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Abstract

Solar wind conditions are predominantly predicted via three-dimensional numerical magnetohydro-
dynamic (MHD) models. Despite their ability to produce highly accurate predictions, MHD models
require computationally intensive high-dimensional simulations. This renders them inadequate for
making time-sensitive predictions and for large-ensemble analysis required in uncertainty quantifica-
tion. This paper presents a new data-driven reduced-order model (ROM) capability for forecasting
heliospheric solar wind speeds. Traditional model reduction methods based on Galerkin projection
have difficulties with advection-dominated systems—such as solar winds—since they require a large
number of basis functions and can become unstable. A core contribution of this work addresses this
challenge by extending the non-intrusive operator inference ROM framework to exploit the trans-
lational symmetries present in the solar wind caused by the Sun’s rotation. The numerical results
show that our method can adequately emulate the MHD simulations and is more accurate than a
reduced-physics surrogate model, the Heliospheric Upwind Extrapolation model.

Keywords: solar wind modeling, space weather prediction, magnetohydrodynamics, data-driven
model reduction, scientific machine learning, operator inference

1. Introduction

Magnetohydrodynamic (MHD) modeling of coronal and interplanetary solar wind can significantly
improve the prediction of catastrophic space weather events. Such space weather geomagnetic storms
can have detrimental effects on spacecrafts, cause electric power outage, satellite collisions, telecom-
munication interruption, and expose astronauts to harmful radiation. Very recently, 40 out of 49 of
SpaceX’s starlink satellites failed to reach their low-Earth orbits presumably due to the effects of a
geomagnetic storm around Feb. 2, 2022; the geomagnetic storm increased Earth’s upper atmosphere
density causing orbital drag [6]. This event further emphasises the need for real-time modeling of
solar storms. The most substantial source of space weather events are coronal mass ejections, coro-
tating interaction regions, and high-speed solar wind streams that reach the Earth’s magnetosphere.
Three-dimensional MHD solar wind models, such as the Magnetohydrodynamics Around a Sphere
[55] model, Enlil [40], and the Space Weather Modeling Framework [63], can provide high-fidelity
predictions. Apart from providing a global assessment of coronal and heliospheric properties, MHD
modeling can connect in situ magnetic and plasma observations from one spacecraft to the other,
providing crucial support to interplanetary missions [57]. Although MHD models are an important
tool in understanding observed coronal and heliospheric dynamics, they require computationally in-
tensive high-dimensional simulations. This renders them infeasible for time-sensitive predictions and
large-ensemble methods such as quantifying forecast uncertainty and performing parameter sensitiv-
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ity analysis. Thus, there is a need for computationally efficient surrogate models that are capable of
reproducing MHD results with sufficient fidelity.

The present work addresses this challenge by proposing a new method to derive a data-driven
reduced-order model (ROM) for solar wind predictions that particularly focuses on issues that arise
from the advection-dominated nature of the problem. The proposed method efficiently learns predic-
tive ROMs from high-fidelity simulations (or other data) of solar wind models, while simultaneously
producing an interpretable model and physical model form. We subsequently review the related lit-
erature, both focusing on the mathematical aspects of surrogate modeling for advection-dominated
systems and the application domain of efficient heliospheric modeling.

Solar wind predictions are produced by a chain of coupled models in different parts of the Sun-
Earth domain, i.e., the solar surface, corona, and heliosphere. In the heliospheric domain, there
are mainly two classes of surrogate solar wind models: reduced-physics (white-box) and data-driven
(black-box) models. The first approach is based on physical simplifications of the MHD equations.
The simplest reduced-physics model is the ballistic approximation which assumes that each solar wind
parcel maintains a constant radial speed as it propagates in the heliosphere. This approximation is
mainly used to map solar wind streams for short radial distances [61]. An improved kinematic model
that bridges the gap between the ballistic mapping and global three-dimensional MHD modeling is
the Heliospheric Upwind Extrapolation model, where each parcel speed is dependent on its adjacent
parcel speed [56, 52, 42, 51]. A second approach is to build surrogate solar wind models via data-driven
and statistical techniques [12]. Such methods mainly aim to forecast the solar wind at Earth’s vicinity
without computing the solar wind dynamics on the full heliospheric domain. Examples of data-driven
models include an artificial neural network model [67], a gradient-boosting regression-based model [9],
and a probability distribution function model based on past rotation solar wind observations [11]. As
we will see later, our proposed reduced-order modeling methodology is data-driven, yet accounts for
the physical properties of the solar wind rotation. It therefore serves as a hybrid gray-box approach
that leverages available physical information while remaining computationally efficient.

From a methodological perspective, several ROM strategies have targeted advection-dominated
scenarios. For background, traditional ROMs are derived via (Petrov-) Galerkin projection, where
the full-order model (FOM) is projected onto a low-dimensional subspace, see [23, 7, 22]. This class
of ROMs aims to identify a small set of basis functions that minimize a certain error metric. How-
ever, a well-reported issue with linear-subspace ROMs is that they fail to model advection-dominated
problems due to poorly decaying Kolmogorov N-width [19, 41, 65] which results in a slow decay of the
singular values, see, e.g., [59, 24, 39, 50, 34]. An accurate ROM would require a large number of basis
functions, rendering it inefficient from a computational perspective. Additionally, a large number of
global basis functions can lead to numerical instabilities. The efforts to address the challenge posed
by advection-dominated systems can be roughly categorized into Lagrangian-based approaches and
methods that leverage a transport-invariant coordinate frame. The first line of research leverages La-
grangian coordinate grids to build a ROM that propagates both the wave physics and the coordinate
grid in time [39, 34, 33]. These methods work extremely well, yet require knowledge of the underlying
equations to solve for the Lagrangian grid, limiting their range of applicability. The second line of
research, which our work builds upon, is based on transforming the dynamics to a moving coordinate
frame via a time-dependent shift that is added to the spatial coordinates. In the moving frame, the
system dynamics are absent of advection. The shift function can be numerically learned in various
ways. For instance, the shifted proper orthogonal decomposition method [50] proposes to detect the
shift either through tracking peaks of the solution, or through an expansive SVD algorithm, where
different candidate shifts are applied to the data matrix and then the SVD is computed. The shifts
leading to the best singular value decay are then selected and a corresponding ROM is built via
Galerkin projection. This strategy is computationally quite expensive due to the need for many SVDs
of a large (yet rectangular) data matrix. The authors in [38] propose an implicit feature-tracking al-
gorithm that is based on a minimal-residual ROM. This algorithm works well on complex geometries,
however, finding the domain mapping can be quite expensive, too. Very recent work by [43] builds
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on the trend of machine learning to derive two separate neural networks, one for detecting nonlinear
shifts in the transport velocity, and a second for interpolating a shifted solution back to the reference
frame. The method is fully data-driven, yet does not propose a predictive ROM that integrates the
shift detection with a projection framework. Most closely related to our work is [37], which proposes
an unsupervised learning method to aid the identification and low-dimensional modeling of systems
with translational symmetries. The data-based method uses sparse regression and ridge detection to
identify models with non-constant wave speeds inherent to the data. The method performs well on
several examples, including multiple waves travelling in opposite directions. While the examples all
demonstrate interesting wave phenomena, the governing equations were always known, allowing to
derive solid intuition about the wave-speed library. Other approaches that have been developed that
do not fit precisely into these categories include the work by [44] that updates the ROM basis online
to avoid slowly decaying Kolmogorov N-width, and the work by [24] that applies two separate mech-
anisms to deal with advection-diffusion systems, namely a representation of translational features via
advection modes, and then the subsequent residual (features that are not purely advective) via global
modes. Building on the philosophy of inducing time-dependent shifts into the ROM framework, we
extend the non-intrusive projection-based operator inference ROM framework [46] towards advection-
dominated systems by transforming the dynamics to a moving coordinate frame. Standard operator
inference has successfully been applied to diverse applications such as combustion [62, 36], chemical
reactors [10], ocean flows [68], Hamiltonian systems [60], and general reaction systems in the presence
of incomplete data [64]. Since operator inference learns the operators that would be obtained through
intrusive Galerkin projection (which can be done exactly with additional data pre-processing, see [45])
it inherits problems that intrusive Galerkin ROMs face in the presence of strong advection.

We propose a new strategy for efficient data-driven heliospheric solar wind modeling. The method,
shifted operator inference (sOpInf), builds on standard operator inference and extends it towards the
challenges faced in solar wind predictions. Our proposed method first determines a moving coordinate
frame where the dynamics are absent of translation and rotation and subsequently transforms the
system into the new time-dependent coordinates. Two methods for predicting the shift are proposed.
It then performs model learning in the shifted coordinate systems and subsequently makes predictions
with the sOpInf-ROM via interpretable ODE simulation. Our hypothesis aligns with the previously
cited references, in that simple translational patterns in the data and model can (and should) be
exploited in the ROM approach. Our proposed approach (1) speeds up the MHD simulation by
several orders of magnitude, (2) preserves the solar wind spiral pattern created by the Sun’s rotation,
and (3) uncovers macroscopic coherent structures present in the evolution of solar wind streams by
analyzing the velocity field modal decomposition. We present computationally-efficient data-driven
ROMs for two heliospheric solar wind models: the MAS (Magnetohydrodynamics Around a Sphere)
model and the HUX (Heliospheric Upwinding eXtrapolation) model.

This paper is organized as follows. Section 2 describes the MAS and HUX heliospheric solar wind
models and in Section 3 we present the proposed method, shifted operator inference. In Section 4
we demonstrate the performance of sOpInf on the MAS and HUX solar wind speed simulated data.
Section 5 then offers conclusions and an outlook to future work.

2. Solar Wind Models

This section introduces the solar wind models considered in this study. Section 2.1 presents the
MAS model. Section 2.2 discusses an approximation to that model with similar physical attributes,
the HUX model.

2.1. Spherical Magnetohydrodynamics: The MAS Model
The MAS (Magnetohydrodynamics Around a Sphere) model is the primary MHD model in the

CORHEL (CORona-HELiosphere) software and is publicly available at NASA’s community-coordinated
modeling center [3]. The MAS model solves the time-dependent resistive MHD equations and has been
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used to study coronal mass ejections [31], coronal dynamics [55], solar wind structure [54], and con-
nect in-situ spacecraft observations [57]. Herein, we focus our effort on analyzing the MAS solar wind
radial velocity results and therefore exclude the discussion of other plasma components such as the
magnetic field, plasma temperature, density, pressure, etc. This is because many space weather oper-
ational forecast models for satellite control and Earth-based infrastructure are particularly interested
in near-Earth solar wind speed. Predicting the solar wind speed is pivotal for assessing the risk of
geomagnetic storms because (1) coronal mass ejections, which are the most fundamental source of
space weather events, are modeled as perturbations to the ambient solar wind; (2) interaction regions
between fast and slow solar wind, known as co-rotating interaction regions, mainly present during
solar minimum, are a driver of moderate geomagnetic activity [54]; and (3) high-speed solar wind
streams cause an additional acceleration of energetic electrons in the radiation belts [16].

2.1.1. Governing Equation
The MAS model solves a system of three-dimensional time-dependent resistive MHD equations in

spherical coordinates (r, θ, φ), where r is the radial distance from the Sun, θ is Carrington latitude in
heliographic (rotating) coordinate system (HG), φ is the Carrington longitude in the HG coordinate
system. The governing equations are

∇×B =
4π

c
J, (1)

∇×E = −1

c

∂B

∂t
, (2)

E +
1

c
v ×B = ηJ, (3)

∂ρ

∂t
+∇ · (ρv) = 0, (4)

ρ

(
∂v

∂t
+ v · ∇v

)
=

1

c
J×B−∇p−∇pw + ρg +∇ · (νρ∇v), (5)

1

γ − 1

(
∂T

∂t
+ v · ∇T

)
= −T∇ · v + S. (6)

and the initial and boundary condition are described in [54, 30, 53]. Here, B(r, θ, φ, t) is the magnetic
field, J(r, θ, φ, t) is the current density, E(r, θ, φ, t) is the electric field, v(r, θ, φ, t) is the plasma velocity,
T (r, θ, φ, t) is the plasma temperature, ρ(r, θ, φ, t) is the plasma mass density, and p(r, θ, φ, t) is the
plasma pressure, and pw(r, θ, φ, t) is the Alfvén wave pressure. The constant c denotes the speed of
light in a vacuum and g(r) = −GMs

r2 êr is the gravitational acceleration, where êr is the unit vector
in the radial direction, G is the universal gravitational constant, and Ms = 1.99× 1030 kg is the solar
mass. For the simulations used in this study, the constant resistivity is set to η = 4.6779× 10−5 s and
the kinematic viscosity ν = 3.3503× 1016 m2s−1. In the energy equation described in Eq. (6), the
thermodynamic approximation sets the ratio of specific heats to γ = 5/3. Moreover, the energy source
terms are denoted by S = S(T ); for more details about the thermodynamic energy source term see the
MAS user guide [53]. The MAS boundary conditions exploit photospheric magnetic field observations
(e.g. data from the Wilcox Solar Observatory, the Global Oscillation Network Group, and the Solar
Dynamics Observatory spacecraft), see [1, 53]. Here, we choose to analyze the scenario where the
thermodynamic MAS results are driven by a synoptic map of the photospheric magnetic field as it
reaches a dynamic steady state [55]. Most MHD models, e.g. MAS, solve for the ambient solar wind
via time-dependent simulations and allow the solution to relax to steady state. While customary, this
results in a large run time to compute the steady state. There are other MHD models, such as [47],
that solve directly for the steady solar wind, yet they have their own set of numerical challenges as it
is no longer straightforward to extract the physical variables from the flux variables.

4



2.1.2. Numerical Solver
The MAS model equations are numerically solved on a nonuniform logically-rectangular staggered

grid using finite differences. The nonuniform mesh allows for adjustment of the grid point concentra-
tion based on transition and active regions. For more details about the numerical methods and their
stability, see [32, 14]. The MAS model divides its computational domain to two distinct regions: the
corona and heliosphere. The corona is the region between 1RS to 30RS and the heliosphere is the re-
gion between 30RS to 1.1AU. The value RS denotes solar radii unit of distance which is 695, 700km,
and 1/215th of an astronomical unit (AU), which is equal to the distance from the Sun to Earth.
Numerical results and implementation details are discussed in Section 4.2.

2.2. Solar Wind Speed: The HUX Model
The HUX (Heliospheric Upwinding eXtrapolation) model developed by [56, 52] is a two-dimensional

time-stationary model that predicts the heliospheric solar wind speed. The HUX model has been
incorporated into operational and ensemble-based space weather programs [29, 5] as an MHD surrogate
model to study retrospective time periods as well as real-time predictions. It has also been used to
map streams directly from in-situ spacecraft observations (e.g. Helios A/B) to Earth [25]. The HUX
model is based on simplified physical assumptions of the fluid momentum equation. In contrast to the
MAS model, where the velocity field is solved via the MHD equations, the HUX model constructs a
kinematic mapping where each plasma parcel speed is governed by its adjacent parcel’s speed.

We introduce the HUX model as a reduced-physics surrogate solar wind model that is capable of
capturing the solar wind speed as it propagates away from the Sun. The HUX model shares many
similarities with the MAS model, such as advection-dominated solutions, and can therefore be used
to test our proposed method, shifted operator inference. Moreover, since both sOpInf and HUX
are surrogate models to the MAS model, we will compare their capability to approximate the MAS
results. This section describes the HUX governing equations along with their spatial discretization
and implementation.

2.2.1. Reduced-Physics Equation
The HUX model [56, 61] is derived from the fluid momentum equation in the corotating frame of

reference with the Sun by considering Eq. (5) in the absence of magnetic and viscous effects describing
steady flow by replacing the time derivative ( ∂∂t ) with a spatial derivative (−Ωrot

∂
∂φ ), i.e. the governing

equations are

−Ωrot(θ)
∂v(r, θ, φ)

∂φ
+ [v(r, θ, φ) · ∇]v(r, θ, φ) = − 1

ρ(r, θ, φ)
∇p(r, θ, φ) + g(r), (7)

where v = [vr(r, θ, φ), vθ(r, θ, φ), vφ(r, θ, φ)] is the solar wind proton velocity, ρ(r, θ, φ) is the plasma
density, and g(r) is the gravitational acceleration specified in Section 2.1.1. The term Ωrot(θ) =

2π
25.38 −

2.77π
180 cos(θ− π

2 )2 is the angular frequency of the Sun’s rotation, i.e., a function of latitude [52].
The analysis in [56, 52, 25] justifies neglecting the pressure gradient and gravity terms in Eq. (7) and
only taking into account variations of the velocity in the radial direction. As a result, Eq. (7) reduces
to the two-dimensional nonlinear scalar homogeneous time-stationary equation

−Ωrot(θ = θ̂)
∂vr(r, φ)

∂φ
+ vr(r, φ)

∂vr(r, φ)

∂r
= 0, (8)

where the independent variables are r and φ and the dependent variable is the velocity in the radial
direction vr(r, φ). The angular frequency of the Sun’s rotation is evaluated at a constant Carrington
latitude θ̂; here we consider the Sun’s equatorial plane (θ̂ = 0) so that Ωrot(0) = 2π

25.381/days at the
solar equator. The initial-boundary value problem (IBVP) is subject to the initial condition vr(r0, φ) =
vr0(φ) and is defined on the periodic domain 0 ≤ φ ≤ 2π and r ≥ 30RS , where beyond 30RS , the
solar wind travels along roughly radial trajectories, justifying the assumption of only considering the
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velocity in the radial direction. Additionally, to account for the residual acceleration present in the
inner heliosphere, the authors in [56] suggested adding an acceleration boost to the initial velocity
profile described by

vacc(r0, vr0(φ)) = α[vr0(φ)](1− e−r0/rh), (9)

where vr0(φ) is the initial radial velocity, α = 0.15 is the acceleration factor, and rh = 50RS is the
radial location at which the acceleration ends. Hence, the acceleration boost, vacc(r0, vr0(φ)), is added
to the initial velocity profile vr0(φ) prior to solving the HUX equation.

2.2.2. Discretization via the Upwind Scheme
This section describes the semi-discretization of Eq. (8) in longitude, which then results in a set

of ODEs. To begin, we rewrite Eq. (8) in the hyperbolic conservation form

∂

∂r
vr(r, φ) +

∂

∂φ
f [vr(r, φ)] = 0, (10)

where the physical flux function is f [vr(r, φ)] = −Ωrot(θ̂) ln[vr(r, φ)]. We use the first-order conser-
vative upwind method from [25], so to approximate the partial derivative of the flux function f with
respect to φ by

∂

∂φ
f [vr(r, φ

(j))] ≈ −Ωrot(θ̂)

∆φ

(
ln[vr(r, φ

(j+1))]− ln[vr(r, φ
(j))]

)
, (11)

where nφ is the number of mesh points in longitude and j = 1, 2, . . . , nφ denotes the longitude grid
index. We discretize the longitudinal direction uniformly with ∆φ mesh spacing and denote the
discretized state vector as v(r) = [vr(r, φ

(1)), vr(r, φ
(2)), . . . , vr(r, φ

(nφ))]> ∈ Rnφ . From here, we
obtain the semi-discrete system of ordinary differential equations

d
dr

v(r) = D ln[v(r)] (12)

with the sparse matrix

D =
Ωrot(θ̂)

∆φ



−1 1 0
0 −1 1

. . . . . . . . . . . .
−1 1 0

−1 1
1 0 −1


∈ Rnφ×nφ . (13)

The initial condition v(r0) ∈ Rnφ is set as the MAS coronal solution, vMAS ∈ Rnφ , evaluated at
r0 = 30RS along with adding the ad hoc acceleration boost described in Eq. (9), i.e.,

v(r0) = vMAS(r0)
[
1 + α(1− e−r0/rh)

]
. (14)

3. Shifted Operator Inference: A Non-intrusive Reduced-Order Model Approach for
Advection-Dominated Systems

This section proposes shifted operator inference (sOpInf), a non-intrusive data-driven modeling
framework that expands standard operator inference [44] towards the challenge of modeling solar
wind, and more generally, advection-dominated systems. The proposed method ensures that the
learned ROM is able to (i) capture the dynamics of the translational systems with only a few modes,
(ii) retain the translation and rotation properties of the physical system, and (iii) accurately predict
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the shift velocity in the testing regime. This is done by transforming the original coordinates to
a moving coordinate frame where the dynamics are absent of translation and rotation. Section 3.1
describes the new method that leverages a coordinate shift to first transform the data and subsequently
learn in the transformed coordinates. Section 3.2 proposes two alternative strategies for deriving this
coordinate transformation. Lastly, Section 3.3 illustrates the sOpInf methodology on an introductory
example: the one-dimensional inviscid Burgers’ equation.

3.1. Shifted Operator Inference for Advection-Dominated Systems
To illustrate the proposed methodology, we consider a generic k−dimensional time-dependent

partial differential equation (PDE) for the scalar function u(x1, x2, . . . , xk, t) of the form

F

(
u, x1, . . . , xk,

∂u

∂t
,
∂u

∂x1
, . . . ,

∂u

∂xk
, t

)
= 0, (15)

where x1, x2, . . . , xk ∈ R denote the spatial coordinates and t ∈ R+. One may think of t as time,
or, as described in the previous section, we will also consider the independent variable to be the
radial distance from the Sun, r. The function F defines the equations of motion of the system which
include advective terms. For simplicity, we focused the illustration on a purely convective case, but
our method can account for higher derivatives (e.g. diffusion terms) as well, see Section 4 where we
consider a model with viscous forces.

Our goal is to derive a data-driven ROM that can accurately predict the solutions to advection-
dominated systems, i.e., that uses data of a semi-discretization of (15) and produces a predictive and
efficient low-dimensional model. The proposed method proceeds in four steps as outlined next.

(I) Data collection and translation. The system (15) is in k dimensions and is typically solved via a
spatial discretization scheme at fixed spatial locations xi = [x

(1)
i , x

(2)
i , . . . , x

(ni)
i ] ∈ Rni , i = 1, 2, . . . , k,

which we refer to as the original coordinates. These are assembled into the following spatial grid

X =


x

(1)
1 . . . x

(nx)
1

...
. . .

...
x

(1)
k . . . x

(nx)
k

 ∈ Rk×nx and x = vec(X) ∈ Rn,

where nx = Πk
i=1ni is the number of spatial grid points and n = k · nx. Depending on the context,

using X in matrix form or x in vector form may be more preferred. We collect data (for instance,
solar wind speed data) from the numerical solver in the original coordinates at instances ti, i.e.,
ui ≈ u(x, ti) ∈ Rn with 0 = t0 < t1 < · · · < tK = T . To account for the translational element in the
data, we next shift each snapshot to a moving coordinate frame

ui ≈ u(x, ti) 7→ ũ(x̃(x, ti), ti) ≈ ũi with x̃(x, t) = x + c(t) (16)

where x̃(x, ti) denotes the moving coordinate frame and c(t) ∈ Rn represents the traveling wave speed.
We evaluate ũi via piecewise linear interpolation, i.e.,

ũi = Pki [ui,x, x̃(x, ti)]

where Pki denotes the k > 1 dimensional piecewise linear interpolant of ui in the original grid x evalu-
ated on the moving coordinate frame grid x̃(x, ti). The piecewise linear interpolation is implemented in
the Python package scipy under the function scipy.interpolate.LinearNDInterpolator(). Our
method is not restricted to the type of interpolation, so higher order interpolation methods can be
used as well (e.g. piecewise cubic interpolation). In the moving coordinate frame, the system no
longer exhibits translational properties. Section 3.2 proposes two techniques to determine c(t). We
then store the transformed data in the matrix

Ũ = [ũ1 . . . ũK ] ∈ Rn×K ,

where in the applications that we consider, n� K, so the matrix Ũ is tall and skinny.
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(II) Data reduction via projection. Given high-dimensional data, we first identify the low-dimensional
subspace in which to learn a ROM. In this work, we use the subspace spanned by the proper orthogonal
decomposition (POD) modes [23], which is obtained by computing the economy-sized singular value
decomposition of the snapshot matrix, i.e.,

Ũ = VΣW>, (17)

where V ∈ Rn×K , Σ ∈ RK×K and W ∈ RK×K . The `� n dimensional POD basis, V` = [v1, . . . ,v`],
is given by the first ` columns of V. The basis dimensions can be chosen based on the cumulative
energy criteria, e.g.,

` = arg min
ˆ̀

∑ˆ̀

i=1 σi∑K
i=1 σi

> εtol, (18)

where σi = Σii are the singular values, and εtol is commonly chosen to be εtol = 0.95 or εtol = 0.99
which encapsulate 95% and 99% of the energy in the data, respectively. Next, we project the state
snapshot data onto the POD subspace spanned by the columns of V` and obtain the reduced snapshot
matrices

Û = V>` Ũ = [û1 . . . ûK ] ∈ R`×K , and ˙̂
U = [ ˙̂u1 . . . ˙̂uK ] ∈ R`×K , (19)

where the columns of ˙̂
U are computed from Û using any time derivative approximation (see, e.g., [35,

27, 15]), or can be obtained—if available—by evaluating the right-hand-side of the governing equation
(the residual) and projecting the resulting data.

(III) Model learning and prediction via operator inference. In this section we start with the assumption
that the finite-dimensional data-generating model (a spatial discretization of Eq. (15) in the moving
coordinate frame) is of the form of a polynomial nonlinear system of ODEs, written as

dũ

dt
= Aũ + H(ũ⊗ ũ) + C(ũ⊗ ũ⊗ ũ) + B + HOT, ũ ∈ Rn (20)

with matrices A ∈ Rn×n, H ∈ Rn×n2

and C ∈ Rn×n3

. The column-wise Kronecker product is denoted
by ⊗. Boundary conditions can either be represented via the constant B ∈ Rn or time-dependent
BCs as Bη(t). The abbreviation “HOT” in Eq. (20) denotes higher-order terms, and represents terms
that are quartic and higher order. For example, in the case of Burgers’ equation in Section 3.3 the
term u∂u∂x is quadratic in the PDE state u(x, t) and would therefore yield a discretized component
H(ũ⊗ ũ).

Approximating the high-dimensional state ũ in a low-dimensional basis V` ∈ Rn×`, with ` � n,
we write ũ ≈ V`û. Using a Galerkin projection, this yields the ROM of Eq. (20) as

dû

dt
= Âû + Ĥ(û⊗′ û) + Ĉ(û⊗′ û⊗′ û) + B̂ + HOT, û ∈ R` (21)

where ⊗′ is the compact Kronecker product, which removes redundant terms in the standard Kro-
necker product ⊗. For example, for û = [û1, û2]> the standard Kronecker product yields û ⊗ û =
[û2

1, û1û2, û2û1, û
2
2]> and the compact Kronecker product yields û ⊗′ û = [û2

1, û1û2, û
2
2]>, which uses

only unique terms. For here on, we only use the compact Kronecker product for learned sOpInf ROMs.
Consequently, the ROM operators and their dimensions are

Â = V>` AV` ∈ R`×`, Ĥ = V>` H(V` ⊗′ V`) ∈ R`× 1
2 `(`+1), Ĉ = V>` C(V` ⊗′ V` ⊗′ V`) ∈

R`× 1
6 `(`+1)(`+2), and B̂ = V>` B ∈ R` is the reduced constant vector B. We note again that projection

preserves polynomial structure, that is, Eq. (21) has the same polynomial form as Eq. (20), but in the
reduced subspace defined by V`.

To simplify notation, we continue from now on with a quadratic system, but note that all results
carry over directly to cubic, quartic and all higher-order polynomial terms. Nevertheless, we note
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that the number of elements in the ROM operators scales with `4 for the cubic operator, `5 for
the quartic operator, etc., yet higher-order terms often exhibit significant block-sparsity that can be
exploited in numerical implementations which limits the growth of computational cost to solve the
ROM. For terms in the governing equations that are not in polynomial form, the introduction of
variable transformations and auxiliary variables via the process of lifting [20, 28, 62, 48] can convert
these terms to polynomial form.

The goal at this stage is to learn a ROM that evolves the shifted and projected snapshots in time.
Operator inference solves a least-squares problem to find the reduced operators that yield the ROM
that best matches the projected snapshot data in a minimum residual sense. For a quadratic ROM
(with Ĉ and HOT set to zero in Eq. (21)) operator inference solves the least-squares problem

min
Â∈R`×`,Ĥ∈R`×

1
2
`(`+1),B̂∈R`

∥∥∥∥[ÂÛ + Ĥ(Û⊗′ Û) + B̂ 1K −
˙̂
U
]>∥∥∥∥2

F
,

where 1K ∈ RK is the length K row vector with all entries set to one. Note that this least-squares
problem is linear in the coefficients of the unknown ROM operators Â, Ĥ, and B̂. The appeal of
the operator inference approach comes from the ability to compute the ROM operators Â, Ĥ, and B̂
directly from data without needing explicit access to the original high-dimensional operators A, H,
and B. The unknown operators and known low-dimensional data are combined in the matrices

O = [Â Ĥ B̂] ∈ R`×(`+ 1
2 `(`+1)+1) and D =

[
Û> (Û⊗′ Û)> 1K

]
∈ RK×(`+ 1

2 `(`+1)+1),

respectively. The unknown operators are then obtained as a solution to the minimization problem

min
O∈R`×(`+1

2
`(`+1)+1)

∥∥∥∥DO> − ˙̂
U
>
∥∥∥∥2

F
. (22)

For K > `+ 1
2`(`+ 1) + 1 this overdetermined linear least-squares problem has a unique solution [18,

Sec. 5.3]. It follows from linear algebra (and is noted in [46]) that Eq. (22) can be written as `
independent least-squares problems, each of the form

min
oi∈R`+

1
2
`(`+1)+1

‖Doi − ri‖22 ,

for i = 1, . . . , `, where oi is a column of O> (row of O) and ri is a column of ˙̂
U
>
. This makes the

operator inference approach efficient and scalable.
To avoid overfitting and prevent potential instability of the learned ROMs, regularization becomes

necessary, see [36] for a detailed regularization study of operator inference. In this work, we use an
Tikhonov regularization penalty so that the least-squares problem becomes

min
O∈R`×(`+1

2
`(`+1)+1)

∥∥∥∥DO> − ˙̂
U
>
∥∥∥∥2

F
+
∥∥ΓO>

∥∥2

F (23)

where Γ = diag(λ1I(`), λ2I( 1
2 `(`+1)), λ1) ∈ R(`+ 1

2 `(`+1)+1)×(`+ 1
2 `(`+1)+1) is the diagonal matrix used

for regularization. The parameter λ1 is the regularization parameter of the operators B̂ ∈ R` and
Â ∈ R`×` and λ2 regularizes the operator Ĥ ∈ R`× 1

2 `(`+1). The regularization parameters λ1 and λ2

are problem specific and should be chosen accordingly. We provide details in Section 4 and refer to
[62, Sec. IV.B] for more implementation details of operator inference.

Having learned the ROM in Eq. (21) from the shifted data, we can make efficient predictions in that
low-dimensional subspace that go beyond the training data into the fully predictive regime. We thus
simulate Eq. (21) to obtain a solution û(t), which we then lift to n dimensions to get the approximate
ROM solution ũROM(t) = V`û(t) ≈ ũ(t). We use the Operator Inference Python package version
1.2.1 [4] to implement the model learning and prediction step of sOpInf.

9



(IV) Re-shifting predicted ROM data. The predicted ROM solutions ũROM(t) will be in the moving
coordinate frame and require reverse translation to the original coordinates. We shift the ROM-
predicted solutions back to the original coordinate system via interpolation

uROM
i (x, ti) = Pki

[
ũROM
i , x̃(x, ti),x

]
where Pki denotes the k > 1 dimensional (here: piecewise linear) interpolant of ũROM

i in the moving
coordinate frame grid x̃(x, ti) evaluated on the original grid x; see part (I ) in Section 3.1 for more
details about the interpolation implementation. After shifting back to the original coordinates, the
predicted and reconstructed sOpInf snapshots are columns of the matrix UROM ∈ Rn×(K+m), such
that tK+m > tK , which is the final output of the algorithm.

The previous steps (I )–(IV ) are summarized in Algorithm 1, which is written for a quadratic
system; yet extensions to cubic, quartic, and other polynomial systems are straightforward.

Algorithm 1 Shifted operator inference (sOpInf)
Input: U = [u1,u2, . . . ,uK ] ∈ Rn×K such that each column, ui ∈ Rn, is a snapshot observed at ti,
SVD cumulative energy threshold εtol > 0, and regularization coefficients {λ1, λ2}.
Output: UROM ∈ Rn×(K+m) sOpInf reconstructed and predicted snapshots, where tK+m > tK .
Begin:
1: Learn shift function c(t). . Section 3.2
2: Shift snapshots to moving coordinate system

U(x, ti) 7→ Ũ(x̃(x, ti), ti) with x̃(x, t) = x + c(t). . Section 3.1(I )
3: Determine low-dimensional subspace matrix V` by using threshold εtol. . Section 3.1(II )
4: Project to low-dimensional subspace Û = V>` Ũ and compute ˙̂

U. . Section 3.1(II )
5: Solve the linear least-squares problem in Eq. (23) with regularization coefficients {λ1, λ2} to obtain

the sought ROM operators; here B̂, Â, Ĥ. . Section 3.1(III )
6: Simulate the ROM in Eq. (21) to get û(t) and lift to ũROM(t) = V`û(t). . Section 3.1(III )
7: Shift ROM results to original coordinates ũROM(x̃(x, ti), ti) 7→ uROM(x, ti). . Section 3.1(IV )

3.2. Determination of Spatial Shift Velocity
There are various ways in which the traveling wave speed, c(t), can be discovered. For instance,

the authors in [37] use sparse regression and spectral clustering to uncover the function c(t). We
present two methods: the method of characteristics discussed in Section 3.2.1, an analytic approach
that requires knowledge of the underlying equations (but not the discretization or computer code), and
the cross-correlation extrapolation method described in Section 3.2.2, a purely data-driven approach.
In both cases, the shift function c(t) is learned from the batch of training data and extrapolated in
the testing regime.

3.2.1. Method of Characteristics
The method of characteristics can be applied to quasi-linear partial differential equations, in which

along the characteristic curves the PDE can be transformed to a set of coupled ODEs. We exploit the
method of characteristics to find the scalar shift function c(t) for first-order PDEs describing the scalar
quantity u(x1, x2, . . . , xk, t) : [a1, b1]× . . .× [ak, bk]× [t0, tf ] 7→ R+, whose dynamics are described by
the following quasi-linear PDE:

∂u(x1, . . . , xk, t)

∂t
+

k∑
i=1

fi [u(x1, . . . , xk, t), t]
∂u(x1, . . . , xk, t)

∂xi
= g [u(x1, . . . , xk, t), t] , (24)

subject to the initial condition u(x1, . . . , xk, t = 0) = u0(x1, . . . , xk) with periodic boundary conditions
at each spatial coordinate boundaries xi = ai and xi = bi for i = 1, 2, . . . , k. The transport speed
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fi [u(x1, . . . , xk, t), t] ∈ R must be strictly positive or negative ∀t ∈ [t0, tf ] and ∀xi ∈ [ai, bi] to enforce
uni-directional characteristics. The function g [u(x1, . . . , xk, t), t] ∈ R is the source term. Then, by
the method of characteristics, Eq. (24) can be written as a system of k + 1 ODEs, i.e.

du(x1(t), . . . , xk(t), t)

dt
= g [u(x1(t), . . . , xk(t), t), t] , (25a)

dxi(t)
dt

= fi [u(x1(t), . . . , xk(t), t), t] , i = 1, . . . , k. (25b)

We solve Eq. (25a) first, which results in

u(x1(t), . . . , xk(t), t) = G [u0(x1(0), . . . , xk(0)), t] , (26)

where G [u0(x1(0), . . . , xk(0)), t] ∈ R describes the scalar quantity u along the characteristic curves.
Given this ansatz, we proceed to obtain the characteristic curves by solving Eq. (25b) via separation
of variables, such that

xi(t) = xi(0) +

∫ t

t0

fi [G [u0(x1(0), . . . , xk(0)), t] , t] dt. (27)

For most equations that arise from conservation laws, the ODEs in Eq. (25a)–(25b) can be solved
analytically via Eq. (26)–(27). In the case when Eq. (25a) can not be solved analytically, the coupled
system of ODEs in Eq. (25a)–(25b) can be solved numerically on a discrete grid; or in the case when
fi[G, t] is a nonelementary antiderivative, we can approximate the function fi using Taylor series, and
integrate term-by-term.

By following the characteristic curves described in Eq. (27) we are able to discover a moving
coordinate frame absent of advection. In fluid dynamics, the characteristic paths are referred to
as the Lagrangian specification of the flow field, whereby the fluid motion is observed following an
individual fluid parcel. We construct a moving coordinate frame, x + c(t), that resembles the main
direction of the Lagrangian frame of reference. The shift function ci(t) corresponding to the spatial
coordinate xi can be obtained by computing the mean characteristic emerging from a certain spatial
domain. Let the spatial domain of xi, for i = 1, 2, . . . , k be discretized on a grid with ni points such
that xi = [x

(1)
i , x

(2)
i , . . . , x

(ni)
i ] ∈ Rni . The mean characteristic (and hence the shift function ci(t) ∈ R

for i = 1, 2, . . . k) emerging in the interval [x
(p)
i , x

(q)
i ] with 1 ≤ p < q ≤ ni is given as

ci(t) =
1

|x(p)
i − x

(q)
i |

∫ x
(q)
i

x
(p)
i

∫ t

t0

fi [G [u0(x1(0), . . . , xk(0)), t] , t] dt dxi (28)

≈ 1

(q − p)

q∑
j=p

∫ t

t0

fi

[
G
[
u0(x1(0), . . . , x

(j)
i (0), . . . , xk(0)), t

]
, t
]
dt. (29)

The spatial interval [x
(p)
i , x

(q)
i ] can be set to the entire spatial domain, yet it is usually set to be a

specific region of interest.
For problems with shock formation, the shift function c(t) is computed via the mean characteristic

curve only before shock formation, i.e. before the characteristic lines first intersect, and approximated
via the shock curve after shock formation, i.e.

ci(t) =

 1

|x(p)
i −x

(q)
i |

∫ x(q)
i

x
(p)
i

∫ t
t0
fi [G [u0(x1(0), . . . , xk(0)), t] , t] dt dxi if t0 < t < ts

si(t)− si(ts) + a if t > ts

 (30)

where a = 1

|x(p)
i −x

(q)
i |

∫ x(q)
i

x
(p)
i

∫ ts
t0
fi [G [u0(x1(0), . . . , xk(0)), t] , t] dt dxi. The time of shock formation is

denoted by ts, and si(t) is the shock trajectory in xi coordinate, see Section 3.3 for a one-dimensional
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inviscid Burgers’ equation example. For one-dimensional problems where g = 0, the shock trajectory
can be computed via the entropy (Rankine-Hugoniot) condition or the Whitham’s geometric equal
area rule in which multi-valued regions of the solution are replaced with a discontinuity that satisfies
conservation [66]. The shock location is approximated by locating a vertical line that splits the
multi-valued curve into two regions with equal area.

In problems where there are multiple shock curves, such as shown in Section 4.3, we suggest to
approximate c(t) by tracking only one shock curve. The selection of the shock is problem dependent,
e.g. in Section 4.3 we choose to follow the first shock emerging. Although, if the choice of shock curve
or spatial interval [x(p), x(q)] is ambiguous, computing the shock curve is unfeasible or computationally
expensive, or the initial condition is noisy, we recommend to use the cross-correlation extrapolation
technique (Section 3.2.2) to find c(t). Additionally, it can be non-trivial to find such characteristics in
the case of more complex hyperbolic PDEs that are not in the form of Eq. (24), e.g. coupled systems
such as Eqs. (1)–(6) with multiple dependent variables resulting in more than one characteristic curve
emanating from a single spatial point, in which we recommend employing the data-driven cross-
correlation extrapolation technique, which we present next.

3.2.2. Cross-Correlation Extrapolation Method
Cross-correlation is a mathematical operation that is commonly used in signal processing and

pattern recognition to measure similarity of two signals. For two finite discrete signals f ,g ∈ Cn, the
univariate discrete circular cross-correlation is defined as

(f ? g)[τ ] :=
n∑
j=1

f [j]g[(j + τ)modn ], (31)

where f denotes the complex conjugate of f , the bracket [j] denotes the jth element of the signal,
and τ ∈ Z is the discrete displacement. The discrete circular cross-correlation can be extended to the
multi-variate case, for snapshots with k ∈ Z variables and tensor-valued f ,g ∈ Cn1×n2×...×nk :

(f ?
k· · · ? g)[τ ] :=

n1∑
j1=1

. . .

nk∑
jk=1

f [j1, . . . , jk]g[(j1 + τ1)modn1
, . . . , (jk + τk)modnk ], (32)

where τ = [τ1, τ2, . . . , τk] ∈ Zk is the multi-variate discrete displacement. When the signals correlate,
the value of f ? g is maximized.

We propose to find the optimal discrete displacement, τ ∗ ∈ Zk, by maximizing the cross-correlation
between the two discrete signals (or snapshots), which amounts to solving

τ ∗ := arg max
τ∈Zk

(f ?
k· · · ? g)[τ ]. (33)

Once the shift is computed for all training snapshots by applying the circular discrete cross-correlation
between each snapshot ui ∈ Rn and the initial condition u0 ∈ Rn, we obtain the the multivariate
discrete displacement for each time-step, i.e.,

τ ∗(ti) := arg max
τ∈Zk

{u0 ?
k· · · ? ui}[τ ]. (34)

Then, the shift function cj(t), ∀j ∈ {1, 2, . . . , k} is found via least squares polynomial curve fitting to
the data points between the time increments and corresponding spatial location of the shift, such that
the shift function is of the form

cj(t) =

d∑
m=0

amt
m
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(a) V30RS (b) V1AU (c) V30RS

2
? V1AU

Figure 1: An illustration of discrete circular cross-correlation between the MAS CR2210 velocity results at (a) the initial
condition (30RS) and (b) at Earth (1AU). The bi-variate zero-normalized (circular) cross-correlation (ZNCC) between
the two MAS velocity results at 30RS and 1AU is shown in Graphic (c). The ZNCC is described by Eq. (32) along with
normalizing the two signals by subtracting their mean and dividing by their standard deviations. The shift is found by

the maximum of V30RS
2
? V1AU, which is 45◦ in longitude and 0◦ in latitude (purely longitudinal translation).

where d is the degree of the polynomial approximation. To find the vector of real coefficients a =
[a0, a1, . . . , ad] ∈ Rd+1, we solve the minimization problem

min
a∈Rd

‖Ta− b‖22

where b = [xj,τ?j (t1), . . . , xj,τ?j (tK)] ∈ RK is the vector of corresponding spatial location of the shift,
and the Vandermonde matrix T is defined as

T =


1 t1 . . . td1
1 t2 . . . td2
...

...
...

1 tK . . . tdK

 ∈ RK×(d+1).

To make predictions outside the training interval, we approximate the shift by polynomial extrapola-
tion of c(t) = [c1(t), c2(t), . . . , ck(t)] ∈ Rk. As an illustration, Figure 1 shows the bi-variate discrete
circular cross-correlation applied to the MAS CR2210 snapshot at 30RS (the initial condition) and at
1AU. Here, since the flow is steady, the independent variable is the radial distance from the Sun, r,
(instead of time t). For this case, the convective shift is 45◦ in longitude and 0◦ in latitude. Figure 1
confirms that the translation in the solar wind is purely longitudinal due to the rotation of the Sun.
The main idea behind the cross-correlation extrapolation technique is similar to the template-fitting
technique studied in [59, 58] where the data is periodic and the template is set to be the initial
condition.

3.3. Illustrative Example: Shifted Operator Inference for the Inviscid Burgers’ Equation
The one-dimensional inviscid Burgers’ equation is of the form of Eq. (24) describing the scalar

quantity u(x, t) : [a, b]× [0, T ] 7→ R+ with f [u(x, t), t] = u(x, t) and g[u(x, t), t] = 0, such that

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= 0 (35)

subject to the initial condition u(x, t = 0) = u0(x) with appropriate boundary conditions at x = a
and x = b. In the moving coordinate frame defined by

x̃(x, t) = x+ c(t) and u(x, t) = ũ(x̃(x, t), t) (36)

Burgers’ equation (35) becomes

∂ũ(x̃, t)

∂t
+

(
ũ(x̃, t) +

dc
dt

)
∂ũ(x̃, t)

∂x̃
= 0. (37)
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This can be written in conservative form as

∂ũ(x̃, t)

∂t
+

∂

∂x̃

(
1

2
ũ(x̃, t)2 +

dc
dt
ũ(x̃, t)

)
= 0. (38)

Then, by the conservative first-order upwind scheme, we approximate the spatial derivative by

∂

∂x̃

(
1

2
ũ(x̃(j), t)2 +

dc
dt
ũ(x̃(j), t)

)
=

1

2∆x̃

[
ũ(x̃(j), t)2 − ũ(x̃(j−1), t)2

]
+

1

∆x̃

dc
dt

[
ũ(x̃(j), t)− ũ(x̃(j−1), t)

]
,

(39)
where j = 1, 2, . . . , n denotes the grid index in x̃. Based on the discretization scheme in Eq. (39), we
can write the dynamics of Eq. (38) in vector form as

dũ(t)

dt
= A(t)ũ(t) + H [ũ(t)⊗ ũ(t)] (40)

where ⊗ denotes the Kronecker product and ũ(t) = [ũ(x̃(1), t), ũ(x̃(2), t), . . . , ũ(x̃(n), t)]> ∈ Rn denotes
the state vector discretized over n spatial points at time t. Here, H ∈ Rn×n2

is the quadratic operator
that corresponds to the discrete term 1

2∆x̃

[
ũ(x̃(j), t)2 − ũ(x̃(j−1), t)2

]
from Eq. (39). Moreover, A(t) ∈

Rn×n is the linear time-dependent operator corresponding to the discrete term 1
∆x̃

dc
dt

[
ũ(x̃(j), t)− ũ(x̃(j−1), t)

]
in the moving coordinate frame. In the case where c(t) ∈ R is a linear function (so dc

dt =const.), mean-
ing the wave is traveling at constant speed, the linear operator is time independent, i.e., A(t) ≡ A.

The traveling wave speed c(t) can be estimated by the method of characteristics (see Section 3.2.1),
where we can rewrite Eq. (35) as the two coupled ODEs

dx(t)

dt
= u(x(t), t) and

du(x(t), t)

dt
= 0. (41)

Hence, along the characteristic lines the quantity u(x(t), t) remains constant, which can be verified by

d
dt
u(x(t), t) =

∂

∂t
u(x(t), t) +

dx(t)

dt
∂

∂x
u(x(t), t) =

∂

∂t
u(x(t), t) + u(x(t), t)

∂

∂x
u(x(t), t) = 0. (42)

Then, by integrating Eq. (41) the characteristic curves are linear before shock formation. Let the
spatial domain of x be discretized on a uniform grid with n points such that x = [x(1), x(2), . . . , x(n)] ∈
Rn. From here, we can approximate the shift function via Eq. (30) as a piecewise continuous function:

c(t) =

{
1
q−p

∑q
j=p u(x(j), t = 0)t if 0 < t < ts

s(t)− s(ts) + a if t > ts
(43)

where ts ∈ R is the time of shock formation, a = 1
q−p

∑q
j=p u(x(j), t = 0)ts, and s(t) ∈ R is the shock

trajectory.
To demonstrate the sOpInf method, we now consider a specific spatial domain x ∈ [0, 3] and

time domain t ∈ [0, 2] along with a Gaussian initial condition u0(x) = 0.8 + 0.5 exp (−(x− 1)2/0.1)
and periodic boundary conditions. Equation (35) in the regular coordinates is solved numerically via
the forward Euler method in time and the conservative upwind scheme in space on an equidistant
computational grid with 500 discretization points in space, and 1000 points in time. With this choice,
the CFL condition u(x, t) ∆t

∆x ≤ 1 is satisfied, where ∆x and ∆t denote the grid spacing in x and t,
respectively. The training dataset consists of 80% of the snapshots and the testing dataset consists
of 20% of the snapshots. The shock is formed at ts = min

x
(−du0(x)/dx)

−1 ≈ 0.737 and the shock
trajectory s(t) is computed by Whitham’s equal-area rule [66], in which the area of each lobe in the
mutli-valued solution is numerically approximated via the trapezoidal rule.

The cross-correlation extrapolation method (Section 3.2.2) approximated c(t) by least-squares lin-
ear fitting to the cross-correlation between the training snapshots and the initial condition u0(x),
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(a) Original coordinates (b) Shifted coordinates (c) Shift function c(t)

(d) Cumulative Energy obtained by
Eq. (18)

(e) Characteristic Curves

Figure 2: One-dimensional inviscid Burgers’ equation with Gaussian initial condition and periodic boundary condi-
tions. The numerical solutions are shown in the (a) original coordinates (x, t) and the (b) shifted coordinates x̃(x, t).
Graphic (c) presents a comparison between finding the wave speed function c(t) using the method of characteristics
(MoC) and the cross-correlation extrapolation method (CCE). The results are visually indistinguishable. Graphic (d)
shows the cumulative energy computed via the SVD of U (original coordinates) vs. Ũ (shifted coordinates), illustrating
that the data can be much better approximated in the shifted than in the original coordinates. The characteristic curves
including the shock trajectory are shown in Graphic (e).
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resulting in c(t) = 1.05t. Whereas, via the method of characteristics (Section 3.2.1) the shift func-
tion, c(t) described in Eq. (43), is linear only before shock formation, where we compute the mean
of characteristics emanating from the spatial interval [1.15, 1.4] before shock formation, see the green
characteristic curves in Figure 2e. By the Rankine-Hugoniot jump condition [66], the shock curve
s(t), and hence the shift function after shock formation, is non-linear, see the red curve in Figure 2e.
However, the absolute difference between the shift function c(t) obtained by the method of charac-
teristics vs. the cross-correlation extrapolation is less than 10−2 for all t ∈ [0, 2], indicating there is
not a significant difference between the two methods, see Figure 2c for a visual comparison. With
that, we found that using the method of characteristics to find c(t) resulted in up to 2% more accu-
rate ROM results in comparison to the results obtained by the cross-correlation extrapolation linear
shift function. By aligning the wave discontinuity at one spatial point, the ROM modes can better
approximate the shock. We continue the Burgers’ ROM analysis using the shift function computed
by the method of characteristics.

Figure 2a shows the inviscid Burgers’ equation results on the original coordinate system (x, t)
while Figure 2b shows the inviscid Burgers’ equation results on the shifted coordinates (x̃, t). It is
apparent from Figure 2b that the dynamics are largely absent of translation in the shifted coordinate
frame. The evolution of the initial wave depends solely on shock formation as the discontinuity in the
wave sharpens. Figure 2d compares the singular value decay of the solution data matrix U on the
original coordinates and of Ũ on the shifted coordinates. For the former, the singular value decay is
very slow due to the translation properties in the system; a ROM in those coordinates would require
a large number of basis functions. In contrast, once the dynamics are absent of translation on the
shifted coordinates the system can be approximated using only a few modes.

Figure 3 illustrates the predicted solutions from sOpInf compared to the FOM results for the
inviscid Burgers’ equation. The sOpInf model is of the form ˙̂u = Âû + Ĥ(û⊗′ û) with ` = 9 modes.
The regularization coefficients of the operators Â ∈ R`×` and Ĥ ∈ R`× 1

2 `(`+1) are λ1 = 1 and λ2 = 1,
respectively. The sOpInf results in 0.9999958 Pearson correlation coefficient (PCC) and 1.204× 10−4

mean relative error (MRE) in comparison to the inviscid Burgers’ results, indicating that the sOpInf
model is able to capture well the evolution of the high-fidelity Burgers’ simulation with only a few
modes. On the shifted coordinates we are able to construct a ROM with only 9 modes, meanwhile,
in the original coordinates, we would need 89 modes to achieve the same projection error. This
demonstrates that the shifting procedure produces significant computational speedups.

We next assess how the amount of training data affects the accuracy of the resulting ROM by
training sOpInf on 50%, 60%, 70%, and 80% of the total snapshots, see Figure 4. The numerical results
show that—as anticipated—increasing the amount of training data improves the ROMs accuracy.
Additionally, the relative error measured in the L2-norm is bounded by 10% for all four simulations,
resulting in an adequate ROM using as low as 50% of the total snapshots for training. To analyze the
framework’s robustness to noise, we tested the sOpInf methodology on the inviscid Burgers’ simulated
data with added noise. The results are presented in Appendix A and demonstrate that the method
seems to be robust to the addition of moderate levels of Gaussian noise.

4. Numerical Results for MAS and HUX Solar Wind Models

We apply the sOpInf methodology to learn low-dimensional models for the ambient solar wind
radial velocity predicted by the HUX and MAS models described in Section 2. We consider a spe-
cific event of interest and give some background on that event in Section 4.1. In Section 4.2, we
give details on the data and implementation. Section 4.3 and Section 4.4 present the sOpInf two-
dimensional steady results trained on HUX and MAS equatorial plane data, respectively. Section 4.5
presents sOpInf three-dimensional steady results trained on the full-Sun MAS results. Section 4.6
compares sOpInf and HUX reconstruction of MAS equatorial plane streamlines. Lastly, Section 4.7
discusses the choice of ROM model form. The public repository https://github.com/opaliss/
Space-Weather-ROM contains a collection of Jupyter notebooks in Python 3.9 containing the code
and data used in this study.
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Figure 3: Solutions from the sOpInf model of the form ˙̂u = Âû+Ĥ(û⊗′ û) with ` = 9 modes show very good agreement
with the high-fidelity solutions for the one-dimensional inviscid Burgers’ equation with Gaussian initial condition and
periodic boundary conditions.

Figure 4: The sensitivity of sOpInf ROM to the amount of training data with 50%, 60%, 70%, and 80% of the total
snapshots used for training. The relative error in the L2-norm is shown as a function of time. The numerical results
show that the sOpInf methodology is able to learn adequate ROMs with as low as 50% of the total snapshots utilized
for training.
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(a) MAS radial velocity (b) MAS equatorial plane radial velocity

Figure 5: The MAS solar wind radial velocity solution at heliocentric distance r = 30RS during CR2210 (a) ranging
from θ ∈ [−30◦, 30◦] in latitude and (b) the equatorial (θe.p. = 0◦) velocity profile. The solar wind radial velocity at
the equator has three main peaks, originating from coronal holes, which make this period a great candidate to study
large-scale structure in the solar wind.

4.1. Physical Relevance of Data
We focus on Carrington Rotation (CR) 2210, which occurred from 26 October to 23 November

2018, during a solar minimum. Figure 5a shows the heliospheric solar wind radial velocity MAS
results for CR2210 in the latitude region of θ ∈ [−30◦, 30◦] and Figure 5b presents the equatorial
solar wind radial velocity profile. As observed in Figure 5, during CR2210, the solar wind radial
velocity at the equator has three main peaks, essentially making this period a great candidate to
study large-scale structure in the solar wind. Although not shown here, the origin of the fast wind
(ranging from 500 to 700 km/s) is from equatorial coronal holes located at approximately 180◦−210◦,
280◦ − 300◦, and 330◦ − 360◦ in longitude at the source surface (see [8, Fig. 8(a)] for a synoptic view
at 2RS of the coronal hole regions). Although fast streams commonly originate in large coronal holes,
slow streams come from various coronal sources (e.g., coronal hole boundaries, coronal loops, etc.).
Another reason to consider this data is that this Carrington period is well-studied in literature due to
Parker Solar Probe (PSP) reaching its first perihelion pass of 35.7RS after its first Venus gravity assist
on 6 November 2018, as it broke records by becoming the closest spacecraft to the Sun. Moreover,
the authors in [57] showed that the thermospheric MAS solar-wind speed results highly match the
observations made by PSP during CR2210. Thus, while we do not present a comparison with in-situ
solar-wind observations we can treat the MAS results as a physically meaningful representation of the
solar wind.

4.2. Data and Implementation Details
4.2.1. MAS Data

The MAS model is described in detail in Section 2.1. The MAS model solar wind velocity results
are time-stationary in spherical coordinates. The data covers the entire domain in longitude 0◦ ≤ φ ≤
360◦, latitude −90◦ ≤ θ ≤ 90◦, and radial axis (a.k.a. heliocentric distance) 0.14AU ≤ r ≤ 1.1AU.
The MAS simulation results are on a rectangular grid with nφ = 128 uniformly spaced points in
Carrington longitude, nθ = 111 uniformly spaced points in heliographic latitude, and nr = 140
points on a non-uniformly spaced grid in the radial axis. Hence, the snapshot data dimension is
nx = nφ × nθ = 14, 208 where we treat r as the independent variable. A convergence check with a
higher-resolution grid found that this resolution is sufficient for physical accuracy. The MAS coronal
and heliospheric models (implemented in FORTRAN) were run with medium and high resolution by
the authors of [1], which took approximately four and 28 hours of wall-clock time using four NVIDIA
RTX 2080Ti GPUs, respectively [13]. We derive data-driven ROMs from the medium-resolution MAS
heliospheric simulation which is publicly available at PSI’s web page [2]. The MAS training datasets
contain 70% of the snapshots, with 98 and 42 snapshots for training and testing, respectively. The
training domain is from 0.14 to 0.82AU and the testing domain is from 0.82 to 1.1AU.
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4.2.2. HUX Data
The HUX model is described in detail in Section 2.2. To simulate the HUX model at the helio-

graphic solar equatorial plane we numerically solve the ODE in Eq. (12) via the forward explicit Euler’s
method in time and setting the initial condition to the MAS velocity profile results at 30RS ≈ 0.14AU.
The HUX dataset is two-dimensional with nφ = 128 and nr = 140 (satisfying the CFL condition)
on the same domain as listed above for the MAS results. On the equatorial plane (θe.p = 0), the
angular frequency of the Sun is Ωrot(θe.p) = 2π

25.381/days. The HUX dataset took 0.03s to simulate
on a MacBook Pro 2.3 GHz Quad-Core Intel Core i7 processor with 16 GB RAM. We note that the
HUX model is already computationally efficient. We train a ROM for HUX merely as a introductory
example since it produces the same physics (advection-dominated solutions) that we expect in much
more expensive solvers, and not to show any computational improvements. The HUX training and
testing domains are identical to the MAS equatorial training domain, see details in Section 4.2.1.

4.2.3. ROM Implementation
The MAS and HUX numerical results are on a non-uniformly spaced grid in the radial axis, con-

sequently, we approximate the derivatives of the training data with respect to r, i.e. d
dr û in Eq. (19),

via a second-order accurate central difference in the interior points and second-order accurate one-
sided (forward and backward) difference at the boundaries. For the case of uniform grid meshing,
e.g. Burgers’ equation ROM presented in Section 3.3, we used a sixth-order finite difference scheme.
We simulate the ROM via an implicit multi-step variable method based on a backward differentiation
formula using the scipy.integrate.solve_ivp() Python function. The ROM regularization coeffi-
cients, λ1 and λ2, are chosen from the logarithmically spaced set, i.e. {100, 101, 102, . . . , 1010}, such
that the best coefficients minimizes the relative error measured via the L∞-norm over the training
regime.

4.3. HUX Equatorial Plane Numerical Results
We apply the sOpInf framework to learn a ROM of the HUX CR2210 equatorial plane radial

velocity. As derived in Section 2.2.1, the HUX underlying equation is

−Ωrot (0)
∂vr(r, φ)

∂φ
+ vr(r, φ)

∂vr(r, φ)

∂r
= 0,

where r, φ are the independent variables. To begin, we shift the HUX dynamics to a moving coordinate
frame defined by

φ̃(r, φ) = φ+ c(r) and vr(r, φ) = ṽr(φ̃(r, φ), r).

The shift function c(r) can be learned via either the method of characteristics (Section 3.2.1) or the
cross-correlation extrapolation method (Section 3.2.2), in particular, the circular uni-variate cross-
correlation method described in Eq. (31). The linear-fit cross-correlation shift function resulted in
c(r) = −51.711◦r + 7.032◦. Our numerical studies found that there is no substantial differences
between the numerical results of the two methods. Following the steps described in Section 3.2.1, the
HUX characteristic curves are derived by the following two coupled ODEs:

d
dr
vr(φ(r), r) = 0 and

dφ(r)

dr
= − Ωrot(0)

vr(φ(r), r)
. (44)

Then, by integration of Eq. (44), the characteristics before shock formation are straight lines described
by

φ(r) = φ− Ωrot(0)

vr0(φ)
(r − r0),

where r0 = 0.14AU. The HUX characteristic curves are also called the ballistic approximation,
which assumes that each spiral field line of plasma continues at a constant speed throughout the
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Table 1: Comparison of the sOpInf ROM performance for the test case CR2210. Given are the mean/median/maximum
relative error (RE) measured in percent and the Pearson correlation coefficient (PCC) comparing the ROM with the
respective high-fidelity models (HUX, MAS-2D, MAS-3D) for both training and testing datasets.

Model Regime RE mean RE median RE max. PCC

HUX Equatorial Plane (2D) Training
Testing

0.286
0.526

0.143
0.385

3.379
4.114

0.99991
0.99956

MAS Equatorial Plane (2D) Training
Testing

0.449
1.264

0.229
0.849

5.564
8.235

0.99980
0.99901

MAS Full Sun (3D) Training
Testing

0.451
0.539

0.334
0.353

7.731
20.492

0.99969
0.99964

heliosphere [52]. After obtaining the characteristic curves, we are able to approximate the shift
function by

c(r) =

{
1
q−p

∑q
j=p

−Ωrot(0)
v(φj ,r0) (r − r0) if r0 < r < rs

s(r)− s(rs) + a if r > rs

so that rs is the radial position where the characteristics first intersect, s(r) is the shock trajectory,
and a = 1

q−p
∑q
j=p

−Ωrot(0)
v(φj ,r0) (rs − r0). The indices p, q can include the whole spatial domain or instead

a bounded spatial interval to track specific regions of the initial wave. For CR2210, we limit p, q to
include the characteristics emanating from a main equatorial high solar wind peak, originating from an
equatorial coronal hole, on the longitudinal interval [180◦, 260◦]. There are three main shock curves,
and we choose to follow the first shock curve that emerged at rs = 0.344AU and φs = 211.737◦. The
learned sOpInf ROM is of the form

˙̂v = Ĥ(v̂ ⊗′ v̂), Ĥ ∈ R`×
1
2 `(`+1)

and it is able to sufficiently model the dynamics of the HUX model with only ` = 4 modes. A practical
implementation of operator inference requires regularization, and for the least-squares fitting we found
λ = 103 to give good results. The comparison between sOpInf and HUX velocity profiles is provided
in Figure 6. The figure shows that the advective solutions are well approximated both in the training
regime until r = 0.82AU and in the testing regime, where the ROM is fully predictive. This conclusion
is also supported by Table 1 where we provide the mean/median/maximum relative error and the
Pearson correlation coefficient comparing the HUX solutions with the ROM solutions, both in the
testing and training regime. The error measures show that a sOpInf ROM can sufficiently predict the
HUX dynamics while reducing the dimensionality of the problem from nφ = 128 to ` = 4, i.e., a factor
of 32 reduction of state-space dimension.

4.4. MAS Equatorial Plane Numerical Results
We apply the sOpInf framework to learn a ROM for the MAS CR2210 equatorial plane velocity

field. Since the MAS Eqs. (1)–(6) are not in the form of Eq. (24), the method of characteristics can not
be applied to approximate the shift function c(r); instead, we use the cross-correlation extrapolation
method, which resulted in c(r) = −54.98◦r + 7.39◦, where r is measured in AU. Figure 7 shows the
MAS equatorial plane heliospheric results on the original and shifted polar coordinates along with the
cumulative singular value energy criteria described in Eq. (18) in each coordinate system. Evidently,
we see that shifting the snapshots to a moving coordinate frame creates a faster singular value decay,
leading to an accurate representation of the shifted data with far fewer modes. This observation is in
line with the results we showed for Burgers’ equation in Figure 2d above.

The results shown in this section are for the ROM model form

˙̂v = Ĥ(v̂ ⊗′ v̂), Ĥ ∈ R`×
1
2 `(`+1)
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Figure 6: The HUX solar wind radial velocity results at the heliographic equatorial plane for CR2210 along with sOpInf
quadratic ROM results. The sOpInf ROM aligns very well with the data past the training interval; the snapshots at
r = 0.91AU and r = 1.1AU are testing data where the ROM is fully predictive.

(a) Original Coordinates (b) Shifted Coordinates
(c) Cumulative Energy obtained by
Eq. (18)

Figure 7: (a) The MAS solar wind radial velocity results at the equatorial plane for CR2210 from 0.14AU to 1.1AU.
(b) The solar wind data in shifted coordinates eliminating the translational properties caused by the Sun’s rotation.
(c) The Singular value cumulative energy of the data in the original and shifted coordinates. The singular values decay
more rapidly in the shifted coordinates, indicating that the ROM will require less modes in the shifted coordinates.

with ` = 9 modes. This model form provided the best overall results in training and extrapolation,
compared to other model combinations including linear and constant terms, see Section 4.7 for further
discussion. The regularization coefficient for computing the operator Ĥ is λ = 105. Figure 8 visually
demonstrates that sOpInf is capable of accurately approximating the MAS equatorial results, where
the snapshots at r = 0.91AU and r = 1.1AU are in the fully predictive regime of the ROM. We
highlight that the MAS data contains more complex features than the HUX data, specifically in
the region 0◦ ≤ φ . 120◦ where small localized wave structures exist. Nevertheless, sOpInf covers
those equally well as the HUX data in the previous section. Figure 9 presents are more qualitative
assessment of the relative error between the sOpInf ROM and MAS velocity fields, which shows that
the relative error is less than 8.3% in the entire domain. The mean/median/maximum relative error
and PCC in the testing and training regime are again provided in Table 1 above.

4.5. 3-D Full-Sun MAS Numerical Results
We showcase sOpInf trained on MAS three-dimensional steady-state velocity results. As mentioned

previously, the MAS Eqs. (1)–(6) are not in the form of Eq. (24), hence, the method of characteristics
is not a valid choice in approximating the shift function c(r) ∈ R2. Therefore, we turn to the cross-
correlation extrapolation method described in Section 3.2.2. More specifically, the full-Sun MAS
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Figure 8: The MAS solar wind radial velocity results at the heliographic equatorial plane for CR2210 along with sOpInf
quadratic ROM results. The sOpInf ROM aligns very well with the data past the training interval; the snapshots at
r = 0.91AU and r = 1.1AU are testing data where the ROM is fully predictive.

(a) MAS (b) sOpInf (c) Relative Error

Figure 9: A comparison between (a) the MAS solar wind radial velocity solution at the heliographic equatorial plane for
CR2210 and (b) the learned quadratic sOpInf ROM results with ` = 9 basis modes. The relative error between MAS
and sOpInf results is illustrated in sub-figure (c).
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snapshots in matrix form, v(r) ∈ Rnφ×nθ , are bi-variate in Carrington longitude (φ) and latitude
(θ), with nφ, nθ mesh points in longitude and latitude, respectively. The shift function c(r) ∈ R2

is found via the bi-variate circular cross-correlation defined by Eqs. (32)–(33) with k = 2. The bi-
variate circular cross-correlation is applied between each snapshot and the velocity profile at the initial
condition (30RS). Since the translation in the MAS solar wind results is due to the Sun’s rotation,
the shift function can be expressed as c(r) = c(r)êφ, where êφ is the unit vector in longitude direction,
and c(r) ∈ R is the shift in longitude, where we computed c(r) = −52.44◦r + 6.94◦ with r measured
in AU. The results in this section are for a ROM of the form

˙̂v = Âv̂ + Ĥ(v̂ ⊗′ v̂) + B̂

where B̂ ∈ R`, Â ∈ R`×`, Ĥ ∈ R`× 1
2 `(`+1) with only ` = 8 modes. The regularization coefficient for

computing the operator B̂ and Â is λ1 = 104 and the regularization coefficient for Ĥ is λ2 = 108.
Figure 10a shows the relative error between the two velocity fields and the mean/median/max relative
error in the testing and training regime is shown in Table 1. For a visual comparison, Figure 10b shows
a comparison between the sOpInf reconstructed and predicted two-dimensional full-Sun snapshots; the
visual comparison and error estimates indicate that sOpInf can successfully reproduce the high fidelity
full-Sun MAS dataset, where nx = nφ × nθ = 14, 208 with only ` = 8 modes, leading to a substantial
reduction in the model’s dimensionality.

In practice, the sOpInf framework can be employed to speed up the MAS computational time
by setting the MAS heliospheric outer boundary condition to 0.82AU (which is 70% of the current
computational domain) and run the time-dependent MAS simulation until it relaxes to steady-state.
Then, the steady-state MAS snapshots are used as training data for sOpInf, which takes 0.355 seconds
to simulate from 30Rs up to 1.1AU on a MacBook Pro 2.3 GHz Quad-Core Intel Core i7 processor
with 16 GB RAM (for 3-D full-Sun simulation). If we assume that running MAS on 70% of the
computational domain would take 70% of the MAS current computational time, then we would be able
to speed up the MAS computational time by approximately 1.2 hours and 8.4 hours for the medium and
high resolution runs, respectively (i.e. save 30% of the MAS computational time). Another important
sOpInf speed-up contribution can be in the case when one is interested in studying the solar wind
dynamics much further in the heliosphere (e.g. conditions in the vicinity of Mars or Jupiter). In this
case, one can use the MAS simulation up to 1.1AU for training sOpInf and use the reduced model to
predict up to 5AU, resulting in a more significant speed up. It is important to mention that the MAS
model solves for several plasma flow quantities, i.e. Eqs. (1)–(6), and sOpInf is currently only solving
for the radial velocity component. Thus, a direct comparison of their run-time can be equivocal.

4.6. A Comparison of Surrogate Model Accuracy via Equatorial Plane Streamlines
Given the two surrogate models of MAS, namely HUX (a reduced-physics approximation) and

sOpInf (a data-driven ROM trained on MAS), we are interested in comparing their accuracy as sur-
rogates of MAS. We do so by drawing the equatorial streamlines for each model. The streamlines
of a flow field are curves that are tangential to the local velocity vector. In Figure 11(a-c), the
streamlines are mapped from the inner-heliosphere at 0.14AU to 1.1AU. The shape of the streamlines
depends on the velocity field, such that the fast solar wind results in less tightly wound lines than the
slow solar wind. At regions where the streamlines interact, a compression wave is formed, whereas,
at regions where the streamlines are distant there is a rarefaction wave. At these regions of com-
pression and rarefaction, the solar wind streams go through substantial changes in density and flow
speed [26]. For a better understanding of the mapped streamline accuracy, Figure 11(e-f) presents a
histogram of the mapped streamlines longitude difference at 1.1AU along with plotting the cumulative
distribution function (CDF) in Figure 11d of the streamlines longitude difference at 1.1AU for each
surrogate model: HUX and sOpInf. The MAS in comparison to HUX and sOpInf trained on MAS
mean/median/maximum and standard deviation (SD) of the streamline longitude error are presented
in Table 2. The streamline mean longitude absolute error at 1.1AU of the HUX model is a factor of
12 larger than the ones associated with sOpInf. The numerical results show that the sOpInf model is
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(a) sOpInf vs. MAS (b) Relative Error

Figure 10: Graphic (a) shows the MAS solar wind velocity results (right column) and sOpInf model of the form
˙̂v = Âv̂ + Ĥ(v̂ ⊗′ v̂) + B̂ results (left column) with ` = 8 modes. The training ends at 0.82AU, hence, the velocity
profile at r = 1.1AU (last row) is in the purely predictive regime. Graphic (b) presents the relative error of learned
full-Sun sOpInf ROM vs. MAS. The sOpInf ROM results at r = 0.968AU and r = 1.1AU (last row) are in the purely
predictive regime. The ROM shows good qualitative and quantitative agreement with the MAS solution, yet can be
evaluated at a much lower cost.

Table 2: Streamline longitude absolute error (AE), measured in degrees, at 1.1AU of the surrogate models HUX and
sOpInf in comparison to MAS. That snapshot is in the fully predictive regime of the ROM, showing that the sOpInf
ROM can predict well outside the training interval and provides a better surrogate model than the reduced-physics
HUX model.

Model Comparison AE mean AE median AE max. AE SD
HUX vs. MAS 2.186◦ 1.977◦ 5.047◦ 1.463◦

sOpInf vs. MAS
0.172◦ 0.155◦ 0.457◦ 0.115◦

a more accurate approximation of the MAS model in comparison to the reduced-physics HUX model.
Moreover, the sOpInf framework can account for the solar wind dynamics in three-dimensional space,
whereas HUX is strictly two-dimensional.

4.7. Additional Considerations when Choosing the Operator Model Form
4.7.1. Comparing Models With the Same Number of Modes

The choice of polynomial ROM form for the HUX and MAS dataset is an approximation of the
governing equations (unlike the inviscid Burgers’ example in Section 3.3) since both models have
nonpolynomial terms. The above Sections 4.3–4.5 showcase the ROM model form that performed
the best in the testing regime, i.e. purely-linear, purely-quadratic, or a combination thereof. Here,
we present the results of a detailed investigation of how other polynomial ROM forms performed on
each dataset. Figure 12 compares the state error in the fully predictive (testing) regime for each
model: (12a) shows the HUX-2D equatorial plane results, (12b) shows the MAS-2D equatorial plane
results, and (12c) shows the MAS-3D full-Sun results. In each case, we consider strictly-linear, strictly-
quadratic, and linear-quadratic plus a constant term model forms in our analysis. Figure 12a shows
a comparison of three different model forms for HUX dataset, in which strictly-quadratic and linear-
quadratic plus constant term ROMs perform better than the strictly-linear ROM. There is not a
significant difference between the two quadratic forms, yet since the strictly-quadratic ROM has fewer
model parameters and resulted in a slightly better relative error in the testing regime, we choose to
employ a strictly-quadratic ROM form. For the MAS-2D dataset, the results in Figure 12b show that
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(a) MAS (b) HUX (c) sOpInf

(d) CDF (e) HUX vs. MAS (f) sOpInf vs. MAS

Figure 11: The solar wind streamlines (or Parker spiral) for the CR2210 equatorial plane is shown using the velocity
results of (a) MAS, (b) HUX, and (c) sOpInf trained on MAS. Sub-figure (d) shows the cumulative distribution function
(CDF) of the streamlines longitude absolute difference at 1.1AU, where sOpInf outperformed HUX in approximating
the MAS solar wind streamlines. The longitude absolute difference between the streamlines are shown for (e) HUX vs.
MAS and (f) sOpInf vs. MAS.

the strictly-quadratic model outperformed the other two model forms in the testing regime. Lastly,
for the MAS-3D dataset, Figure 12c shows that the quadratic model with linear and constant terms
outperforms the strictly-linear and strictly-quadratic ROMs with the same amount of modes.

4.7.2. Comparing Models with Similar Computational Cost
The main question we seek to answer: Is it better to have a linear ROM with larger ` or a

quadratic ROM with smaller `? The cost of simulating the sOpInf ROM depends on the number of
ROM parameters in the matrices on the right-hand side of Eq. (21). That number of parameters is
determined by both the model form and the reduced basis dimension ` and determines the models
computational cost. As mentioned in Section 3.1(III), we use the compact Kronecker product in the
sOpInf ROM. Consequently, the number of model parameters d(`) (i.e., parameters in the system
matrices) is

d(`) =


`× ` if ˙̂v = Âv̂

`× 1
2`(`+ 1) if ˙̂v = Ĥ(v̂ ⊗′ v̂)

`× (`+ 1
2`(`+ 1) + 1) if ˙̂v = Âv̂ + Ĥ(v̂ ⊗′ v̂) + B̂

(45)

for the different ROM forms we investigated. We thus compare the quadratic model forms chosen in
Section 4.3–4.5 to a linear ROM with a comparable number of model parameters d(`) in Figure 13.
That figure shows results for (13a) HUX-2D ROM presented in Section 4.3, (13b) MAS-2D ROM
presented in Section 4.4, and (13c) MAS-3D ROM presented in Section 4.5. As seen in all three
examples, the chosen quadratic model forms perform better than the purely-linear model form in the
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(a) HUX-2D ROM Form Com-
parison

(b) MAS-2D ROM Form Com-
parison (c) MAS-3D Full-Sun ROM Form Comparison

Figure 12: A comparison of three ROM model forms, i.e. purely linear, purely quadratic, and quadratic with linear and
constant term, relative error measured via the L2-norm in the testing regime. The three models are trained on 70% of
the (a) HUX-2D equatorial data, (b) MAS-2D equatorial data, and (c) MAS-3D full-Sun data.

testing regime using a comparable number of model parameters (and hence comparable computational
cost), more specifically:

– For the HUX-2D example, we set ` = 4 with a strictly-quadratic model, so a linear model with
` ≈ 6 would have a comparable number of model parameters. The quadratic model performs better
with approximately the same number of model parameters.

– For the MAS-2D example, we set ` = 9 with a strictly-quadratic model, so a linear model with ` ≈ 20
would have a comparable number of model parameters. The quadratic model is more accurate with
approximately the same number of model parameters.

– For the MAS-3D example, we set ` = 8 with a linear-quadratic plus constant term model, so a
linear model with ` ≈ 19 would have a comparable number of model parameters. The quadratic
model performs better with approximately the same number of model parameters.

The above numerical evidence highlights the importance of including quadratic nonlinearity in the
sOpInf ROM. From another perspective, adding a quadratic term to the model allows us to have a
lower ROM dimension ` than if only linear terms were present.

5. Conclusion

We proposed a reduced-order modeling strategy that uses simulated data to learn low-dimensional
models for efficient solar wind predictions. The method leverages physical knowledge in that it first
seeks to detect a spatial shift in the data/model (arising from advection) either through the method of
characteristics or the fully data-based cross-correlation method. Given that shift, the system is then
transformed into a moving coordinate frame, where a ROM can efficiently be learned via operator
inference. The numerical results showed that for the full-Sun MAS simulations, a ROM with ` = 8
modes was sufficient to accurately predict the solar winds, yet produced significant computational
speedup compared to the full-order model. From a surrogate modeling perspective, we investigated
and compared the accuracy of two surrogates for the MAS model: a reduced-physics approximation
(HUX) and the proposed sOpInf ROM approximation. We found that the latter is a much more
accurate model than HUX; therefore, it is worth investigating ROM approaches for solar physics
applications. Although we developed the sOpInf methodology to learn ROMs from simulated solar
wind data, we found that the sOpInf framework is robust to moderate levels of noise, which is promising
as one hopes to use sOpInf for noisy observational data. Additionally, when considering which sOpInf
ROM model form should be chosen, we found that smaller quadratic ROMs perform better than
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(a) HUX-2D ROM Form (b) MAS-2D ROM Form (c) MAS-3D Full-Sun ROM Form

Figure 13: A comparison of quadratic ROM forms, i.e. purely-quadratic and linear-quadratic plus constant term, to
purely-linear ROM form via the testing relative error measured by the Frobenius norm. The numerical results for (a)
HUX-2D, (b) MAS-2D, and (c) MAS-3D, show that the quadratic ROM forms are generally more accurate than the
strictly-linear ROMs learned with a comparable number of model parameters.

larger, purely-linear ROMs in the testing regime (with comparable number of model parameters),
highlighting the importance of quadratic terms in the ROM. While applied to use cases where solar
wind velocities are most relevant, our methodology is applicable to forecasting additional solar wind
quantities such as the density, pressure, etc. These models are our focus of future work. Moreover,
while most quadratic forms of the ROM were sufficient to represent the physics with good accuracy,
we expect more nonlinearly behaving systems to benefit from additional variable transformations (and
lifting approaches similar to [28, 49]).

A long-term goal of our project is to solve uncertainty quantification problems, by efficiently
assessing the impact of model input uncertainties, such as uncertain model coefficients, boundary
conditions, and initial conditions, for which we anticipate our ROMs to be very useful. The ROMs can
substantially accelerate ensemble methods, e.g. the most direct approach of Monte Carlo simulations
and Bayesian inference, which are highly valuable in space weather operational forecasting.
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Appendix A. Extending Shifted Operator Inference to Applications with Noisy Data

We developed the sOpInf methodology to predict the ambient solar wind from simulated data,
yet the sOpInf framework extends to a wide class of advection-dominated systems described on a
periodic domain and can be trained directly from observational data which is always noise-corrupted.
We thus tested the sOpInf sensitivity to noise on the inviscid Burgers’ equation example described in
Section 3.3 with Gaussian noise added to each snapshot entry. Following the work by [21], the noise
is drawn from a N (0, ν2) with ν = ζ · (maxx u(x, 0)−minx u(x, 0)) = ζ · (1.3− 0.8) = ζ/2, where the
coefficient ζ is the noise level. The same Gaussian initial condition, periodic boundary conditions, and
first-order finite difference numerical solver described in Section 3.3 are used to generate the training
and testing snapshots, where 80% of the total snapshots are used for training.

We generate noisy snapshots with various levels of noise ζ = 1, 2, . . . , 20%, and for each noise
level compute the shift function c(t) via the cross-correlation extrapolation technique fitting a linear
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polynomial (see Section 3.2.2). Figure A.14a shows the cross-correlation extrapolation linear shift
function c(t) slope as we vary the level of noise ζ = 1, 2, . . . , 20%. We found that the cross-correlation
technique is robust to noise as the shift function remained within c(t) = (1.05 ± 0.012)t for ζ =
1, 2, . . . , 20%. Note that c(t) = 1.05t is the linear shift function for the noiseless data as mentioned in
Section 3.3.

Figure A.14b shows the singular values of the noisy and noiseless Burgers’ training snapshots
on the shifted and original coordinate frame for ζ = 2%. In agreement with Figure 2d, we see
in Figure A.14b that the singular values decay faster in the shifted coordinates (in comparison to
the original coordinates). Next, we compute the POD basis V` = [v1, . . . ,v`] ∈ Rn×`, shown in
Figure A.14c. Inspecting the POD modes, we choose to keep ` = 5 POD basis functions, since after
the fifth mode the POD modes are polluted with noise. This choice of ROM dimension ` = 5 is
consistent with the singular values of the noisy data in the shifted coordinates, which plateau after
` = 5. The projected snapshots Û = V>` Ũ, where the rows of Û ∈ R`×K are denoted by Ûi,: ∈ RK for
i = 1, 2, . . . , ` are the temporal ROM coefficients and are shown in Figure A.14d. Since the temporal
coefficients are polluted with noise, using a uniform sixth-order finite difference scheme as we did in
Section 3.3 will be highly inaccurate. Instead, the time derivative ˙̂

U of the reduced states is computed
via a simple factor method based on bimodal kernels of [17].

Figure A.15 shows the noisy snapshots for noise level ζ = 2%. Correspondingly, the sOpInf ROM
results with ` = 5, λ1 = 1 and λ2 = 104 trained on noisy (noise level ζ = 2%) snapshots are shown
in Figure A.16. The numerical results illustrate that the sOpInf framework successfully reconstructs
and predicts the dynamics of the inviscid Burgers’ equation from noisy snapshots. The results show
small oscillations near the shock in the testing regime. We suspect this behavior is due to the low
number of modes (` = 5). The mean relative error is 1.1416 × 10−3 and the Pearson correlation
coefficient is 0.99987 in comparison to the noiseless snapshots. The numerical results show that the
sOpInf methodology is robust to noise and can be potentially extended to applications with noisy
observational data.
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(a) Sensitivity of c(t) to Noise (b) Singular Value Decay

(c) POD Reduced Basis

(d) Reduced State

Figure A.14: Graphic (a) shows the slope d
dt c(t) of the linear shift function as the noise level ζ = 1, 2, . . . , 20% varies.

The results show that the cross-correlation extrapolation technique is robust to noise as the shift function slope remains
relatively close to 1.05 as we increase the noise level. Graphic (b) shows the singular value decay of the noisy (with
ζ = 2%) and noiseless Burgers’ equation snapshots on the original and shifted coordinates. Graphic (c) shows the first
eight POD modes normalized between [−1, 1] of the noisy (noise level ζ = 2%) and noiseless inviscid Burgers’ training
snapshots. Of those, the first five POD modes of the noisy dataset are able to filter most of the noise, suggesting to
learn a ROM with ` = 5. Graphic (d) shows the first five temporal ROM coefficients (normalized to [−1, 1]) in the
training regime for noisy and noiseless snapshots.

Figure A.15: The inviscid Burgers’ equation simulated snapshots with added Gaussian noise (noise level ζ = 2%).
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Figure A.16: Solutions from the sOpInf model of the form ˙̂u = Âû + Ĥ(û ⊗′ û) with ` = 5 modes trained on noisy
(noise level ζ = 2%) inviscid Burgers’ snapshots. The results show good agreement with the noiseless snapshots.
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