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Actions in the world elicit data for learning and do so in a stream of inter-
connected events. Here, we provide evidence on how toddlers with their
parent sample information by acting on toys during exploratory play. We
observed 10 min of free-flowing and unconstrained object exploration of
by toddlers (mean age 21 months) and parents in a room with many avail-
able objects (1 =32). Borrowing concepts and measures from the study of
narratives, we found that the toy selections are not a string of unrelated
events but exhibit a suite of what we call coherence statistics: Zipfian distri-
butions, burstiness and a network structure. We discuss the transient
memory processes that underlie the moment-to-moment toy selections that
create this coherence and the role of these statistics in the development of
abstract and generalizable systems of knowledge.

This article is part of the theme issue ‘Concepts in interaction: social
engagement and inner experiences’.

1. Introduction

Much of the data in the world is latent as it is unrealized without some direct
physical action. Thus, behaviour—actions in the world—samples information
for learning. Theorists [1,2] have conjectured that children’s free-flowing play,
unconstrained by the goal of solving a specific task, provides a model of optimal
sampling for emerging knowledge systems. Here, we provide evidence on how
toddlers with their parent sample information by choosing toys during an
extended period of exploratory play. We show that toy selections are not a
string of unrelated events; instead, they exhibit a suite of temporal statistics and
transitions from one toy to the next with a structure like that of a coherent narra-
tive. In the discussion, we consider the transient memory processes that influence
moment-to-moment toy selections and the role of the resulting coherence statistics
in the development of abstract and generalizable systems of knowledge.

(a) Human-generated events in time

A considerable body of research across many fields shows that natural time series
of human-generated events display a characteristic set of statistical properties
[3-11]. In the centre of figure 1 is an illustration of a time series with different
types of events shown in different colours. These human-generated events
could be the words in a conversation or text [3-5], the places visited on trips
across a country [6,7] or the objects encountered as one walks through a home
or looks at a series of photographs [8-10]. Or they could be the different toys
selected for play by a child in a toy room [11]. Time series of these behaviour-
generated events exhibit the statistical properties illustrated in the surrounding
panels of figure 1. The temporal structure has periods of repetitions of high-fre-
quency event types and periods of more rare events (a). Repetitions of high-
frequency items are bursty [4], occurring in clusters of repetitions that recur
over long delays (b). The temporal patterns yield a skewed-frequency distribution
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Figure 1. The statistics of human-generated events. The centre figure shows a time series of events with different types of events indicated by different colours. The
surrounding figures show different properties of that time series: (a) periods of repetition and exploration, (b) bursty repetitions (very short or very long delays) of a
single type, () frequency distributions in which some types are very frequent and others infrequent and (d) structured transitions among different types with

recurring higher order relations. (Online version in colour.)

in which a few types are very frequent, but most are infrequent
(). Finally, these statistics yield an overall pattern that can be
summarized by a small-world [12] network in which a rela-
tively small number of pairwise transitions (one event to the
next) connect all the events in the time series (d).

In his seminal work on human behaviour, Zipf [13] pro-
posed that highly skewed frequency distributions and
burstiness (figure 1c,b) are pervasive across human-generated
events because they arise from a fundamental property of
human motivation, the principle of least effort. Researchers
who study how humans sample information have argued
that periods of repetitive and varied sampling (figure 1a) reflect
two opposing human tendencies: exploitation of what is
known and exploration of the novel [14-17]. These two ten-
dencies have been linked to ‘curiosity-based’ or ‘predictive’
learning and the idea that learners repeatedly sample from
the same source as long as they are learning something new,
reducing prediction error, but move to exploration when pre-
diction error is low [18-20]. Other researchers have focused
on the bursty repetitions of the same event (figure 1b) as an
optimal combination of massed and distributed practice and
these researchers have shown that this interleaving of a to-be-
learned item with other items benefits learning [4,21-23].
Others have focused on relational patterns of co-occurrence
and transition (figure 1d), often in the context of studying the
semantic structure of time series of words or scenes [24-26].
In brief, the suite of statistics that characterize time series of
human-generated events are well recognized, often studied
independently and known to be relevant to human cognition.
However, the field lacks an integrated understanding of the
statistics, the degree to which they characterize the everyday
experiences of infants and children and the relevance of these
statistics to cognitive development. Our specific goal in this
study was to quantify these statistics with respect to one

everyday experience of toddlers: exploratory play with
a mature partner.

(b) Coherence statistics

What could it mean for cognitive development if the statistics
of figure 1 characterized toddlers’ experiences during toy
play? The study of narratives offers a possible answer. Narra-
tives—conversations, stories—are one kind of human-
generated time series that are characterized by the statistics
shown in figure 1 [27]. Researchers of narratives, however,
have thought about the implications of these statistics
through the specific lens of their contribution to forming
coherent meaning [28-31]. Coherent narratives are character-
ized [28,32,33] by a few high-frequency topics (figure 1c) that
occur in close-in-time repetitions [34] (figure 1a) but that are
also returned to over longer delays (figure 1b). These tem-
poral patterns are believed to connect all the ideas in the
narrative into a coherent whole [33,35] (figure 1d). Informa-
tive narratives have been characterized as ones that also
bring in new information interleaved among the more
frequent main topics [32,35]. Based on the information-
theoretic value of frequent and infrequent information [35],
narratives have been characterized as having a Topic-
Comment structure. By this information-theoretic definition,
‘Topics” are high-frequency items that are the ‘given” infor-
mation. ‘Comments’ are low-frequency and thus ‘new’
information. Finally, within narratives, the co-occurrences
and transitions in time among different contents (figure 1d)
exhibit higher-order relations [30,31,33]. Experiments (e.g.
[23,36,37]) and computational models (e.g. [10,38,39]) show
that these statistics benefit communication, integration of
new and old information, and learning.
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The functions of these statistics identified by theorists of
narratives may be the same in learning from human-generated
nonlinguistic experiences as well as linguistic ones. This is the
larger theoretical idea motivating our research program.
Here, we take the first step: borrowing the orientation of theor-
ists of narratives [6,7,35], we measure the coherence statistics of
parent and toddler toy selection during exploratory play.

(<) The current study

We asked toddlers along with their parent to freely play in a toy
room with many available toys. The parent was included because
toddlers are less likely to explore or engage with toys when play-
ing alone and because the company of caregivers is the common
context for toddler exploration and learning [40—43]. We defined
toy selection as the handling of a toy by the parent or the toddler.
Prior work shows that parents often talk about handled toys
during toddler play and that this talk has significant effects on
toddler behaviour and learning [40-43]. Therefore, we also
included parent referential talk as a form of toy selection.

2. Method
(a) Dyads

The participants were 32 toddler-parent dyads; mean age of the tod-
dlers was 21 months (s.d. =11) and half were female. One- and 2-
year-old children were selected for participation because during
this time, there is increasing interest in and learning about objects,
their uses and their names; further considerable research has
linked exploratory play with a mature partner to advances in cogni-
tive development [1,4,41-43]. Data from 16 of the dyads were
included in an earlier report of 1-year-old toddlers” experiences of
name-obiject co-occurrences [13]: the sample was broadly represen-
tative of Monroe County, Indiana (75% European American, 6%
African American, 6% Asian American, 6% Latino and 6% Mixed
race) and consisted of predominantly working- and middle-class
families. All research was approved by the Human Subjects and
Institutional Review Board at Indiana University, Protocol 12603.
The predominant language in all homes was English.

(b) The toy room and instructions

Parents and toddlers were invited to play in a toy room (3 m by 4 m)
for 10 min without an experimenter present. At the start of each test
session, 32 toys (see electronic supplementary material) were hapha-
zardly distributed on the floor of the playroom. The spatial
distribution of toys for each dyad was accomplished by five different
experimenters such that the spatial arrangements were purposefully
uncontrolled. We used this approach to limit any obvious or
repeated organizing principle and to increase the generalizability
of our findings to everyday contexts in which the spatial distribution
of toys in playrooms is uncontrolled and highly variable.

The 32 toys were selected to be of interest to toddlers but not
to strongly prescribe specific goals or kinds of play (e.g. farm
play or cooking play.) As a guide to the choice of toys, we
used the toys in the toy-box of the family waiting room for the
five developmental laboratories at Indiana University. The toys
in the waiting room are a happenstance set that emerged organi-
cally over time and comprise a variety of both typical and odd
items that interest children from infancy to 5 years of age.

Parents were told that we were interested in toddler explora-
tory play and to encourage their toddler to engage with the toys
and that they should interact with their toddler as they normally
would. We set the duration of the play session at 10 minutes
because pilot studies indicated that this was the maximum
period for continually engaged play by toddlers with a parent.

(c) Audio and video recording

Both the toddler and the parent generated experiences for tod-
dler. Our principal goal, however, was to quantify the statistics
of sampled toys from the young learner’s point of view. Accordingly,
we used a head-camera and audio recorder worn by the toddler
to record the stream of toy selections from the perspective of the
toddler. The lightweight head camera (WATEC model WAT-
230A with WATEC lens model 1920BC-5) had an angle of view
of 115.2° on the horizontal and 83.7° on the vertical and was
mounted on a headband that could be situated low and firmly
on the toddler’s head. Children were able to freely move—
walk or crawl—while wearing the head camera and commonly
did so. Two additional third-person cameras (overhead and
from the side) also recorded a full view of the room but were con-
sulted only if there was ambiguity with respect to the identity of
an object in a participant’s hand.

(d) Coding
The measured coherence statistics are calculated over discrete
events. Consistent with established practices in time-series ana-
lyses [44], we coded the data in terms of a pre-defined time
window. The 5s window used in this study was chosen based
on prior research that directly compared 5s and 1s sampling
rates of parent and infant behaviour during play and found that
the sampling rate did not affect the overall temporal statistics [11].
A coded toy selection consisted of the toy selected and the selec-
tion act. There are three possible selection acts: infant handling,
parent handling and parent talk. Each coded selection was
marked with the timestamp of the 5 s window in which it occurred.
Multiple selection events could have the same timestamp: for
example, within a single 5 s window, the infant could handle both
the cow and the ball, and the parent could name the ball. In this
case, the same timestamp would be associated with each of the
three selection events. If a unique toy selection act (e.g. toddler hand-
ling the cow) bridged two successive 5 s segments, it was marked as
two discrete events occurring with the two successive timestamps.
Thus, each toddler’s head-camera video and audio were
binned into 121 segments of 5s. Human coders annotated all
objects that were in hands during each segment, whose hand
and the specific toy, using Datavyu [45]. Trained coders in a sep-
arate pass transcribed parent talk within each 5 s segment. From
these transcripts, parent talk about specific toys in each segment
was determined. Talk referring to a specific toy was defined as
any talk that was clearly about a specific object; for example,
naming the white sheep as ‘sheep,” ‘lamb’ or erroneously ‘dog,
describing the object (e.g. 'he has a lot of white fur, or
"he’s soft’, “he’s hiding’). Two coders independently coded each
video segment for handling and agreed on 90% of the 3872
coded video segments. A third independent coder resolved all
discrepancies. Two independent coders transcribed toy refer-
ences in parent talk within the 5s segments. The two coders
agreed on the referred-to objects on 86% of the 3872 segments
and discrepancies were resolved by a third independent coder.
Toddler talk was rare, which is expected given the age of the chil-
dren and the well-known variability in amount of early
productive language [44,46]. In addition, early talkers’ articula-
tion is highly variable [47,48], making the objective coding of
their utterances difficult and reliability poor. Coding reliability
could be improved by inferring what the toddler said from
parent talk in response to the utterance or from the hand actions
of the two participants near in time to the toddler’s utterance.
However, these behaviours were already being counted as separ-
ate acts of toy selection. Therefore, and given the limited amount
of toddler talk, the data analyses included only toddler handling,
parent handling and parent talk but did not include toddler talk.
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Figure 2. Toy selections. (a) Head-camera images of toy play. (b) Mean frequency of selection of individual toys (by rank order) normalized as mean proportion of
within each selection behaviour: toddler handling, parent handling and parent referential talk. The horizontal axis shows unique toys by their rank frequency
standard deviations. (c) The mean normalized frequency distribution for all unique toy selections as defined in table 1. The objects are partitioned into two cat-
egories: Topic objects (the five most frequently selected toys) and Comment objects (the more rarely selected toys). The error bars show the standard deviation.

(Online version in colour.)

(e) The data structure

The data structure is a time series of discrete toy selection events.
Unique selection events consist of the following four components:
the selected toy, who did the selection, the selecting behaviour and
the timestamp (the segment from 1 to 121 during which the selec-
tion occurred). An example of the data from an individual dyad is
shown in table 1; we will use this example throughout §3 to
explain the different statistical measures and analyses. For all
analyses, we set a priori the acceptable Type 1 error at p <0.01.
The de-identified data submitted for all analyses are available at
https:/ /doi.org/10.17605/OSF.IO/HE7TZ.

3. Results

Figure 2a shows examples of toddler head-camera images
during active play. Within 89% of the 5s segments, at least
one toy was selected by at least one of the three behaviours
(range 0.35-1 s.d.=0.25). Parents and toddlers handled
objects roughly equally: the mean proportion of video seg-
ments with toy handling by toddlers was 0.86 (range 0.18-
1, s.d. 0.43) and for parents, it was 0.70 (range 0.24-1, s.d.
0.33). Parent talk referenced at least one toy in 0.80 of all
segments (range 0.51-0.97, s.d. =0.18).

Despite this continued engagement with the toys, the
dyads did not broadly sample the toys available in the
room but instead were highly selective. The mean number
of the unique toys handled at least once by the toddler was
15.2 (range 8-25, s.d.=4.27) and by the parent was 17.4
(range 8-30, s.d.=5.2). The mean number of unique objects
referenced in parent talk was 16.5 (range 8-24, s.d.=3.6).

Table 1. The data structure. An example of selection events across three 5 s
segments. Individual toy selections are coded in terms of four properties: the
selected toy, who did the selection, the act of selection and the timestamp
(from 1 to 121) of the 55 segment during which the selection occurred.
Each entry is a unique selection (or data point) because it differs from the
others in one of the four elements (toy, who, act and segment) and thus
contributes to the count of the total number of selections by a dyad.

1)} who act segment
bucket child handle  n
hippo parent handle n
hippo » parent o talk ‘ o
hippo child handle n+1
giraffe » parenf » Chandle o+
hippo child handle n+2

This selectivity was not due to all the dyads favouring the
same specific toys. All 32 toys were selected by at least one
dyad for play and 30 unique toys were among the top five
most frequently selected toys for at least one dyad.

(a) Frequency distributions

Figure 2b shows the mean frequency distributions of toy selec-
tions averaged not by the specific toy, but by rank order of
selection. Frequency is normalized as the proportion of total
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toy selections for the participant and selective act. All selection
acts—toddler handling, parent handling and parent talk—
show similar distributional patterns: a few toys were fre-
quently selected in play and many others were also selected
but not frequently. We used two statistical tests to determine
whether the three time series of selections by different beha-
viours differed and conducted both sets of analyses at the
individual dyad level. The first test compares distributional
properties using the Wilcoxon test for comparing whole fre-
quency distributions of rank-order data, asking whether they
show the same degree of skew, a characteristic property of be-
haviour-generated events. Within each dyad and for each of
the three pairwise comparisons, we observed no reliable differ-
ences. For the comparison of infant and parent handling, the
mean Wilcoxon V was 192, with the range across dyads of
23-310, and p > 0.01 for all individual dyads. For the frequency
distributions of parent handling and parent talk, mean V =
186, range 63-280 and p > 0.01 for all the dyads. For the com-
parison of the frequency distributions of parent talk and
infant handling, mean V =190, range 39-327 and the p-value >
0.01 for all dyads. In brief, for all selection acts and all partici-
pants, a few toys were selected many times and many toys
were selected a few times.

The second set of tests asked whether, within dyad, the
different selection behaviours selected the same toys with
the same frequency. To this end, we used Spearman rank
order correlation, measuring the correspondence in rank
order of the specific toys selected by different behaviours.
All separately conducted dyad correlations (d.f.=31 of the
32 possible toys) were reliable at p <0.01: the mean corre-
lation in rank order selection by toddler and parent
handling was 0.64 (range 0.54-0.96 across dyads); 0.71
(range 0.60-0.92) between parent talk and toddler handling;
and 0.72 (range 0.60-0.93) between parent talk and parent
handling. These findings tell us that the frequency distri-
butions of individual toys by the three selection acts within
a dyad were highly correlated.

The histogram shown in figure 2c is made by counting all
the forms of toy selections within each dyad to the same toy.
Using the sample data in table 1, we illustrate the count entries
to the same toy in the "toy’ column (four hippo events, one
bucket event and one giraffe event). We use this aggregate
count of selected toys (ignoring who and the specific behav-
iour) in the following analyses. This approach is justified on
four grounds: (1) the lack of distributional differences and
strong correlations within each dyad in the frequency with
which specific toys were selected; (2) the series of all acts, cap-
tured from the point of view of the toddler, is the time series of toy
selections experienced by the toddler; (3) in studies of parent—
infant play [40,41], handling of a toy by parent or infant, as
well as parent talk about a toy, is often conceptualized as a
deictic act that refers to the handled entity [40,41]; and, thus,
(4) the combined time series represents the overall joint struc-
ture of the emerging ‘conversation” of play.

Theorists of narratives attribute different informational roles
to the high- and low-frequency components of the narrative
[29,35]. We borrowed the information-theoretic definitions
[35] of Topics and Comments to partition each toddler’s
experienced time series of toy selections into two categories:
the five most frequently selected toys versus the other toys.

The top five toys accounted, on average, for slightly more [ 5 |

than 50% of all toy selections (mean =57%, range 43-82%,
s.d. 11%). In discourse [32-35,40], references to the main
topics are characterized by close-in-time repetitions and dis-
tant-in-time repetitions (figure 1b). Returns to the main
Topics after longer delays hold the narrative together, con-
necting old and new content [32,33,36]. Does this pattern
also characterize the time series of parent-toddler play?

Close-in-time repetitions and returns over longer delays
could emerge during play solely from the already documen-
ted frequency distributions; high-frequency selections of a toy
provide a greater likelihood of both close and far repetitions
than low-frequency selections. To determine whether the
observed temporal patterns are stronger than those expected
solely by the skewed frequency distributions, we created for
each dyad a randomly permuted series of all toy selections
that disrupted the temporal properties of the times series
but maintained the frequency distribution of the individual
toy selections generated by the dyad. For each dyad, 10 000
Random permutations of the observed time series were
used to create the random baseline (see [34] for a similar
approach). The randomly permuted time-series instantiate
the null hypothesis that the measured statistics emerge
solely from the observed frequencies of the selections of the
different toys. The alternative idea is that the processes that
create moment-to-moment selections are dynamically related
in ways that create coherence beyond what is expected to
emerge from the skewed frequency distribution alone.

To examine the close-in-time repetitions of Topics and
Comments—which is sometimes referred to ‘continuity’ in
spoken discourse [34]—we defined a cluster of selections of
the same toy as a minimum of two selections of that toy that
occurred in adjacent segments. That is, for these cluster
measures, we count runs of segments with selections of the
same toy (but not number of selections of the same toy in
the same segment). Using the example data in table 1, there
is a three-segment cluster of repetitions for selection of the
toy "hippo” because hippo is selected at least once in each of
the segments 7, n + 1 and n + 2. For each dyad, we computed
the number of clusters and the run length of the cluster. For
the example in table 1 (assuming hippo was not selected in
segment n — 1 or n + 3), there is a single cluster of hippo with
a run length of three segments. Table 2 shows the data for clus-
ters and run lengths separately for the Topic and the Comment
toys. The mean number of clustered repetitions was signifi-
cantly less for the observed than randomly permuted data
(F1,31 =78.42 p <0.01). There was also a main effect of Topic
and Comment (F; 3; = 63.2 p <0.01) and a reliable interaction
between the factors of observed-random and topic-comments
(F1,31=37.6 p<0.01). As shown in table 2, the observed time
series results in fewer clusters because individual clusters
have longer run lengths in the observed than in the random
data. Toddlers and parents continue selecting the same toy
for longer spans of play than would be expected by the fre-
quency of toy selection alone. Thus, the mean run lengths of
observed clusters were longer than the permuted baselines
(Fy,31 =67.58 p <0.01). Mean run lengths were also longer for
topics than comments (F; 3 =74.5 p <0.01). The interaction
approached significance (F;3;=5.76 p=0.02). In brief, toy
selection shows longer spans of play (segment runs) involving
the same toy than would be expected from the frequency of the
toy’s selection and this is somewhat more marked for the topic
than the comment objects.
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Table 2. The mean number and run length of clusters of toy selections to
the same toy. Objects at the Dyad level for the Observed times series of
data and for the 10000 Random permutations of the Observed times
series. Standard deviations are in parentheses. A dluster is defined as at
least two successive 55 segments containing a referential act (toddler
handling, parent handling and parent talk) to an object. The duration (in
seconds) is calculated as the number of segmentsx5s. The cluster
statistics were calculated separately for the high-frequency Topic objects
and the low-frequency Comment objects. The component measures for
Toddler Referential acts (handling) and Parent Referential acts (handling
and talk) are given the Dyad-level data.

number of clusters

observed dyad 3.57 (1.9) 1.46 (0.78)
random dyad 15.82 (7.6) 4,09 (1.35)
run lengths (number segments in a row)

observed dyad 482 (2.31) 2.63 (1.39)
random dyad 232 (1.82) 1.02 (1.24)

Coherent discourse—our guide to measuring the coher-
ence statistics of play—is characterized not just by the local
continuity of topics but also by returns to the main themes
over longer delays. We measured returns to previously
selected toys over the course of the whole play episode by par-
titioning the play session into four quartiles (2.5min in
duration). Within each quartile, each dyad’s score was the nor-
malized frequency (that is, proportion of Topic selections
divided by 5 for all dyads and the proportion of Comment
selections divided by the number of non-topic objects refer-
enced by the dyad). Figure 32 shows the mean normalized
proportions within each quartile. A two-way repeated
measures ANOVA revealed only a main effect of Topics and

Comments (Fy 3 =80.29, p<0.0001), with the frequency of
Topic toy selections greater than Comment toy selections.
There was no effect of Quartile (F593=0.80 p=0.49) and the
interaction between Topics/Comments and Quartile was not
reliable (F393=2.19, p=0.09). In brief, the mean proportion
of referential acts directed to the Topic objects, considered in
aggregate, did not differ across quantiles (F33;=0.22, p=
0.89), showing that Topic objects recurred throughout the
whole play session intermingled with the more numerous
and variable Comment objects. Figure 3b shows the data sep-
arately for the top five objects (for each dyad) that comprise
the set of Topic objects for that dyad. Each of the high-fre-
quency Topic toys was selected in each quartile and thus the
pattern in figure 3a is not due to different Topic toys being
selected in different quartiles. These analyses show that the
selections of high- versus low-frequency toys display a tem-
poral pattern that is similar to the pattern of referential acts
in discourse: the string of toys engaged by the dyad consists
of frequent and repeated clustered ‘references’ to the same
‘main-theme’ toys interleaved with ‘references’ to new toys.
Although our main focus is on the statistics of toy selection
that the toddler experiences and not on the relative role of the
two participants in creating these statistics, their relative roles
are a question of interest in developmental science [41-43]. It
could be, for example, that parents have a sense of narratives
and the parent scaffolds the toddler’s play and is responsible
for the observed pattern. To address this issue, we used
cross-recurrence quantification [48,49], measuring the leads
and lags in toddler contributions to toy selection (handling)
and parent contributions to toy selection (handling and talk).
We calculated the time-lags between toddler and parent selec-
tion of the same toy: the lag is zero if both parent and toddler
selected that toy in the same segment; the lag is 5 s if parent
and infant selected the same toy in adjacent segments, and
the calculated lag for all other selections is the difference
between the timestamps multiplied by 5. Cross recurrence
determines all lags in time between all infant and parent acts
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on the same toy: if the infant held the object in segment 1 and
the parent selected the object in segments 2, 5 and 120, the lags
between 1,2 and 1,5 and 1,120 would all be calculated [49].
Positive values indicate toddler toy selections that preceded
parent selections of the same toy; negative values indicate
parent selections that preceded toddler selection of the same
toy; zero indicates referential acts with the same time stamp
(occurred in the same 5s segment). Figure 3c shows the
mean proportion of all lags between parent and infant selec-
tions of the same toy and also shows them separately for
selections of Topic and Comment toys. The peaks of the recur-
rence plots lie near zero, indicating that referential acts to the
same toy from the two partners most often occurred close in
time. However, the peak recurrence for both Topic and Com-
ment objects lies slightly but reliably on the positive side of
zero, indicating that toddlers lead more often than parents.
Across both Topic and Comment objects, there were on aver-
age more positive lags (55%; s.d.=0.07) than negative lags
(t31=5.2, p<0.01). The mean lag for Topics objects was +
2.63s (s.d.=0.58) and for Comment objects was+40.4s
(s.d. = 66). Thus, parents more quickly followed toddler inter-
est to the same toy when it was a high-frequency Topic toy
than a lower-frequency Comment toy. The main finding
from the cross-recurrence analysis for the present purposes,
however, is that parent and toddler toy selections are highly
coordinated in time. The observed patterns are not created pri-
marily by the parent but appear to be the joint creation of
toddler and parent.

In studies of human-generated behaviours more generally,
skewed frequency distributions and burstiness yield to
small-world networks in which the unique component
events are integrated into a single network by relatively few
connecting edges [12,50]. Does toy selection during play
have this same structure? We used graph-theoretic analyses
to ask whether the time series of toy selection within individ-
ual dyads showed relational patterns. The analysis takes as
data all the pairs of unique toy selections that occurred in
the same segment (co-occurred) and in adjacent segments
as shown in table 3 for the sample data in table 1. For simpli-
city, we will call both co-occurring (same segment) and
adjacent (adjacent segment) pairs of unique selection acts
transitions because they are close in time (same or adjacent
segment) events. The transitions, so defined, fall into two
classes: S transitions (pairs of the selections of the same
object) and D transitions (pairs of selections of different
toys). For example, using the data in table 3, bucket-hippo
is a D pair regardless of who or how the pairing is made
and hippo-hippo is an S pair and because pairs must be
unique selective acts, the hippo-hippo pair must be selected
by different people, different acts, or different (adjacent) seg-
ments. In our analyses, all edge connections were treated as
non-directional; that is, when making and measuring the net-
works, giraffe-hippo and hippo-giraffe were treated as two
instances of the same edge.

The individual dyad networks were constructed with each
unique toy indicated as a node and transition pairs are indi-
cated by the connecting non-directional edges. Figure 4
shows the networks for three individual dyads. For ease of
visualization, we exclude the S transitions showing only the
D transitions. We also show all edges that occurred at least

Table 3. The input to the network analyses consisted of pairs of co-

occurring (same time stamp) or adjacent selections (successive time
stamps). Shown are all the pairs that would be submitted to the network
for the data shown in table 1.

bucket, hippo segment n, n: Child handle, Parent handle)
bucket, hippo
hippo, hippo

bucket, hippo

segment n, n: Child handle, Parent talk)
segment n, n: Parent handle, Parent talk)
segment n, n + 1: Child handle to Child handle)

bucket, giraffe segment n, n + 1: Child handle, Parent handle)

(
(
(
(
(
(
(
(
(
(

hippo, hippo segment n, n + 1: Parent handle, Child handle)

hippo, giraffe segment n, n + 1: Parent handle, Parent handle)

hippo, hippo segment n, n + 1: Parent talk, Child handle)

hippo, giraffe segment n, n + 1: Parent talk, Parent handle)

hippo, giraffe segment n + 1, n+ 1: Child handle, Parent
handle)

giraffe, hippo (segment n, + 1 n + 2: Parent handle, Child
handle)

hippo, hippo (segment n, + 1 n + 2: Child handle, Child handle)

once in the dataset; the frequency of an edge is indicated by
the closeness of the nodes. In addition to the three Observed
networks, figure 4 also shows the Random networks for
each example network. Random networks were created from
the mean transitions computed over the 10000 random per-
mutations of the order of each dyad’s toy selections.
Therefore, the Random networks instantiate the null hypoth-
esis that the observed structure of transitions is solely the
result of the frequencies of selection of individual toys.

We used four measures of network structure [51] that
were computed separately for each dyad’s Observed and
Random network in MatLas [52]. The formulae and code
are available at: (doi:10.17605/OSF.IO/HE7TZ). Figure 5
shows the means for each measure determined separately
for each dyad for each node in the Observed and the
Random networks. Statistical analyses of the network
measures used a 2(Observed-Random) x 2(Topic-Comment)
analysis of variance with both Network type and Node
type as within factors.

(1) Edge strength is a measure of the frequency of indi-
vidual transitions. A node with high strength participates in
relatively many strong edges. We computed edge strength
separately for the S and D pairs. As shown in figure 54, the
nodes in the Observed networks have stronger (more) S
loops than do the Random networks (F;3;3=221.5 p<
0.001). Parents and toddlers often repeat the same toy selec-
tion, selecting the same toy in two adjacent segments or in
the same segment but by different selection acts. Topic
objects had stronger S loops than did Comment objects
(F1,31 =159.7, p <0.001); the reliable interaction indicates that
the greater strength of S edges for Topics was more pro-
nounced for the Observed than Randomly permuted data
(F1,31=150.7, p<0.001), indicating that the greater strength
of self-loops for Topics over Comments is not simply the
result of the greater frequency of selecting Topic toys.

The strength of edges connecting different toys—D edges—
showed the inverse pattern (figure 5b). The strength of D edges
was significantly greater in the Randomly permuted network
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observed

random

Figure 4. Networks of the transitions among different toys for three individual dyads and the random networks derived from random permutations of toy selections. All
edges are non-directional and self-loops (S edges) are not shown. Proximity of nodes indicates the edge strength between them. Topic objects are shown as darker nodes
than Comment objects. (Online version in colour.)
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Figure 5. Statistics on network structure for Observed and Random networks. Each graph shows the measured statistic as a function of the rank order of individual toys
by frequency of selection, with the frequent Topic objects shown in darker shades and the less frequent Comment objects shown in lighter shades. (a) Mean strength of
the S-edges as a function of rank order of toy selection. (b) Mean strength of the D-edges as a function of rank order of toy selection. () Mean degrees, unique edges
connecting to each node, by their rank order toy selection. (d) Mean between of each node by rank order of toy selection. (¢) Mean cluster coefficient (transitivity) by
rank order of toy selection. The emor bars show the standard deviations around the means of each object, or node in the network. (Online version in colour.)
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than the Observed network (F; 3; = 184.9, p <0.001). D transitions
were also greater for Topic than Comments (F; 3 =368.4, p <
0.001), and the interaction was reliable (F; 3; = 68.28, p <0.001).
A well-structured network connects nodes to each other with
fewer distinct edges; thus, the fewer D edges for the Observed
than Random networks implicates more selective structure.

(2) Degrees measures the number of unique edges con-
necting to a node. As apparent in the example networks in
figure 4 and in the measures of all dyad networks in
figure 5c, the nodes in the Observed networks connect
much more selectively than is the case for the Random net-
works (Fy 3, =310.16, p <0.001), in which individual nodes
connect more indiscriminately to other nodes. That is, the
observed networks connect all played-with toys with a few
of the possible transitions that could have occurred given
the observed frequency distributions of toy selection. This
result is another marker of the coherence of toy selections;
transitions between two different toys are often repeated.
Topic nodes have more degrees than Comment nodes
(Fq,31 =2626.76, p <0.001), a difference that is not due to fre-
quency effects alone as indicated by the reliable interaction
(Fq,31 =136.661, p<0.001). Selection of a Topic toy is often
paired with the selection of other Topic toys but also with
the selection of rarer Comment toys and this is not due simply
to the greater frequency of Topic toy selections. In brief, the
observed networks of selections represent a limited number
of those that are possible given the observed frequency distri-
bution. Moreover, Topic toys do more of the work of
connecting different toy selections than would be expected
by their higher frequency alone.

(3) Betweenness measures the number of times each node
appears on a shortest path between two other nodes in the
network. For example, if the time series contains the pair gir-
affe-boat and the pair cow-boat but does not contain the pair
giraffe-cow, then boat would be on the shortest (three-node)
path connecting giraffe and cow in the network. Nodes that
have high betweenness play a greater role in determining net-
work structure and are a signal of higher-order structure (that
is, higher than pairwise transitions). By this measure
(figure 5d), Topic toys play a greater role in structuring the
time series of toy selection than would be expected by the
greater frequency of Topic toy selections. Betweenness was
greater for Observed than Random networks (F; 3, =71.292,
p<0.001) and for Topic than Comment nodes (F;3; =
130.985, p<0.001), and the interaction was also reliable
(F1,31 =43.860, p <0.001). Topic toys fall between the selection
of other toys and thus connect those other toys to each other.

(4) The Cluster coefficient measures the transitivity of pairs
in a network, an additional measure of higher-order structure.
For example, if the time series contains the pairs giraffe-boat
and the pair cow-boat and also contains the pair giraffe-cow,
then the pairs are transitive and appear as a triangle pattern
in the network (figure 4). As shown in figure 5e, this higher-
order structure systematically characterizes the Observed but
not the Random networks. The Cluster coefficient was greater
for the Observed than Random networks (F; 31 =35.479, p <
0.001), for Topics than Comments (F;3;=234.767, p <0.001);
and the interaction was reliable (F;3;=9.226, p<0.001). As
can be seen in figure 5S¢, the Cluster Coefficient is much greater
in the Observed data for both the Topics and Comments than
the Random networks. This indicates that transitivity—a
higher-order coherence beyond the selections of individual
toys or pairs of toys—includes both Topic and Comment toys.

The network analyses show that parent and toddler toy
selections are not a string of unrelated events but have selec-
tive and recurrent relational patterns centred on a few central
toys. In brief, the time series of toy selections have the statisti-
cal properties that theorists of narratives point to as critical to
integrated and coherent meaning,.

The time series of toy selections by parents and their toddlers
are not true narratives in the usual sense and the underlying
semantics are not of the usual kind one thinks about in the con-
text of discourse or stories. More specifically, the edges
connecting pairs are not typically taxonomic (hippo-giraffe) or
thematic (truck, hippo riding), although those relations do some-
times occur. For example, one toddler’s transitions often
included banging objects—banging the cow with a hammer
and banging the cow with the giraffe (used and held like a
hammer) and both of these hammering acts occurred in both
clustered repetitions and in returns after longer delays. For
another toddler, there were repeated transitions—S and D
edges—of putting toys in, out, on and off other things, including
on an upside-down (wheels up) truck. For others, there were
series of fingerings of like features on a succession of different
toys—fingering wheels on several vehicles, or eyes on several
animals. There were many other idiosyncratic patterns that in ret-
rospect make sense as explorations of the toys. Thus, the
relational patterns are not like a story with a plot that an adult
would tell or recognize. But the time series of toy selections are
story-like in their temporal statistics: there are a few ‘protago-
nists” (the Topic toys) that play a major role throughout play,
that have ‘adventures’ with other the less-frequent toys, and
that connect all the selected toys in a network of repeated rela-
tional patterns. These idiosyncratic but structured patterns of
toy selection emerged in a context of free play with minimal con-
textual constraints on how parents and toddlers should sample
the toys. What created these coherence statistics in toy play?
What do the observed coherence statistics mean for cognitive
development?

This suite of statistics observed in parent and toddler play is
generally understood as emerging within complex systems
that have a ‘memory’, such that each generated event influ-
ences the likelihood of specific future events [50]. If parent
and toddler play had no ‘memory’ for what had happened pre-
viously in play, but only had persistent biases for some toys
over others, then the measured statistics would not have dif-
fered from those of the randomly permuted time series. The
continuity of the Topics across short and longer time spans,
the selectivity of transitions and the betweenness and transitiv-
ity patterns all implicate a role for memories—for both toddler
and parent—of previous toy selections on play.

One relevant memory process is the transient shorter-
term memories often known as working memory, although
contemporary understanding differs substantially from clas-
sic views of working memory as a limited number of slots
with a set decay rate [53-58]. Recent findings about the
neural underpinnings of working memory reveal that in-
task transient memories exist as a kind of ‘long-range recur-
rent feedback loop” [53,54] across multiple neural networks
involving perception, attention, action and planning. Exper-
imental evidence shows these transient memories to be
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less time- and content-limited and more resistant to interfer-
ence from momentary shifts in attention than did classic
views and to hold information in both an active state and
in a silent but ready-to-be-re-activated state [53-55]. In
these accounts, working memory is task-length; it stores
associative and predictive relations among events and reacti-
vates and strengthens those relations through pattern
completion [53-56]. If these processes operate within parents
and toddlers to generate toy selections then one should see
returns to frequent toys, even when interleaved with other
toy selections, with each selection of a toy increasing the like-
lihood of selecting that toy again. Because working memory
stores and strengthens predictive relations, play with one
toy should serve as a reminder—through pattern com-
pletion—of play with a different toy that previously
preceded or followed that toy in play. These specific toy-to-
toy transitions should also strengthen over the play session.
These within-episode memories may also support explora-
tion and innovation within the play session. For example, if
a toddler has formed a predictive association between bang-
ing the cow (with the hammer) then looking at the cow while
holding the giraffe may reactivate that association and lead to
banging the cow with the giraffe by holding the neck of the
giraffe as the handle of a hammer. Thus, the properties of
task-length transient memories have the potential to generate
the statistics observed here: fostering repetition and returning
to previous topics over short and long lags, leading to gener-
alization and innovation (e.g. banging cows with giraffes). At
present these are conjectures, but they suggest the agenda for
future research: the complex dynamic processes of working
memory in extended episodes of parent-toddler joint play
are a target mechanism for generating the observed statistics.

Physical space also has a ‘memory’. During the play ses-
sion, the toddlers were free to move and often did so to
retrieve an out-of-reach toy. However, children and also
parents when transitioning from one toy to the next often
put handled toys down near their own bodies. Thus, at any
moment, the spatial layout of toys near the two partners con-
stituted an external ‘memory” of toys that had been recently
selected. Proximity makes these toys easier to see (re-activating
memories) and easier to reach, exemplifying Zipf‘s [13] prin-
ciple of least effort that yields a ‘more-gets-more’ dynamic in
human activity.

However, these memory processes alone may not provide a
complete explanation. Throughout play, parents and toddlers
continually added new toy selections, creating what we called
the Comment toys. A complete explanation of the observed stat-
istics will need to integrate ‘more gets more’ processes with
exploration, perhaps by linking contemporary theories of work-
ing memory to curiosity [14-20]. Much of human behaviour is
characterized by the push and pull of the familiar and the
novel [59,60], including phenomena such as habituation and
dishabituation [61], prediction and surprise [62,63], exploitation
and exploration [1]. The present findings implicate underlying
processes that boost returns to prior toys and the intermittent
and interleaved exploration of new toys. What drives this
push and pull to return to the same toys and explore new
ones? One possibility is the internal rhythms of attention
[64,65]. Another possibility is the time-dependent processes of
memory strengths and decay over time that have been known
since Ebbinghaus [66]. A third possibility is suggested by cur-
rent ideas about predictive coding [67,68]; in this view, the
cognitive system is continually generating and updating a

model of the world and does so by generating predictions,
determining the prediction error and correcting the model.
When prediction error diminishes, the learner moves on to
novel problems [33,34]. Experimental studies of this phenom-
enon have concentrated on experimentally controlled
procedures and discrete screen-based trials to test hypotheses
[33,44] that reveal critical internal mechanisms. But is not
clear how these processes might work at the timescale and com-
plexity of everyday life. We conjecture that in everyday
experience, prediction error may not be calculated across indi-
vidual events (using a hammer on a cow) but rather across the
whole emerging series of events (relations among hammers, gir-
affes, buckets and cows). From this perspective, the observed
returns to familiar objects and the explorations of new ones
may reflect a single within-episode trajectory of decreasing pre-
dictive error by increasing knowledge about the relations
among all the selected toys. If banging works with a hammer,
does it also work with a properly held (for hammering) giraffe?
Can one properly hold a cow for banging things?

The transient memory systems that we propose generate the
observed statistics are likely also involved in learning from
those statistics. Recent advances including both animal and
human research (see [38,53,54] for reviews) indicate that dur-
able and expressible memories form rapidly (within a single
extended-in-time episode) under conditions in which: (1) the
to-be-learned items emerge from previous actions and influ-
ence next actions; (2) the to-be-learned items are part of a
social interaction; (3) the context is multimodal, recruiting
recurrent activation across many neural networks and (4)
when there are predictive relations among temporal order of
the to-be-learned items. All these factors are believed to sup-
port the persistent, repeated and cued (through pattern
completion) activations that have been shown to be central to
the rapid formation of durable and retrievable memories
[53,54,69,70]. These conditions are all present in the observed
exploratory play by parents and toddlers. At every moment
of the interaction each participant’s selection of a toy emerges
from a previous selection and influences the next. The context
is social and multimodal—visual objects, heard sounds,
planned actions, language and emotion. In brief, parent-tod-
dler active toy play presents a learning environment
characterized by a suite of statistics that create coherent epi-
sodes of experience and that is well matched to known
optimal conditions for turning working memories into perma-
nent ones.

We began this paper with a description of the statistics of
human-generated experience. Children, from birth forward,
develop in the company of others and in contexts temporally
structured by the dynamics of human behaviour, and with
development, increasingly structured by the child’s own be-
haviour. Although there is much general interest in these
statistics across many domains, they are not generally studied
as a suite of interdependent statistics nor with respect to the
statistics of human everyday experience. Most experiments
on learning use brief training trials (seconds long) with
random and uniform distributions of training experiences
(but see [18-23]). In the current work, we looked to the
study of narratives—not because play fits the formal properties
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of discourse, but because theorists of narratives have thought
about the temporal statistics of human-generated events in
terms of how those statistics convey coherent information.
We showed that parent-toddler free-flowing play exhibits
similar statistics and, by implication, episodic coherence.

The coherence is evident in the patterns of repetitions
over short and long lags and in the transitions in toy selec-
tions. Like words in a discourse, or characters in a story,
toy selections cohere into an integrated experience describ-
able by a network. The observed networks serve as
potentially useful hypotheses about the structure of internal
memories formed during coherent episodes of experience.
These memories may consist of more than a string of separate
events, whole network of relations and predictive patterns.
There is emerging experimental evidence that memories are
readily formed of prediction relations and higher-order
patterns in experienced time series [71]. If memories
of episodes of experience are formed as networks of relations,
then novice learners who may know little about the under-
lying principles of causes and effects in the world (both
physical and social) may be able to discover them by statisti-
cally aggregating information not just within individual
episodes of experience but across episodes. Seminal research
on children’s learning about the thematic structure of every-
day events [72,73] and relational learning [74] offers
empirical and theoretical foundations for pursuing this idea.

The sampling statistics of toy selection during parent and infant
free-play shares temporal statistical properties with that of narra-
tives. Episodes of toy play may be experienced and remembered,
as are stories, as a coherent system of meaningful relations. If so,
the suite of statistical properties observed here may play a critical
role in powering early cognitive development.

The data and code are available on the Open Science
Framework: https://doi.org/10.17605/OSF.I10/HE7TZ [75].
The data are provided in electronic supplementary material [76].
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