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Abstract—We study the Stochastic Gradient Descent (SGD)
algorithm in nonparametric statistics: kernel regression in par-
ticular. The directional bias property of SGD, which is known
in the linear regression setting, is generalized to the kernel
regression. More specifically, we prove that SGD with moderate
and annealing step-size converges along the direction of the
eigenvector that corresponds to the largest eigenvalue of the
Gram matrix. In addition, the Gradient Descent (GD) with a
moderate or small step-size converges along the direction that
corresponds to the smallest eigenvalue. These facts are referred
to as the directional bias properties; they may interpret how an
SGD-computed estimator has a potentially smaller generalization
error than a GD-computed estimator. The application of our
theory is demonstrated by simulation studies and a case study
that is based on the FashionMNIST dataset.

Index Terms—directional bias, SGD, nonparametric regression

I. INTRODUCTION

The Stochastic Gradient Descent (SGD) is a popular op-
timization algorithm that has a wide range of applications,
including generalized linear model in statistics and deep
Neural Network in machine learning. One main advantage of
the SGD is the computational scalability due to low cost per
iteration. Recent work also indicates that the SGD might also
lead to outcomes that possess nice statistical properties under
the linear regression framework, see [19].

In this paper, we study the statistical properties of the
SGD under nonparametric regression models. We focus on
the Reproducing Kernel Hilbert Space (RKHS) model, which
is popular in both statistics and machine learning communities
and is often simply referred to as the “kernel trick,” see [2,
25]. The kernel method can be applied in various domains
such as image processing [23] and text mining [12].

Our main approach is to analyze the directional bias of
the SGD algorithm under the RKHS model. The directional
bias might improve the efficiency of signal detection, and
can explain why the outcome of SGD has good prediction
performance. Directional bias, also referred to as implicit bias,
means that an algorithm generates a solution path that is biased
towards a certain direction, and it is also closely related to
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implicit regularization in deep learning [10]. Directional bias
also means that algorithms prefer some directions over others
even though they may have the same objective function value.

The state-of-the-art result on the directional bias of SGD
can be divided into two categories, based on their underlying
techniques, mostly under the linear regression model. The
first category is the stochastic gradient flow method where
one assumes an infinitesimal step-size in SGD and thus the
parameter dynamic follows a stochastic differential equation,
see [1, 4]. The second category is to analyze the discrete
SGD sequence for a moderate step-size, which is also related
with the convergence analysis of SGD, see [17, 11, 21, 27].
Our approach belongs to the second category. While our main
technique is inspired by [27], there are a couple of significant
difference in our analysis: (1) we extend the result from
linear regression to non-parametric kernel model; (2) our SGD
algorithm is different from that in [27].

We want to point out that there are more research to study
the directional bias of the Gradient Descent (GD) than for
the SGD. For instance, paper [28] analyzes the early stopped
GD estimator in kernel regression; for Neural Networks in the
‘lazy training’ regime, paper [6] shows that GD converges in
the direction of the smallest eigenvalue of the Neural Tangent
Kernel.

Our contributions are two folded. First, we study the
directional bias of (S)GD in a nonparametric regression model.
Though the nonparametric regression is well studied in statis-
tics, the directional bias is a relatively new concept [27].
Second, we unify the conditions to guarantee the directional
bias of GD and SGD sequences. The main condition is the
diagonally dominant Gram matrix, which covers a large class
of kernel functions.

Our result can shed new light on deep learning [3]. By
the state-of-the-art mathematical theory of Neural Networks
(NN), kernel and/or nonparametric methods can approximate
the functional space of neural networks, see for example the
NTK theory [14], and the Radon bounded variance space
description for ReLU NN [20]. These phenomena can lead
to interesting future research.

Paper organization. The rest of the paper is organized as
follows. In Section II, we formulate the problem, give the
algorithms, and state our assumption. In Section III, we state
our main theorems, including the directional bias result and
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its implication for generalization. In Section IV, we provide
numerical experiments to support our theorems. In Section V,
we discuss the finding in this paper, and propose some future
research topics. Due to the page limit, we only include proof
sketch and high-level description of the experiment in this
paper, full details can be found in our arXiv paper [18].

II. PROBLEM FORMULATION

In Section II-A we define the kernel regression; in Section
II-B, we present the SGD and GD algorithms; in Section II-C,
we state our assumption for later analysis. We also provide a
simple example to justify our assumption.

A. Kernel Regression

Suppose that we have n data pairs {@;,y;}" ,, where
x; € X C RP, y; € R and y;’s are associated with x;’s
through an unknown model f(;). The goal is to estimate the
unknown model f from the data. One solution is to minimize
the empirical risk function

R
m;nﬁgf(yi,f(mi))a (1)

where / is the loss function. A popular choice for the regres-
sion task is the squared loss £(y, ) = 3(y — f(x))>.

One can see that problem (1) is not well-defined, as there
are infinitely many solutions to Vi : f(x;) = y;, and some of
them do not generalize for a new test data. One way to fix
it is to restrict f € H and penalize ||f|| for smoothness,
where H is a RKHS with reproducing kernel K(-,-) and
|| - ||% is the Hilbert norm. Adding these restrictions and
applying Representer Theorem, problem (1) with the squared
loss becomes

n

1 T \2 1 2
min ;(y Kla) = |ly-Kalj, @
where K7 is the ith row of K := K(X, X) = (K (i, ;))i ;-
For a parameter «, the corresponding estimator in  is f(-) =
S K (x,) = aTK(-, X).
Now when K is invertible, it is trivial that any algorithm
on objective function (2) converges at the unique minimizer

& = K(X,X) 1y, so the RKHS functional estimator is
) = K(@, X)TK(X, X) "y, 3)

where K(z, X)T = (K(x,1),..., K(x,x,)). Estimator (3)
is the minimum norm interpolant, i.e.:

i : i) — iv.:]-v‘"a )
argf}gg{llfHH f(@i) = yi,i n}

whose properties are studied in [16].

In this paper, we compare the convergence direction of SGD
and GD to &. Specifically, we consider a two-stage SGD
with a phase transition from a larger step-size to a decreased
step-size. Note that this matches the training scheme people
always use in practice for SGD algorithms: decreasing the
step-size after training for a few epochs. For that purpose, in
the following sections, we define the one-step SGD/GD update
and state our assumptions and notations for analysis.

B. One step SGD/GD update

For objective function (2), denote the parameter estimation
at tth step as oy, then SGD update oy as

Q1] = O — m(Kifat —¥i,) - Ky, “4)
where i; is uniformly random sampled from {1,...,n}.
The GD update oy as
a1 = a;— LK (Ko, — ). 5)

C. Assumptions and Notations

At high level, we assume the Gram matrix to be diagonal
dominant. This happens when the high-dimension features are
sparse, and is observed in a lot of practical problems [26],
for example, linear or string kernels being applied to text data
[12], domain-specific kernels being applied to image retrieval
[24] and bioinformatics [22], and the Global Alignment kernel
being applied to most datasets [9, 8].

We formally state our assumption as follows:

Assumption 1 (Diagonally dominant Gram matrix). Denote
by K = K(X,X) the Gram matrix, we assume that K is
diagonally dominant. Specifically, suppose w.l.o.g. that K1 1 >
Koo > ... > K, ,, > 0, then we have for a small value T
that

|Kij| <7< Kpp, Vi # j.

One can justify that a Gram matrix is diagonally dominant
by imposing proper assumptions on the kernel function K (-, -)
and the data distribution. In our arXiv paper [18], we show
examples of diagonally dominant Gram matrix for some
popular kernels. Due to page limit, we only include the bilinear
kernel example in this paper as follows.

Proposition 1 (Lemma 1 in [27]). Consider the bilinear kernel
K(z,x') := (z,x’). Assume the data x;,i = 1,...,n, are
i.i.d. uniformly distributed on the unit sphere S, where
d > n. When d > 4log(2n?/8) for some § € (0,1). Then
with probability at least 1 — 6, we have

K j| = (@i, 2)| <7 := O(1/Vd) < Ky = 1,Yi # j.

Though commonly exists, the diagonal dominance is unde-
sired in classification and clustering tasks. It indicates that
the data points are dissimilar to each other, which means
not enough information for classification/clustering. There are
some efforts for solving the issue of diagonal dominance in
these cases, see for example [12, 15]. But for the regression
task, the diagonal dominance, in other words, the dissimilarity
of data points, may have benefits. One can find similar condi-
tions such as Restricted Isometry Property and s-goodness that
describes linearly dissimilar features in a regression literature
[5, 7]. Such conditions are required for proving minimax
optimality or exact recovery of a sparse signal in many
settings. In our case, we adopt the dissimilarity concept and
apply it to data points in high-dimensional nonlinear feature
space. Later we will see that in our case, the directional bias
drives SGD to select a good solution that generalizes well
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among all solutions of the same level of empirical loss. In this
way, our SGD estimator benefits from the diagonal dominance.

Notations. We use the following notations throughout the
paper. For the Gram matrix K, let K, ; denote its (¢, j)th
element. Denote \; = K;; = K(x;, z;), and assume w.l.o.g.
that Ay > Ao > ... > \,,. Denote the 7th column of K
as K;, let K 1 = [Ks,...,K,]. Denote P_; the projection
onto column space of K_1, and P, = I — P_;. And denote
Y1 > ... > v, > 0 the eigenvalues of K in non-increasing
order.

III. MAIN RESULT

The main results are presented in two subsections. Section
III-A states the directional bias results of SGD and GD estima-
tors, respectively. Section III-B shows that certain directional
bias leads to good generalization performance, and applies
this result to show that an outcome from SGD potentially
generalizes better than an outcome from GD.

A. Directional bias

By our assumption, K will be full rank, (S)GD on (2)
converges at & = K ~'y. We are interested in the direction at
which a; converges to &, i.e., the quantity

bt = O — Q.

With assumption 1 that the Gram matrix is diagonally domi-
nant, we prove that a two-stage SGD has b; converge in the
direction that is aligned with the eigenvector associated with
the largest eigenvalue of the Gram matrix K.

Theorem 1 (Directional bias of an SGD-based estimator).
Assume Assumption 1 holds, run a two-stage SGD with a fixed
step-size for each stage: stage 1 with step-size 1 for steps
1,..., k1, stage 2 with step-size 1y for steps k1 + 1,..., ko,
such that

2 2
—_— < <,
X — Ciar S X1 Covr
1

<5 A =
2 )\% + Cg\/’rlT
where Cy,Cs, C3 are constants. For a small € > 0 such that
nt < poly(e) there exists ki = O(log 1) and ko such that
(1 =26)m < E[| Kb P |12/ E[[[637P 2] < 7.

2 2

That is, b,iGD is close to the direction of eigenvector corre-
sponding to the largest eigenvalue of K.

Remark 1. One should assume 7 in Assumption 1 to be small
enough for € to be very small if one would like the resulting
estimator bffD to have the direction that corresponds to the
largest eigenvalue of K. Later we will see that if one only
wants different directional bias of SGD and GD estimators, a
moderate € is allowed, the assumption on T is not that strong.

Next, we see the different convergence direction of GD.

Theorem 2 (Directional bias of a GD-based estimator). As-
sume Assumption 1 holds, run GD with a fixed step-size n
such that

n<n/(M\ +nt)?.

For a € >0, let k = O(log %), we have the GD estimator
after k steps satisfying:

o < KB [2/ 1057 ]2 < VI+ €y

That is, kaD is close to the direction that corresponds to the
smallest eigenvalue of K.

Remark 2. The assumption (on T) is mild for differentiating
the directional bias of SGD and GD. Comparing Theorem 1
and 2,when v, < (1 — 2€)v1, taking k large enough we have

IKbGP ), E|KbEP|,

1677l EllopEPe

That is, one may expect bffD to be in the direction of
larger eigenvalue compared with kaD . In the following sub-
section, we will see that the directional bias towards a larger
eigenvalue of the kernel is good for generalization. That is,
directional bias helps an SGD-based estimator to generalize.

Though Assumption 1 appears in Theorem 2, it is just used
to bound the step-size so that GD converges; the diagonally
dominant structure of K is not required. Moreover, the choice
of ¢ is independent of 7, then for an arbitrarily small ¢ > 0,
run GD long enough then the theorem will apply. The es-
timator kaD can be arbitrarily close to the eigenvector that
correspond to the smallest eigenvalue.

B. Effect of directional bias

In this subsection, the estimator that is biased towards the
largest eigenvalue of the Hessian is shown to be the best
for parameter estimation, see Theorem 3. Later, we define
a realizable problem setting of kernel regression where the
generalization error depends on the parameter estimation error,
and in this way, the directional bias helps an SGD-based
estimator to generalize.

Theorem 3. Consider minimizing the quadratic loss function
L(w) = [|[Aw — y|3.

Assume there is a ground truth w* such that y = Aw®*. For
a fixed level of the quadratic loss, the parameter estimation
error ||w — w*||3 has a lower bound:

Vw € {w: L(w) = a} : |w — w*||2 > a/|| AT Al|;.

Moreover, the equality is obtained when w — w™ is in the
direction of the eigenvector that corresponds to the largest
eigenvalue of matrix AT A.

Remark 3. Theorem 3 implies that the directional bias
towards the largest eigenvalue is good for parameter estima-
tion. As discussed in Remark 2, the SGD-based estimator is
biased towards a larger eigenvalue compared to the GD-based
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Fig. 1: Kernel regression on synthetic data. The first plot shows directional bias by Rayleigh Quotient(RQ):= || Kb||2/||b]|3.
The SGD indeed converges in the direction of a larger RQ, which matches our Theorems 1 and 2. In the third plot we show
the prediction error of the solution paths, and the SGD does have lower prediction error than GD, even GD has smaller training

loss than SGD. This supports Theorem 4.

estimator, by Theorem 3 the SGD estimator potentialy better
estimates the true parameter and thus generalizes better, which
we will formalize later.

Suppose 3f* € H such that y = f*(x). Consider the
generalization error Lp(f) := ||f — f*||3,. For an algorithm
output f21€, we decompose its generalization error as:

Lo (/%) ~ inf Lo(/)

= lgy _ in n — in
=Lp(f*8) feﬁsLD(f)+f€?£SLD(f) f@f{LD(f),

L. approximation error
::A(falg)7 estimation error PP

where Hg is the hypothesis class that the output of the
algorithm is restricted to. By formulation (2), we have H:

He={feH: f=a’K(,X),aeR"}.

We define the a-level set of training loss:
T 1 2
Va:{fGHs:fZOé K(WX)’%”Ka_yHQ:a}v

and denote A} :=infsc,, A(f).

Note that the approximation error can not be improved
unless we change the hypothesis class, which is, changing
the problem formulation in our case. So we just minimize the
estimation error for estimators that are in the a-level set. One
can check the estimation error is given by

feMs: A(f) =bTKb,

where b = a— . Similar to Theorem 3, the estimation error is
minimized when b is in the direction of the largest eigenvalue
of K, so the directional bias towards a larger eigenvalue helps
to generalize in kernel regression. We compare the estimation
error of SGD and GD in following theorem.

Theorem 4 (Generalization performance). Follow Theorems
1 and 2, we have the following:
o The output of SGD has E[AY2(fSCP)] < (1 +
4€) (A2, where a is such that E[| Ka®¢P —y|2]? =
2na and € could be any positive small constant;

e The output of GD has A(fP) > MA?,

training loss of GD estimator, and M = 3—1(1 —
is a large constant.

where a is the
€)>1

Remark 4. This theorem indicates that E[AY?(f5¢P)] <
AY2(fGPY) when 14+-4e < M2, Taking e < (\/71/vn—1)/4
in Theorem I and combining with Theorem 2 which states that
¢ 2y 0, we will have 1 + 4e < M2 holds. In this way,
A(F5EPY < A(fEP) with high probability. This finishes our
claim that SGD generalizes better than GD.

IV. NUMERIC STUDY

Simulation. We simulate data from a nonlinear regression
model with Gaussian additive noise as y; = 2}0201 sin(z; ;) +
€;, where x;; ~ N(0,1) and ¢; ~ N(0,0.01). We fit
kernel regression using the polynomial kernel K (x1,xs2) =
((z1,x2) +.01)2 on 10 training data and test the estimator
on 5 testing data. We run both SGD and GD for two step-size
schemes: small step-size, and moderate annealing step-size.
The results are in Fig. 1.

Real data experiment. We run a 6-layer ResNet [13] on
FashionMNIST. The network structure is

Input = 7 x 7 Conv =- BatchNorm = ReLU
= 3 x 3 MaxPool = ResBlockl = ResBlock2
= Global AvePool = FC = output.

We run SGD and GD for two step-size schemes, similar to our
simulation. There are 1,500 training data and 10,000 testing
data in our experiment. The result is in Fig. 2.

Remark 5. The purposes of experiment using a Neural
Network (Fig. 2) are: first, the Neural Network results support
our finding on kernel regression, since Neural Network is
related to kernel regression through NTK theory [14]; second,
our experiment indicates that our result may be empirically
true for the more general deep learning framework [3].
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(a) Relative Rayleigh Quotient.
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Fig. 2: The experiment of a small ResNet on FashionMNIST. In (a), we follow [27] to use the Relative Rayleigh Quotient(RRQ)
as the measurement of the convergence direction. The SGD with moderate step-size has higher RRQ than the GD with either
moderate step-size or small step-size, which supports the theory in Theorems 1 and 2. It is interesting to observe that SGD
with a small step-size has a different directional bias compared with SGD with a moderate step-size, indicating that the
directional bias studied in this paper does not hold for a general SGD. In (b), we plot the testing accuracy from 20 repetitions
of experiments, the test accuracy (inside bracket) of SGD with moderate step-size is higher than the other cases, and we have
Wilcoxon signed-rank test to confirm that the difference is significant at 0.01 level. The test accuracy validates Theorem 4.

V. DISCUSSION AND FURTHER WORK

We advance one more step towards understanding the di-
rectional bias of SGD in kernel learning. We discuss some
implications of our results.

Implication to the SGD scheme: Our result shows the
directional bias holds to SGD with annealing step-size. Specif-
ically, the first stage of SGD with moderate step-size should
run long enough, then in the second stage by decreasing
step-size we have the directional bias towards the largest
eigenvalue of the Hessian, which helps in obtaining a better
generalization error bound. This explains a technique for
tuning the learning rate that people adopt in practice: starting
with a large step-size, running long enough until the error
plateaus, then decreasing the step-size [13]. Although this
technique is always used for speed convergence, we show that
it also helps in predictive power, which becomes even better.

Implication to deep learning: Our assumption in the anal-
ysis implies certain structures for the deep learning models.
As mentioned in section II-C, our assumption holds when
the feature space is high dimensional and/or when features
are possibly sparse. This matches the deep learning scenario
where we have a highly overparameterized model and when
the trained parameter estimator becomes sparse. In addition,
considering that some deep learning tasks can be approximated
by kernel learning [14], our results help to explain why the
SGD-based estimator can perform better in an overparameter-
ized deep learning setting.

Just as stated in [3], to understand deep learning one
needs to understand kernel learning. This work improves our
understanding in kernel learning. One may further generalize
our result to neural networks through NTK theory, which can
help to promote understanding for deep learning.

APPENDIX I: PROOF SKETCH FOR THEOREM 1

We show the proof sketch for a special case, the proof for
general case is similar subject to some modifications. Consider
the case when K = diag(A1,...,A,) where Ay > Ao > ... >
An, the first stage of SGD with step-size 11 € (52, +=) will
have for the direction of the first data point: b

(1)1 = ()1 —mAr (A1 (@)1 — Ai(&)1).
Thus
(a1 — @)1 = (1 —mA)(ar — &)
= [(@r1 — @] = [1 = mAT|[(@ — | > |(e — &),
while for the other data points, we have:
(@41 — &) = [1 = mAF[[(e — &)i] < [(a — &)l.

That is, the first stage of SGD does not converge in the
direction corresponding to A; and converges for other direc-
tions. After run the first stage long enough, we will have
all directions sufficiently fitted except the first eigenvector. In
second stage, we decrease the step-size for convergence. Since
the first eigenvector direction is the only direction that remains
to be fitted, the estimator will converge in this direction.
APPENDIX II: PROOF SKETCH FOR THEOREM 2
Denote the eigen decomposition of K:
T .
K =GIG*,T =diag(v1,--- ), G =1[91,- -, 9n]-

Denote w; := GT'(a; — &), we can rewrite GD update in w;:
n n
Wi41 = Wy — fPth = (I — *].—‘2)’th
n n

= (wy)i = (1 =177 /)" (wo)i-
So for 1) < 7, one has 1—ny3/n| <...<|[1—ny2/n|. The
1
direction corresponding to larger eigenvalue is fitted faster, left
the direction of smaller eigenvalue to be fitted later, which is
the direction of convergence after several steps of GD.
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