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vosnesenskii) populations

from spatial-environmental range
extremes
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Unraveling molecular mechanisms of adaptation to complex environments is crucial to understanding
tolerance of abiotic pressures and responses to climatic change. Epigenetic variation is increasingly
recognized as a mechanism that can facilitate rapid responses to changing environmental cues. To
investigate variation in genetic and epigenetic diversity at spatial and thermal extremes, we use
whole genome and methylome sequencing to generate a high-resolution map of DNA methylation

in the bumble bee Bombus vosnesenskii. We sample two populations representing spatial and
environmental range extremes (a warm southern low-elevation site and a cold northern high-
elevation site) previously shown to exhibit differences in thermal tolerance and determine positions
in the genome that are consistently and variably methylated across samples. Bisulfite sequencing
reveals methylation characteristics similar to other arthropods, with low global CpG methylation but
high methylation concentrated in gene bodies and in genome regions with low nucleotide diversity.
Differentially methylated sites (n=2066) were largely hypomethylated in the northern high-elevation
population but not related to local sequence differentiation. The concentration of methylated and
differentially methylated sites in exons and putative promoter regions suggests a possible role in
gene regulation, and this high-resolution analysis of intraspecific epigenetic variation in wild Bombus
suggests that the function of methylation in niche adaptation would be worth further investigation.

Understanding the ecological and evolutionary mechanisms of adaptation to complex ecological niches is a
central goal of evolutionary genomics'~. Species with large geographic distributions face diverse pressures from
environmental heterogeneity across populations* °, and genotypic and phenotypic variation among dissimilar
environments can provide the raw material for local adaptation. Species in mountainous regions, in particular,
can experience extreme variations in abiotic conditions such as temperature, precipitation, or air density*” 5.
Population-level genomic changes at the spatial-environmental extremes in widespread montane species could
thus improve our current understanding of how species tolerate diverse bioclimatic conditions and provide
insights into potential mechanisms of adaptability and robustness under global climate change® * 1°.

DNA sequence-based variation has been the most commonly examined form of genomic adaptation in wild
populations, however, epigenetic variation, such as DNA methylation, histone modifications, and regulatory
non-coding RNAs, is increasingly recognized as a potential mechanism of rapid environmental adaptation or
plasticity'!~**. Epigenetic mechanisms can generate flexible responses to various environmental stimuli without
modifying genome sequences, and they are potentially important for species that occupy diverse bioclimatic
niches'. Cytosine (CpG context) methylation is the most prevalent form of epigenetic methylation'®, however,
the extent of CpG methylation and its functional significance varies substantially across lineages'®. For example,
mammals exhibit higher (70-80%) of global CpG methylation'” compared to plants (4-40%)'® and arthropods
(<1% to 14%)". While in plants, DNA methylation primarily occurs in repetitive regions, especially in trans-
poson elements (TEs)®, in mammalian genomes, cytosine methylation is consistent except in the CpG islands
(i.e., CG motif-rich genomic regions) near promoters and transcription start sites (TSS)*'. Mammalian CpG
methylation has been linked to various molecular functions'’, such as gene silencing, genomic imprinting, and
stabilization of regulation of gene expression?*~?. In arthropods, methylation functionality has been attributed
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Figure 1. (a) Map, spatial information [latitude (Lat), longitude (Long), elevation (Elev), and mean annual
temperature (MAT) from the WorldClim v.2°’], and sample sizes for Whole Genome Bisulfite Sequencing
(WGBS) and Whole Genome Sequencing (WGS) for the two B. vosnesenskii study populations. (b) Photograph
of B. vosnesenskii, (c) Genome-wide Principal Components Analysis (PCA) from covariances estimated by
PCAngsd for the B. vosnesenskii populations sampled for WGBS.

to varied biological processes such as reproduction®, caste determination”-?’, and regulation of gene expression
via differential exon usage®. Arthropod CpG methylation is most prominent in gene bodies compared to intra-
generic and intergenic regions, but levels vary widely across lineages®'. For example, model organism Drosophila
melanogaster has very low amount of CpG methylation which is often not detected by bisulfite-sequencing' *
due to the absence of a key methyltransferase gene (Dnmt3)**. Characterizing genome-wide patterns of DNA
methylation across a wide range of taxa®* will be important in understanding the distribution of consistent CpG
methylation patterns across multiple lineages and identifying the extent of intraspecific epigenomic variability.
The function of such variable epigenetic changes may be especially relevant in the context of adaptation to
anthropogenic climate change.

Bumble bees are among the most economically and ecologically important pollinating insects*>* that pri-
marily inhabit cool temperate, alpine, and arctic climates®”. Bumble bees exhibit remarkable phenotypic and
physiological adaptations for thermal regulation®, such as an insulated pile, generating heat through shiver-
ing of flight muscles, and shunting mechanisms that prevent overheating®-*'. Such thermal adaptations allow
bumble bees to fly and forage in diverse thermal niches than many other insects*>*. Like many insects*, many
bumble bee species have declined in geographic range and abundance®, seemingly driven at least in part from
anthropogenic climate change*®*”. In North America, while several bumble bees have recently declined dramati-
cally, many species remain common**-, and species-specific responses to global climate change indicate that
some species may tolerate warming temperatures better than others®'. The nature of genomic and epigenomic
variation within species that occupy diverse environments will be valuable for understanding why species may
be vulnerable or resistant to climate change.

Bombus vosnesenskii is a common bumble bee species that is distributed across latitudinal and altitudinal gra-
dients in Western North America, principally in California, Oregon, and Washington, USA (Fig. 1). Population
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genetic studies have found low levels of intra-specific genetic differentiation and weak population structures
across the B. vosnesenskii range™*%, and B. vosnesenskii is one of two North American bumble bee species pro-
jected to expand its range under future climate change scenarios. Therefore, studying environment-associated
genomic variation may provide insights into species-specific responses that may mitigate the negative impacts of
climate change. As a widely distributed and ecologically crucial native pollinator, B. vosnesenskii has gained sub-
stantial attention as a research subject for population genetics®> >3, pollination biology*, and abiotic adaptation®
% studies. Genome scans across a broad latitudinal and altitudinal range using restriction site-associated DNA
sequencing (RAD-Seq) and environmental association analysis identified relatively few potential genomic regions
associated with thermal and desiccation tolerance®. However, analysis of thermal tolerance across latitude and
altitude extremes of the B. vosnesenskii range provided some evidence for local adaptation, with population-level
variation in lower thermal tolerance (CTyy) of laboratory-reared bees that matched the annual temperature of
respective source populations®®. Moreover, transcriptional differences among populations were detected at these
lower CTyyy thresholds. In contrast, there was no evidence of intrapopulation variation in responses to upper
thermal limit (CTy,x), suggesting evolutionary conservation of physiological and molecular responses under
heat stress®®. Results from these studies provide a foundation for investigating other types of variation that may
contribute to molecular responses, including epigenetics, which will contribute to a greater understanding of
potentially adaptive thermal tolerance mechanisms in this species.

The majority of epigenetics and DNA methylation studies in bumble bees have centered around determining
its role in sex/caste determination®® *°, reproduction® and development®' using lab-reared individuals of two
commonly used model species, B. terrestris, and B. impatiens®*. However, little is known regarding the role of
epigenetics in shaping niche-specific thermal adaptation in wild bumble bees, which might provide insights into
the adaptive variation that could allow responses to environmental variation> ®> %, The availability of reference
genomes for multiple bumble bee species® % now facilitates expanding the phylogenetic scope of methylation
research in bumble bees. In this study, we use very high-coverage whole genome bisulfite sequencing (WGBS)
data to map epigenetic variation in B. vosnesenskii. We also evaluate the potential for intraspecific epigenomic
variation by sequencing populations representing the spatial and thermal range extremes, focusing on wild-
caught samples taken from two extreme populations: a southern low elevation population from California, USA
(warm extreme) and a northern high elevation population from Oregon, USA (cold extreme) (Fig. 1). In addi-
tion to detailed characterization of the methylome of the species overall and testing for intraspecific epigenetic
differentiation, we also assess possible relationships between methylation with population genetic diversity or
structure using single nucleotide polymorphisms (SNPs) from whole genome sequencing (WGS). Specifically,
we aim to: (i) characterize the major trends in consistent methylation patterns in B. vosnesenskii and identify
putative major functions related to genome-wide CpG methylation; (ii) compare and contrast epigenetic pro-
files from populations at latitude and altitude extremes to assess variability in the methylome and characterize
the genomic location and potential functional roles of differentially methylated CpGs; and (iii) investigate the
potential relationship between population genetic diversity and genome-wide CpG methylation levels in B.
vosnesenskii. Our research provides insights into the distinct nature of consistent and variable DNA methylation
in populations from the spatial-environmental range of B. vosnesenskii, and it also highlights the existence of
intraspecific epigenetic variation that may aid in generating regional variation in genotypes and phenotypes to
adapt the species across a range of intricate biological niches.

Results

CpG methylation across the B. vosnesenskii genome is broadly consistent among sam-
ples. Overall CpG methylation across the genome was 1.1% + 0.9% SD which was calculated from the percent
methylation per CpG cytosine values across all samples (Fig. 2a). The low-elevation California (CA) popula-
tion had slightly higher percent methylation (1.17% +0.06% SD) than the high-elevation Oregon (OR) popula-
tion (1.03% +0.04% SD) (Fig. 2a). Most sequenced CpGs (methylated + unmethylated) were located in introns
(57.90%) and intergenic (23.42%) regions, with 5.73% in coding sequences (CDS) and 5.09% in untranslated
regions of exons (exon UTRs) (Fig. 2b). The distribution of methylated CpGs varied substantially from the
overall distribution of CpGs, with both highly methylated (>50% average methylation; n=112,996,~0.78% of
all CpGs) and sparsely methylated (10-50% methylation, n= 186,846, ~ 1.28% of all CpGs) sites predominantly
found in CDS (Fig. 2b). Specifically, 70.85% of sites that were classified as highly methylated in all samples were
in CDS, 13.02% were in introns, 9.50% in exon UTRs, and much lower percentages in the remaining annotation
feature categories (0.76-3.13%) (Fig. 2b). Although highly methylated CpGs are only ~0.78% of all CpG posi-
tions in the genome, the proportion of highly methylated CpGs per total sequenced CpGs in CDS is even more
extreme (9.36% of all CpGs in CDS) compared to introns (0.17%) and intergenic (0.04%) regions. Annotation
feature-specific distributions of highly methylated CpGs is significantly different from distribution of all CpGs
(Pearson’s Chi-squared test with Yates’ continuity correction; FDR corrected P<0.05) for all eight annotation
features [i.e., exon UTR, CDS, intron, upstream flank, downstream Flank, long non-coding RNA, transposable
elements (TE), intergenic; detailed results are available in Supplementary data repository].

Consistent with the overabundance of methylated sites in CDS, a greater number of highly methylated sites
clustered near the transcription start site (TSS) than predicted from the genome-wide distribution of TSS dis-
tances for all CpGs (Fig. 2¢), with the absolute mean distance from TSS for highly methylated CpGs was much
shorter (2438.78 bp) compared to the absolute mean distance from TSS for all CpGs (27,981.11 bp). There
were ~4.5 times more CpGs in downstream (gene bodies and 5" UTR) of TSS (n=92,403) compared to the
number of CpGs in upstream (e.g., likely promoter regions) of TSS (n=20,561), which is substantially higher
than for all CpGs [~ 1.51 x more sites in downstream of TSS (n=8,708,196) compared to the CpGs in upstream
(n=5,774,550)]. The distribution of distances to the TSS for highly methylated sites was significantly different
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Figure 2. General Pattern of genome-wide methylation in B. vosnesenskii study samples. (a) Box plot exhibiting
sample specific per base percent methylation for the CpGs present in every sample. (b) Bar plots of genomic
feature-based annotation proportions for all CpGs, unmethylated sites, sparsely methylated sites, and highly
methylated sites. (c) Histogram of distances to nearest TSS for all CpGs and highly methylated sites. (d—f)

Exon intron breakdown of gene body methylation for highly methylated (d), sparsely methylated (e), and
unmethylated CpGs (f). Y-axis blue bars represent the actual count, and red dots depict the proportion of
individual genomic features (i.e., exons and introns) relative to similar annotation feature counts for all CpGs.

than that for all CpGs (two-sided two-sample Kolmogorov-Smirnov test, D=0.35738, P <2.2e—16). The distribu-
tion of sparsely methylated CpGs was similar to that of highly methylated CpGs (Fig. 2b). As expected, unmethyl-
ated CpGs (< 10% methylation average methylation; n= 14,283,650, ~ 97.94% of all CpGs) largely matched that
of the genome-wide distribution of CpGs except for a slightly smaller proportion in CDS (due to the greater
methylation presence in CDS).

To examine the distribution of methylation levels relative to CpG background within genes, we examined
the frequencies of highly methylated, sparsely methylated, and unmethylated CpGs for exons, introns and other
annotation features (Fig. 2d-f). The first clear pattern is that exons have much greater levels of methylation, both
in absolute numbers of methylated CpGs and even more clearly apparent when visualized as a percentage of
available CpGs per feature (Fig. 2d,e). For exons, exon 2-4 harbored substantially more highly methylated sites
(10.1%, 12.6% and 10.2% relative percentages compared to all CpGs, respectively) than the first exon (1.4%), and
generally decreased from exon 3 through the remaining exons (Fig. 2d). A similar pattern was apparent in the
sparsely methylated sites, although the distribution was not as sharply biased toward exons 2 and 3 (Fig. 2e). In
contrast, the exon-specific distribution pattern is reversed in unmethylated sites (Fig. 2f), as the first exon has
more unmethylated sites (97%) than exon 2 (82%), exon 3 (76%) or rest of the exons, although as discussed above
the number and proportion of unmethylated CpGs is reduced in exons relative to introns overall. For introns,
there was a downward trend in raw counts from upstream to downstream intron locations across the gene body
for all three (methylated, sparsely methylated and unmethylated) categories, however, the trend is absent when
considered as percentages of available CpGs (Fig. 2d-f). We separately evaluated patterns in long non-coding
RNAs, which showed a similar exon-intron breakdown (Supplementary Fig. 1).

We also visualized the chromosomal distribution of CpGs across the genome (Fig. 3). Most of the CpGs
across the genome have low methylation (< 10%) and highly methylated sites are relatively scarce (Fig. 3a),
however, plotting the average per base percent methylation across the genome shows their distribution is non-
random as we discovered the large regions of very low methylation in genomic scaffolds punctuated with peaks
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Figure 3. Genome-wide distribution of CpG methylation in B. vosnesenskii. (a) Frequency histogram of percent
methylation of all CpGs with the distribution of CpGs with more than 10% methylation zoomed-in inset plot.
(b) Scatter plot of correlation between scaffold length (Mbp) and the number of differentially methylated sited
harboured in the individual scaffolds. (c-f) Manhattan plots of the genomic landscape of average percent
methylation (top panel) across all samples and absolute inter-population percent methylation difference (bottom
panel) across scaffold NW_022882924.1 (c), scaffold NW_022882930.1 (d), restin homolog (e) and serine/
threonine-protein kinase PRP4 homolog (f) with their exon-intron gene structures. Manhattan plots were drawn
using fastman®” R package.
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of methylation heavy regions (Fig. 3c—d); gene-specific visualization of CpGs (Fig. 3e,f) exhibits that this distinct
pattern of clustering of highly methylated CpGs are predominantly located in gene bodies.

Patterns of differentially methylated CpGs between populations from spatial-environmental
range extremes of B. vosnesenskii. The principal component analysis (PCA) of all methylated CpGs
showed that 31.44% of the variation was explained by first two principal components with weak separation of
OR and CA samples, and greater variation within CA (Supplementary Fig. 2), although population-specific clus-
tering was more prominent in a clustering dendrogram (Supplementary Fig. 2). When analyses were repeated
using CpGs that were variably methylated among all samples (excluding sites within 2 SD of average per base
percent methylation, n=901,868 CpGs) there was more evident population-specific clustering (Fig. 4a), and
hierarchical clustering also exhibited distinct population-specific clusters (Fig. 4b). PCA and hierarchical clus-
tering analysis using only differentially methylated sites, obviously indicated clear distinction between two pop-
ulations (Supplementary Fig. 2).

We identified 2066 significantly differentially methylated sites (= 10% methylation difference, FDR corrected
q<0.01) between OR and CA. Most (n=1809; 87.6%) were hypomethylated in OR relative to CA (Fig. 4c). This
result is consistent with the sample-specific methylation frequencies (Fig. 2a) that shows slightly lower overall
percent average methylation across the genome in OR.

There was a significant positive correlation between the number of differentially methylated sites and the
sequence length of the scaffolds (Pearson’s r=0.82, P <0.001; Spearman’s rho=0.8, P<0.001) (Fig. 3b), however,
as for consistently methylated CpGs, the distribution within scaffolds was clearly not random (Fig. 3c-f). Dif-
ferentially methylated sites were distributed even more closely to the TSS (mean=3622.9 bp) than all CpGs
(27,981.1 bp, two-sided Two-sample Kolmogorov-Smirnov test, D=0.329, P<2.2 x 107'¢) or variably methylated
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Figure 4. General patterns of clustering and distribution of variable (SD >2) and differentially methylated
CpGs in B. vosnesenskii. (a) Principal Component Analysis (PCA) of methylation profiles of variable CpGs
(SD>2). (b) Hierarchical clustering of methylation patterns of variable CpGs using Ward.D2 algorithm (c)

Bar plot of counts and percentages of hypermethylated and hypermethylated CpGs in high elevation (Oregon)
samples assessed at 10% methylation difference. (d) Histogram of distances to nearest TSS for variable (SD >2),
differentially methylated, and all CpGs. (e) Genomic feature-based bar plots depicting annotation proportions
for differentially methylated sites assessed at 10% methylation difference. (f) Exon-intron breakdown of gene
body methylation for differentially methylated CpGs.

Scientific Reports|  (2023) 13:14901 | https://doi.org/10.1038/s41598-023-41896-7 nature portfolio



www.nature.com/scientificreports/

CpGs (absolute mean distance 16,304.33 bp; two-sided Two-sample Kolmogorov-Smirnov test, D =0.174,
P<2.2x107'%) (Fig. 4d). Also similar to consistently methylated CpGs, differentially methylated CpGs are also
more numerous downstream of the TSS (n=1540) than upstream (n=524), indicating greater abundance in
gene bodies compared to the promoters. Differentially methylated CpGs (10% methylation difference threshold)
were mostly found in coding sequences (54.72%) and exon UTRs (18.32%) while relatively few were in introns
(16.53%) and intergenic regions (2.22%) (Fig. 4e). Again, the first exon had fewer differentially methylated
CpGs compared to downstream exons (Fig. 4f), and differentially methylated CpGs declined from upstream to
downstream across the gene body (Fig. 4f). Long non-coding RNAs also showed more differentially methylated
CpGs in exons (n=92) compared to introns (n=50) (Supplementary Fig. 1). Annotation-specific distributions of
differentially methylated CpGs were significantly different from the distributions of all sequenced CpGs (Pearson’s
Chi-squared test with Yates’ continuity correction, FDR-corrected P <0.05) for seven out of the eight annotation
features (exon UTR, CDS, intron, downstream Flank, long non-coding RNA, TE, intergenic); only the “upstream”
feature was not significant (P=0.509) (Detailed results are available in Supplementary data repository).

Genome-wide population structure, genetic diversity and the relationship with CpG methyla-
tion. Population structure was weak (Fg;=0.025, 95% CI: 0.025-0.026). Some separation of samples by popu-
lation was apparent along the first PC axis, which explained only 12.45% of variance (percent variance explained
largely plateaued for remaining PC axes), consistent with the low Fgr (Fig. 1c). Nucleotide diversity (m) per
site was similar between the populations, with global m=0.00197 (95% CI: 0.00196-0.00198), OR 1=0.00191
(95% CI: 0.00191-0.00192), and CA =0.00193 (95% CI: 0.00192-0.00194), suggesting that differences in genetic
diversity do not drive differences in observed methylation levels between populations.

We tested the relationship between general methylation patterns and population genetic diversity across
1 kb regions within the B. vosnesenskii genome. There was a strong correlation between the mean methylation
proportion per CpG per 1 kb window (n=232,788 windows) and both the raw number (Pearson’s r =0.84,
th3a786=737.97, P<0.001; Spearman’s rho=0.46, S=1x 10", P<0.001) and proportion (r=0.96, 3,75 = 1642.3,
P<0.001; tho=0.46, S=1x 10", P<0.001) of highly methylated CpGs per window. We thus performed analysis
only on counts of highly methylated CpGs. The number of highly methylated sites per 1 kb window was negatively
correlated with  (Fig. 5a) (Pearson’s r=—0.22, t,3,,5s=110.59, P<0.001; Spearman’s rho=-0.29, $=2.7 x 10'5,
P<0.001). This relationship was not seemingly driven by the number of available CpGs per window, as low
diversity windows had fewer CpGs in general (Fig. 5a), so the proportion of CpGs methylated per window thus
also declined significantly with r (Fig. 5b; Supplementary Table 1) (Pearson’s r =—0.24, t,3,,46=-118.88, P<0.001;
Spearman’s tho=-0.29, S=2.7x 10", P<0.001). There was a weak relationship for Fg; and the mean percent
methylation difference per CpG per 1 kb window between populations (Pearson’s r=0.01; t,,0654 =4.97, P<0.001),
although this was not significant for Spearman’s rank correlation (Spearman’s rho=0.004; P>0.05) (Fig. 5¢).
Because above data suggested that certain sites were likely to never be methylated in B. vosnesenskii and thus
would not differ among populations, it is possible that such regions could affect patterns of differentiation within
methylated regions. We thus also evaluated the Fs-methylation difference relationships after excluding windows
with no methylated CpGs (< 10% threshold; n=22,542 1 kb windows retained) and there was no correlation
(Pearson’s r=0.000, Spearman’s rho=0.000; both P>0.05; Fig. 5d), suggesting that the weak positive correla-
tion above was likely driven by intragenic or intronic windows with both weak divergence and no methylation.

Gene ontology analysis of genes harboring highly methylated and differentially methylated
CpGs. Analyses of unique genes (n=44) containing> 100 highly methylated sites provided 18 statistically
significant [family-wise error rate (FWER)<0.1] GO terms and a total of seven summarized GO term clusters.
Overall, these GO terms and summarized GO clusters were linked to fundamental cellular activities, such as
metabolism, binding, regulation of biological processes, neuronal activities, gene expression machinery and cell
development (Fig. 6a; Supplementary Table 2 and 3). Gene Ontology (GO) analyses of genes (n=1272) harbor-
ing differentially methylated sites (10% difference threshold) produced 89 significantly enriched terms (Sup-
plementary Table 4) that grouped into 31 clusters that were likewise associated with diverse biological processes,
including binding, various enzymatic activities, reproduction, cell cycle, development, metabolism, response to
stress and cell communication, and signaling activities (Fig. 6b; Supplementary Table 5). Five overlapping GO
terms from the general and differential methylation enrichment analyses included two overlapping biological
process-related terms [positive regulation of cellular process (GO:0048522), regulation of cellular component
organization (GO:0051128), two molecular function related terms [mRNA binding (G0O:0003729), RNA bind-
ing (GO:0003723)] and one cellular component related term [nuclear speck (GO:0016607)] (Supplementary
Table 6). Comparison of GO terms from this study with two previous studies® *® indicates a functional-level
convergence regarding population-specific thermal/environmental adaptation as we noticed several overlap-
ping GO terms, such as, cell signaling and communication, development, reproduction, metabolic functions,
neuronal activities and stress response (Supplementary Table 7).

Discussion

This study presents a high-coverage methylome analysis for the North American bumble bee B. vosnesenskii and it
is the first to provide initial insights into CpG methylation patterns in wild-caught bumble bees from climatically
distinct locations. Genome-wide methylation patterns in B. vosnesenskii are similar to those observed in other
arthropods and hymenopterans, with a preponderance of highly and sparsely methylated sites found in gene
bodies and unmethylated sites disproportionately represented in introns and intragenic regions. We also identi-
fied multiple (n=2066) differentially methylated CpGs between the two sampled populations, predominantly
in exons and putative promoter regions, suggesting that epigenetic marks can vary across bumble bee species’
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Figure 5. Relationships between genetic diversity from whole genome re-sequencing and methylation

patterns. (a) Relationship between global nucleotide diversity across samples and the number of methylated
CpGs (50% threshold, red) and all sequenced CpGs (blue). Lines fit with a log relationship for visualization

(see Supplementary Table 1 for statistical model). (b) Relationship between global nucleotide diversity across
samples (log-transformed) and the proportion of methylated CpGs (50% threshold). Line fit with a binomial
model for visualization (see Supplementary Table 1 for statistical results from the zero-inflated beta-binomial
model). (c) Relationship between Fg;- and absolute percent methylation differences between populations, (d)
Relationship between population-level Fs and absolute percent methylation differences excluding 1 kb windows
with no methylated CpGs. Line fit with a linear relationship for visualization, as no substantial relationship
between the variables was detected (see Supplementary Table 1 for detailed statistics).

ranges. Our study also reconfirmed previous findings of low genetic diversity and genome-wide genetic homo-
geneity in B. vosnesenskii and showed that while highly methylated regions tended to occur in genome regions
with relatively low nucleotide diversity, there was no clear relationship between methylation differentiation and
genetic differentiation across genome regions. This in-depth high-coverage analysis of epigenetic variations in
B. vosnesenskii offers novel biological insights into the factors that may shape the genome-wide distribution of
DNA methylation in bumble bees and provides a valuable starting point for more detailed studies of epigenetic
mechanisms that may be involved in environmental adaptation or plasticity in this species.
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Figure 6. Summarized visualization of biological process-related GO terms from unique genes (n=44)
harboring a minimum of 100 highly methylated (>50% methylation) sites (a) and unique genes (n=1272)
harboring differentially methylated sites assessed at 10% methylation difference (b). The top ten biological
process-related clusters with their corresponding GO IDs were listed at the bottom of each plot.

Our first research objective was to characterize consistent patterns of methylation observed across B. vosnesen-
skii workers collected from distinct climatic regions within the species’ range to identify features that were highly
or rarely methylated in all individuals. The low genome-wide CpG methylation (~1.1%) is similar to other
Hymenoptera®, including other bumble bees®-¢!, the honey bee Apis mellifera®, the wasp Nasonia vitripennis’.
Such trends are generally common in holometabolous insects®! apart from a few unusual instances®. Despite low
overall methylation, sparsely distributed peaks of high CpG methylation were non randomly distributed across
scaffolds owing to a concentration of methylation in gene bodies, especially exon sequences. This intragenic CpG
methylation is also a classic characteristic in insects'®%316%%-72 and gene body methylation is likely ancestral”®.
Thus, our results add to the growing body of evidence across the multiple insect orders where the prevalence of
gene body methylation was observed irrespective of substantial variability in global methylation levels®..

Within genes, methylation was substantially biased towards the 5’ region, with a higher concentration of
CpG methylation near the TSS (Fig. 2¢c) and a relatively gradual decrease of CpG methylation across (5’ to 3')
the transcription unit (Fig. 2d-f). At a more granular level, exon sequences have substantially more methylated
sites than introns (Fig. 2d), with a disproportionate distribution of highly methylated sites in exon 2-4, with
fewer in exon 1 (Fig. 2d). Similar 5’ biased methylation is observed in bees®’, wasps’, ants’! and more generally
in holometabolous insects. In contrast, 3’ bias is more prominent in many hemimetabolous insects’*”> and mam-
mals with much higher global methylation”. The disproportionate exon-intron breakdown patterns across genes
and depleted methylation in the first exon, are also common in Hymenoptera®"”* and other arthropods, such as
Crustaceans’’%. In several Hymenoptera species, clusters of CpG methylation are found across the exon-intron
boundaries, as we tend to observe here®®, which may contribute to alternative splicing via its presumed role of
exon-intron “tagging”*®7°. Several studies in arthropods indicate a potential role of gene body methylation in
transcription elongation and alternative splicing'®, based on the apparent correlation of CpG methylation with
alternative splicing found in honeybees® %77 and ants’'. However, evidence from multiple insect orders sug-
gests that CpG methylation is not directly correlated to differential exon usage®"**°. The mixed evidence on the
potential involvement of gene body methylation on alternative splicing indicates the need for future methylation
studies in bumble bees that explore the possible link between CpG methylation and differential exon usage by
utilizing complementary gene expression and methylation datasets.

One consistent pattern in insects is that gene body methylation is believed to be associated with unimodal
expression of highly expressed “housekeeping” genes!'®3!-6%7%78 These highly expressed “housekeeping” genes
are uniformly (i.e., not developmental stage- or tissue-specific) expressed®!, exhibiting low variability in their
expression pattern’®”’. Gene ontology analysis results from our study also support this as we noticed functional
enrichment of many important essential activities in our list of GO terms, such as biological processes related to
the regulation of gene expression, alternative splicing, metabolism, development, neuronal activities and other
fundamental aspects of cell machinery (Supplementary Table 2). Highly methylated genes in other arthropods*®
6972, 79-81 g]s0 exhibit functional level enrichment of essential cellular functions such as metabolism, mRNA
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processing, organelle function and transport related terms. Thus, the extent and the functional properties of
gene body methylation in B. vosnesenskii complement the similar patterns observed in other holometabolous
insects exhibiting overall low global methylation and clustered exon-biased gene body methylation, in contrast
to the relatively higher global methylation and higher methylation levels extending to other genomic features
(e.g., promoters, introns, and transposable elements) in hemimetabolous insects!* .

Several insect studies also suggest a link between gene body methylation and other epigenetic mechanisms®.
For example, nucleosome dynamics, histone post-translation modifications, and associated changes in local
chromatin state® have been hypothesized to act in concert with CpG methylation to mediate the extent and tim-
ing of access to the transcriptional machinery and, thus, regulate subsequent gene expression levels®. Our data
support potential cooperation among these epigenetic mechanisms as GO analysis of highly methylated CpGs
also included a histone modification-related term [negative regulation of histone H2A K63-linked ubiquitination
(GO:1901315); Supplementary Table 2]. In insects, CpG methylation is strongly associated with histone post-
translational modification and transcriptionally active chromatin marks®>%. It may play a critical role in ensur-
ing the consistent expression of highly methylated genes across insect lineages via the exclusion of a chemically
modified TSS-associated histone variant (H2A.Z) that exhibits a negative correlation to gene expression activity®.
Thus, high CpG methylation concentration patterns of near TSS and subsequent 5’ bias could be potentially
linked to CpG methylation-mediated chromatin remodeling near TSS®2. Methylation levels in arthropods can
also be related to nucleosome occupancy around the TSS, with nucleosome occupancy exhibiting positive cor-
relations with CpG methylation®'. No nucleosome positioning data is available for bumble bees yet; however, we
hypothesize that distinct distribution pattern of distance to TSS for both highly methylated sites and differentially
methylated sites observed in B. vosnesenskii could be potentially linked to nucleosome occupancy, especially
given differences in methylation levels observed between the populations. Future multi-omics studies examin-
ing the multiple components of individual-specific epigenomes would be especially advantageous to address
knowledge gaps relating to the total epigenetic landscape and regulation of context-dependent gene expression.

The second objective of this study was to evaluate the potential for differences in methylation levels among B.
vosnesenskii from the spatial-environmental extremes of its broad distribution. We identified 2,066 differentially
methylated sites between the two populations and the genomic distribution of these differentially methylated
CpGs matched the trends of general CpG methylation, and were similarly overrepresented in gene bodies,
especially in exons, consistent with the distribution of differentially methylated sites between sexes and castes
in the bumble bee B. terrestris®. The colder high-elevation Oregon site exhibited lower percent methylation
(1.03% +0.04% SD) than warmer southern low-elevation sites in California (1.17% +0.06% SD), and 87.6% of
differentially methylated sites were hypomethylated in the northern high-elevation samples. Although our results
must be evaluated in additional populations for robust conclusions, several insect studies have reported a pro-
pensity for hypomethylation at low temperatures, including reduced CpG methylation under low-temperature
stress in the tick Haemaphysalis longicornis®® and under relatively low rearing temperatures in the cockroach
Diploptera punctata®. Interestingly, while highly methylated genes are evolutionary conserved, hypomethyl-
ated genes are often faster evolving, and can be order-, genus- or species specific’” 7> and exhibit tissue”® or
developmental stage specific’® expression. Thus, hypomethylated genes may be more plastic, exhibiting more
variability and flexibility regarding their adaptability towards environmental cues®®. The reduced methylation
observed in the high-elevation Oregon B. vosnesenskii population is intriguing given that this population was
also found to have the broadest range in critical thermal limits in laboratory experiments (CTyyy Vs CTyax)s
and also exhibited the most unique gene expression patterns, especially at CTy\*°. Although we could compare
GO terms from prior gene expression and coding sequence variation datasets to identify shared biological func-
tions or cellular components with our methylation data, we cannot link our detected methylation levels directly
to thermal tolerance with the current dataset as we currently lack corresponding gene expression data at the
sample-level. Establishing causal links with direct comparisons between transcription and methylation/coding
sequence variance will be needed to formulate insights into niche adaptation. Given differences observed between
the latitude-altitude extremes in this study, future studies involving CpG methylation and complementary gene
expression data from specimens sampled across the altitudinal and latitudinal gradients of its wide species range
would be advantageous?.

Genes harboring at least one differentially methylated CpG were enriched for GO terms related to several
biological processes such as metabolism, reproduction, cell cycle process, and fundamental cellular activities
and molecular functions including binding, transmembrane transport, and various enzymatic functions (Sup-
plementary Table 4 and 5). These results are broadly consistent with gene ontology analysis of differentially
methylation between reproductive states®® or during colony development® in B. terrestris. Similar functional
enrichment results have also been reported in differentially methylated gene sets from abiotic stress response-
related studies involving silkworm®, water fleas”, and ticks®. Numerous GO terms overlap with previous popula-
tion genomic and thermal stress studies in B. vosnesenskii®>*, including cellular communication/signaling and
functions related to neuronal activities, gene expression regulation, metabolism and reproduction (see Results
and Supplementary Table 7). Of particular interest from the perspective of thermal tolerance, we observe GO
term related to “cellular response to stress” (GO:0033554) within the summarized biological function-related
GO term clusters for differentially methylated gene sets (Supplementary Table 5). At the gene level, at least one
differentially methylated CpG was observed in ion channel and membrane transport-related genes [sodium/
calcium exchanger regulatory protein 1-like (LOC117234134), TWiK family of potassium channels protein 7
(LOC117238582), chloride channel CLIC-like protein 1 (LOC117236045), calcium homeostasis endoplasmic reticu-
Ium protein (LOC117242823)] and heat shock protein-related genes [97kDa heat shock protein (LOC117234768),
heat shock protein 83-like (LOC117235089)]. Heat shock protein machinery®’~* and ion channel/transmem-
brane transport mechanisms®, especially those linked to calcium regulation®® are widely recognized for their
essential role in mediating molecular responses to thermal stress® *°, and have been previously observed in B.
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vosnesenskii®> >, The presence of chromatin-related GO terms (i.e., GO:0043044, GO:0003682) in the GO term
lists of differentially methylated genes (Supplementary Table 4) is consistent with the potential involvement of
CpG methylation in mediating access transcription machinery and particularly with a previously reported case
of enrichment of chromatin related GO terms for differentially methylated genes related to caste determination
in bumble bees®. Although the potential link between differential methylation and differential expression is still
unclear in insects as there is mixed evidence if the differential methylation is positively correlated to differential
expression®” % (but see®*-'%) or differential exon usage®® 7, these reported genes from our study could serve as
promising candidates to more closely examine in future studies of thermal stress or other niche specific gene
expression regulation in bumble bees.

Finally, our third objective was to explore the potential link between genomic and epigenetic variability in B.
vosnesenskii. Interestingly, B. vosnesenskii appears to exhibit variation in thermal tolerance among populations
with minimal genome-wide population structure®. Although we observe weak differentiation in both genome-
wide SNP polymorphisms and CpG methylation, there is substantial range-wide genetic connectivity between
the populations selected for WGBS (Fgr=0.025). There was also no substantial correlation between methylation
differences and Fg; in 1 kb windows across the genome, especially once methylation-free regions were removed,
indicating that regions with variable methylation are not located in high- or low-differentiation regions. This is
consistent with a recent study in another insect, Diploptera punctata, which also failed to find any correlation
between genetic and epigenetic variability®”. We did observe a significant negative correlation between nucleo-
tide diversity (7) and methylation levels across genomic windows, which is consistent with the elevated levels of
methylation in gene bodies, as protein-coding regions tend to have lower levels of variation, including reduced
nonsynonymous T in B. vosnesenskii®. Methylation analysis in lab-reared bumble bees also reported a potential
relationship between evolutionary sequence conservation and CpG methylation®. While CpG methylation can
potentially act as a mutagen on individual cytosines'® 1%, paradoxically, CpG methylation in insects is enriched
in evolutionary conserved “housekeeping” genes®' where it may play a counterintuitive role as a stabilizing
factor®. The potential complex relationship between underlying genomic diversity and epigenetic variability in
bumble bees should be further investigated, ideally including other species with more variable heterozygosity
or population structure’.

This study provides the first look at the potential for ecologically associated epigenetic variation across the
B. vosnesenskii range, however there are several limitations which should be considered when interpreting our
reported results and must be addressed with future research. First, methylation status may be influenced by
developmental age of the bumble bees and other associated ecological and environmental variables'% which are
common caveats in ecological epigenetic studies. Although, the collection of wild bees prohibited any control
for many variables, prior studies suggest that most such variation is driven by sex, tissue, and developmental
stages®-%° so sampling of all adult female workers may minimize such concerns. A second concerns is that the
challenges of collecting populations from range extremes necessitated sampling populations on different dates,
which could introduce biases due to different local conditions experienced by samples prior to collection (as
opposed to more bioclimatic divergence associated at range extremes). Thus, we cannot fully exclude the pos-
sibility that some differential methylation could be from variable specimen age or recent environmental experi-
ence. Increasing sample size beyond our small initial sample size (n=8) may also help improve statistical power
of future analyses to detect important but subtle population-specific methylation changes, while reducing error
introduced by factors like sample age or prior individual experiences'”.

In summary, our study provides the first high-coverage methylation profiling in a widespread North American
bumble bee, B. vosnesenskii, and unravels the key characteristics and trends of CpG methylation in this montane
species. B. vosnesenskii is a crucial pollinator and one of two species available commercially to be used for green-
house crop pollination in North America® and is also one of few North American bumble bees that may benefit
from projected future climate change scenarios®!. Although more work is needed, understanding region-specific
genomic and epigenomic variation, particularly their connection to thermal adaptation, may hold considerable
economic and practical conservation value. Epigenetic variation is only recently beginning to be evaluated in
bumble bees, nevertheless, given the substantial colony-specific variation in bumble bee methylomes®, it is also
possible that environmentally associated colony-specific “epi-alleles” at the population level'®® may exist and
play a role in niche-specific adaptation or may contribute to phenotypic plasticity. Further, our study only evalu-
ated one tissue type which, while relevant for thermoregulation and flight, should be expanded to incorporate
additional tissues to fully understand variation in the methylation landscape in B. vosnesenskii. Overall, this
study provides baseline data for future studies that will include integrative multi-omics approaches (e.g., genom-
ics, transcriptomics, epigenomics, metabolomics) from field and laboratory experiments to build a conceptual
framework on the interplay between multiple modes of non-genomic epigenetic variations and its influence
across multi-level molecular processes that are mediating tolerance to a broad set of environmental conditions
in this species®>'%.

Methods

Samples. DNA was extracted using Qiagen DNeasy kits from the thoracic tissue of worker bees from a pre-
vious study® which were collected from southern California at low elevations and from northern Oregon at high
elevation (see Table 1 for detailed information). These sites generally represent warm and cold extremes of the
species range®® (Fig. 1a). All B. vosnesenskii workers (Fig. 1b) represent unique colonies based on inferences of
relatedness from reduced representation SNP data®.

Whole genome methylation sequencing and WGBS data analysis. Whole genome methylation
libraries were prepared using the Swift AcceNGS Methyl-Seq DNA library approach for bisulfite-converted
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Population Latitude Longitude Elevation (m) Date Sample Name Sequencing data type
JDL3148-OR052016 WGBS+ WGS
JDL3150-OR052016 WGBS +WGS
JDL3152-OR052016 WGBS +WGS
JDL3147-OR052016 WGBS

Northern high elevation (Oregon) 45.332 -121.670 1699 3-Aug-16 JDL3144-OR052016 WS
JDL3145-OR052016 WGS
JDL3146-OR052016 WGS
JDL3153-OR052016 WGS
JDL3154-OR052016 WGS
JDL3155-OR052016 WGS
JDL928-CA012015 WGBS+ WGS
JDL929-CA012015 WGBS +WGS
JDL931-CA012015 WGBS +WGS
JDL940-CA012015 WGBS

Southern low elevation (California) 36.458 -118.879 314 12-May-15 JDL930-CA012015 WGS
JDL932-CA012015 WGS
JDL933-CA012015 WGS
JDL937-CA012015 WGS
JDL938-CA012015 WGS

Table 1. Detailed information about the samples used in Whole Genome Sequencing (WGS) and Whole
Genome Bisulfite Sequencing (WGBS) approach.

DNA (with lambda control genome spike-in) and they were sequenced on an Illumina Hiseq X sequencer by
HudsonAlpha Institute for Biotechnology Genome Services Lab (Huntsville, Alabama, USA). Samples (n=8)
were run in individual lanes to generate 2 x 151 bp paired-end libraries. 3.6 x 107 raw read pairs and 1,088Gbp in
total were sequenced in the raw WGBS data set (per sample mean=450.19 x 10°+50.21 x 10° SD read pairs and
135.96Gbp + 15.16Gbp SD of sequence). Quality assessment of the sequenced specimens was conducted using
FastQC v.0.11.9''%. Based on the generated sequence quality assessment and a large amount of sequence data, we
conducted stringent quality filtering, including adapter removal, quality trimming, removal of short sequences
(<50 bp) and removed specific fixed lengths from both 5’ and 3" ends to minimize bisulfite conversion bias using
Trim Galore! v.0.6.6'"!; custom command line parameters:-illumina -q 20 —clip_R1 20 -clip_R2 20 -three_
prime_clip_R1 20 —three_prime_clip_R2 60 -length 50). After stringent trimming and quality filtering of these
high coverage data, we discarded ~ 34.27% of raw reads, resulting in 295.90 x 10°+ 107.65 % 10° SD trimmed read
pairs and 52.33 Gbp+19.32 Gbp SD per sample. We generated post-trimming sequence quality reports and
sample-specific statistics using FastQC v.0.11.9'° and SeqKit v.0.15.0'2. All samples were sequenced to very
high coverage, but the total number of reads varied among sample, so to reduce possible biases in methylation
calling and subsequent analyses due to sequencing depth we normalized read coverage by random subsampling
with SeqKit v.0.15.0'"2 to match the smallest number of read pairs in any sample (n=187,618,210 read pairs per
sample). After performing the read-pair subsampling across samples, 187.62 million read pairs for each sample
were aligned to the B. vosnesenskii genome assembly, which resulted in 75.70 +3.04 SD fold sequencing depth
per sample.

Subsampled read pairs were aligned to the B. vosnesenskii genome assembly (RefSeq accession
GCF_011952255.1%) using bwa-meth v.0.2.2!** and alignment files were sorted using SAMtools v.1.9''*. PCR
duplicates were removed using MarkDuplicates from Picard tools v.2.23.9'°. Methylation extraction in the CpG
context from sorted post-processed BAM files was conducted using MethylDackel v.0.6.1''¢ by setting an absolute
minimum coverage and employing bioinformatic removal of CpGs that were potentially C-to-T variant sites
using the following parameters (—-minDepth 10 -maxVariantFrac 0.5 -minOppositeDepth 10 -methylKit). Bio-
informatic removal of probable C > T variants by MethylDackel resulted in the exclusion of 64,847.63 +5138.26
SD CpGs per sample and resulted in a methylation call dataset containing 22,189,312.75+1,919,429.19 SD CpG
locations per sample. Further processing was conducted in R v.4.1.3'"7 utilizing methyIKit v.1.20'® (analysis sum-
mary is available in Supplementary Table 8). We removed CpGs with < 10 x coverage and with unusually high cov-
erage (>99th percentile) to minimize the effects of paralogs or repetitive regions, which excluded 1.04% +0.01%
SD sites from the samples (Supplementary Table 8) and resulted in 21,961,863.38 +1,898,407.22 SD CpGs per
sample. We calculated the per base read coverage and per base methylation statistics for each sample before
and after filtering using the getCoverageStats and getMethylationStats functions in methylKit, respectively, and
utilized the average percent methylation per CpG site matrix for tabulating genome-level sample-specific and
population-specific mean percent CpG methylation. There remained some dissimilarity of per base coverage
within and across the samples even after read normalization, so we also normalized the coverage of the CpGs
per sample using the normalizeCoverage function (method = “median”) in methyIKit. We then obtained a united
methylation call dataset for all samples using the unite function in methylKit that included all CpGs present in
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every sample at > 10 x coverage (n= 14,627,533 CpGs). As the presence of C>T SNPs can impact the accuracy of
detected methylation levels in CpGs'", in addition to using a built-in bioinformatic detection in MethylDackel
v.0.6.1, we also filtered sites using SNP data from whole genome sequencing in these populations (see the fol-
lowing section: “Whole genome resequencing and variant calling”). We excluded 44,041 CpGs that overlapped
SNP positions so that we could focus on sites that should only be affected by methylation. After filtering, the final
dataset used for general and differential methylation analysis contained 14,583,492 CpGs containing no missing
data (i.e., sites that are present in every sample). Although the consistent patterns of low and similarly distrib-
uted methylation in all samples indicated successful WGBS (see Results), we repeated bioinformatic analyses by
mapping reads to Escherichia phage Lambda (NCBI GenBank accession J02459.1) to assess bisulfite conversion
efficiency. We found an average of 99.80% +0.01% SD successful raw conversion rate, and when applying a liberal
10% threshold to call a site as methylated, we found that a mean of 0.01% +0.01% SD of sites were called as C
and thus would be considered erroneously methylated. Upon further investigation, all these calls (a single base
each in four of eight samples) were at the same genomic location near the start of the genome (J02459.1—base
location 8), suggesting a possible technical or bioinformatic artifact rather than any issues in the WGBS conver-
sion (See details in Supplementary data).

To investigate the general differences in methylation among samples, we conducted principal component
Analysis (PCA) using the PCASamples function in methylKit by utilizing all CpGs (n=14,627,533) sequenced in
at least 10 x coverage. We also used the same CpG dataset to conduct hierarchical clustering analysis by calculat-
ing a correlation matrix from per base percent methylation data utilizing Ward’s minimum variance method
with the clusterSamples function in methylKit.

Analysis of consistent patterns genome-wide CpG methylation in B. vosnesenskii. We calcu-
lated the percent methylation per CpG site (percentage reads at each CpG cytosine with a C or T) for each
sample using percMethylation function of methylKit. Based on the average percent methylation for each CpG
site, we categorized these sites into three categories; methylated (with >50% methylation); sparsely methylated
(10-50% percent methylation), and unmethylated (< 10% percent methylation). We first calculated the distance
from the nearest transcription start site (TSS) for all CpGs (getAssociation WithTSS function of methylKit from
the NCBI B. vosnesenskii RefSeq annotation®). We used a two-sided two-sample Kolmogorov-Smirnov test to
compare distributions of the distances from TSS of highly methylated sites and all CpGs using ks.test function
in R v.4.1.3. We then used the NCBI B. vosnesenskii RefSeq annotation® to generate feature-specific custom
annotation genome tracks [i.e., Untranslated Regions of exon (exon UTR), Coding Sequences (CDS), Intron,
Upstream flanking regions (Upstream Flank), Downstream flanking regions (Downstream Flank), long non-
coding RNA (IncRNA), Transposable elements (TE), intergenic] following previously described methods'®
and publicly available codes (available at: https://github.com/RobertsLab/project-gigas-oa-meth). We produced
feature-specific breakdowns for all three CpG subsets (i.e., highly methylated, sparsely methylated, and unmeth-
ylated CpGs) and all sequenced CpGs. To test for statistically significant enrichment of highly methylated CpGs
and the overall abundance of sequenced CpGs in each genomic annotation feature, for each feature class, we
compared all CpGs against methylated sites using a Pearson’s Chi-squared test with Yates’ continuity correction
implemented by chisg.test function in R.

After initial analyses confirmed that most methylated CpGs were confined to gene bodies, we next investigated
the breakdown of CpGs based on their location within the gene body. To avoid complications that may arise
from the existence of multiple transcripts due to alternative splicing, we selected the annotation of the longest
isoform for each gene using the AGAT genomic toolset v.0.8.0'*' and tabulated the fine-scale gene-body feature
annotation count for each exon and intron. CpG counts for each exon and intron for protein-coding genes and
long non-coding RNAs were conducted using custom bash scripts.

Differential methylation analysis. To conduct the differential methylation analysis, we first calculated
the mean and standard deviation of all CpGs using rowSds and rowMeans2 function of R package matrixStats
v.0.62'%2. Because the majority of CpGs in the genome were found to be unmethylated, as is typical for insects?’,
we removed low-variability CpGs (i.e., within less than 2 standard deviations of per base percent methylation
calculated for each CpG site location across all samples) as they are not informative for differential methylation
and would increase the total number of comparisons for significance testing. Overall, 93.82% of CpGs were
excluded in this process. The remaining variable (SD>2) CpGs (n=901,868) were used in differential methyla-
tion analysis in methylKit v.1.2018. We implemented Chi-square test to test for significance between two popula-
tion groups with basic overdispersion correction'* along with a false discovery rate (FDR) correction using the
Benjamini-Hochberg (BH) procedure. We considered a site as differentially methylated only if there was>10%
methylation change between two populations with an FDR corrected q<0.01. We defined the CpGs as “hypo-
methylated” and “hypermethylated” when we found statistically significant lower and higher levels of percent
methylation difference in OR samples compared to CA samples, respectively.

To compare the sample-specific methylation patterns, we also tabulated distances from the nearest transcrip-
tion start site (T'SS), compare distributions of the distances from TSS of differentially methylated sites with all
CpGs, principal component analysis (PCA) and hierarchical clustering analysis for both variable (SD >2) CpGs
(n=901,868) and differentially methylated sites (n=2066; assessed at 10% methylation difference) using the
methods described in “Analysis of general methylation patterns” section above. We then annotated the differen-
tially methylated sites (n=2066) and investigated the exon-intron breakdown of these differentially methylated
sites using the methods described above and used the chi-square based contingency test as above to examine if
the annotation-specific distribution of differentially methylated sites (assessed at 10% methylation difference)
is significantly different than the distribution of all CpGs sequenced in the WGBS data set.
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Whole genome resequencing and variant calling. We used additional samples from the two bisulfite
sequencing localities for whole genome resequencing to characterize genome-wide diversity and differentiation
and identify genome positions with SNPs that could be artifactually inferred as differential methylation. We
selected B. vosnesenskii individuals from each locality (8 for CA01.2015, 9 for OR05.2016; Fig. 1) that represent
unique colonies based on inferences of relatedness from reduced representation data®. DNA was extracted from
thoracic muscle using DNeasy kits as above and provided to the University of Oregon Genomics & Cell Charac-
terization Core Facility for library preparation and sequencing on an Illumina HiSeq 4000 instrument. Result-
ing sequence data were filtered for quality using bbduk v.37.32!?* to remove adaptors, trim low-quality bases,
and remove short reads (ktrim=r k=23 mink=11 hdist=1 tpe tbo ftm=5 qtrim=rl trimq=10 minlen=25).
Reads were mapped to the B. vosnesenskii reference genome (RefSeq Accession GCF_011952255.1)% using BWA
v.0.7.15-r1140'%. SAM files were converted to the BAM using SAMtools v1.10'** and Picard Tools v.2.23.9'"> was
then used to sort, mark duplicates, and index BAM files. To identify a SNP set for filtering methylation data (see
above) we used freebayes v.1.3.2!%. We filtered the resulting VCF with VCFtools v.0.1.13'%’ to remove indels and
non-binary SNPs, scored genotypes with depth <4 x as missing, and then retained sites with <10% missing data,
Q=20, and a minor allele count of > 2. Finally, we removed a SNPs with unusually high sequencing coverage (>2
times mean coverage per site) and with significant heterozygosity excess using Bonferroni correction (~hardy
flag in VCFtools) (following'?®). The resulting VCF included 1,162,015 SNPs after filtering, with a mean sequenc-
ing coverage of 9.97 +£1.68 SD reads per SNP per individual and a mean missingness of 1.78% + 1.40% per SNP
per individual (98.2% complete data matrix).

The called SNP set was needed for filtering methylation calls, however genetic diversity and population struc-
ture analyses used a genotyping-free approach in the software ANGSD v.0.935-53-gf475{10'%°. ANGSD employs
methods to estimate population genetic statistics from BAM files while accounting for genotype uncertainty
associated with high throughput sequencing data'**'*!. We estimated the folded site frequency spectrum (SFS)"*!
across 151 genome scaffolds of at least 100 kb in length (total genome size analysed =241,826,154 bp). We esti-
mated nucleotide diversity () for the two populations separately and combined using the angsd -doSfs command
with minimum mapping and base quality of 20, mapping quality downgrading of C =50, GATK"* genotype
likelihoods (GL =2), and base quality recalibration (baq=1). We then ran the realSFS program with the-fold 1
option to produce a folded SFS and thetastat —do_stat to estimate diversity parameters per site and in stepping
windows of 1 kb (window and step both 1,000 bp). Narrow windows were used due to the rapid breakdown of
linkage disequilibrium in bumble bee genomes®? and to avoid dilution of signal in comparisons with bisulfite data
due to the globally sparse but locally clustered methylation in the B. vosnesenskii genome (see Results). Weighted
Fgr was determined for the two populations by estimating the folded 2D SFS using the realSFS program and was
determined per site and for 1 kb windows (window and step both 1,000 bp). Confidence intervals around mean
nucleotide diversities and F¢; were obtained by nonparametric bootstrapping (1,000 replicates across windows
with 1,000 sequenced sites) in the R package boot v.1.3-28'%. Population structure was visualized using PCA
with the PCAngsd v.1.03 program!'** from ANGSD genotype likelihoods.

For genomic window-based analyses, we retained windows with complete sequence data across 1 kb, and for
comparison with methylation data, we only retained windows with at least one CpG. To test for a significant effect
of methylation counts and nt (log-transformed) per 1 kb window, we used the R package glmmTMB v.1.1.5'% to
perform a zero-inflated generalized linear model (family = negative binomial 2 to account for overdispersion).
We also tested the relationship for the proportion of highly methylated (>50% category) CpGs and n (log-
transformed) within each window using zero-inflated logistic regression.

Gene Ontology (GO) analysis of highly methylated and differentially methylated CpGs. To
understand the putative functional roles of genes carrying CpGs, we conducted a gene ontology (GO) analysis
of two different gene sets of highly methylated and differentially methylated sites, respectively. Because there are
substantial numbers of unique genes (n=6010) with at least one highly methylated CpG site represented in the
gene set, we decided to set a predefined criterion (i.e., use the subset of unique genes harboring a minimum of
100 highly methylated sites) to conduct functional enrichment analysis. Based on this criterion, we selected a
subset of unique genes (n=44) which were subsequently used in our gene ontology analysis. We also conducted
a separate functional enrichment analysis where we included all unique genes (n=1272) harboring all differ-
entially methylated sites (n=2066) assessed at 10% methylation difference. We conducted functional enrich-
ment analysis for both gene sets using R package GofuncR v.1.14'* and utilized the curated B. vosnesenskii GO
annotations from Hymenoptera Genome Database'*”. We considered the GO terms significant using a stringent
Familywise Error Rate cut-off, FWER <0.1 using the refine function implemented in R package GofuncR v.1.14.
We used semantic similarity-based reduction of GO terms and visualized the enriched GO term list using GO-
Figure!'*®. We independently compared the statistically significant GO terms from both gene sets with GO term
lists from two previous studies® *°. In one of these studies, Pimsler et al.*® identified 1786 enriched statistically
significant GO terms (assessed at P<0.05) for seven different contrasts and directions of gene expressions). We
combined these GO term lists into a single list representing the unique GO terms (n=1398) found at least once
in any of these contrasts to compare them with our study’s two individual GO term lists. We also compared our
gene ontology (GO) results with another study® by Jackson et al. which provided two different enriched GO
term lists from outlier gene lists detected from tested for associations with variable temperature (n=151 GO
terms) and precipitation (n=286 GO terms). We combined these two GO term lists into a single list representing
221 unique GO terms from both categories and compared them with GO term lists from our study.
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Data availability

Raw WGBS reads generated in this study has been deposited and is currently available at the National Center
for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under NCBI BioProject PRJNA956115.
Final methylation call set (n=14,627,533), variant calling file for population genomics analyses, analysis codes/
scripts and other associated files to reproduce the research in available from Zenodo data repository (https://
doi.org/10.5281/zenodo.8327218).
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