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Abstract—The growth in data needs of modern applications
has created significant challenges for modern systems leading
to a “memory wall.” Spintronic Domain-Wall Memory (DWM),
provides near-SRAM read/write performance, energy savings
and non-volatility, potential for extremely high storage density,
and does not have significant endurance limitations. However,
DWM'’s benefits cannot directly address data access latency and
throughput limitations of memory bus bandwidth. Processing-in-
memory (PIM) is a popular solution to reduce the demands of
memory-to-processor communication by offloading computation
directly to the memory. PIM has been proposed in multiple
technologies including DRAM, Phase-change memory (PCM),
resistive memory (ReRAM), and Spin-Transfer Torque Memory
(STT-MRAM). DRAM PIM provides solutions for a restricted set
of two operand bulk-bitwise operations. PIM in PCM and ReRAM
raise concerns about their effective endurance and PIM in STT-
MRAM has insufficient density for main-memory applications.

We propose CORUSCANT, a DWM-based in-memory com-
puting solution that leverages the properties of DWM nanowires
and allows them to serve as polymorphic gates. While normally
DWM is accessed by applying spin polarized currents orthogonal
to the nanowire at access points to read individual bits, transverse
access along the DWM nanowire allows the differentiation of the
aggregate resistance of multiple bits in the nanowire, akin to a
multi-level cell. CORUSCANT leverages this transverse reading
to directly provide multi-operand bulk-bitwise logic. Leveraging
this multi-operand concept enabled by transverse access, CORUS-
CANT provides techniques to conduct multi-operand addition and
two operand multiplication much more efficiently than prior digital
PIM solutions. CORUSCANT provides a 1.6 x speedup compared
to the leading DRAM PIM technique for query applications that
leverage bulk bitwise operations. Compared to the leading PIM
technique for DWM, CORUSCANT improves performance by
6.9x, 2.3x and energy by 5.5x, 3.4x for 8-bit addition and
multiplication, respectively. For arithmetic heavy benchmarks,
CORUSCANT reduces access latency by 2.1x, while decreasing
energy consumption by 25.2x for a 10% area overhead versus
non-PIM DWM.

Index Terms—Processing-in-memory, Domain-Wall Memory,
Novel Memories, Machine Learning

I. INTRODUCTION

Rising data demands of increasingly popular and ubiquitous
applications, ranging from real-time searching to machine
learning, have created significant data movement challenges
for traditional von Neumann systems. While considerable
effort has been undertaken to improve memory storage density
and energy consumption—through deeply scaled memories
and tiered memories that include non-volatile memory—the
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fundamental data access latency and throughput have not kept
pace with application needs. This is commonly referred to as
the “memory wall” [1], [2], as it limits potential performance of
memory bound applications due to the limited bandwidth of the
bus between memory and processor. Additionally, moving data
on this bus has been proven to consume a disproportionately
large amount of energy, especially for programs which require
large working sets. For example, adding two 32-bit words in the
Intel Xeon X5670 consumes 11x less energy than transferring
a single byte from the memory to the processor [3].
Processing-in-memory (PIM) [4], [S], [6], [7], [8], [9]. [10]
and near data processing (NDP) [11], [12] solutions promise to
reduce the demands on the memory bus and can be a solution
to efficiently realizing the benefit of increasingly dense memory
from deep scaling and tiered memory solutions. However,
leading solutions for bulk-bitwise PIM in DRAM [4], [5] are
limited to two operand operations. Multi-operand bulk-bitwise
PIM has been suggested for Non-Volatile Memories (NVMs)
but only experimentally explored for two-operands [6].
Unfortunately, Phase Change Memory (PCM), the leading
commercial candidate in the tiered memory space, has en-
durance challenges (circa 108 writes [13]) and relatively high
write energy (up to 29.7pJ per bit [14]) that raise concerns
about its effectiveness for PIM. Resistive memory (ReRAM)
has a similar concern. STT-MRAM, which has also proposed
for PIM [15], is a worthy cache candidate and does not suffer
from the same endurance challenges as PCM and ReRAM.
However, STT-MRAM has insufficient density, i.e., 28-32F2,
to be deployed at the main memory level of the hierarchy.
Recently, it has become popular to use the analog charac-
teristics of, particularly memristor-based, crossbar arrays to
accelerate neural networks [16], [17] but these techniques can
also lead to endurance as well as fidelity concerns.
Spintronic Domain-Wall Memory (DWM), also known as
Racetrack Memory [18], improves over other suggested candi-
dates as PCM and ReRAM for tiered memory. It has the
necessary density, i.e., between 1-4F> per cell, while not
suffering from endurance concerns. It also has a low energy
consumption of circa 0.1pJ [7] per write and a low access
latency of circa 1ns, which has led to several researchers’
proposals to use DWM as main memory [19], [20], [21], [22],
[23].
Recognizing the potential of DWM-based main memory [24]
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and the need for PIM to accelerate next-generation data move-
ment constrained applications, this paper proposes CORUS-
CANT, or Computing Optimized Racetracks Using Specialized
Clusters Accessing Nanowires Transversely. CORUSCANT
leverages a special property of DWM that allows a transverse
read (TR) [25], or a method to access the nanowire and count
the number of ones across multiple domains. Our approach
leverages TR to treat the DWM nanowire as a polymorphic
gate to directly implement Racetracks that are optimized for
computing arbitrary logic functions, sum, and carry logic
output. CORUSCANT implements multi-operand bulk-bitwise
as well as multi-operand addition PIM operations, which can
outperform recently proposed main-memory PIM architectures.
A carry-save inspired multi-operand addition is proposed to
efficiently implement multiplication and provide savings for
large reductions over addition.

CORUSCANT uses these building blocks to create special-
ized PIM-enabled domain-block clusters (DBCs). These DBCs
are interleaved throughout memory tiles to create the facility for
massively parallel PIM in the CORUSCANT main memory. We
show that the combined speedup of our multiplication procedure
and the ability to process multiple operands significantly
mitigates the memory wall and enables more sophisticated
general PIM than prior work. Specifically, the contributions of
this paper are:

« We present a novel technique to utilize a segment of DWM
nanowire as a polymorphic gate, including the required
sensing and logic circuitry.

« We present the first technique, to our knowledge, to
perform multi-operand logic and addition operations in
DWM using this polymorphic gate. We further extend this
with shifting to implement efficient multiplication.

« We describe a PIM-enabled domain-block cluster archi-
tecture built from the PIM-enabled DWM.

« We propose a technique called Transverse Write (TW)
to write and shift a segment of the nanowire in a single
operation.

« We provide a detailed analysis of CORUSCANT compared
to state-of-the-art PIM approaches in terms of energy,
performance, and area.

CORUSCANT is effective for myriad applications such as
database searching that requires multi-operand bulk bitwise
computation and convolution-based machine learning that
leverages arithmetic operations.

The remainder of this paper is organized as follows. In
Section II, the necessary background on Racetrack memory,
its architecture, previous PIM techniques, and TR are related.
Next, Section III describes the basic concepts of CORUSCANT,
alongside our modified Sense Amplifier (SA) and supporting
circuitry. Furthermore, this section discusses several approaches
to perform smart multiplication with a concrete example.
We describe a case study of using CORUSCANT PIM
to implement deep learning convolutional network machine
learning algorithms in Section IV. In Section V, experimental
results compare the improvements of CORUSCANT with state
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Fig. 1: Anatomy of a DWM nanowire.

of the art DWM PIM architectures, including basic DWM
architectures for addition and multiplication workloads as well
as bulk-bitwise operations in DRAM with Ambit and ELP?IM.
Finally, conclusions are reached in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce the fundamentals of DWM,
how it functions, and our memory architecture designed for
maximal compatibility with prior main memory organizations
and controllers. We then discuss previous PIM work including
proposals for PIM in DWM and propose appropriate compari-
son points for CORUSCANT. Finally, we describe details of
TR and how it enables our PIM approach.

A. Domain-wall Memory Fundamentals

DWM is a spintronic non-volatile memory made of fer-
romagnetic nanowires. DWM nanowires consist of magnetic
domains separated by domain walls (DWs) as shown in Fig. 1.
Each domain has its own magnetization direction based on
either perpendicular (+Z/-Z), as shown in the figure, or in-plane
(+X/-X) magnetic anisotropy, (i.e., magnetization direction).

Binary values are represented by the magnetization direction
of each domain, either parallel/antiparallel to a fixed reference.
In a nanowire, several domains share one/few access point(s)
for read and write operations [26]. DW motion is controlled
by applying a short current pulse laterally along the nanowire
governed by SL. As storage elements and access devices do
not correspond one-to-one, a random access requires two steps
to complete: (D shift the target domain to align it with an
access port and Q) apply an appropriate voltage/current like in
STT-MRAM to read or write the target bit.

The blue domains are dedicated for the actual data stored in
memory. The grey domains are extra-domains used to prevent
data loss while shifting data. The dark blue elements are the
read or read/write ports. Fig. 1 contains a read-only port that
has a fixed magnetic layer, indicated in dark blue, which can be
read using RWL. The read/write port is shown using shift-based
writing [27] where WWL is opened and the direction of current
flows between BL and BL, and reading conducted from BL
through the fin and up through RWL to GND.

To align a domain with an access port, a current must be
sent from one extremity of the nanowire, shifting each domain.
This inherent behavior of DWM can be imprecise, generating
what is known as a “shifting fault” in the literature. Several
solutions have been proposed to mitigate shifting faults [28],
[29], [30], [31], which are orthogonal to and compatible with
CORUSCANT. After alignment, DWM accesses inherit the
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same reliability benefits, challenges, and solutions as STT-
MRAM [32].

B. Memory Designs with DWM

To employ DWM as the sole main memory and to minimize
changes to the memory controller design by maintaining the
same /O interface as used for DRAM, we adopt the same high-
level architecture shown in Fig. 2(a); this approach has been
previously proposed for emerging technologies [33] as well as
extended for DWM [23]. The architecture preserves the bank
organization into subarrays as shown in Fig. 2(b). Moreover, it
maintains the same tile size [34] as used in traditional DRAM-
based main memory. This also allows for data movement
within the memory such as inter-bank copying that is described
in previous work [35]. Fig. 2(c) shows the DWM subarray
breakdown into tiles, which share the same global wordlines.
To facilitate DWM integration we divide tiles into domain
block clusters as also shown in Fig. 2(c). Each DBC shares
the same local sensing circuitry and write driver as described
in prior DWM memory proposals [23].

Each DBC, as detailed in Fig. 2(d), consists of X parallel
racetracks composed of Y data domains. X represents the
number of bits that can be accessed simultaneously. We show
the example where X = 512 for a typical 512x512 tile. Y
represents the distinct row addresses contained within the DBC.
Y is determined based on the data length possible in a DWM
nanowire. We show a conservative example of ¥ = 32, however,
examples of longer nanowires are used in other DWM memory
proposals [23], [29]. This architecture can easily be scaled
such that 32 <Y <512, allowing for longer nanowires.

While, a single access point (AP) is necessary for each
nanowire in the DBC, adding APs can reduce the delay by
reducing the shift distance between accesses [36]. We show
two APs in the example, which would traditionally divide

the nanowire length into equal sections to minimize shift
latency and reduce the number of overhead domains required.
In addition, a second AP can also enable the polymorphic gate
capability of the nanowire if placed sufficiently close to allow
transverse access. We discuss this further in Section II-D. First,
we review prior work in PIM in the next section.

C. Processing in Memory

In this sub-section, we first present the state of the art bulk-
bitwise operations in DRAM followed by PIM in emerging
technologies while specifically highlighting prior efforts for
PIM in DWM.

1) PIM with bulk-bitwise operations in DRAM: There have
been two major proposals to conduct bulk-bitwise processing
directly in DRAM [4], [5] with some operations having been
demonstrated in commercial devices [37]. Bulk-bitwise logic
combines two rows “bitwise” with the same logic operation
such that ¢; = a; OP b;. Ambit proposed to open three DRAM
rows simultaneously and compare the combined voltage to the
sensing threshold, i.e., VDTD [5]. A majority of ‘1’s results in >
2"% which would drive the senseamp (SA) to Vpp. A minority
of ‘I’s results in < VDTD driving the SA to V¢c. Computing
AND requires a third control row set to ‘0’ so that both data
rows must contain ‘1’s for the result to be ‘1.’ OR is computed
setting the control row to ‘1’ requiring only one data row to be
‘1. This process is destructive, as all three rows now contain
the result of the logical operation.

Ambit builds on RowClone [35], which copies the source
row by waiting for the SA to refresh the row and then opens the
destination row which is overridden by the SA. Thus, operands
are duplicated in a safe location to conduct the logic operation
without destroying the original data. To create a complete logic
set, a dual-contact cell (DCC) concept is employed allowing a
cell to be read as the inverted value through BL. A DCC row
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requires the same overhead as two regular rows. To execute A
XOR B requires using DCC rows to invert both operands, first
computing k = A AND B, followed by k' = A AND B. The final
answer comes from k OR k'

ELP?IM improves on Ambit by directly performing logic
operations without moving the data. Instead, the technique
changes the pseudo-precharge state of the SA to replace the
control row [4]. The process requires multiple comparisons
to ultimately determine the final logic value, but avoids the
need for cloning rows. ELP?IM demonstrates a 3.2x perfor-
mance improvement over Ambit and a near-data processing
approach [11] for bitmap and table scan applications.

Ambit and ELP?IM, insomuch as they are complete logic
sets, are capable of computing more complex arithmetic
operations such as addition. More complex logic requires
sequential steps to determine the result similar to the XOR
example described for Ambit. Next we discuss PIM for NVMs.

2) PIM in emerging memory technologies: Pinatubo is a PIM
concept that resembles aspects of Ambit and ELP?IM. Like
Ambit, it opens the two rows for comparison simultaneously,
and like ELP?IM it adjusts the sensing circuitry to conduct
different operations [6]. For example, changing the Vry to <
V”T” allows an OR operation and > V”T” allows an AND operation.
Pinatubo conceptually applies to NVMs that distinguish data
based on resistive sense margins including PCM, ReRAM, and
STT-MRAM. Pinatubo mentions multi-operand operations in
a qualitative scalability discussion.

MAGIC [10] proposes a novel memristive memory crossbar
transpose memory allowing interesting operation flexibility
over rows or columns. It demonstrates addition but is subject
to endurance limitations, operates on one bit per row/column,
and is admitted by the authors to be complicated to program
with limited applications. CRAM implements bulk bitwise
operations and uses them as building blocks to implement
addition and multiplication in STT-MRAM [9]. It does this by
extending the magneto-tunnel junction (MTJ) with a second
transistor, which unfortunately further decreases the effective
density of the already insufficiently dense memory.

Two techniques have been proposed to augment DWM with
PIM capabilities. DW-NN creates a PIM processing element
with dedicated circuitry to support current passing through
two stacked domains at once. This allows measurement of the
aggregate giant magnetoresistance (GMR) across the stacked
domains [7]. This computes XOR which is ‘0’ if the data is
parallel and ‘1’ if the data is anti-parallel. To conduct addition,
operand bits are stored in consecutive bits within a single
nanowire. The XOR operation is used in combination with a pre-
charge sensing amplifier (PCSA) that can compute a function of
data from three nanowires’ access port—sum S is the result of
two consecutive XORs, and Coy 7 is the result of the comparison
of PCSA(A,B,Ciy) > PCSA(A,B,Cy). Both operations are
bitwise serial since they must be shifted into alignment with
the GMR/MT]Js. Because operands are stored within a single
nanowire, multiplication is possible using addition of shifted
versions of one operand. Compared to accessing data and using
a general purpose processor for computation, DW-NN claims
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Fig. 3: Transverse read example for a full nanowire

an energy improvement of 92 and a throughput improvement
of 11.6x for an image processing application.

SPIM extends DWM storage with dedicated skyrmion-based
computing units [8]. Within these units, custom ferromagnetic
domains are physically linked together with channels that
support OR and AND operations. By permanently merging many
such domains and channels, full adder circuits are formed to
perform addition and multiplication.

In contrast, CORUSCANT provides a new DWM PIM
method that can achieve a superset of all the instructions
proposed among these various methods while increasing the
parallelism and efficiency. Thus, to demonstrate the value of
CORUSCANT, we draw direct comparisons to Ambit, ELP?IM
as the most near-commercial PIM approaches in DRAM as
well as DW-NN and SPIM as the technologically most close
proposals in our experiments (Section V). CORUSCANT
leverages the transverse read operation discussed in the next
section to conduct its PIM functionality.

D. Transverse read

TR was recently proposed [25] and leveraged to improve
reliability via detection and correction of over/under-shifting
faults through codes that count the number of ones in overhead
bits to check position [28], [30], [31]. TR is conceptually
akin to using a portion of a DWM nanowire as a multi-level
STT-MRAM cell. Specifically, TR is an aggregate function of
several domains at once along the nanowire. The output of a
TR provides the number of ones stored between two heads or
one head and an extremity, but without information about their
positions. As the number of domains in the TR increases, the
minimum sense margin decreases which creates a limit on the
number of domains that can be included in a TR. We refer to
this as the maximum TR distance or simply TRD.

Fig. 3 presents a segmented TR that can be used to query
the full nanowire in the case that distance from the extremity
to the access point is larger than the TRD. Each colored arrow
represents the path taken by the current used to perform the
TR. For instance, to perform a TR on the middle four domains
(purple arrow), the transistors M1, M2 and M4 are open and
M3 is closed, thus when a current is sent from BL1, it has to
go through the four middle domains and exit through M3.

The two red and blue arrows indicate TR over regions with
the same color can occur simultaneously. For the red arrows, M2,
M3 and SLB transistors are open while M1 and M4 are closed.
The current sent from SI1 and BL2 will flow to M1 and M4,
respectively, reading two and one ‘1’s as output, respectively.
Due to the larger nanowire resistivity between BLO and BL2,
the leakage current is small enough that the TR can safely be
parallelized.
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Fig. 4: Overview of the PIM enabled DBC extensions.

The number of ‘1’s in a segment of a DWM nanowire
may also be measurable through the Anomalous Hall Effect
(AHE) [38], [39]. Recently, a “multi-domain” MTJ was
proposed as a scalable alternative to TR for MDR [40]. The
multi-domain MTJ creates an access port across multiple
domains such that, when a read current is applied, each of the
domains function as parallel resistors. Like TR, this provides
different resistance levels based on the number of parallel and
anti-parallel domains. While micromagnetic simulation shows
that TR has a relatively low fault rate, the multi-domain MTJ
demonstrates resilience to process variation and scalability to
seven domains [40].

In the next section, we present how the TR can be used
to perform logical and arithmetic operations, forming the
foundation of CORUSCANT.

III. CORUSCANT

In this section, we discuss the CORUSCANT architecture
including (i) modifications to the sensing circuit leveraging TR
to realize multi-operand PIM and (ii) the algorithms to achieve
multi-operand addition and two-operand multiplication.

A. CORUSCANT Architecture

We propose to add PIM capability to a portion of the DBCs
in the memory architecture, see Fig. 2(c). The number of PIM
enabled tiles/DBCs can be tuned based on the overhead and the
desired PIM parallelism. The detailed DBC shown in Fig. 2(d)
shows two access points. In CORUSCANT, these access points
are spaced according to the TRD. TR has been demonstrated
for a conservative TRD =4 and was stated to scale beyond
that number [25] and presumed to scale TRD = 32 in prior
work [28]. We describe CORUSCANT for a TRD = 7, which
is supported by recent work [40], while in our quantitative
evaluation, we also conduct experiments for TRD € {3,5,7}
as a sensitivity study.

Assuming Y = 32 distinct row addresses are contained within
each DB, see Section II-B, with a single access point, each
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nanowire would require 63 domains (2Y — 1) to permit shifting
data at the extremities to the access point. Normally, adding a
second access point would place ports at positions 9 and 25,
reducing the number of overhead domains from 31 to 16. To
enable TR with a TRD =7, the ports would move to positions
14 and 20 and the overhead domains would only reduce from
31 to 25. Adding ports in this way provides some reduction of
average shift distance while allowing for the TR operation. For
two ports to remain at their optimal shift reduction position
would require a TRD = 14, which we presume to be infeasible.

For tiles/DBCs with the additional access port to conduct TR,
we modify the sensing circuitry as shown in Fig. 4(a) where
the tan blocks show the added elements. To enable performing
TR requires each SA; to output seven level bit values such
that SA;[j] is ‘1’ if there are > j ‘1’s in the TR and j € 1..7.
The extension with additional sensing circuitry is represented
by a hashed tan block. These SA outputs become the seven
inputs for the PIM unit described in Fig. 4(b). The PIM logic
output is selected by a multiplexer. Note, the ith multiplexer
selects between values provided by the local PIM block as
well as two inputs from the (i —1)st and (i —2)nd PIM blocks,
respectively. We will explain the purpose for the color coding
and these connections in the following sections.

There is a direct read from the SA shown in orange that
bypasses the PIM logic and the selector to a single two-way
mux that feeds the read port. Thus, either a direct read or result
of PIM logic can be directly forwarded via the hierarchical
row-buffer structure to the memory controller and returned to
the processor. The capability is also added that PIM output can
be written back to the memory block so an additional selector
multiplexes the PIM logic with the write port input. As in
previous work [5], [6], [35], given the hierarchical row buffer
in the memory, the shared row buffer in the subarray or across
subarrays can be used to move data from non-PIM DBCs to
PIM-enabled DBCs.
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B. CORUSCANT Multi-operand Bulk-bitwise Operations

The TR operation described in Section II-D allows direct
implementation of bulk-bitwise operations coupled with addi-
tional sensing and logic shown in Fig. 4(b). If the TR level is
above one, the OR operation is ‘1’ and similarly the inversion
of this reports NOR. If a single data value is stored and the
remaining rows are zero padded, this output also reports NOT.
AND and NAND are obtained in a similar fashion but with the
highest TR level. XOR reports exclusively the odd TR levels
computed by relatively simple NAND/NAND implementation.
To save area, XNOR is the inverted value of XOR. While, at
first glance, this might appear like a significant overhead, it is
important to keep in mind that this logic will compute these
operations for seven operands in parallel. To support addition,
the PIM block also contains a carry C computation which is a
function of TR levels above two and not above four or above
six. A super carry C’ is computed from TR level above 4 and
sum S is equivalent to XOR. Details on the energy consumption
and area overhead are discussed in Section V.

We show an example in Fig. 5, for the portion of the DBC
between the two access points, denoted by shaded domains
where a or g could be directly read, and the rest of the nanowire
is abstracted away for convenience of display. Using a TR,
a multi-operand operation can be directly obtained for bulk-
bitwise OR, NOR, AND, NAND, XOR, or XNOR. Because OR
uses the same sensing circuit as a traditional read, but the
read is conducted using a TR, it is made available through the
orange path; the remaining five operations are denoted by the
blue output of the PIM block [Fig. 4(a)]. Comparing fewer than
seven operands can be accomplished by padding the unused
locations in the scope of the TR. The result can be written
over one of the original operands (either a or g) or written
into a separate DBC. To facilitate efficient smaller cardinality
operations, some DBC locations can be preloaded with zeros
or ones. In order to minimize the energy and area overhead,
CORUSCANT applies this PIM extension to a subset of the
tiles, e.g., one tile per subarray.

C. CORUSCANT Multi-operand Addition

Based on the bulk-bitwise operations from the previous
section, we show an example addition operation for five
operands in Fig. 6. In step (D, referencing Fig. 4(a), a TR
of dwmy (first nanowire) is conducted, evaluating bify of all
operands. Sop, which is XOR of ag...eg, computed by the PIM
block and is among the five blue bits.

Spacing Between Access Points (TRD)

T T T T T

c'n—S/Sn-l‘ An-1 ‘ b1 ‘ Cn-1 ‘ dpy ‘ €n-1 " C:z

E : ‘ - ‘ —

= C/Ss| a3 [ by | ¢ [ ds [ es | G

) —
a CofS2| a [ b, [ @ [ d [ & [ C ‘

L , , ‘ , -

(ST a e [afdlel G
2] 0

[ So a, by Co do €

Fig. 6: Addition using TR

Simultaneously, carry, Cp, is computed and sent to the right
to the driver for dwm; shown in red and super carry, C(')
is sent to the driver for dwmy, shown in green in Fig. 4(a)
and computed using the logic functions shown in Fig. 4(b).
So,Co,C, are written into the left access port (porty) of dwmy,
the right access port (portg) of dwmy, and port; of dwmy
simultaneously. In step ), a similar set of steps occurs except
the operations include Cy in addition to aj...e;. Then in step Q)
TR is conducted over C(’),az...ez,Cl, which is seven total
elements. In the general case, for step k+1 (i.e., dwmy), TR is
conducted over C,’H,ak,..ek,Ck_ | with Sy written to port;, of
dwmy, Cy, written to portg of dwmy, and C,’c written to porty,
of dwmy,,. The control for this operation is a simple counter
circuit that provides the selectors the values for a window of
three nanowires and activates the bit lines for k...k+ 2.

Because the carry chain requires keeping the port; and portg
clear to write C,C’, for a TRD = 7 we can compute a maximum
of five-operand addition. There are many cases when it may
be desirable to efficiently add more than five operands, such
as to conduct multiplication, which we discuss in detail next.

D. CORUSCANT Multiplication

A foundational method to compute A * B is to sum A B times;
e.g., for B=3, A%3 can be computed as A+ A+ A. Thus, we
can perform a multiplication by doing several additions. Even
with a 5 operand add, this method can quickly require many
steps. Consider 94, this can be computed by computing 54 in
one step, and then computing SA+A+A+A+A in a second
step. This method could be improved by generating 5A in one
addition step, then replicating 5A and summing to compute
25A, and so on, but this clearly scales poorly. One method
to accelerate this process is to shift the copies of A to more
quickly achieve the precise partial products that, when summed,
produce the desired product.

In Fig. 4(a), we show how data read from bit i is forwarded
to bit i+ 1 using the brown lines. This connection allows a
logical left shift, similarly proposed in prior work [41], which
is equivalent to a multiply by 2 or A’. To logically shift by
more than one position, we first write A’ and then shift and
write A” or A << 2. It is important to distinguish between
these logical shifts being discussed, which move bits between
nanowires and DW shifts, which shift the nanowires to access
different data locations.
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Looking at Fig. 6, logical shifts occur in the Y direction
and require the multiplexing logic from Fig. 4(a), DW shifts
move in the X direction. So, to write A << k requires k
shifted read (brown arrows) and write operations. However
to write A << k next to A << k+ 1 requires k shifted read
and followed write steps, an additional shifted read, a DW
shift, followed by a write. Thus, to write y shifted copies with
a max logical distance of x requires x — 1 shifted read/write
operations and y DW shifts. Based on the logical shifting
capabilities we describe techniques to leverage CORUSCANT
to conduct efficient multiplication through optimized multi-
operand addition in different situations.

1) Constant Multiplication: When one of the operands of
the multiplication operation is known, there are several ways
to efficiently take advantage of CORUSCANT to complete
multiplication, leveraging logical shifting. At compilation time,
a method based on Booth multiplication is possible [42],
[43] where numbers can be represented using 0, N, and
P, which represent 0, -1, and 1, respectively. For example,
consider a constant multiplier 20061 — “100111001011101,”
this can be encoded as POPOONOPONOONOP. It can be
decomposed using the pattern PO0O0000PON, which corre-
sponds to 515, in positive and negative forms shifted by
different amounts: POO0000PONO0000 — POOOOOOPON +
00P000000000000 = POPOONOPONOONOP

Thus, 20061 times A can be computed in two addition
steps: D A<<9+A<<1+A—512A+2A+A =5154, @
5154 << 5—-515A4+A << 12 — 164804 — 515A + 4096A =
20061A. Note —515A can be computed by generating 5154 + 1
making the last step 5154 << 5451544 14A << 12 which
is still one addition step. This is a significant improvement
over adding 20061 copies of A.

2) Arbitrary Multiplication: A more generic method that
can also work for arbitrary multiplications is to use the ‘1’s in
the multiplier to denote which shifted copies of the multiplier
to be summed to create the product. In the 20061 example,
there are 9 ‘1’s in the binary form of 20061. Thus, the method
to directly compute the product is to logically shift A n times
where n is the bit-width of the multiplier B. When b; = ‘1’
then we also shift the nanowire to retain that “partial product.”
When five partial products have been retained, we generate
the sum. In this example in step D T =A+A <<2+A <<
3+A<<4+A<<6, and in step @ product P=T +A <<
9+A << 104+A << 11+4A << 14. Again, this takes only two
addition steps. In the worst case, this takes fpf5—7 steps or
O(n?) complexity where n is the bit-width of the operands.

3) Optimized Multiplication: Arbitrary multiplication based
on partial products requires an efficient summation mechanism.
In CORUSCANT we assume arbitrary partial products are
generated by copying one operand, to a processing tile as in
prior work [35]. The value is then logically shifted by one
position and copied n — 1 times. By then bringing B into the
rowbuffer we shift back along the DBC and zero out the ith
shifted version of A if that bit of B is ‘0.” This functions like
a predicated copy so we have only the correct shifted copies
of A to compute the multiply.
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For large cardinality multiplication we are left with many
partial products, typically >(TRD —2). To sum them efficiently
we can borrow from Carry Save Adders (CSAs). A CSA
leverages the three inputs of a full adder A, B, Cjy to be used for
three operands X,Y,Z instead of two. This creates an entirely
parallel process to reduce three operands to two in the form of
ST,CT. Then a traditional addition using a ripple carry adder
can add ST +C" — S. We can leverage our polymorphic gates
in the same way but with more input operands. Seven rows of
packed addition operands, or partial products, can be reduced
with bulk-bitwise parallelism to three rows containing a S,C,C’,
as a 7 — 3 operand reduction function.

This method accomplishes two things. The need for the
sequential carry logic of addition is not required for the
reduction step and the technique can directly be performed on
TRD instead of TRD — 2 operands. Furthermore, the 7 — 3
reduction operation can be repeated on data, including prior
output of this reduction function in a previous step. These
reductions are continued until there are < (TRD —2) operands
remaining. The final result can then be computed with a
single addition operation, where one output is generated from
< (TRD —2) inputs. These reductions make multiply an O(n)
operation and can also accelerate large cardinality additions
found in many scientific and machine learning algorithms.

Next, we describe new instruction(s) to control the PIM op-
erations through the memory controller used in CORUSCANT.

E. ISA Support

CORUSCANT presumes some portion of the virtual memory
space is reserved for PIM operation and the operating system
can manage this space when conducting virtual to physical
address translation as is often the case with memory mapped
I/O. Thus, the user can then schedule PIM operations in memory
and align with tile and DBC boundaries. CORUSCANT also
uses one (or more) new instructions that maps the operation to
the memory controller to be issued by the memory controller [5].
This instruction:

cpim dst, src, op, blocksize

communicates to the memory controller to issue the appropriate
commands to complete the operation requested. Each COR-
USCANT PIM cpim instruction consists of a source address
src, indicating which DBC and nanowire position to align
to the leftmost access port. For data movement operations,
the memory controller can use either AP in pim enabled tiles.
For PIM operations, the operation must be done between the
access points. Thus for a bulk bitwise operation of k operands
where k < TRD the user must pad the adjacent locations with
data that does not impact the result. To minimize padding
overhead, a DBC can be pre-populated as shown in Fig. 7.
For example, ‘1’s are added in Fig. 7(a) for AND, NAND, with
operands written to the left access point in locations a and b
(k =2), where operands c—f (k= 3-6) can overwrite ‘1’s as
necessary. Similarly, ‘0’s are added for Fig. 7(b) to conduct
OR, NOR, XOR, and ADD.
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(c) Multi-modular redundancy after AND, NAND operations
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(d) Multi-modular redundancy after OR, NOR, XOR, ADD operations
Fig. 7: Configuration for padding and fault-tolerance.

The operation op coupled with the block size blocksize
are used to program the multiplexers select bits of Fig. 4(a).
Generally, it is presumed that bulk bitwise operations are done
across the entire memory row and packed and padded as
necessary by the user. The block size is most important for
operations like add or max. The memory controller must
issue commands that mask different bitlines to form the
carry chain as discussed in Section III-C. The blocksize
€ {8,16,32,64,128,256,512} allows individual addition of 64
byte sized numbers packed into a row up to a full 512-bit
addition.

These cpim operations can be generated by the compiler
either automatically or through user directives. Furthermore,
when standard memory accesses, e.g., load/store instruc-
tions are issued to the memory, the memory controller sets the
multiplexer selection bits to bypass the pim unit as represented
by the orange arrow on Fig. 4(a).

F. N-Modular Redundancy Support

Since ECC encoding techniques are not homomorphic under
PIM operations [5], the best proposed general solution for
PIM fault tolerance is modular redundancy and voting. A
common example is triple modular redundancy (TMR) where
the same operation is computed three times and the final output
is generated by voting between the three results. Thus, if
there is a fault, the two non-faulty results will ensure the
correct result is selected over the faulty one. However, PIM
operations have considerably higher fault rates than those
using CMOS functional units. This increases the changes
that there are two faulty values. When two faulty results
in the same bit position, in TMR the faulty result will be
selected over the correct result, generating an uncorrectable
error. Thus, CORUSCANT provides the capability to compute
the N-modular redundancy for N = {3,5,7}, to offer several
reliability thresholds. CORUSCANT directly uses the the
majority function for voting, which is the same circuit for
computing C’ from Fig. 4(b).

Fig. 7(c) shows the DBC after computing a result three
times and storing these results in A, B, and C, respectively.
To compute a majority operation of our three values 2, B,
and C using the majority operation of seven rows C’, requires

padding with two rows of all ‘1’s and two rows of all ‘0’s. To
accomplish this with minimized shifting we use the padding
values preset with constants. For instance, following a padded
AND operation, we use the last ‘1’ row from the ‘1’ padded
AND aligned with the left access port and presume a preset
set of rows with the values of ‘0’s, ‘1’s, and ‘0’s, respectively
as shown in Fig. 7(c). Thus, 2 <i <3 ‘1’s from the inputs A,
B, and C, results in 4 <m <5 ‘1’s between the heads, where
C’ reports a ‘1’ when m > 4. In contrast, 0 <i <1 ‘I’s (or
2 <i<3“0’s) results in 2 <m < 3 ‘1’s such that C’ reports
a ‘0’. The mirror is shown in Fig. 7(d) for TMR after a ‘0’
padded operation, such as OR. Thus, for an error to occur
would require faults in the same bit position of two of A, B,
and C, or a fault in one of A, B, and C and a fault in sensing
C'. Either way, this requires two faults in the same bit position
for an uncorrectable error.

To extend triple- (N = 3) to quintuple- (N =5) or septuple-
(N =7) modular redundancy, for protection against more faults,
the optional values D-E or D—G can be written between the
heads, respectively. In the case (N =35), there will be one ‘1’
and one ‘0’ row, denoted as G and F in the padding bits at
each of the access points. For quintuple-modular redundancy
to have an uncorrectable error requires three faults in the same
bit position among A-E and C'. The last case, (N =7) does
not require any padding bits and requires four faults in the
same bit position.

Using N-modular redundancy for most operations (bulk-
bitwise, 7 — 3 operand reductions, et cetera) is straightforward
as the operation occurs in a single step. However, the addition
operation has multiple steps. Voting during an add operation
can either occur after each nanowire computes S,C,C’ for a
particular bit, or after the entire result is determined. Since
the add operation is computed sequentially, this choice about
fault tolerance creates a performance versus fault tolerance
trade-off.

IV. CASE STUDY: IMPLEMENTING A CNN

To demonstrate the potential of CORUSCANT we explore
the process of computing a convolutional neural network (CNN)
using PIM. CNNs contain 3 main types of layers: convolution
layers, pooling layers, and fully connected layers, each of
which can be completed in CORUSCANT.

A. Convolution

The convolution layer is the process of taking a small kernel
(or weight) matrix K, and combining it in “windows” with
a larger matrix I representing input features, at each step
multiplying the overlapping positions and accumulating the
results. As an example, for I and K of size N x N and 3 x 3,
respectively, the convolution operation for the window at m, p
is: 2 9
Conv(I,K)(m, p) = Z ZKJ'J Ly j 1 pri—1 €))

j=01=0
In prior PIM work, convolution is completed by computing the
multiplication and reduction additions in parallel [4], [8], [41].
Prior DWM work uses full precision form for convolution [8].
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Fig. 8: Maximum function example

In full precision (8-bit) mode, to multiply two values requires
adding eight partial products, which using parallel addition
can be done in O(nlogn) operations. CORUSCANT has a
significant advantage using the CSA technique completing the
multiplication in O(n) operations.

The leading DRAM technique implements two approxi-
mations, DrAcc [4], [41], which uses ternary weight neural
networks (TWNG), i.e., w; € {—1,0,1}, and NID [4], [44] using
binary weight neural networks (BWNs), i.e., w; € {0,1}, where
w; is the ith weight. These approximations, which reduce the
point-wise multiplication operations to bulk bitwise operations,
(e.g., XNOR), essentially reduce the problem to be governed by
the number of addition operations for reduction. The number
of adds N, is governed by:

Ny = Oy (K> =1) 1.+ (I, — 1)) 2)
where Oy is the number of output values, K is the kernel size,
and /. is the number of input channels.

Prior work proposes to compute addition using a carry
lookahead adder (CLA). In doing this they compute [41]:

1.Gi=A;&B;; 2. P,=A, D B;
3.Civ1 = Gi||(P&Ci); 4. Si = K@ G

which takes 40 cycles using ELP2IM [4]. We can call this one
step. The first reduction step of Alexnet requires 362 additions,
or [log,362] — 9 steps, where each step requires 40 cycles.
Using CORUSCANT by using the CSA approach requires five
7 — 3 operand reduction steps each of O(1) (4 cycles), followed
by one addition that requires 16 cycles. This results in a circa
10x speedup. For the largest convolution window requiring
4.5-10% adds, DRAM PIM requires 29 addition steps, while
CORUSCANT requires 22 reduction steps and 1 addition step,
achieving more than 11x speedup. Smaller windows generate
more moderate speedups for CORUSCANT. We evaluate the
cumulative speedups in Section V-E.

3)

B. Pooling

During pooling, the dimensionality of an input matrix is
reduced by taking the average or maximum of all values
in submatrices of a predefined size to generate the output
matrix values. Using CORUSCANT, the max function can
be realized via TR across all the candidates evaluating MSB
to LSB sequentially. Each step compares the binary weight
of the same bit position in each word, and the TR result
determines the subsequent action via predicated execution with

local information. This allows PIM instructions issued by the
memory controller to work in parallel across many subarrays in
parallel. First, the values upon which to compute the max are
stored in adjacent positions between the access points. Then a
TR is performed across the MSBs; If TR>0 the value under
the right head is read and stored in the rowbuffer. If the MSB
is ‘0’ the rowbuffer is reset. This eliminates a value that is
lower than the other values. Then the DBC is shifted right and
the value of the rowbuffer is written to the left head.

All TRD words are processed in this manner. If TR =0,
then each word is read from the right and re-written to the left
access point, while shifting in between. Essentially, the data
remains unchanged. This is necessary because if all values are
‘0’ in this position, it does not eliminate any values from being
the maximum. From a PIM instruction execution perspective,
the memory controller issued instructions are identical for all
participating subarrays by making the rowbuffer reset command
predicated on the TR and tested bit. We can use a DWM AND
function in another DBC of the same tile/subarray to store and
compute the logic value governing the predicated execution of
the row-buffer reset.

The process is repeated for each bit position and the value is
read using TR > 0, so the max vector is read, regardless of its
location between the heads and if > 1 vectors equal the max
value the TR value it is still accessed correctly. Fig. 8 depicts
a concrete example for TRD =4 of the state of words A, B,
C, and D as they are processed by the maximum subroutine,
in chronological order from left to right with a different color
representing the values after a bit is processed. At the MSB
pass starting with blue, TR> 0. Words A and D have ‘0’ in
their MSB, so they are overwritten by the zero vector and B
and C are written back unchanged. The result after the first step
is shown in white. For MSB-1, TR = 0. Thus all words are
read and written back unchanged as shown in red. For MSB-2,
TR > 0. Words A, C, and D all have ‘0’ in that bit position, so
they are overwritten by the zero vector and only B is written
back unchanged as shown in green. Now the maximum value
has been determined, and will be maintained as all the bits are
traversed through the LSB.

The maximum function requires cycling through vectors
many times which makes shifting the entire nanowire impracti-
cal. To address this concern, and to reduce delay, we propose the
novel Transverse Write (TW) technique with segmented shifting.
This is inspired by the shift-based writing [27] approach and

GND

BLB

Fig. 9: Transverse write and segmented shift.
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transverse access techniques [25] previously proposed. We
illustrate this new concept in Fig. 9. Two write/read heads
are represented in dark blue separated by data domains in
light blue (TRD =4 is shown instead of TRD =7 to simplify
the explanation). To perform a classic shift-based write under
the left head, WWL; and RWL( are closed, thus the current
flows from BLB to a fixed layer, to the domain, shifting the
dark red upward orientation of the fixed layer to replace the
pink downward orientation in the nanowire. This operation can
be modified to shift the pink orientation along the nanowire
rather than to ground. This TW operation closes WWL; and
RWL;. Thus, the current flows from BLB through the fixed
layer and the four domains before exiting through the right
head as indicated by the green arrow. By doing so, the fixed
layer orientation at WWL; is written under the left head, and
the pink orientation and those which follow it advance along
the nanowire, forcing the yellow arrow to GND.

Applying this to the maximum function, in the context of
Fig. 9, if TR > 0, CORUSCANT reads from the right head
(yellow arrow). The predicated rowbuffer reset command is
executed. Then the value of the word is written via TW from
the left head to the right head. Thus, by reading from the right
and conducting TW from the left the segmented shift ensures
each updated operand is returned to its original position along
the nanowires and the remaining locations are not disturbed.
TW for TRD = 7 reduces maximum function cycles by 28.5%.
TW can also reduce the cycles required for padding operations
where the number of operands < TRD and for TMR.

C. Fully Connected

The fully connected layer executes the following function:
ReLU(Wx +b) )

where W is the weight matrix, x is the input vector and
b is the bias vector. The ReLU function returns zero if
Y2oWixi+b; <0 and Y2 (W;jx; +b; otherwise. This
function is implemented by computing Z:(]:o W;;x;+b; using
CORUSCANT addition and multiplication operations. Using
a predicated row refresh based on the MSB, which is ‘1’ for
values < 0 and writing the value back the resulting value from
the ReLU function to the array, repeating V.

V. EXPERIMENTAL RESULTS

To experimentally quantify the advantage of CORUSCANT,
first, we compare CORUSCANT addition and multiplication
characteristics against other computing units based on DWM.
Next, we demonstrate the benefit of CORUSCANT PIM on ad-
dition/multiplication oriented benchmarks from polybench [45]
versus computing them in the CPU. Third, we compare bitmap
indices [46], a common component of database queries, against
Ambit and ELP?IM to show the benefit over state-of-the-art
DRAM PIM. Finally, we implement two CNN applications,
Lenet5S and Alexnet, using the method in Section IV and
compare CORUSCANT to SPIM, Ambit, and ELP2IM. To
guide our experimental observations, we discuss device-level
modeling assumptions for CORUSCANT in the next section.

A. CORUSCANT Experimental Assumptions

Based on the device level information provided in [7], [47],
[48] and TR results for TRD = 4 with stated scalability to
higher numbers of domains [25], we calculated the timing and
energy of read, write and TR operations for DWM. We further
note a new method to compute TR with improved reliability
and scalability to TRD = 7 has been proposed [40]. We have
designed CORUSCANT’s 7 transistor sense circuits for TR and
synthesized the PIM logic from Fig. 4(b) in 45nm technology
using FreePDK45 [49] and the Cadence Encounter flow. We
then scaled the design by setting F to 32nm as described
in prior work [47], [50] to compare with the 32nm results
reported in prior DWM PIM work [7]. To calculate the energy
we used a modified version of NVSIM to report the DWM
energy at 32nm and modified the sense amplifier energy using
our custom sensing circuit designed in LTSPICE and scaled
energy reported from ASIC synthesis for the PIM logic gates.
We assume shifting fault tolerance [28], [29] that achieves
a mean time to failure >10 years with < 1% performance
overhead sufficiently addresses misalignment and requires a
negligible overhead in our simulations.

Table I shows the area overhead for extending the memory
with PIM capability based on the circuit overheads, additional
domains, and access points added to one tile (1-PIM) in each
subarray of the memory. It results in a 10% overhead for
including our full PIM ISA including multiplication (mult),
five operand addition (add), and seven operand bulk-bitwise
operations. By stripping the bulk-bitwise operations, this
overhead reduces to about 9%, removing the multiplication also
keeps us around 9%. Dropping from a five to two operand adder
(i.e., what is possible with TRD = 3) reduces the overhead to
<4%.

For system-level simulation including PIM acceleration with
CORUSCANT, we extended RTSIM [51] with a cycle-level
simulation model of the full CORUSCANT PIM memory
described in Fig. 2 using the DDR3-1600 standard to allow
comparisons with DRAM and non-PIM enabled DWM. The
system parameters are shown in Table II [3], [52], [53], [54].

B. Comparison with Prior DWM PIM

Prior work in DWM PIM presumed a custom memory design
that does not conform to Fig. 2. In this case we directly compare
DBCs [Fig. 2(d)] with the architectures proposed in prior
work. DWM latency is obtained by calculating the number of
operations, including computer and data movement, needed
to perform an 8-bit add or multiply operation presuming a
Ins cycle speed, consistent with values reported by NVSIM
and LLG for TR. CORUSCANT 8-bit addition shifts and
writes the words between the two heads (10 cycles) and
then writes after each TR (16 cycles), which yields to a
total of 26 cycles. Table III reports the speed, energy, and
area of CORUSCANT, DW-NN and SPIM for two operand
addition (2op add), five operand addition optimized for area
by conducting multiple additions in series (Sop add area), five
operand addition optimized for latency by replicating addition
units (Sop add latency), and two operand multiply (2op mult).
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TABLE I: PIM area overhead vs. base DWM main memory.

[ Design [ ADD2 | ADD5 | MUL+ADD5 | MUL+ADD5+BBO |
[ Area Overhead 1-PIM | 3.7% | 92% | 94% | 10.0% |

TABLE II: DWM parameters

Memory size 1GB (8Gb) Processor Intel Xeon X5670
Bus Speed 1000 MHz Memory Cycle | 1.25ns
Number of Banks 32 PIM Mode High Throughput
Subarrays per Bank | 64 add (32 bits) 111 (pJ/op)
Tile per Subarray 16 mult (32-bits) 164 (pl/op)
DBC per Tile 15 + 1-PIM | Ejpans 1250 (pJ/Byte)
‘ DRAM [cycles] ‘ tRAS-IRCD-RP-tCAS-tWR ‘ 20-8-8-8-8 ‘
l DWM [cycles] ‘ TRAS-IRCD-IRP-ICAS-ITWR ‘ 9-4-5-4-4 ‘

CORUSCANT is 1.9%x, 9.4x, 6.9x and 2.3x faster and
2.2%,5.5%, 5.5% and 3.4x less energy than SPIM, the state-
of-the-art technique, for 2op add, Sop add area optimized, Sop
add latency optimized, and 2op multiplication, respectively.
CORUSCANT is faster, even for 2op add because SPIM must
compute sum and carry from a series of bit-wise operations
in series, while CORUSCANT computes these operations in
one step. For Sop add the advantage is from combining an
O(nlogm) operation into an O(n) operation, while also being
faster in the core O(n) computation, where m is the number
of operands and n is the number of bits. CORUSCANT is
comparable in area to DW-NN and requires some area increase
over SPIM for addition, but reduces the multiplication area by
3.7x and 3.3x compared to DW-NN and SPIM, respectively,
while also providing additional processing capabilities such as
bulk-bitwise operations.

C. Improvement to Memory Wall versus Non-PIM DWM

We tested CORUSCANT using the standard polyhedral
polybench workloads that consists of 29 applications from
different domains including linear algebra, data mining, and
stencil kernels. From these 29 applications we selected the
benchmarks most heavily focused on matrix addition and
multiplication, from 2mm, which is two matrix multiplication,
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to gemm which is governed by C = aAB + BC. To map
operations to PIM we extracted the traces using a pintool,
then we examine the accesses and determine which accesses
correspond to additions and multiplications. PIM latency,
energy, and area overheads are computed using the methodology
from Section V-B, with energies for relevant operations also
recorded in the table. Instructions are dispatched to PIM-
enabled tiles following the high throughput mode from prior
DRAM PIM work [41], where each tile follows the timing
requirement shown in Table II. In other words, to minimize the
access latency, the instructions are sent to the different ranks
consecutively, in a circular fashion.

The main difference compared to DRAM is “tgp” which is
the precharge time, however, DWM as a spintronic memory
does not need to precharge, for this reason we replaced the
precharge time by the shifting time “S” that is required for
DWM. Shifting is dependent on the data placement. Comparing
using CORUSCANT PIM to a CPU with DWM and DRAM
memories shown in Fig. 10 demonstrates an average latency
improvement of 2.07 x and 2.20x, respectively. DRAM actually
is slower than the DWM memory because, while DWM
requires S shifts, the other aspects of its performance, including
peripheral circuitry are faster.

We compare the energy to send the data from DWM to
the CPU and back plus the energy required to perform a
CPU operation versus the energy that CORUSCANT needs
to perform the same operation using PIM. Fig. 11 reports the
energy improvement from CORUSCANT of more than 25X,
on average. This is principally from the data movement energy
which is 30x the compute energy.

D. Bitmap Indices

While CORUSCANT has significant benefits over SPIM and
DW-NN, neither of these schemes can perform bulk-bitwise
logic. Thus, we compare the CORUSCANT to state-of-the-art
techniques for bulk-bitwise operation in DRAM, ELP?IM and
Ambit for the bitmap indices database query [46] experiment
from prior DRAM PIM work [4]. A query from 16 million
users’ data requested how many male users were active in the
past w weeks, where w € {2..4}. Fig. 12 shows the latency im-
provement of Ambit, ELP2IM and CORUSCANT normalized
to the latency of a standard DRAM CPU system. CORUSCANT
benefits from its intrinsic multi-operand bulk bitwise operations
rather than having to construct them from two operand versions
as in prior work [4]. Thus for three, four, and five search
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TABLE III: Operation Comparison

Scheme CORUSCANT DW-NN SPIM
Unit 20p Add  20p Add Sop Add Mult Mult 20p Add  5Sop Add  5Sop Add  20p Mult. | 20p Add Sop Add S5op Add  2o0p Mult.
(TR=3) (TR=7) (TR=7) (TR=3) (TR=7) Area Opt.  Lat. Opt. Area Opt.  Lat. Opt.
Speed (cycles) 9 26 26 105 64 57 264 194 163 9 244 179 149
Energy (pJ) 10.15 2.14 2.14 92,01 57.39 40 169.6 169.6 308 28 121.6 121.6 196
Area (um?) 2.16 3.60 494 3.80 5.07 2.6 2.6 5.2 18.9 2 2 4 16.8
TABLE IV: CNN application comparison USCANT performance 30-40%, and increasing from 5 — 7
Scheme Alexnet| Speedupx | Lenet5| Speedupx increases performance by another 10-20%. CORUSCANT is
(FPS) | C3 C5 C7 | (FPS) |C3 C5 (7 considerably faster than the ISAAC ReRAM Crossbar [58],
SPINE F;zlllPrec;sizon SI;JN ;I‘Sferengg I generally achieving an order of magnitude performance im-
CORUSCANT-3| 711 e T T I T provement. _Interestlngly CORUSCA_NT—? at fgll precision is
CORUSCANT-5| 840 | @ 1 11| 153 |2 1 11 nearly identical to the ternary approximation using Ambit, and
CORUSCANT-7| 905 | & @ 1 163 |o @ CORUSCANT-7 at full precision is competitive (within 6%
ReRAM Crossbar CNN Inference performance) of ELP?IM using the ternary approximation.
ISAAC_____[ 340 [105 132 144] 2581 [86 103 124 Presuming DDR3-1600 memory (Table II) CORUSCANT is
Binary Weight Neural Network (BWN) CNN Inference (NID) . .
Ambit 27 116 20 221 7535 29 35 43 capable of executing convolution at 26 Tera Ops Per Second
ELP2 IM 253 |14 1.8 19| 9959 |22 27 32 (TOPS) with 108 Giga Ops Per Joule (GOPJ). In comparison,
Ternary Weight Neural Network (TWN) Inference (DrAcc) a dedicated similar precision FPGA CNN accelerator was able
Ambit 848 142 53 58 7697 129 34 42 to achieve 0.34 TOPS with 12.5 GOPJ [59].
ELP-IM 964 |37 47 51| 8330 (26 32 39
CORUSCANT-3| 358 1 13 1422172 |1 12 15 F Reliabili
CORUSCANT-5| 449 | @ 1 1.1[26453|@ 1 12 - Reliabuity
CORUSCANT-7 | 490 %] 5] 1 32075 | o © 1

criteria, i.e., male users for last two, three, and four weeks
CORUSCANT maintains the same performance while DRAM
PIM latency increases; specifically, CORUSCANT is 1.6x,
2.2x, and 3.4x query speedup, respectively, over the faster
DRAM approach, ELP?IM.

E. Convolutional Neural Networks

We implemented two CNN benchmarks: CNN Lenet-5 [55]
and Alexnet [56], commonly used for image processing,
machine learning training on handwritten digits and on RGB
images, respectively. We have discussed the implementa-
tion of these benchmarks at full precision in Section IV.
We compare CORUSCANT including a sensitivity study
of CORUSCANT-TRD € {3,5,7} with SPIM in Table IV.
CORUSCANT-3 provides a 2.2x improvement over both
Alexnet and Lenet and this grows to 2.8x improvement
for increasing the TRD =7 due to the 27% performance
improvement of CORUSCANT with the larger TRD.

Previous DRAM work, ELP?IM, implements these CNNs
using a TWN and BWN approximation. Binary convolution
replaces multiplication with XNOR and ternary weights [57]
also eliminates most multiplication. For direct comparison we
implemented the TWN method modeled after DrAcc [41] using
CORUSCANT for TRD € {3,5,7} and compared it with both
Ambit and ELP?IM implementations of DrAcc as well as the
simpler binary implementation modeled after NID [44] shown
in Table IV. CORUSCANT-3 (DrAcc) provides significant
speedups of 3.7x and 4.2x for ternary implementations while
providing 2.6 and 2.9x improvements over the simpler binary
implementations of CNN inference for ELP?IM and Ambit,
respectively. This speedup grows to over 5x for Alexnet and
approximately 4x for Lenet when using CORUSCANT-7.
In general, increasing the TRD from 3 — 5 increases COR-
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Most PIM work does not address reliability under varia-
tion [5], [6], [7], [8]. TR reports a circa 3% change in resistance
under process variation [25]. For completeness, we used the
LLG Micromagnetic Simulator [60] to verify the TR sense
margins [25] for Racetrack Memory 4.0 [61] and conducted an
analysis using the total differential method based on output from
LLG. Using this approach we define the maximum uncertainty
of the actual critical read current in terms of current uncertainty
and process variation, the latter based on widely reported 4%
variation of spintronic MTJs [62]. We determined a probability
of fault during a TR of circa 107° for 4 domains. Ambit shows
a >1% fault rate at 5% variation [4] and ELP?IM improves on
Ambit, but does not provide sufficient visibility into fault rates
at < 10% variation, instead reporting them indistinguishable
from zero. The first non-zero data is circa 0.35% fault rate at
10% variation [4]. Extrapolating the reported error trend [4]
estimates an ELP?IM fault rate of 103 at 5% variation.

We report CORUSCANT fault rates presuming the intrinsic
fault rate of 107% in Table V. Note a TR fault will cause
the TR level to be read as one level higher or lower, a

TABLE V: Operation reliability

Error probability C3 C5 C7

AND, OR, C'T (per bit)[3.3x 107 2.0x 1077 1.4x1077
XOR (per bit) 1.0x 107 1.0x 107¢ 1.0 x 107°
C (per bit) 3.3%x 1077 4.0x1077 43x1077
add (per 8-bits) 8.0x107° 8.0x10°° 8.0x 107
multiply (per 8-bits) [4.1x 1074 2.1x107* 7.6%x107°
N-modulo redund. |N =3 (C3,C5,C7) |N=5 (C5C7) |[N=17(C))
AND, OR, C'1(8-bit)  [(9.6,3.5,1.8) x 10~ 13[(6.5,2.4) x 10~ [3.6 x 102
XOR (8-bit) (8.7,8.7,8.7) x 10714|(8.1,8.1) x 10721 |8.0 x 1027
C (8-bit) (1.0,1.4,1.6) x 10714/ (5.2,6.4) x 10-22{3.0 x 10~
add (8-bit) (5.6,5.0,4.8) x 10712|(4.8,4.6) x 10718 |6.1 x 10723
multiply (8-bit) (6.2,5.2,4.9) x 10712](5.0,4.7) x 10713 |6.1 x 10~}

! Only relevant for C5 and C7.
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TABLE VI: CORUSCANT CNN with N-modulo redundancy

N-modulo redundancy N =3 (C3,C5,C7) |N=5(C5CT)|N=17(CT7)
Alexnet Full Precision (FPS)|(17.7, 26.9, 29) (16.2, 17.5) 12.5

Lenet Full Precision (FPS) |(32.5, 49.5, 53.0) [(29.8, 31.6) 22.6
Alexnet Ternary (FPS) (90.2, 134.8, 155.8)|(81.1, 93.7) 67

Lenet Ternary (FPS) (5907,8074,9862) |(4868, 5943) |4253

fault off by two or more levels is negligible. Thus, different
functions have different error rates depending on the fault
rate, due to which level transitions create an error. An 8-bit
CORUSCANT add requires 8 TR’s, one for each bit computing
S,C,C’, for which errors can accumulate if C,C’ are changed.
However, add has an error rate of 8 x 107° for at least one
error. Using TMR, this fault rate can be improved to circa
5% 10712, If TMR was done after each nanowire computation,
this would provide circa 9 x 107!4, a nearly two orders of
magnitude lower fault rate. In constrast ELP?IM requires 48
operations to compute 8-bit add, such that reliability with
TMR is approximately 10~2. CORUSCANT multiply has a
large intrinsic error rate, particularly for C < 7, but by voting
between each reduction step it too can reach circa 5x 10712,
TMR provides a reasonable reliability, but to achieve > 10 year
error free runtime, we need N = 5-modulo reduction which
achieves < 5 x 10~!3 probability of error.

N-modular redundancy creates a tradeoff in design choices.
One option is to reduce the performance by repeating the
operation and adding the voting operations computations. If we
consider the Polybench results, this will increase the orange
portion of the bars from Fig. 10, which are approximately 20%
of the runtime with 80% of the runtime coming from queuing
delay. While it may be possible to pipeline the results to hide
some of the additional orange latency, another option is to
increase the number of PIM-enabled tiles and subsequently the
parallelism of the memory. While this would significantly
increase the area and energy cost, Fig. 11 already shows
an energy reduction of 95%, so reducing this savings for
retaining performance with N = {3,5}-modular redundancy is
a potentially reasonable tradeoff.

To enable the same level of reliability between ELP?IM and
CORUSCANT puts DRAM-based PIM at a disadvantage. Thus,
for ISO-reliability operation, the performance improvements
of CORUSCANT would only grow because the other PIM
methods that report reliability intrinsically lag CORUSCANT
by orders of magnitude. Moreover, as shown in Table VI,
ISO-area CORUSCANT with TMR is still faster than both
Ambit and ELP?IM without any fault tolerance by 1.83x,
1.62x on ternary Alexnet, respectively. CORUSCANT with
TMR is within 90% performance of SPIM without any fault
tolerance, while remaining 4.8 x faster than ISAAC for CNN
acceleration. ISO-performance CORUSCANT can generally
retain the performance improvements of Table IV through TMR
parallelism, but will incur nominal overheads for the inserted
voting instructions.

VI. CONCLUSION
CORUSCANT is a significant step forward for PIM in the

promising DWM technology. Our technique takes advantage
of the intrinsic proximity of bits in DWM nanowires and
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the advantages of TR to build a polymorphic gate that can
support myriad PIM operations. CORUSCANT can perform
bulk-bitwise or addition on multiple operands simultaneously,
limited only by the TRD between access ports on DWM.
Using carry-save adder inspired techniques these multi-operand
operations can be used to efficiently implement multiplication
with minimal additional logic.

Our results show that CORUSCANT improves over the
state-of-the-art DWM-based PIM by 6.9x and 2.3x in terms
of speed and 5.5x and 3.4x in terms of energy for five
operand addition (optimized for latency) and multiplication,
respectively. Compared to a standard DWM memory without
PIM, CORUSCANT improves memory latency by 2.1x,
decreases energy by 25.2x versus sending the data to the CPU.
CORUSCANT incurs an area overhead of 10% when PIM
enabling one tile per subarray. Using a smaller TRD, this area
can be cut in less than half and still provide impressive speedups
over prior work. CORUSCANT bulk-bitwise capabilities are
> 1.6x faster than DRAM PIM, 2.2-2.8x faster than SPIM
and 4.2-5.8x faster than ELP?IM, respectively, depending on
TRD size, for CNN inference.

CORUSCANT provides a natural capability to add {3,5,7}-
modular redundancy for fault tolerance and can achieve <
5x107'2 error rate with TMR while remaining faster than
state-of-the-art PIM without fault tolerance. In our future work,
we plan to explore additional in-memory capabilities such as
floating-point operations and other intrinsic operations required
for accelerated on-line training and other compute intensive
applications.
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