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1 PROOFS REGARDING ANALYTICAL
SOLUTIONS (SECTION 3.1)

In this section we justify the formulas for the solutions to the
problems in Section 3.1. Essential to these computations is the
obstacle problem. For flat geometries or for general M but with a
sufficiently small, the solution to problem (3) is the same as the
solution to the obstacle problem with obstacle given by d(x, E). The
obstacle problem in this case takes the form

Minimize, a&(u) — /M u(x) dVol(x)

subject to  u(x) < d(x,E) for all x € M. 1)

The equivalence between this problem and problem (3) is a classical
fact in the case where M is an open domain of R” and E = dM, in this
classical setting problem (3) is known as the elastic-plastic torsion
problems. The equivalence in the situation M is a Riemannian
manifold is a more recent result and can be found in [Générau et
al . 2022].In the general Riemannian case the equivalence between
problem (3) and the obstacle problem might not hold for all values
of a, but it will hold for all a smaller than some ay = ag(M).

1.1 Analytical solution for the circle

We now prove the formula for the solution to the minimization
problem in the case of M = S! (Section 3.1). Recall that in Section
3.1 we have identified S! with the real numbers modulo 2.
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We claimed the solution where the source point is at x = 0 is
given by the formula

X ifo<x<L
ug(x) = n—%a—%(f—n)z ifL<x<2r-1L (5)
2 — % ifx>L

(recall x is the unique representative of x in the interval [0, 27)
modulo 27), where L(«a) is given by

L(a) = (7 = a)+. (6)
We are going to show the function u, is a solution to the obstacle
problem (S1), which in this case reduces to

o 2 2
Minimize,, afo T2 dx — fo " u(x) dx

S2
subject to  u(x) < d(x,0) for all x € [0, 27] (52

The function d(x, 0) for x € [0, 2x] is equal to

d(x,0) = min{|x|, |x - 27|} = 7 — |x — x|.
The classical theory for the obstacle problem (see [Petrosyan et al.
2012]) says that if a function u is of class C!'! in the entire domain

(i.e. its gradient is Lipschitz continuous), is of class C? in the interior
of {u < d(x,0)}, and solves

au’’ +1 > 0 in the sense of distributions,
au’’ +1 = 0 in the interior of {u < d(x,0)},

then that function u will be the solution to the obstacle problem
(S2). Let us verify this in our current example. First, by direct com-
putation we can see u has a continuous derivative in (0, 27), and

1 ifo<x<L
u'(x)=1 -1(x-n) ifL<t<2r-L (S3)
-1 ifx>1L

We emphasize this function is continuous even at x = L, 27 — L.
Next, this function is twice differentiable away from x = L, 27 — L
and in particular it is twice differentiable in the set {u < d(x,0)} =
(L, 2 — L). We have

0 ifo<x<L
u(x)={ -2 ifL<t<or-L (S4)
0 ifx>1L
This shows that au” +1 = 0 in {u < d(x,0)}. Lastly, since u is
differentiable everywhere this means that as a measure the func-
tion v’ is equal to —(1/a) x(,2x-1) (%), x denoting the indicator
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function. It follows that au’’ + 1 > 0 in the sense of distributions.
This proves that u is indeed the solution to the obstacle problem,
and in turn, of problem (3) in the case M = S! and E = {0}.

That is, the function ug is of class C2 away fromx = L,27x — L
and u); is continuous everywhere except at L, 2z — L. From here
follows that au]; + 1 is well defined as a measure, and that always
> 0 and is exactly zero in the interval (L, 2z — L). This shows that
Ug solves

min{au), +1, (7 — |x = x|) —ug} = 0.

Lastly, we prove the function u,(x, y) is indeed a metric.

1.2 Proof that u,(x,y) is a metric in S!

By definition, we have uy (x,y) = uy(x —y) where uy (x) is as in (5).
From here follows that uy (x, y) > 0 for all x, y, since the function
in (5) is non-negative. Moreover, the function in (5) only vanishes
at x equal to an integer multiple of 27 (since in that case £ = 0, per
the definition of x), therefore u, (x, y) = 0 only if x — y is a multiple
of 27, i.e. only if x and y correspond to the same point in S!.

To prove symmetry, simply observe that in (5) we have uy(x) =
(=), 50 g (x — ) = 11y - ).

It remains to show u, (x, y) satisfies the triangle inequality. That
is, we have to prove that for any x, y, z we have

ug(x —y) < ug(x —2) +ua(z - y).

By translation invariance (i.e. by symmetry) we may assume with-
out loss of generality that z = 0. Then, all we have to prove is that
for all x, y we have

Ug (x = y) < ug(x) +ug(-y).
Now, fix y and consider the function

0(x) 1= tta (x — y) - Ua(-y).
What we want to prove amounts to the inequality v(x) < ug/(x).
The function v(x) satisfies the inequality

v(x) < d(x,0), forallx,
as well as the differential inequality
av” +120.

One well known characterization of the function u, (x) is that it is
the largest function having these two properties. In this case we
conclude that uy (x) > v(x), and the triangle inequality is proved.

1.3 Analytical solution for the disk

To illustrate how our method handles other choices for the source
set E, we take the flat 2D disk and consider the regularized distance
to the boundary of the disk.

Using polar coordinates, we take E = {(r, 0)|r = R}, and mini-

mize
a R 21 R 21
—/ / [Vu(r, )] d@dr—/ / u(r,0)r dodr
2Jo Jo o Jo

with the constraints
u(R,0) < 0forall 0 € [0,2r], and
|[Vu(r,0)] < 1forallr € [0,R),0 € [0,2r].

In this case, the solution is:

a=0.00 a=0.05 a=0.10

a=0.25

|V » ‘

Figure 1: The analytical solution for the regularized geodesic
distance using the Dirichlet regularizer on the disk (top).
We also display the gradient norm, |Vu| (bottom). Note the
different smoothing regions, whose width depends on «.

if |x| < 2a
if 2a < |x|] <R

—ﬁ|x|2+R—a

R— |x| (S5)

Ug(x) = {
To prove this formula, we proceed similarly to the case of S!.
This function is of class CL1, first note that its gradient is given by

1 .
—s=x if |x] < 2a

— 20
Vg (x) = { ~& if2a<|x| <R

and this vector-valued function is continuous across |x| = 2« (in
fact, it is Lipscthiz continuous). Moreover, for the Laplacian of u,
we have

1 .
B = if|x] < 2a
Ay (x) = { L ifoa < x| <R

1
|x

Accordingly, aAugy + 1 > 0 everywhere in the disk {|x| < R} and
alug + 1 = 0 exactly when u, < d(x,E) = R — |x|. From here we
conclude that the function u, given by (S5) is the solution.

Figure 1 shows the behavior of the function on the disk. Observe
that as in the case of the circle, the solution has two regimes, one
where it matches the distance function exactly, and one where it
solves Poisson’s equation Au = —1/a. In this case, this results in
the cone singularity being replaced by a concave quadratic function
that is differentiable and only has a discontinuity in its second
derivative.

2 EXISTENCE AND UNIQUENESS OF THE
MINIMIZER (SECTION 3)

In our results, M is a compact C*° submanifold of N-dimensional

Euclidean space R, from where it inherits its Riemannian structure.

The function F(, x), F : RN xRN — R is assumed of class C! in

(&, x). We make two further structural assumptions on F:

1) There are p > 1 and ¢y, Cy positive such that

colélP < F(&x) < ColélP, Vx,£eRN

2) The function F is strictly convex in the first argument. This is
meant in the following sense: given vectors ¢; # & and s € (0,1)
then we have the strict inequality for all x

F((1—s)é +séx,x) < (1 —5s)F(&1,x) + sF(&,x).
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From these assumptions follows in particular that F(& x) > 0 for
all £ and x, and F(§x) = 0 only if £ = 0. Observe that these
assumptions include all F’s of the forms

F(£ x) = |A(x)&lP

where p > 1 and A(x) is a smooth positive definite matrix whose
eigenvalues are uniformly bounded away from zero and infinity.
Now we prove the existence and uniqueness for the general min-
imization problem. The problem (see problem (3)) is a constrained
minimization problem in the Sobolev space W (M).

Minimize,, anF(Vu, x) dVol(x) — fM u dVol(x)
subjectto  u € WL (M)
|Vu(x)| < 1forallx e M\ E
u(x) <0forallx € E.

®)

The space W2 (M) (1 < p < o) is defined as follows

WP (M) = {u MR | Vu exists as a distribution }

fM [ulP + |Vu|?P dx < oo

Here, E C M is a non-empty closed subset of M. For us, the case
of chief interest is when E = {x} for a given xo € M.
In what follows, we will denote the objective functional by J,

Jo(u) == aAAF(Vu, x) dVol(x) — ‘/Mu dvol(x)

We now prove the existence and uniqueness first theorem stated
in Section 3.

THEOREM 3.1. There is a unique minimizer for problem (3).

Proor. Consider a minimizing sequence {uy }r. First, we claim
that without loss of generality, we can assume that for each k,

max uy > 0. S7
1ax (S7)

Indeed, if for some kg we had Uy, is non-positive in all of M, it
would follow that

Jae(ug,) 2 0= Ju(0).

Thus the minimizing sequence will remain a minimizing sequence
if we replace every non-positive element of the sequence with the
zero function.

Henceforth, we assume our sequence uy is such that (S7) holds
for all k. In this case, as the uy are all 1-Lipschitz, it follows that

up(x) > max ug(x) — diam(M) > —diam(M) for all k.

A similar argument—using that maxeg ug (x) < 0for all k—provides
the inequality in the opposite direction. In conclusion,

llugll Lo ary < diam(M) for all k.

It follows that the sequence {uy} is 1-Lipschitz and uniformly
bounded. Then, by the Arzela-Ascoli theorem there is a subsequence

ul’c and a function u, in M such that

||u;C = i|lpo(p) — 0ask — oo

Moreover, without loss of generality (we can always pass to another
subsequence where this holds)) we also have

Vi — Vu, in weak-LP (M).
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In particular,

1151‘/Mu]'((x) dVol(x) = ‘/Mu*(x) dVol(x).

In this case, due to the weak convergence of Vu,, as well as the
convexity of F in the first argument and its two-sided pointwise
bounds, we conclude that

lim inf/ F(Vuy, x)dVol(x) > / F(Vu,, x)dVol(x)
k M M
Putting everything together, we ahve shown that
limkinf]a(u]’() > Jo(us).

Since the 1-Lipschitz constraint as well as the constraint ug (x) < 0
for all x € E are preserved by the uniform convergence, it follows
that u, is admissible. Moreover, the last liminf inequality says u.
achieves the minimum of J, among all admissible functions, so u.
is a minimizer for the problem.

The uniqueness follows from the strict convexity through a stan-
dard argument, which we review for completeness: suppose there
are two separate minimizers ug and u;. For each s € [0,1] let

us = (1 —s)ug + suy.
From the convexity assumption on F we know that
F(Vus,x) < (1 =5)F(Vug, x) + sF(Vuq, x).
In terms of the functional, this gives us

Ja(us) < (1= 5)Ja(uo) + Jor(u1)
by merely integrating the pointwise inequality, and at the same
time
Ja(us) = (1= 5)Jo(uo) + Jor(u1)
Since ug and u; are minimizers and us is admissible for every s €
[0, 1]. This can only happen if
F(Vus,x) = (1 = s)F(Vug, x) + sF(Vuy,x) Vx € M,
and by the assumption, this can only happen if Vug = Vuy at every

x. As up and u1 have to agree at least at one point, xo, this means
that ug = uy. ]

3 CONVERGENCE TO THE GEODESIC
DISTANCE (SECTION 3)

In this section we prove the convergence theorem from Section 3.

THEOREM 3.2. The functions ug converge uniformly tod(-, E),

lug —d (-, E)||p> — 0 asa — ot.

ProoF. We make use of an elementary but often used fact in
nonlinear PDE that says that compactness plus uniqueness of the
limiting points of a sequence in turn guarantees convergence of
the whole sequence.! Concretely, and in two parts, we are going
to show 1) that given any sequence a; — 0% we can pass to a
subsequence al’( which converges uniformly to some function u.

lluay = vl (m) — 0 ask — oo,

Lif the sequence failed to converge as whole, there would be some § > 0 an infinite
subsequence such that Ugl stays a distance at least J from d(x, x¢), leading to a

contradiction
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and subsequently that 2) whatever function u. is obtained as one
of these limits will have to be a minimizer for problem (1). Since
that problem has as its unique solution, then u, = d(x, xp) for all
such subsequences.

Indeed, first, note that the 1-Lipschitz constraint and the fact
that ug, (x9) = 0 for all k implies that the sequence ug, lies in a
compact subset of C(M). Therefore, there is a subsequence a]'c and
a 1-Lipschitz function u, € C(M) such that

Ug) = Us uniformly in M.

Now, let ¢ : M — R be a 1-Lipschitz function such that ¢(xp) < 0.

Since ¢ is admissible for (3) for every a/, it follows that

—/ g dVol(x) Sa];/ F(Vua«,x)dVol(x)—/ U, dx
Mk M k Mk
Sa]'c‘/ F(Vd),x)dVol(x)—/ ¢ dx.
M M

On the other hand, by the 1-Lipschitz constraint

/ F(V¢,x)dVol(x) < CVol(M).
M

This means in particular that
- / u,dVol(x) = lim / u, dVol(x)
M k Jm Tk

Sli/zn{a,’(/MF(V¢,x)dVol(x)—/M¢ dx}
= —/ ¢d(x) dx.
M

This shows that u solves the minimization problem (1), and this
problem has a known solution, so us = d(, E). In summary we have
shown that given any sequence oy — 0 there is a subsequence 0(]’<
such that Ug = d(-, E) uniformly in M, finishing the proof. = O

4 ANALYTICAL SOLUTION FOR THE HESSIAN
REGULARIZER IN 1D (HESSIAN
REGULARIZER, SECTION 4.2)

In 1D, the Hessian energy is the same as the bilaplacian energy,
and the optimization problem is:

Minimize, £ [ [u” (x)? dx — [7 u(x) dx
|’ (x)| < 1forall x € (0,27)
u(0) < 0.

subject to

The minimizer u(x) is (for x € [0, 27]):

x fo<x<rm-c
1 4 _ c? 2
m(x—-n)*—-=(x-nx .
u(x) = 24a( 5)04 4a( ) fr—c<x<m+c
+7'[—C+m ‘
21— x ifx>nm+c¢

where ¢ = V3a.
Note that the function and smoothing region are different than
the ones in the Dirichlet regularizer case.

5 EXISTENCE AND UNIQUENESS OF A
MINIMIZER (PRODUCT MANIFOLD
FORMULATION, SECTION 6)

In Section 6 we introduced the following problem.

Minimize  a8&nxm(U) = [i5 05 U ) dVol(x, 1)
subjectto U € Wh2(M x M)
IViU(x,y)| < 1in{(x,y) | x #y} (12)
IV2U(xy)l < Tin {(x,y) | x #y}
Ux,y) <0on{(xy) | x=y}

THEOREM 6.1. There is a unique minimizer in problem (12).

Proor. At the big picture level this proof is basically the same
as that of existence and uniqueness of a minimizer for problem (3).
We only highlight the points where things are different.

Therefore, take a minimizing sequence Uy. Arguing similarly as
before we can assume without loss of generality that

max U > 0 for all k.
MxM

Now, Uy, is 1-Lipschitz in each variable x and y, separately, so, if for
some k (xp, yo) is a point where Uy (xo, yo) > 0, then for all other
(x,y) we have
U (x,y) = Uk (x, y0) = d(y,y0)
2 Uy (x0,y0) — d(x, x0) = d(y,y0)
> Ug(x0,yo) — 2diam(M).

On the other hand, since Ui (x,x) < 0 for all x and y, we have,
using the 1-Lipschtz condition in the first variable

Uk (. y) < Ug(x,x) +d(x,y)
<d(x,y) < diam(M).
Putting all this together we have
1Uk Iz (ar) < 2diam(M) for all k.
This means our sequence {Uy }. is uniformly bounded and equicon-
tinuous (in fact, uniformly Lipschitz) in the compact space M x M.
By the Arzela-Ascoli theorem, there is a subsequence U]é and a

function U in M X M such that Uy converges uniformly to Us. In
particular, this function Uy will be Lipschitz and the inequalities

ViU« (x,y)| < 1and |VoUs(x, y)|

hold for a.e. (x,y) € M X M. Moreover, U, (x,x) < 0 for all x € M.
This shows that U, is admissible for problem (12). At the same time,
the uniform convergence of the Uy and the compactness of M X M
imply that

lim/ U, (x,y)dVol(x,y) = / Us (x, y)dVol(x, y).
k JMxm MxM
Lastly, passing to another subsequence Ulé' if needed, we have

liminf/ VLU |? + VU |2 dVol(x, y)
k MxM

2/ |V1Ux|? + |V2Us |2 dVol (x, ).
MxXM

From here it follows that U, is a minimizer for problem (12).
Uniqueness is proved again making use of the convexity of the
functional.
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O

A consequence of the uniqueness theorem is the symmetry of
the minimizers Uy,:

THEOREM 6.2. The function Uy (x,y) is symmetric in x and y.

Proor. This is a direct consequence of the uniqueness of the
minimizer to problem (12) as well as the symmetry of the under the
transformation (x,y) — (y, x). Indeed, given « define the function

va(%,y) = Ua(y, X),
Then it is clear that # is still admissible for problem (12) and

Entnt (Ug) / Ua(x,y) dVol(x, )
MxM

~aBau(e) - [ oy dvol(y),
MxM
so that ¢ also achieves the minimum of problem (12). Since there is
only one minimizer, ¢ = U, and the lemma follows. ]

6 CONVERGENCE TO THE FULL GEODESIC
DISTANCE (PRODUCT MANIFOLD
FORMULATION, SECTION 6)

In this section we will make use of the following characterization
of the geodesic distance function d(x, y).

Minimize —/Mva(x, y) dVol(x, y)

subjectto  |Vio(x,y)| < 1in{(x,y) | x #y}
IVoo(x,y)l < 1in{(x,y) | x #y}
v(xy) <0on{(xy) | x=y}

(S8)

The problem (S8) clearly resembles problem (12). Accordingly, the
proof Theorem 6.3 (just as the proof of Theorem 3.2, Supplemental
3) will consist in using compactness and show all limit points of
the sequence U, as « — 0 have to be just d(x, y).

THEOREM 6.1. Asa — 0, we have
ld(x, y) = Ua (x, )l (Mxcrr) — O

ProoF. Let o — 0 be any sequence. The sequence {Uy, } is
uniformly Lipschitz, accordingly, there is a subsequence {Ug, }x
and a function Us(x, y) such that U,;k — Uy uniformly in M X M
as k — co. We are going to show U must be the geodesic distance.

Indeed, let ®(x,y) — R be any smooth admissible function for
problem (12). Then, for any @ > 0 we have

- / Uy, (x,y) dVol(x, y)
MxM
< . Emxm(Uy,) —/ Ug, (x,y) dVol(x, y)
MxM

< @l sEpam(®) - /M Gy Vol ).
X

Taking the limit ocl'C — 0 with the last inequality, it follows that

—/ Us(x,y) dVol(x, y)
MxM

< —/ @(x,y) dVol(x,y).
MxM
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Figure 2: Non-quadratic regularizer example. We compare
the results between the quadratic Dirichlet energy (left) to
using the squared L, norm on two meshes with different
orientations (right). See the text for details.

Since ® is an arbitrary admissible function, it follows that U, =
d(x,y). This proves that Uy converges uniformly to d(x,y), and
in turn, by the same argument as in the proof of Theorem 3.2
(Supplemental 3) that U, — d(x,y) as « — 0. O

7 NON-QUADRATIC REGULARIZERS

The functional F(¢, x) used for the regularizer term in the mini-
mization problem (3) allows for quite general norms or powers of
norms. Using a non-isotropic norm from the ambient space, one
obtains F’s that have no dependence on x but manifest behavior
that is sensitive to the position and orientation of M. We illustrate
this with some numerical experiments with

F(&x) = €%, (S9)

which satisfies all of the assumptions for Theorems 3.1 and 3.2 (as
discussed at the start of Supplemental 2). Although (S9) involves a
square, it is different from a quadratic polynomial on the entries
of & In fact, F in (S9) is not differentiable for all &, this can be
seen by writing F in terms of the components of the vector &, if

& = (&, &, &) then
l1€]leo = max{£?, £2, £2}.

This is a convex function of (&1, &, &), it is smooth in the open set
{I&] # |&;]if i # j}, but it is not differentiable along the boundary
of this set.

In Fig. 2, we see how the regularized geodesics with & using (S9)
look like for different orientations. Observe the anisotropic effects
as the pipe is rotated as well as the flatter level curves.

8 DISTANCES TO A FIXED SOURCE ADMM
DERIVATION (SECTION 5.4)

In Section 5.4 we present the augmented Lagrangian used to derive
the ADMM algorithm.
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L(u,y,z) = —AT u+ 4% uTWu+ Z x(lzpl < D+
feF

pVA
D apyf(Guyp —z) + == 3" agl(Gu)y — 2,
feF fer

where ay is the area of the face f, p € R is the penalty parameter,

and y € R3™ is the dual variable or Lagrange multiplier.

The ADMM algorithm iterates between three stages [Boyd et
al. 2011, Section 3]: u-minimization, z-minimization, and updating
the dual variable. Where using this formulation, both u and z have
closed-form solutions.

The ADMM algorithm alternates between these three steps:

(1) uk+l = [aW +p\/ZWD]_1 [Aq — Dyk + p\/ZDzk]

k+1 — proi( 1,k k+1 3
(2) zg —PrOJ(p\ayf+ (Gu™)f,B°) forall fedF

(3) yk+1 — yk +p\/Z(Guk+1 _ Zk+1),
where Proj(zy € R3,B3) is equal to zp/lzgl if |zg| > 1, and zf
otherwise.

We consider our algorithms to have converged when || k|| < epri

k | < ed““l, where ¥ and s¥ are the primal and dual residuals,

and ||s
resp. And eP", e?4@! are the primal and dual feasibility tolerances,
resp. These quantities can be computed as follows:
k= MGk
sk = pD(Zk _ Zk—l)
el = V3me®s A + el VAmax (|| MpGuF|, [ MyzzF )
edual — \/ﬁeabsA_'_ erel\/Z”Dy”.

In all our experiments, we set eabs = 5.1076 ¢l = 1072, and
p = 2. We define p, the residuals and feasibility tolerances such
that they are scale-invariance, as explained in Section 7.1.

In addition, to accelerate the convergence, we also use the vary-
ing penalty parameter and over-relaxation, exactly as described in
[Boyd et al. 2011, Sections 3.4.1, 3.4.3].

9 SYMMETRIC ALL-PAIRS ADMM
DERIVATION (SECTION 6.2)

Our discrete optimization problem, as introduced in Section 6.2, is:
Minimizey —AL,UAy +

1aTr (M(V (UTWHU + UWDUT))

subjectto  |(VU(;y)pl <1 forall feF,ieV
(VU(j))gl <1 forall feF,jeV
Ui <0 foralli € V,

where X; ; denotes the (i, j)-th element of a matrix X, X(; .) denotes
the i-th row, and X, 0 the j-th column.

Our derivation is based on the consensus problem [Boyd et al .
2011, Section 7], where we split U into two variables X, R € R™*"
to represent the gradient along the columns and rows, and use a
consensus auxiliary variable U € R™*" to ensure consistency. We
also add two auxiliary variables Z,Q € R3™*" representing the
gradients along the columns and rows, i.e., GX, GR. We enforce
the diagonal constraint on the consensus variable U to avoid solv-
ing huge linear systems. This leads to the following optimization
problem:

Minimizeyy —3A%, XAy — AT, RAq +
1aTr (My (XTWpX + RTWDR)) +
D a1+
feFieV
20T xUQeayyl < 1)
feFieV

subjectto  (GX{. ,))f = (Z(,’i))f forall fe F,ieV

(GRq. 1))f (Q(.!i))f forall fe F,ieV
X =
X= U
R=UT
Uii <0 foralli eV
U >0,

where y(Z(_;))fl < 1) =0 if Z( ;)¢ > 1 and 0 otherwise.
The corresponding augmented Lagrangian is:

LU,Y,Z) =-3Al XAy - AL RAy +
LaTr My (XTWDX+RTWDR))
Z x((Zafl < 1)+

feFieV

D xUQeafl < D+

feFieV
Tr (M(V (YTM#(GX - Z) + STM#(GR - Q))) +
( (6X - 2) Mr(GX - Z)) +
(Mq, (GR- Q)" M#(GR- Q) +
Tr (HT (X - U)My ) +Tr (KT (R - UT) Moy ) +
Tr (HT (X - U)My ) +
LT (X = U) Moy (X = U) Moy ) +
AT (R - UT) Moy (R-UT) My ),
where py, p2 € R are the penalty parameters, and Y,$ € R3™X",
H,K € R™" are the dual variables.
The ADMM algorithm for this optimization problem consists of
three stages. In the first stage, we optimize for Z, R. In the second
step, we minimize the auxiliary variables Z, Q, U. Finally, in the

third step, we update the dual variables added in the augmented
Lagrangian.

1)

-1
Xkt = ((Of +p1VAYWD + ps VA‘IM(V)
T afg— k
(A AL M7} -DYF +
p1VAVADZK — My H + py VA=1Maq, UF)

-1
RE = (@ + pr VAWD + po VA My )
1 T -1 k
(fAyAl M7} - DSk +
p1VADQK — My K¥ + ppy VA=IMq, UKT)
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@ (Z{H)yp =
: 1 k k+1 3 :
Proj (;n_VK(Y(‘,i))f + (GX(',i))f,B ) forallieV,feF
k+1y
Qs =

: 1 k k+1 3 .
Proj (pl_\/z(s(‘si))f-'- (GR(:rl.))f,B ) forallieV, feF

ko kT k+1, pkT
Uk+1 = max H*+K X*14R .0
2pVAT | 2

Ul.ki+1 =0 forall i eV

(3) Yk+1 — Yk +p1\/Z(GXk+1 _ Zk+1)
Sgk+1 — gk +p1\/Z(GRk+1 _ Qk+1)
Hk+1 — Hk +p2\/F(Xk+1 _ Uk+1)
Kk+1 = gk +p2\/F(Rk+l _ UkT)

Similarly to Section 5.4, the first steps include solving a linear
system with the same coefficient matrix, which can be pre-factored
to accelerate the computation.

We consider our algorithms to have converged when || k|| < efri
and ||s¥|| < edual
resp. And P’ 444l gre the primal and dual feasibility tolerances,
resp. These quantities can be computed as follows:

, where rk and sk are the primal and dual residuals,

Sk — pD(Zk _ Zk—l)
" = \3me®S A + € 'max (|| MgGuF |, ||[yMzzF )
— \/ﬁeabsAZ +6rell|\/M_TDY||

and equivalently for R, Q, S. The residuals for the consensus part
are as follows:

}’: = My (X* - UF) My
o= M (RF = UTky) My,
& = paMoy (UF - UK My

™ = \ne®s + erelmax (|| My XK Mey ||, ||/ Mgzk /Moy Moy UX Moy |

b7 = Ve VAD + erelmax(|| Moy R My |, 1Moy UTE Moy )

rel
edual = \neS A + S5 (|YMy Hy My || + |IVMy KMy ).

We set €05 = 1076, ¢! = 2.10"% and p; = py = 2 in all our
experiments. Note that both the penalty variables, the residuals
and feasibility thresholds are defined to be scale-invariance , as
explained in section 7.1.

In addition, to accelerate the convergence, we also use the vary-
ing penalty parameter and over-relaxation, exactly as described in
[Boyd et al. 2011, Sections 3.4.1, 3.4.3].

10 ADDITIONAL RESULTS
10.1 Additional examples

Figure 3 shows more examples of our fixed source (Alg. 1) method
for the meshes in Table 1, Section 5.4.
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Table 1: Timings in seconds for the All-Pairs distance compu-
tation on the cat model, |7| = 3898, Figure 10 (main paper).

Heat - Symmetrized | Fixed-Source - Symmetrized | All-Pairs

[sec] [sec] [sec]
(a) 0.77 101.625 1124312
(b) 0.77 59.583 837.063
(c) 0.76 37.4745 794.9549

10.2 Representation error in a spectral reduced
basis

Smoother functions are better represented in a reduced basis com-
prised of the eigenvectors of the Laplace-Beltrami operator. Namely,
they require less basis functions for the same representation error.
In Fig. 4 (left) We compare the representation error in a reduced
basis of our approach, the heat method, and fast marching. Note
that our approach, both the fixed source (Alg. 1) and the all-pairs
(Alg 2.) formulations, achieves the lowest error (indicating that the
functions are smoothest in this sense). Similarly, we compare the
symmetric formulations by symmetrizing our fixed source method,
the heat method and the Fast Marching results, see Fig. 4 (right).
Here we project on the eigenvectors of the LB operator on the
product manifold. Here as well we achieve a lower error than the
alternatives. The experiment was done on the “pipe” mesh, where
we computed the full distance matrix between all pairs of vertices.
For Fig 4 (left) we projected each column of the distance matrix
(i.e., the distance from a single source vertex), and computed the
mean of the representation errors. For Fig 4 (right), we projected
the full distance matrix on the eigenvectors of the LB operator on
the product manifold.

10.3 Additional results on various
triangulations

To further demonstrate the robustness of our algorithm, we show
additional results on low-quality triangulations in Figure 5. The
leftmost column corresponds to a uniform triangulation and the
other three to non-uniform triangulations. Note that the results
Semain similar for the different triangulations.

10.4 Timings for the All-Pairs formulation

Table 1 shows the running times for computing the all-pairs dis-
tances on the cat model. We compare the heat method, computed
using Geometry Central [Sharp et al. 2019] (using the precompu-
tation speed-up), our fixed source formulation (Alg. 1) and our
all-pairs approach (Alg. 2). Note that Alg. 2 has a higher memory
overhead than Alg. 1, because we are working with large dense
matrices. Therefore, in our non-optimized Matlab implementation
we may run out of memory for large meshes. We believe that a
more careful implementation can improve this considerably.

10.5 Quadratic Finite Elements

Piecewise linear elements are not good approximators of the ge-
odesic distance near the source. Intuitively, for coarse meshing,
instead of generating round isolines, PL elements lead to polyg-
onal isolines, see e.g. the output on the disk in Fig. 6 (left). Our
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Figure 4: Comparison of the representation error of the
Dirichlet regularized distances in a reduced spectral basis.
See the text for details.

approach generalizes to piecewise quadratic elements in a straight-
forward way. Specifically, we replace the mass matrix, gradient and
Laplacian with the corresponding matrices for quadratic elements
[Boksebeld and Vaxman 2022, Appendix B]. The result is shown in
Figure 6 (center). Note that the quadratic elements lead to a better
approximation (compare with the analytical solution, Fig. 6 (right)).

Figure 5: The regularized geodesic distance using the Dirich-
let regularizer for various triangulations. For each triangu-
lation, we display the connectivity (top), the isoline of the
distance (middle) and the gradient norm, |Vu| (bottom). Note
that the results are qualitatively similar for all the triangula-
tions.

Analytical

Piecewise Quadratic

Piecewise Linear

Figure 6: (left) Piecewise linear elements are not good ap-
proximators of geodsic distances near the source. (center)
Our approach easily generalizes to quadratic elements. Note
the improved accuracy (compare with the analytic solution

(right)).



	1 Proofs regarding analytical solutions (Section 3.1)
	1.1 Analytical solution for the circle
	1.2 Proof that u(x,y) is a metric in S1
	1.3 Analytical solution for the disk

	2 Existence and uniqueness of the minimizer (Section 3)
	3 Convergence to the geodesic distance (Section 3)
	4 Analytical solution for the Hessian regularizer in 1D (Hessian Regularizer, Section 4.2)
	5 Existence and uniqueness of a minimizer (product manifold formulation, Section 6)
	6 Convergence to the full geodesic distance (product manifold formulation, Section 6)
	7 Non-quadratic regularizers
	8 Distances to a fixed source ADMM derivation (Section 5.4)
	9 Symmetric All-Pairs ADMM Derivation (Section 6.2)
	10 Additional Results
	10.1 Additional examples
	10.2 Representation error in a spectral reduced basis
	10.3 Additional results on various triangulations
	10.4 Timings for the All-Pairs formulation
	10.5 Quadratic Finite Elements


