

yevy

From the literature of the U-statistics, we know that the
following quantities play critical roles. We state them here:

h (X0, Y1) = Epsa[hy (X0, Y1), (X2, Y2), (X5,Y3), (Xo, Ya))l,
hz ( (Xb Y1)> (X2> Yz)) = IE3,4 [h4 ( (Xb Y1)> (X2) Y2)>
(X5,Y3), (X4, Ya))1,
hs (X1, Y1), (X2, Y3), (X5, Y3)) = Ey[hy (X1, Y1), (X5, Y3),
(X5,Y3), (X4, Yo))I

where E, 3 4 stands for taking expectation over (X, Y,), (X3, Y3)
and (X4, Y,); E; 4 stands for taking expectation over (X3, Y3) and
(X4, Yy); and E, stands for taking expectation over (X, Yy);
respectively.

One immediate application of the above notations is the
following result, which quantifies the variance of Q,,. Since the
formula is a known result, seeing ([13], Chapter 5.2.1 Lemma A),
we state it without proof.

Lemma 4.7. (Variance of the U-statistic). The variance of Q,,
could be written as

-1 4

=)' $4) G rerc

=1

16 240 72 1
= OVar(h) + 22 var(h) + Zvar (hy) + o(—),
n n? n? n

where O(:) is the standard big O notation in mathematics.
From the above lemma, we can see that Var(h;) and Var(h,) play
indispensable roles in determining the variance of Q.. The following
lemma shows that under some conditions, we can ensure that Var(h,)
and Var(h,) are bounded. A proof has been relegated to the appendix.

Lemma 4.8. If we have E[|X|)]<oco, E[|[Y)*)]<co and
E[|X[*|Y]*] < co, then we have Var(h,) < co. Consequently,
we also have Var(h;) < co and Var(h,) < co.
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Even though as indicated in Lemma 4.7, the quantities h; (X,
Y1) and h,((X3, Y1), (X5, Y>)) play important roles in determining
the variance of Q,, in a generic case, they do not have a simple
formula. The following lemma gives the generic formulas for
hi(Xy, Y1) and hy((X, Y1), (X5, Y3)). Its calculation can be found
in the Supplementary Appendix.

Lemma 4.9. (Generic h; and h,). In the general case, assuming
(X5, Y1), (X, V), (X, Y'), and (X", Y") are independent and
identically distributed, we have

(XY = SEIX - XY, - Y] - SEIX, - XY,
~ Y1+ SE(, - XY - Yl - B,
- XY =¥+ SEIX - XY, Y
- %EHX' -X"|ly,-Y']] + %IEHX—X'HY
~Y'1= SEIX - XY - Y[l

We have a similar formula for h,((X;, Y;), (X5, Y5)) in (B.7). Due
to its length, we do not display it here.

If one assumes that X and Y are independent, we can have a
simpler formula for h;, h,, as well as their corresponding
variances. We list the results below, with detailed calculations
relegated to the appendix. One can see that under independence,
the corresponding formulas are much simpler.

Lemma 4.10. When X and Y are independent, we have the
following. For (X, Y) and (X', Y') that are independent and
identically distributed as (X;, Y7) and (X, Y>), we have

B ((X1,Y41)) =0, (4.2)
(X0, Y1), (5, ¥2)) = 2 (1% = X - E[1X, - X

-E[IX; - XN +E[IX - X"
(Y1 - Yol -E[IY, - Y - E[Y, - Y +E[lY -Y']),  (4.3)

Var(h,) = 31—61/2 (X, X)NV*(Y,Y), (4.4)

where E stands for the expectation operators with respect to X, X
and X', Y, or Y and Y’, whenever appropriate, respectively.

If we have 0 < Var(h;) < 0o, it is known that the asymptotic
distribution of Q,, is normal, as stated in the following. Note that
based on Lemma 4.10, X and Y cannot be independent; otherwise
one should have h; = 0 almost surely. The following theorem is
based on a known result on the convergence of U-statistics, seeing
([13], Chapter 5.5.1 Theorem A). We state it without a proof.

Theorem 4.11. Suppose 0 < Var(h;) < oo and Var(h,) < 0o, then
we have
Q,% V(X,Y)

moreover, we have

Vi(Q, -V (X, Y)B N(0,16Var (h,)),asn — co.

Randomly Projected Distance Covariance

When X and Y are independent, the asymptotic distribution of
/1€, is no longer normal. In this case, from Lemma 4.10, we
have

hy ((X1,Y)) = 0Oalmost surely, and Var [h; ((X;,Y1))] = 0.

The following theorem, which applies a result in ([13],
Chapter 5.5.2), indicates that n(), converges to a weighted
sum of (possibly infinitely many) independent y? random
variables.

Theorem 4.12. If X and Y are independent, the asymptotic
distribution of Q,, is

00 0 0

ﬂQHE) Z/\,(le - 1) = Z/\,le - ZA,‘,
i=1

i=1 i=1

where Z7 ~ x? iid, A;’s are the eigenvalues of operator G that is
defined as

Gg (xl’ )/1) = ]Exz,yz [6h2 ( (xl) }’1), (xZ) yZ))g('xZ’ )’2)],

where function h,((, -), (-, -)) was defined in (4.3).

Proof. The asymptotic distribution of Q, is from the result in
([13], Chapter 5.5.2).

See Section 4.3 for more details on methods for computing the
value of A;s. In particular, we will show that we have Y0/, =
E[IX-X'IIE[IY -Y']] (Corollary 4.15) and YXA; =
VE(X, X)V2(Y,Y) (which is essentially from Eq. 4.4 and
Lemma 4.7).

4.3 Properties of Eigenvalues A;’s

From Theorem 4.12, we see that the eigenvalues A,’s play
important role in determining the asymptotic distribution
of 0, We study its properties here. Throughout this
subsection, we assume that X and Y are independent. Let us
recall that the asymptotic distribution of sample distance
covariance (2,,

nQ, Y L(Z} - 1) =Y Lz =Y A
i-1 =1 i=1
where A/s are the eigenvalues of the operator G that is
defined as

Gg(x1, 1) = Ey, 5, [6h; ((x1, y1), (X2, ¥2))g (%2, )]s

where function hy((-, -), (-, -)) was defined in Eq. 4.3. By definition,
eigenvalues A;, A,, ... corresponding to distinct solutions of the
following equation

Gg (x1, y1) = Ag (x1, y1). (4.5)

We now study the properties of A;’s. Utilizing Lemma 12 and
Eq. 4.4 in [12], we can verify the following result. We give details
of verifications in the Supplementary Appendix.

Lemma 4.13. Both of the following two functions are positive
definite kernels:
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hyx (X1, X3) = -1 X1 - Xo| + E[|IX; - X[] + E[IX; - XI]
-E[IX-X']]
and
hy (Y1,Yy) = —Y, = Yo + E[IY, - Y[ + E[]Y, - Y]]
—-E[lY -Y'|].

The above result gives us a foundation to apply the
equivalence result that has been articulated thoroughly in
[12]. Equipped with the above lemma, we have the following
result, which characterizes a property of A;’s. The detailed
proof can be found in the Supplementary Appendix.

Lemma 4.14. Suppose {A;, A, ...} are the set of eigenvalues of
kernel 6h,((x;, y1), (X2, ¥2)), {AX /\X ...}and {AT,/\;/, ...} are the
sets of eigenvalues of the positive definite kernels hy and hy,

respectively. We have the following:

Dods. b= 525 Je ANAL, )

that is, each A; satisfying (4.5) can be written as, for some j, j',
_ X Y
A=A

where A¥and 1" are the eigenvalues corresponding to kernel
functions hx(X;, X,) and hy(Y;, Y>), respectively.

Above lemma implies that eigenvalues of h, could be
obtained immediately after knowing the eigenvalues of hy
and hy. But, in practice, there usually does not exist
analytic solution for even the eigenvalues of hx or hy.
Instead, given the observations (X;, ..., X,) and (Y, ...

Y,), we can compute the eigenvalues of matrices Ky =
(hx (Xi, X)))pxn and Ky = (hy (Yi,Y))uxn and use those
empirical eigenvalues to approximate Af,AY,... and
A A, ..., and then consequently A;, A, ...

We end this subsection with the following corollary on the
summations of eigenvalues, which is necessary for the proof of
Theorem 4.12. The proof can be found in the Supplementary
Appendix.

Corollary 4.15. The aforementioned eigenvalues A}, A, ... and
MM, . satisfy

YA =E[X-X'|l,and Y A =E[lY - Y'|l.
i=1 i=1
As a result, we have
Y L =E[X - X'IE[lY - Y'|],
i=1

and

YA =V XOVA(Y,Y).

Randomly Projected Distance Covariance

4.4 Asymptotic Properties of Averaged

Projected Sample Distance Covariance Q,
We have reviewed the properties of the statistics (2,, in a previous section
(Section 4.2). The disadvantage of directly applying (2,, (which is
defined in Eq. 2.5) is that for multivariate X and Y, the implementation
may require at least O(11°) operations. Recall that for univariate X and Y,
an O(n log n) algorithm exists, cf. Theorem 2.2. The proposed estimator
(Q, in Eq. 3.1) is the averaged distance covariances, after randomly
projecting X and Y to one-dimensional spaces, respectively. In this
section, we will study the asymptotic behavior of (. It turns out that
the analysis will be similar to the works in Section 4.2. The asymptotic
distribution of Q,, will differ in two cases: (1) the general case and (2) the
case when X and Y are independent.

As preparation for presenting the main result, we recall and
introduce some notations. Recall the definition of Q,;:

Q=1 KQ“‘)
n_EZ n >

k=1

where
Q¥ = C,C,Q, (U X,v,Y)

and constants C,,, Cq have been defined at the end of Section 1. By
Corollary 4.4, we have E[Q,Sk)] = Q,,, where E stands for the
expectation with respect to the random projection. Note that
from the work inSection 4.2, estimator Q¥ is a U-statistic. The
following equation reveals that estimator Q, is also a U-statistic,

(znz@fl Z S Zm WX, LY, 2 (4) Y R (X, Yy),

yeYy ye¥y

where

ha(Xy,Y,) ZC Cyhs (U Xy, VLY ).

We have seen that quantities h; and h, play significant roles in the
asymptotic behavior of statistic Q2,,. Let us define the counterpart
notations as follows:

h ((X1,Y1))

= Epaa[h (X1, Y1), (X5,Y3), (X5,Y3), (X4, Ya))] 2 —Zk A,

hy (X1, Y1), (X5, Y3))

= Bsa[ha (X1, Y1), (X2, Y2), (X5, Y3), (X4, Yi))] 2 —Zk Y,
(4.6)

where E, 3 4 stands for taking expectation over (X, Y5), (X5, Y3)
and (X, Y,); Es 4 stands for taking expectation over (X3, Y3) and
(X4 Yy); as well as the following:

h® = Bys s [C,Cohs (U Xy, viY )],
h(") Es4[CyCohs (U, Xy, .Y )]
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In the general case, we do not assume that X and Y are
independent. Let U = (u;, ..., ug) and V = (v, ..., vg) denote
the collection of random projections. We can write the variance of
Q,,as follows. The proof is an application of Lemma 4.7 and the law
of total covariance. We relegate it to the Supplementary Appendix.

Lemma 4.16. Suppose Eyy[Varxy (ﬁllU_, V)]>0 and
Var,,, (V* (u' X, v'Y)) > 0, then, the variance of Q,, is

_ 1 16 -
Var(Q,) = EVarW V(W' X, v'Y)) + —FEyy [Varxy (U, V)]
n

72 - 1
+?Eu)v [Varx)y (hle, V)] + O(;)

Equipped with the above lemma, we can summarize the
asymptotic properties in the following theorem. We state it
without proof as it is an immediate result from Lemma 4.16
as well as the contents in ([13], Chapter 5.5.1 Theorem A).

Theorem 4.17.  Suppose 0<Eyy [Varxy (h|U, V)] < o0,
Euyv[Varxy (hy|U,V)] < co. Also, let us assume that K — oo,
n — 0o, then we have

Q5 V(X Y).
And, the asymptotic distribution of Q, could differ under
different conditions.
1) If K — oo and K/n — 0, then

VK (Q, - VA (X, Y))2 N(0,Var,, V* @' X,V'Y))).

2) If n > oo and K/n — oo, then

Vi (Q, =V (X, Y))2 N(0,16Eyy [Varxy (b |U, V)]).
3) If n > oo and K/n — C, where C is some constant, then

Vn(Q, -V (X, Y))B N(O, éVarW V(U X, v'Y)) + 16Ey .y
[VW’X,Y (El U, V)D).

Since our main idea is to utilize Q, to approximate the
quantity Q,, it is of interest to compare the asymptotic
variance of Q, in Theorem 4.11 with the asymptotic variances
in the above theorem. We present some discussions in the
following remark.

Remark 4.18. Let us recall the asymptotic properties of Q,,
Va(Q, -V (X,Y))B N(0,16Var (hy)).

Then, we make the comparison in the following different
scenarios.

1) If K — oo and K/n — 0, then the convergence rate of Q, is
much slower than Q,, as K < n.

2) If n — oo and K/n — oo, then the convergence rate of Q, is the
same with , and their variances is also the same

Randomly Projected Distance Covariance

3) If n —» oo and K/n — C, where C is some constant, then the
convergence rate of (), is the same with (,, but the variance of
Q, is larger than that of Q,,.

Generally, when X is not independent of Y, ), is as good as ,,
in terms of convergence rate. However, in the independence test,
the convergence rate of test statistics under the null hypotheses is
of more interest. In the following context of this section, we will
show that O, has the same convergence rate with Q,, when X is
independent of Y.

Now, let us consider the case that X and Y are independent.
Similarly, by Lemma 4.10, we have

h(k) =0,k = 0,almost surely, and, Var (b)) =

And, by Lemma 4.1, we know that
V2(u' X, v'Y) = 0,Vu, v,
which implies
Var,,(V* (W' X,v'Y)) =

Therefore, we only need to consider Varyy (U, V). Suppose
(U, V) is given, a result in ([13], Chapter 5.5.2), together with
Lemma 4.16, indicates that nQ),, converges to a weighted sum of
(possibly infinitely many) independent y? random variables. The
proof can be found in the Supplementary Appendix.

Theorem 4.19If X and Y are independent, given the value of U= (up
., ug) and V = (v, ..., vg), the asymptotic distribution of ), is

n()n—) D ZXI(ZIZ -1)= ZX,Z? - Z/T,-,
i1 i=1 i=1
where Z? ~ X% iid, and

=)
00 K

Z (uLX, u;X)VZ(VLY, V;(,Y).

K

Eflu, (X = XHE[v, (Y - Y"1,

2
1
i=1

Remark 4.20. Let us recall that if X and Y are independent, the
asymptotic distribution of Q,, is

Ly Nz - .
i=1

Theorem 4.19. shows that under the null hypotheses, Q,, enjoys
the same convergence rate with Q,,.

There usually does not exist a close-form expression for
Y AZ: but we can approximate it with the Gamma
distribution whose first two moments matched. Thus, we have
that Y2, 1;.Z2? could be approximated by Gamma(e, f) with
probability density function.

ﬁa xa—le—ﬁx

,x>0,
T(a) x

where
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FIGURE 1 | Boxplots of estimators in Example 5.1: dimension of X and Y'is fixed to be p = g = 10; the result is based on 400 repeated experiments. In each subplot,
y-axis represents the value of distance covariance estimators.

00 72
&= 1 (Zi:lli) B= 1
2 ya 2

(4.7)

™M
I
>

See [14] Section 3 for an empirical justification on this Gamma
approximation. See [15] for a survey on different approximation
methods of the weighted sum of the chi-square distribution.

The following result shows that both Y2, A; and Z;fliiz could
be estimated from data, see appendix for the corresponding
justification.

Proposition 4.21. We can approximate Y A; and YA as
follows:

00 C C K
Ai ~ rP~q ak b’ ,
> ﬁﬁazvzuu

k=1

o2 K-1
DA = (X, )0, (Y, Y)

K
© >0, (U X, 1 X)Q, (WY, Y).

5 SIMULATIONS

Our numerical studies follow the works of [4,6,12]. In Section 5.1, we
study how the performance of the proposed estimator is influenced by
some parameters, including the sample size, the dimensionalities of

the data, as well as the number of random projections in our
algorithm. We also study and compare the computational
efficiency of the direct method and the proposed method in
Section 5.2. The comparison of the corresponding independence
test with other existing methods will be included in Section 5.3.

5.1 Impact of Sample Size, Data Dimensions

and the Number of Monte Carlo Iterations
In this part, we will use some synthetic data to study the impact of
sample size n, data dimensions (p, q) and the number of the
Monte Carlo iterations K on the convergence and test power of
our proposed test statistic (),,. The significance level is set to be
= 0.05. Each experiment is repeated for N = 400 times to get
reliable mean and variance of estimators.

In first two examples, we fix data dimensions p = g = 10 and let
the sample size n vary in 100, 500, 1000, 5000, 10000 and let the
number of the Monte Carlo iterations K vary in 10, 50, 100, 500,
and 1000. The data generation mechanism is described as follows,
and it generates independent variables.

Example 5.1. We generate random vectors X € R'” and Y € R’
Each entry X; follows Unif(0, 1), independently. Each entry
Y, = Ziz, where Z; follows Unif(0, 1), independently.

See Figure 1 for the boxplots of the outcomes of Example 5.1.
In each subfigure, we fix the Monte Carlo Iteration Number K and
let the number of observations n grow. It is worth noting that the
scale of each subfigure could be different to display the entire
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boxplots. This experiment shows that the estimator converges to
0 regardless of the number of the Monte Carlo iterations. It also
suggests that K = 50 Monte Carlo iterations should suffice in the
independent cases.

The following example is to study dependent variables.

Example 5.2. We generate random vectors X € R'’ and Y € R’
Each entry X; follows Unif(0, 1), independently. Let Y; denote the
i-th entry of Y. Welet Y} = X? and Y, = X2 The rest entry of Y,
Y, = Ziz, i=3, ..., 10, where Z; follows Unif(0, 1), independently.

See Figure 2 for the boxplots of the outcomes of Example
5.2. In each subfigure, we fix the number of the Monte Carlo
iterations K and let the number of observations n grow. This
example shows that if K is fixed, the variation of the estimator
remains regardless of the sample size n. In the dependent
cases, the number of the Monte Carlo iterations K plays a
more important role in estimator convergence than sample
size n.

The outcomes of Example 5.1 and 5.2 confirm the theoretical
results that the proposed estimator converges to 0 as sample size n
grows in the independent case, and converges to some nonzero
number as the number of the Monte Carlo iterations K grows in
the dependent case.

In the following two examples, we fix the sample size n = 2000
as we noticed that our method is more efficient than the direct
method when # is large. We fix the number of the Monte Carlo
iterations K = 50 and relax the restriction on the data dimensions
to allow p # g and let p, g vary in (10, 50, 100, 500, 1000). We
continue with an independent case as follows.

Example 5.3. We generate random vectors X € R and Y € R%.
Each entry of X follows Unif(0, 1), independently. Each entry
Y; = Z2, where Z; follows Unif(0, 1), independently.

See Figure 3 for the boxplots of the outcomes of Example 5.3.
In each subfigure, we fix the dimension of X and let the
dimension of Y grow. It is worth noting that the scale of
each subfigure could be different to display the entire
boxplots. It shows that the proposed estimator converges
fairly fast in independent cases regardless of the dimension
of the data.

The following presents a dependent case. In this case, only
a small number of entries in X and Y are dependent, which
means that the dependency structure between X and Y is low-
dimensional though X or Y could be of high dimensions.

Example 5.4. We generate random vectors X € R and Y € R%.
Each entry of X follows Unif(0, 1), independently. We let the first
5 entries of Y to be the square of the first 5 entries of X and let the
rest entries of Y to be the square of some independent Unif(0, 1)
random variables. Specifically, we let Y; = X?,i=1,...,5, and,
Yi=Z%i=6,...,q, where Zs are drawn independently from
Unif(0, 1).

See Figure 4 for the boxplots of the outcomes of Example 5.4.
In each subfigure, we fix the dimension of X and let the dimension
of Y grow. The test power of the proposed test against data
dimensions can be seen in Table 1. It is worth noting that when
the sample size is fixed, the test power of our method decays as the
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dimension of X and Y increase. We use the Direct Distance
Covariance (DDC) defined in Eq. 2.5 on the same data. As a
contrast, the test power of DDC is 1.000 even p = g = 1000. This
example raises a limitation of random projection: it may fail to
detect the low dimensional dependency in high dimensional data.
A possible remedy for this issue is performing dimension
reduction before applying the proposed method. We do not
research further along this direction since it is beyond the
scope of this paper.

5.2 Comparison With Direct Method

In this section, we would like to illustrate the computational and
space efficiency of the proposed method (RPDC). RPDC is
much faster than the direct method (DDC, Eq. 2.5) when the
sample size is large. It is worth noting that DDC is infeasible
when the sample size is too large as its space complexity is O(r°).
See Table 2 for a comparison of computing time (unit: second)
against the sample size n. This experiment is run on a laptop
(MacBook Pro Retina, 13-inch, Early 2015, 2.7 GHz Intel Core
i5, 8GB 1867MHz DDR3) with MATLAB R2016b
(9.1.0.441655).

5.3 Comparison With Other Independence

Tests

In this part, we compare the statistical test power of the
proposed test (RPDC) with Hilbert-Schmidt Independence
Criterion (HSIC) [4] as HSIC is gaining attention in machine
learning and statistics communities. In our experiments, a
Gaussian kernel with standard deviation ¢ = I is used for
HSIC. We also compare with Randomized Dependence
Coefficient (RDC) [16], which utilizes the technique of
random projection as we do. Two classical tests for
multivariate independence, which are described below, are
included in the comparison as well as Direct Distance
Covariance (DDC) defined in Eq. 2.5.

e Wilks Lambda (WL): the likelihood ratio test of hypotheses
%1, = 0 with g unknown is based on

det (S) _ det (822 - SleIIISn)
det (S;))det(S,) det(Sy)

where det(-) is the determinant, S, S;; and S,, denote the sample
covariances of (X, Y), X and Y, respectively, and S, is the sample
covariance Cov (X,Y). Under multivariate normality, the test
statistic

W=-n lOg det(I - 852182151711812)

has the Wilks Lambda distribution A(g, n — 1 — p, p), see [17].

e Puri-Sen (PS) statistics: [18], Chapter 8, proposed similar

tests based on more general sample dispersion matrices T. In

that test S, Sy, S;2 and Sy, are replaced by T, T;;, Ty and Ty,

where T could be a matrix of Spearman’s rank correlation
statistics. Then, the test statistic becomes

W = —nlogdet (I - T;ZITMTIIITIZ)
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result is based on 400 repeated experiments. In each subplot, y-axis represents the value of distance covariance estimators.

TABLE 1 | Test Power in Example 5.4: this result is based 400 repeated
experiments; the significance level is 0.05.

Dimension of X: p Dimension of Y: q

10 50 100 500 1000
10 1.0000 1.0000 1.0000 1.0000 0.9975
50 1.0000 1.0000 1.0000 0.7775 0.4650
100 1.0000 1.0000 0.9925 0.4875 0.1800
500 0.9950 0.8150 0.4425 0.1225 0.0975
1000 0.9900 0.4000 0.2125 0.0900 0.0475

The critical values of the Wilks Lambda (WL) and Puri-Sen
(PS) statistics are given by Bartlett’s approximation ([19], Section
5.3.2b): if n is large and p, q > 2, then

1
—(n -3+ 3))10g det(I - ;18,,5715,2)

has an approximation y°(pq) distribution.

The reference distributions of RDC and HSIC are
approximated by 200 permutations. And the reference
distributions of DDC and RPDC are approximated by Gamma
Distribution. The significance level is set to be a; = 0.05 and each
experiment is repeated for N = 400 times to get reliable type-I
error/test power.

We start with an example that (X, Y) is multivariate normal. In
this case, WL and PS are expected to be optimal as the
assumptions of these two classical tests are satisfied.
Surprisingly, DDC has comparable performance with the

TABLE 2 | Speed Comparison: Direct Distance Covariance vs. Randomly
Projected Distance Covariance.

Sample size Q, Qn

100 0.0043 (0.0047) 0.0207 (0.0037)
500 0.0210 (0.0066) 0.0770 (0.0086)
1000 0.0624 (0.0047) 0.1685 (0.0141)
2000 0.2349 (0.0133) 0.3568 (0.0169)
4000 0.9184 (0.0226) 0.7885 (0.0114)
8000 7.2067 (0.4669) 1.7797 (0.0311)
16000 - 3.7539 (0.0289)

This table is based on 100 repeated experiments, the dimension of X and Y is fixed to be
p = g = 10 and the number of Monte Carlo lterations in RPDC is K = 50. The number
outside of the brackets is the mean and the number inside of the brackets is the standard
deviation.

aforementioned two methods. RPDC can achieve satisfactory
performance when the sample size is reasonably large.

Example 5.5. We set the dimension of the data to be p = g = 10.
We generate random vectors X € R' and Y € R' from the
standard multivariate normal distribution N (0,1;p). The joint
distribution of (X, Y) is also normal and we have Cor(X;, Y;) =p, i
=1, ..., 10, and the rest correlation are all 0. We set the value of p
tobe 0 and 0.1 to represent independent and correlated scenarios,
respectively. The sample size n is set to be from 100 to 1500 with
an increment of 100.

Figure 5 plots the type-I error in subfigure (a) and test power in
subfigure (b) against sample size. In the independence case (p = 0.0),
the type-I error of each test is always around the significance level a
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FIGURE 6 | Test Power vs. Sample Size n in Example 5.6: significance level is as = 0.05; the result is based on N = 400 repeated experiments.

= 0.05, which implies the Gamma approximation works well for
asymptotic distributions. In the dependent case (p = 0.1), the overall
performance of RPDC is close to HSIC and RPDC outperforms
when the sample size is smaller and underperforms when the sample
size is larger. Unfortunately, RDC’s test power is insignificant.
Next, we compare those methods when (X, Y) is no longer
multivariate normal and the dependency between X and Y is non-
linear. We even add a noise term to compare their performance in
both low and high noise-to-signal ratio scenarios. In this case,
DDC and RPDC are much better than WL, PS, and RDC. The
performance of HSIC is close to DDC and RPDC when the noise
is low but much worse than those two when the noise is high.

Example 5.6. We set the dimension of data to be p = g = 10. We
generate random vector X € R'" from the standard multivariate
normal distribution N (0,1;p). Let the i-th entry of Y be
Y; = log(XiZ) +e€,i=1,...,q9, where are independent
random errors, €; ~ N (0,0%). We set the value of ¢ to be 1

>
€;S

and 3 to represent low and high noise ratios, respectively. In the &
= I case, the sample size n is from 100 to 1000 with an increment
20; and in the o = 3 case, the sample size # is from 100 to 4000
with an increment 100.

Figure 6 plots the test power of each test against sample size. In
both low and high noise cases, none of WL, PS, and RDC has any test
power. In the low noise case, all of RPDC, DDC, and HSIC have
satisfactory test power (> 0.9) when the sample size is greater than 300.
In the high noise case, RPDC and DDC could achieve more than 0.8 in
test power once the sample size is greater than 500 while the test power
of HSIC reaches 0.8 when the sample size is more than 2000.

In the following example, we generate the data similarly with
Example 5.6 but the difference is that the dependency is changing
over time. Specifically, X and Y are independent at the beginning
but they become dependent after some time point. Since all those
tests are invariant with the order of the observations, this
experiment simply means that only a proportion of
observations are dependent while the rest are not.
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Example 5.7. We set the dimension of data to be p = q = 10. We
generate random vector X, € R9¢t=1,...,n, from the
standard multivariate normal distribution A (0,1I;,). Let the i-th
entry of Y, be Y= log(th)i) +ent=1,...,T and
Yii= log(Xii) +e;t=T+1,...,n where Z; i.id. ~ N (0,1)
and ¢, ;s are independent random errors, €,; ~ N (0, 1). We set the
value of T to be 0.5n and 0.8n to represent early and late
dependency transition, respectively. In the early change case, the
sample size n is from 500 to 2000 with an increment 100; and in the
late change case, the sample size n is from 500 to 4000 with an
increment 100.

Figure 7 plots the test power of each test against sample size. In
both early and late change cases, none of WL, PS, and RDC has any
test power. In the early change case, all of RPDC, DDC, and HSIC
have satisfactory test power (> 0.9) when the sample size is greater
than 1500. In the late change case, DDC and HSIC could achieve
more than 0.8 in test power once sample size reaches 4000 while the
test power of RPDC is only 0.6 when the sample size is 4000. As
expected, the performance of DDC is better than RPDC in both cases
and the performance of HSIC is between DDC and RPDC.

Remark 5.8. The examples in this subsection show that though
RPDC underperforms DDC when the sample size is relatively
small, RPDC could achieve the same test power with DDC when
the sample size is sufficiently large. Thus, when the sample size is
large enough, RPDC is superior to DDC because of its
computational efficiency in both time and space.

6 DISCUSSIONS

6.1 A Discussion on the Computational
Efficiency
We compare the computational efficiency of the proposed
method (RPDC) and the direct method (DDC) in Section 5.2.
We will discuss this issue here.

As X € R? and Y € R? are multivariate random variables, the
effect of p and q on computing time could be significant when p

4000 |
3500

WVAS

& 3000 | \
2500
2000 |
1500 -
1000 -

Break-Even Sample

500 r

200 300 400
Data Dimension

100 500

FIGURE 8 | Break-Even Sample Size n, against Data Dimension p + q.
This figure is based on 100 repeated experiments.

and ¢ are not negligible compared to sample size n. Now, we
analyze the computational efficiency of DDC and RPDC by
taking p and g into consideration. The computational
complexity of DDC becomes O(nz(p + ¢q)) and that of RPDC
becomes O(nK(log n + p + q)). Let us denote the total number of
operations in DDC by O; and that in RPDC by O,. Then, there
exist constants L; and L, such that

O, =~ Lin? (p+q),and O, = LynK (logn + p + q).

There is no doubt that O, will eventually be much less than O; as
sample size n grows. Due to the complexity of the fast algorithm,
we expect L, > L;, which means the computing time of RPDC is
even larger than DDC when the sample size is relatively small.
Then, we need to study an interesting problem: what is the break-
even point in terms of sample size # when RPDC and DDC have
the same computing time?

Let ny = ny(p + g, K) denote the break-even point, which is a
function of p + g and number of Monte Carlo iterations K. For
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simplicity, we fix K = 50 since 50 iterations could achieve
satisfactory test power as we showed in Example 5.4. Then, n,
becomes a function solely depending on p + g. Since it is hard to
derive the close form of #,, we derive it numerically instead. For
fixed p + g, we let the sample size vary and record the difference
between the running time of the two methods. Then, we fit the
difference of running time against sample size with a smoothing
spline. The root of this spline is the numerical value of ny at p + g.

We plot the n, against p + g in Figure 8. As the figure shows,
the break-even sample size decreases as the data dimension
increases, which implies that our proposed method is more
advantageous than the direct method when random variables
are of high dimension. However, as shown in Example 5.4, the
random projection-based method does not perform well when
high dimensional data have a low dimensional dependency
structure. We should be cautious to use the proposed method
when the dimension is high.

6.2 Connections With Existing Literature

It turns out that distance-based methods are not the only choices
in independence tests. See [20] and the references therein to see
alternatives.

Our proposed method utilizes random projections, which
bears a similarity with the randomized feature mapping
strategy [21] that was developed in the machine learning
community. Such an approach has been proven to be effective
in kernel-related methods [22-26]. However, a closer
examination will reveal the following difference: most of the
aforementioned work is rooted in the Bochner’s theorem [27]
from harmonic analysis, which states that a continuous kernel in
the Euclidean space is positive definite if and only if the kernel
function is the Fourier transform of a non-negative measure. In
this paper, we will deal with the distance function which is not a
positive definite kernel. We will manage to derive a counterpart to
the randomized feature mapping, which was the influential idea
that has been used in [21].

Random projections have been used in [28] to develop a
powerful two-sample test in high dimensions. They derived an
asymptotic power function for their proposed test, and then
provide sufficient conditions for their test to achieve greater
power than other state-of-the-art tests. They then used the
receiver operating characteristic (ROC) curves (that are
generated from simulated data) to evaluate its performance
against competing tests. The derivation of the asymptotic
relative efficiency (ARE) is of its own interests. Despite the
usage of random projection, the details of their methodology
are very different from the one that is studied in the present paper.

Several distribution-free tests that are based on sample space
partitions were suggested in [29] for univariate random variables.
They proved that all suggested tests are consistent and showed the
connection between their tests and the mutual information (MI).
Most importantly, they derived fast (polynomial-time)
algorithms, which are essential for large sample size, since the
computational complexity of the naive algorithm is exponential
in sample size. Efficient implementations of all statistics and tests
described in the aforementioned paper are available in the R
package HHG, which can be freely downloaded from the

Randomly Projected Distance Covariance

Comprehensive R Archive Network, http://cran.r-project.org/.
Null tables can be downloaded from the first author’s website.

Distance-based independence/dependence measurements
sometimes have been utilized in performing a greedy feature
selection, often via dependence maximization [8,30,31], and it
has been effective on some real-world datasets. This paper simply
mentions such a potential research line, without pursuing it.

Paper [32] derives an efficient approach to compute for the
conditional distance correlations. We noted that there are strong
resemblances between the distance covariances and its
conditional version. The search for a potential extension of the
work in this paper to conditional distance correlation can be a
meaningful future topic of research.

Paper [33] provides some important insights into the power of
distance covariance for multivariate data. In particular, they
discover that distance-based independence tests have limiting
power under some less common circumstances. As a remedy,
they propose tests based on an aggregation of marginal sample
distance and extend their approach to those based on Hilbert-
Schmidt covariance and marginal distance/Hilbert-Schmidt
covariance. It could be another interesting research direction
but beyond the scope of this paper.

7 CONCLUSION

A significant contribution of this paper is we demonstrated that
the multivariate variables in the independence tests need not
imply the higher-order computational desideratum of the
distance-based methods.

Distance-based methods are important statistics,
particularly in the test of independence. When the random
variables are univariate, efficient numerical algorithms exist. It
is an open question when the random variables are multivariate.
This paper studies the random projection approach to tackle the
above problem. It first turns the multivariate calculation problem
into univariate calculation one via a random projection. Then
they study how the average of those statistics out of the projected
(therefore univariate) samples can approximate the distance-
based statistics that were intended to use. Theoretical analysis
was carried out, which shows that the loss of asymptotic efficiency
(in the form of the asymptotic variance of the test statistics) is
likely insignificant. The new method can be numerically much
more efficient, when the sample size is large, which is well-
expected under this information (or big-date) era. Simulation
studies validate the theoretical statements. The theoretical
analysis takes advantage of some newly available results, such
as the equivalence of the distance-based methods with the
reproducible kernel Hilbert spaces [12]. The numerical
methods utilize a recently appeared algorithm in [8].
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