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Abstract: This paper describes how plan-do-study-act cycles engaged a classroom mentor teacher and
student teacher in a professional collaboration that resulted in two inquiry activities for high-school
geometry classes. The PDSA cycles were carried out in four high school geometry classes, each with
30 to 35 students, in a mid-Atlantic urban school district in the U.S. The four geometry classes were
co-taught by the second and third authors of this paper. The data consisted of classroom documents
(e.g., activity prompts, tasks), classroom observations, student feedback about activities, and monthly
PDSA reports. The PDSA cycles had a direct effect on the professional learning of the teachers.
The resultant classroom activities used a data collection approach to engaging students in inquiry
to learn about trigonometry functions and density. Student learning behaviors were noticeably
improved during these activities compared with traditional mathematics instruction. We concluded
that the data collection sequence provided an accessible entry point for students to begin scientific
inquiry in mathematics. The process opened the conceptual space for students to develop curiosity
about mathematical phenomena and to explore their own research questions. The use of culturally
relevant topics was especially compelling to students, and the open-ended nature of these exploratory
activities allowed students to see mathematics through their own cultural lenses.

Keywords: mathematics education; inquiry; student-generated data; improvement science; teacher
classroom research

1. Introduction

Teacher preparation programs are considered one of the most effective leverage points
for long-term improvement in teacher performance and retention of productive teach-
ers [1–3]. Yet, the reform-based practices promoted by universities seldom find their way
into the secondary mathematics classroom, limiting the ability of these programs to trans-
form the field. Several contributing factors have been identified to explain this discrepancy,
such as lack of reform-teaching models, greater intellectual demands on teachers, and resis-
tance to change [4]. Gainsburg [4] also noted that the demands of reform-based teaching
are especially burdensome for new teachers.

Although research is scarce on how to effectively prepare new mathematics teach-
ers [5,6], many aspects of effective professional development (PD) have been well studied
(e.g., Desimone [7]; Loucks-Horsely et al. [8]). Structuring teacher preparation as initial
professional development, consistent with Bangel et al. [9] and Pollock et al. [10], allows the
preparation program to benefit from existing knowledge about effective PD. By “effective,”
we mean that the experience supports the development of teachers as professionals and re-
sults in significant improvements in classroom practice [11,12]. The inclusion of teachers in
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PD design and the application of professional learning promotes their growth as profession-
als [13] and situates PD experiences within particular school and classroom contexts [14].
Other characteristics of effective PD are an emphasis on student learning and classroom
practice, a focus on specific academic content, and sustained opportunities for teachers to
collaborate and provide peer feedback [7,8,15]. The Professional Development: Research,
Implementation, and Evaluation framework (“PrimeD;” [16,17]) was designed to synthe-
size research and theory about effective PD. In the present study, PrimeD was applied to a
teacher preparation program to support the professional learning of new and experienced
teachers simultaneously. Through iterative cycles of whole-group activities and classroom
implementation, the connection between professional learning and classroom practice is
made explicit. Plan-do-study-act (PDSA) cycles [18] provide an organizational structure to
classroom implementation.

In this article, we present a case study of a teacher candidate and classroom mentor
teacher (hereafter “mentor”) who, through plan-do-study-act (PDSA) cycles [18], developed
a series of reform-based lesson activities throughout the full-time student teaching semester.
The overarching questions driving the project were:

1. How do PDSA cycles support pedagogical innovation in the classroom?
2. How can reform-based teaching be transferred from theoretical ideas to classroom

practice during full-time student teaching?

The candidate and mentor were participants in a teacher preparation program guided
by PrimeD and developed a series of reform-based lesson activities during the full-time stu-
dent teaching semester. The experiences of the candidate and mentor provide insights into
the dynamics and ramifications of framing teacher preparation as professional development
through PrimeD.

2. Background

PrimeD structures professional learning through four phases: design, implementation,
evaluation, and research. In Design Phase I, participants map out a challenge space that
includes a mission, vision, goals, targets, and strategies. In Implementation Phase II,
participants form a networked improvement community (NIC) and meet regularly as a
group. Change ideas developed during NIC meetings are taken to the classroom using plan-
do-study-act (PDSA) cycles. Participants return to the whole-group meetings with results
from their PDSA cycles. Phase III Evaluation consists of both formative and summative
feedback. In Research Phase IV, research about the PD program is conducted, and findings
from PDSA cycles are generalized across contexts.

Using PrimeD to structure teacher preparation is a unique and comprehensive ap-
proach for examining how to translate learning from a preparation program into actual
teaching practices in the field. A lack of coherence between theory and practice may explain
why some teachers do not use the strategies learned in their preparation program in their
classrooms [4,19]. The implementation of PrimeD [16,17] to structure teacher preparation
directly addresses such incoherence by explicitly connecting a well-defined, commonly-
agreed-upon challenge space to pedagogical strategies that are used in coursework and
field experience settings and refined through an iterative improvement process.

2.1. The PrimeD Framework: A PD Framework for Teacher Preparation

The PrimeD framework was initially developed through a systematic review of the
literature [20] and through the evaluation of a state-wide PD program [17]. PrimeD applies
the principles of improvement science to professional learning [21–23]. The use of PrimeD
situates teacher preparation as PD, consistent with Bangel et al. [9] and Pollock et al. [10].
PrimeD organizes PD into four phases that work in a cyclic nature and occur iteratively
throughout a PD program (Figure 1).
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2.1.1. Phase I Design and Development

Phase I is foundational to every other phase in PrimeD. It goes beyond simply plan-
ning PD (e.g., courses, seminars, and field experiences in a teacher preparation program).
Stakeholders come together to map out a challenge space—an explicit description of needs,
vision, goals, targets, and strategies for meeting the challenges being addressed by and
faced within the program [21]. In teacher preparation, participants include university
faculty, classroom teachers, field experience supervisors, and teacher candidates. The chal-
lenge space is more than a list of obstacles or difficulties; it embodies the program’s call to
action to improve professional practice (e.g., classroom teaching, professional learning, and
leadership) and expresses a pragmatic vision of the potential for systemic and systematic
change [16]. Each course, class session, and field experience should be purposeful and
intentionally aligned with the challenge space. But perhaps more importantly in teacher
preparation, structural supports are needed to bind course and field experiences together
into a coherent system wholly focused on achieving particular goals and outcomes defined
by the challenge space [4,19,21].

2.1.2. Phase II Implementation

A program using PrimeD as its framework intends to engage teachers and teacher
candidates as professional partners. The role of PD providers is to engage participants
collaboratively with research and tools to support professional decision-making. As Datnow
and Stringfield [24] noted:

The fundamental difference between an amateur and a professional in any field is
not one of intelligence or willingness to work hard. Rather, it is that professionals
are trained at accessing their own research field, and therefore are much less likely
to spend time repeating the others’ prior mistakes. Educational reforms seem to
have a less-than-glorious tradition of replicating major aspects of previous failed
efforts. (p. 197)

Network improvement communities (NICs) and plan-do-study-act (PDSA) cycles [18,21]
are the primary components of PrimeD Phase II and provide participants with opportunities
to direct their own professional learning and apply their learning to the classroom. An NIC
focuses on a problem of practice and develops change ideas to address that problem in
the field through PDSA cycles. A problem of practice addresses obstacles to learning in
the classroom that are focused on instructional practices and are actionable, observable,
and measurable. PDSA cycles are intended to be rapid, small-scale changes that build
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over time into measurable improvement at scale [21]. For example, a teacher may change
the way new topics are introduced and may refine the strategy each class period of the
day. One advantage of pursuing PDSA cycles in groups is that the same trial can be tried
out by multiple teachers in multiple settings to provide a more comprehensive test of the
strategies studied.

2.1.3. Phase III Evaluation

As professionals, teachers participate in establishing what is best practice [25]. Engag-
ing candidates in evaluation lays a foundation for professionalism throughout their careers.
Evaluation cycles in PrimeD include feedback mechanisms to the challenge space (arrow
from Phase III to Phase I in Figure 1).

Participants engage in regular self-evaluation through the PDSA cycles and peer
evaluation through small- and large-group presentations at NIC meetings. Facilitators
observe discussions at the NIC meetings as a formative assessment. Two to three local
and non-local evaluators observe NIC meetings and provide monthly feedback about
the quality of the NIC meetings and alignment to PrimeD. This feedback is used by NIC
planning teams to guide subsequent meetings. The planning teams consist of faculty and
representatives from the participant groups (e.g., mentors and candidates).

2.1.4. Phase IV Research

Teachers regularly carry out action research in their classrooms [26] and seek out
research that is directly applicable to the classroom [27]. Teachers may at the same time
think of “research” as a hands-off activity with little connection to the classroom [18].
Methods such as design-based research are especially useful to support partnerships
between researchers and practitioners with a goal of generating outcomes that are both
practical and contribute to theory [26]. PrimeD recognizes that viewing research as a
seamless component of PD adds access, richness, and complexity to the process and has
been shown to improve professional learning outcomes for teachers (e.g., [28–31]).

Teachers ideally conduct research as a normal function of their practice; that is, they
test and evaluate their approach to teaching every day, seeking causal explanations for
outcomes they observe. But these types of efforts are often contextually limited. The
connection between implementation (Phase II) and research (Phase IV) activities (one-way
arrow in Figure 1) situates classroom research activities as a first step toward generalizing
results to be useful for a larger audience. While implementing PD innovations in Phase
II’s PDSA cycles, teachers create research questions from their classrooms. Results are
generalized in Phase IV, when they are shared with the larger group to be tried and vetted
to determine what works and does not work for desired outcomes under various conditions
and why [32]. The NIC may use a variety of approaches and designs to generalize results
beyond specific classroom contexts.

The inclusion of Phase IV in teacher preparation indicates an intention to prepare
candidates to engage in professional research as teachers. Through the NIC and PDSA
cycles, candidates observe mentor activities, ask questions, engage collaboratively, and
develop the necessary foundations for contributing to the knowledge base. Mentors,
supervisors, and faculty help to hone candidates’ professional judgment as they draw
conclusions about their classroom research.

2.2. Reformed Teaching, Inquiry, and Constructivism

The mathematics teaching field has recognized for centuries the need to reform tradi-
tional teaching techniques to improve learners’ conceptual and relational understanding,
critical thinking, and reasoning (e.g., [33,34]). Traditional epistemology in U.S. mathematics
classrooms views the teacher as an authority who conveys knowledge to students, who are
largely viewed as blank slates [35,36]. Constructivism views learning as the construction of
meaning by the learner rather than the passive reception of knowledge [37].
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Piaget described the process of knowledge acquisition through a constructivist per-
spective. When students encounter new information that fits into their existing conceptual
framework, the new information is assimilated (not requiring reconstruction of students’
schemas/conceptual frameworks). For example, when a student believes that when two
numbers are multiplied the product is always larger than the original two numbers, and
every multiplication example they encounter results in larger products, their conceptual
framework will be reinforced, leaving intact their belief about multiplicative structures.
Sometimes, however, the information is recognized as not aligning to their current schema,
requiring accommodation, in which case a restructuring of the schema is required to resolve
the cognitive dissonance [38]. Teachers can encourage accommodation in mathematics by
choosing tasks and activities within the range of their students’ assimilation abilities but
which have elements that introduce some degree of cognitive dissonance [38]. From the
above example, students who encounter multiplication examples that result in products
smaller than the original numbers must accommodate the new information when it does
not fit their current understanding.

The constructivist perspective requires substantial shifts in traditional educational
practice, such as decentering teacher authority, valuing social contexts, and emphasizing
students’ natural curiosity [37]. Reformed teaching is founded upon constructivist epis-
temology, including lesson pedagogy and a classroom culture that supports change [39].
Reformed teaching is typically inquiry-based, meaning that students engage in exploration
and experimentation prior to a formal presentation. The National Research Council [40]
summarized scientific inquiry through eight practices:

1. Asking questions;
2. Developing and using models;
3. Planning and carrying out investigations;
4. Analyzing and interpreting data;
5. Using mathematics and computational thinking;
6. Constructing explanations;
7. Engaging in argumentation from evidence;
8. Obtaining, evaluating, and communicating information. (p. 42)

The term “practice” is used to emphasize that students must simultaneously coordinate
knowledge and skill [40]. The expectation for inquiry-based teaching is that students will
themselves engage in the practices and not merely learn about them secondhand. By
treating mathematics as a scientific endeavor, teachers promote the building of abstract
knowledge from simpler, concrete experiences, and student explorations precede formal
presentations. Students engage in predictions, hypotheses, and estimation as well as
designing experiments to test their conjectures. Students engage in constructive criticism
of one another’s ideas [39]. These pedagogical approaches directly support constructivist
views of learning by building new knowledge from pre-existing knowledge in learning
communities and tapping into students’ natural curiosity.

3. Methods

This classroom study followed PDSA cycles [18], which provided a structure for
multiple classroom trials with refinements at each iteration. The trials were carried out
in four high school geometry classes, each with 30 to 35 students in a mid-Atlantic urban
school district in the U.S. The four geometry classes were co-taught by the second and
third authors of this paper. By “co-taught,” we mean that both teachers were involved in
the design of the lessons. The teacher candidate led the enactment of the lessons with the
mentor providing support, observing and taking notes, and providing feedback on both
the design and enactment of the lessons.

3.1. PDSA Cycles in the NIC

The teachers in the present study were part of a networked improvement community
(NIC). The overarching problem of practice was focused on how to improve mathematics
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teaching through inquiry. PDSA cycles provided the structure for participants to plan, enact,
reflect, and refine a change idea (teaching strategy) that was decided upon during a monthly
NIC meeting. The classroom artifacts, data and evidence, and participant reflections were
brought back to the subsequent NIC meeting. The NIC then refined the overall strategies
as a group based on the participant reports. The PDSA classroom research process mirrors
design-based research in that the innovations and techniques evolve through each iteration.

The NIC met monthly throughout an entire school year. Participants developed their
problem of practice during the fall semester (September through December) and tried out
their initial change ideas. By the beginning of the spring semester (January through May),
the change idea had been refined and was ready for more intensive try-outs. Participants
completed at least one PDSA form each month, which represented a variable number
of PDSA cycles. While lessons throughout the school year were affected by the PDSA
cycles, the lessons presented in the present study represent the culmination of the teachers’
reflections and refinements.

3.2. Data and Measures

Data consisted of classroom documents (e.g., activity prompts, tasks, assessments),
classroom observations, student feedback about activities, and monthly PDSA reports.
Student views were collected through classroom discussions, informal student interviews,
and open-ended survey questions. Both the mentor and candidate took notes and observed
student behaviors during lesson activities. Teacher views were collected through interviews
and PDSA forms.

The degree to which the candidate’s teaching improved in terms of reform-based
teaching was measured through the formal observations of a field experience supervisor
(not an author) and the mentor and scored on the Reformed Teaching Observation Protocol
with equity-based performance descriptors (RTOP-E). With 25 indicators on the RTOP-E,
each indicator is rated from 0 (no evidence) to 4 (fully reformed practice) for a possible
total of 100 points. Level 2 performances are considered to be more traditional with some
reformed elements, and Level 3 performances are considered to be more reformed with
some traditional elements.

The RTOP-E was based on the RTOP+ [39,41,42] and explicitly incorporated the
equitable teaching practices described in Catalyzing Change in High School Mathematics [43].
For example, Row 1 was revised to include students’ cultural identity (RTOP-E new text
italicized): “The instructional strategies and activities respected students’ cultural identity
and prior knowledge and the preconceptions inherent therein.” Performance descriptors
were revised to include expectations of equity explicitly, especially at Levels 3 and 4 of the
rubric. For example, Row 1, Level 3, on the RTOP-E stated, “The teacher actively solicits
student ideas and cultural experiences, and discussion of these ideas and experiences takes
place throughout the lesson, but lesson direction is teacher determined”. Level 4 stated,
“The teacher actively solicits student ideas and cultural experiences and builds the lesson
from these ideas and experiences as a starting point. The direction of the lesson is shaped
by student ideas and experiences”. The revisions were made by a team of mathematics and
STEM faculty, then shared with an expert panel for feedback to enhance content validity.
The RTOP-E indicators and performance descriptors were used in monthly NIC meetings
to structure conversations about effective pedagogy. These conversations included scoring
sample lesson videos on the RTOP-E and supported a common understanding of the
measured constructs and performance descriptors (construct validity) and how to score the
RTOP-E consistently (inter-rater reliability).

The supervisor and mentor independently scored three lessons, one near the end of
the Phase I internship in November, one at the beginning of the Phase II internship in
February, and one at the end of the Phase II internship in April. The supervisor and mentor
scores were the same for 53/75 scores (70.6%) and were adjacent (a difference of 1) for
14/75 scores (18.7%), meaning that they were in agreement (exact or adjacent) for 89.3%
of the indicators. The intraclass correlation (ICC) was 0.704, which was considered good
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based on Cicchetti’s criteria [44]. For simplicity, the supervisor’s scores were used in the
present analysis.

4. Results

The NIC brought participants (mentors, teacher candidates, field experience super-
visors, faculty, and alumni) together monthly to discuss the program challenge space,
classroom change ideas, and strategies for implementing a change idea. The challenge
space was developed by a team of participants and was organized by teacher knowledge,
teacher orientation, teacher practice, and student outcomes (see Appendix A). Participants
were invited to help to plan monthly NIC meetings and agree upon a focus within the
challenge space. The NIC meetings focused primarily on the teacher practice category of
the challenge space, especially using reform-based teaching practices [26] and the RTOP-E
as a framework to discuss various challenge space goals.

Teachers in the NIC focused on the problem of practice of how to build connections
between new mathematics content and students’ pre-existing knowledge and experiences.
One change idea that the mentor and teacher candidate explored was the use of an inquiry-
based activity process to engage student pre-existing knowledge to build new understand-
ing. As part of the “Plan” for PDSA cycles, and based on Watson [45] and Lamar and
Boaler [46], it was hypothesized that a data collection inquiry process would facilitate stu-
dent engagement in inquiry-based activities such as those described by Anderson et al. [47]
and Engle and Conant [48]. It was also hypothesized that this type of engagement would
improve learning of mathematics concepts that are typically taught procedurally at the
high school level in the U.S. (for example, mathematical formulas and their proofs) [36]. By
“engagement,” we mean that students attempted at least one lesson activity, task, question,
or problem.

4.1. Teaching Mathematics through Inquiry

The approach to inquiry in this setting began with student data collection and pattern
analysis as a scaffolded entry to theoretical concepts. Through student discussions and
debating of ideas, students were able to engage meaningfully with the material and continue
developing their conceptual understanding.

While this process may seem fairly straightforward to those familiar with inquiry,
many mathematics curriculum materials in the U.S. are not written in a way that sup-
ports student-led inquiry. Traditional mathematics teaching is not inquiry-driven, fo-
cusing instead on practicing procedures with a notable absence of mathematical reason-
ing [36,43,49–51]. In many ways, the teachers were “starting from scratch,” determining
how to adapt their curriculum to be a more robust learning experience for their students, es-
pecially those who struggled. The PDSA cycles provided them with a structure to organize
their own learning of how to teach through experimentation, reflection, and adjustment.
Table 1 presents an example plan developed during an NIC meeting.

Table 1. Example plan for PDSA cycles.

Prompt Response

Challenge or goal of this PDSA cycle. Collaboration with data collection
Context (e.g., grade level, course, topic) 10th grade, geometry, density
Expected duration of this PDSA cycle. (e.g., 10/15 min). One lesson, modeling data collection will be at the beginning of the

lesson
Change idea or strategy for meeting your challenge Model data collection before the students collect their own data
Prediction(s)/hypotheses (What you think the change
idea/strategy will accomplish?)

Modeling the data collection will show students how to complete
procedures. Avoid confusion when starting the collaboration and data

collection
Evidence to collect Student work and student ability to complete data collection on their

own/with minimal help from the teacher
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The inquiry process developed through the PDSA cycles began with student data
generation and development of a question about a phenomenon rather than procedures
to be memorized, consistent with Anderson et al. [47]. Students gathered data, looked for
patterns, drew conclusions, and discussed how to interpret the evidence. Student reflection
was followed by reinforcement activities that helped students make connections between
their exploration and mathematical procedures. This process addresses the tenets of Engle
and Conant’s productive disciplinary engagement [48]: using problems to engage students
with content, giving students authority to investigate the problems, and facilitating their
exploration with relevant resources and support. Lessons that use this process will engage
students primarily in the Common Core Mathematics Practice #7, Look for and Make Use
of Structure, but may also address Practice #4, Model with Mathematics [51]. The modeling
of data collection shown in Table 1 was an important component that was added and
refined during the PDSA cycles in response to student feedback. As cycles were completed,
the teachers refined the change idea into a general process, shown in Figure 2.
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Figure 2. Inquiry learning process in a data collection context developed through PDSA cycles.

Two activities illustrate the inquiry process from Figure 2 and how the PDSA cycle
process enhanced the lessons. The first activity, Inquiry into Trigonometric Ratios, focused
on the development of deep connections between the various trigonometric functions. The
second activity, Population Density, used a culturally relevant approach to developing
conceptual understanding of density. Candidate and mentor reflections and notes, student
feedback, and independent classroom observation notes were incorporated into the activity
descriptions.

4.1.1. Example PDSA Lesson 1: Inquiry into Trigonometric Ratios

In this introductory lesson to trigonometric ratios, the objective was: Students will be
able to explain the relationship between sine and cosine of complementary angles verbally and alge-
braically. We (mentor and student teacher) began the lesson by modeling a separate, simpler
trigonometric concept with the goal of teaching students how to use the trigonometric
functions on an online calculator. Students used the Desmos Graphing Calculator [52],
which includes all six trigonometric functions. Student perceptions of the calculator compo-
nent of the lesson, collected through a classroom survey, were mostly positive, with some
students explicitly stating that they “liked using the calculators to solve problems”. This
whole-class introduction asked students to generate data by choosing angle values between
0 and 90 degrees then filling out the table in Figure 3.



Educ. Sci. 2023, 13, 919 9 of 20

Educ. Sci. 2023, 13, x FOR PEER REVIEW 9 of 22 
 

simpler trigonometric concept with the goal of teaching students how to use the trigono-
metric functions on an online calculator. Students used the Desmos Graphing Calculator 
[52], which includes all six trigonometric functions. Student perceptions of the calculator 
component of the lesson, collected through a classroom survey, were mostly positive, with 
some students explicitly stating that they “liked using the calculators to solve problems.” 
This whole-class introduction asked students to generate data by choosing angle values 
between 0 and 90 degrees then filling out the table in Figure 3. 

 

Angle Sin(A) Cos(A) Tan(A) Sec(A) Csc(A) Cot(A) 1/Sec(A) 1/Csc(A) 1/Cot(A) 

          

          

          

          

          

Figure 3. Introductory table for calculator exploration of trigonometric relationships. 

After students completed the table, the teachers asked them to notice and wonder 
about the values they found [53]. Notice and Wonder is a method of open-ended pattern 
exploration that encourages students to look for whatever patterns they can find and ask 
questions about anything confusing. Students were able to identify that 𝑠𝑖𝑛(𝐴) = ଵ௖௦௖(஺), 
along with the other reciprocal identities. The class used these observations to write equa-
tions describing the relationships between all six trigonometric functions. 

Once they had completed this introductory activity as a class, students were given 
another chart to use for data collection (Figure 4). One row of values was provided as an 
example for students to use as guidance. 

 
 

Angle A Sin(A) Cos(A) B=90 – A Sin(B) Cos(B) 

51 0.777 0.629 49 0.629 0.777 

      

      

      

      

Figure 4. Follow-up exploratory table to develop sine and cosine relationships. 

We allowed students to choose whether to work independently or collaboratively. 
Most chose to work collaboratively. Based on task assessment and teacher reflections, 
some students struggled to understand the notation in the column titles. Many students 
began the activity by asking us what went in each column rather than interpreting the 
notation at the top of each column. Instead of simply answering these questions, we asked 
students to look at the notation and take an “educated guess” as to what we were looking 
for, then we asked guiding questions until they figured it out, for example, “What does 

Figure 3. Introductory table for calculator exploration of trigonometric relationships.

After students completed the table, the teachers asked them to notice and wonder
about the values they found [53]. Notice and Wonder is a method of open-ended pattern
exploration that encourages students to look for whatever patterns they can find and ask
questions about anything confusing. Students were able to identify that sin(A) = 1

csc(A)
,

along with the other reciprocal identities. The class used these observations to write
equations describing the relationships between all six trigonometric functions.

Once they had completed this introductory activity as a class, students were given
another chart to use for data collection (Figure 4). One row of values was provided as an
example for students to use as guidance.
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We allowed students to choose whether to work independently or collaboratively.
Most chose to work collaboratively. Based on task assessment and teacher reflections, some
students struggled to understand the notation in the column titles. Many students began
the activity by asking us what went in each column rather than interpreting the notation at
the top of each column. Instead of simply answering these questions, we asked students to
look at the notation and take an “educated guess” as to what we were looking for, then we
asked guiding questions until they figured it out, for example, “What does the title of this
column tell us to do? What does ‘’sin(A) mean? What is A?” Such productive struggle was
embraced because it ended up helping them to build a stronger understanding of variable
meaning and substitution. By the end of the activity, most students were referencing the
notation and interpreting what each column required computationally, completing the
charts without teacher support.

Students then engaged in another Notice and Wonder activity without teacher guid-
ance [53] as a way to help students move deeper into pattern analysis (Step 2 in Figure 3).
The candidate and mentor observed that students readily noticed columns that were iden-
tical in value. They also used the column headings to write equations describing the
relationship between the sine and cosine of complementary angles, for example, noticing



Educ. Sci. 2023, 13, 919 10 of 20

that sin(A) = cos(B) when m∠A + m∠B = 90◦. Based on classroom survey data, students
found this part of the lesson intriguing; for example, students stated, “sin/cos = tan was
very interesting to learn.”

Student feedback on the survey was mostly positive, and students were able to meet
the lesson objective. As part of the Act step in the PDSA cycle, we considered ways to
improve the lesson going forward. Several students on the survey noted that the numerical
analyses were difficult, with statements such as “I didn’t like all the numbers”, “I didn’t
like looking at all the numbers and getting mixed up”, and “The numbers being different,
sometimes it confused me, thinking I was wrong”. We realized upon reflection that this
data collection method was too separate from the tangible work we had been doing with
triangles in class prior to the lesson. We also noted that, in an introductory lesson to
trigonometric ratios, greater emphasis needed to be placed on the reference angle. In
subsequent lessons, students struggled to transfer their learning from this lesson to the
triangle contexts, which supported our analysis of the lesson.

Upon reflection during a PDSA cycle, it was determined that an exploration that
includes a visual representation offers a way to enhance these kinds of connections and
emphases with students. For example, a Geogebra app such as the one shown in Figure 5
allows students to discover that, regardless of the size or orientation of the triangle, the
ratios of the side lengths stay constant.
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Figure 5. Screenshot of the Trigonometric Ratio Geogebra app [54].

The slider a1 defines the measure of ∠A. Points A and B can move to change the side
lengths but not the measures of the angles. Point C is fixed to maintain the right angle at
Point B. As Point A and Point B are moved, the side lengths change, but the angle measures
and ratios of the side lengths remain constant. With the slider, students can discover that
even a slight change to the angle measure changes the ratios of the side lengths. The color
coding of the segments and text in the image helps reinforce how the labels of opposite
and adjacent are specific to the angle of interest. The app includes sample questions that
teachers can use to guide students through the exploration process to discover the one-to-
one relationship between angle measures and trigonometric ratios. For example, students
can move Point A to several new positions, as shown in Figure 6.
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Figure 6. Moving Point A in Figure 4 shows different side lengths but constant trigonometric
ratios [54].

By contrast, any change in the angle measure will change the trigonometric ratios, as
shown in Figure 7. The sample questions provide a pre-planned experiment. Once students
are already familiar with experimentation, the activity can be modified to allow them to
design their own experiment.
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Figure 7. Changing the slider changes the measures of Angle A and Angle C and the trigonometric
ratios [54].

Through such an exploration, students are able to make predictions/hypotheses about
the triangles and side length ratios and conduct an experiment. This type of applet could
be used as an extension of the original exploration but would be more powerful if it were
used to create the initial data for the calculator activity (Columns 1–4 in Figure 3). Once
students are able to connect the triangle ratios to the values for sine, cosine, and tangent,
they will likely be more ready to investigate the secant, cosecant, and cotangent functions
(and their relationships to sine, cosine, and tangent) with a calculator.
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4.1.2. Example PDSA Lesson 2: Exploration of Population Density

Building from the trigonometry lesson, our PDSA change idea of using student inquiry
through data exploration was applied to a geometry lesson about density. Density as
a concept is often taught conceptually, usually with a real-world tie to physics that is
difficult for some students to grasp when learning about density for the first time. Rather
than introducing density through a physics application, we chose to take a more general
approach, describing density as simply “an amount of stuff in an amount of space.” This
approach opened doors for us to explore density in a multitude of ways that included, but
was not restricted to, an amount of mass in a specific volume. Using population density as
an entry point, students collected data (Step 1 in Figure 2) and used their data to design
and conduct a research investigation.

We began the lesson by prompting students to recall previous examples of density
that we had worked with in class. We also recalled the framing:

Density =
stuff
space

(1)

With some prompting, students were able to generate an equation for population
density:

Population Density =
Population

SquareMiles
(2)

Based on the PDSA cycle reflections from the trigonometry lesson, we included teacher
modeling of the data collection process by finding the population density of Baltimore City,
where our school is located. As a class, we used an online search engine to find recent data
on the population of Baltimore and the land area of Baltimore, and then we substituted this
into our equation to find the population density.

We asked students to reflect individually on why population density might be impor-
tant to them or other members of the community and pose a question to explore. Having
students pose research questions and design their own investigations moved our overall
change idea deeper into reformed teaching from the trigonometry lesson, from a class ex-
ploration of a phenomenon to a student-led, open-ended inquiry (as described by Sawada
et al. [39]). This trajectory was purposeful in the evolution of our change idea: as Blair [55]
noted, teachers may restrict an inquiry’s activity in the hope of engaging the whole class.
Rather than incorporating other inquiry pathways later in the trigonometry lesson (more
consistent with Blair’s un-planning process), we opted to instead incorporate more inquiry
pathways in the density lesson. This approach allowed us to continue enhancing our ability
to conduct inquiry-based lessons without falling behind in the required district curriculum.

Most student research questions in this lesson filled the sentence frame “How does
population density affect ______________?” Topics chosen by students included police
interactions, number of schools, and commute times. Students then researched on the
internet to find the population density of three locations. Ideally, these locations spanned
different geographic areas, including a city, suburb, and rural area. They also found a data
point related to their research question. They used their data to fill out the prompts shown
in Figure 8.

Lastly, students completed a reflection question in which they answered their original
research question based on the data they collected. Most students reflected that they
had enjoyed this lesson more than usual, and some students displayed a deep interest
in their research questions. This topic sparked interest from students that had typically
had trouble focusing in class. Students enjoyed picking their own research questions as
well as collecting their own data. Some students struggled to find data, which led to some
discussion on how to research and what questions to type into an online search engine to
find the data we are looking for.
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4.2. Participation in Lessons Affected by PDSA Change Ideas

The PDSA cycle outcomes reported here were conducted in four high school geometry
classes. Student participation in the lessons was generally higher in the PDSA-affected
lessons (“PDSA lessons” hereafter) than in comparable lessons before and after. Partici-
pation was operationalized as either engagement (at least one activity, task, question, or
problem) or full participation (completing all independent work). For comparability, lessons
were chosen that required independent work using an online district platform (Imagine-
Math [56]) intended to increase student accessibility and participation in the lessons. Table 2
provides an example of the numbers and percents of students who participated during one
PDSA lesson compared with ImagineMath Lessons, before and after.

Table 2. Numbers and percents of students that participated in PDSA and comparison lessons.

PDSA Lesson (Inquiry through Trigonometric
Ratios)

Comparison Lessons: No (and Percent) That
Engaged in Any Work (at Least One Question)

Class No.
Students

No. (and Percent)
That Completed

Independent Work

No. (and Percent)
That Engaged in Any
Work (at Least One

Question)

Lesson 1
before PDSA

Lessons

Lesson 2 after
PDSA Lessons

Lesson 3 after
PDSA Lessons

1 22 8 (36.4) 13 (59.1) 2 (9.1) 2 (9.1) 3 (13.6)

2 27 18 (66.7) 21 (77.8) 9 (33.3) 12 (44.4) 18 (66.7)

3 29 15 (51.7) 16 (55.2) 3 (10.3) 10 (34.5) 5 (17.2)

4 31 19 (61.3) 20 (64.5) 3 (9.7) 12 (38.7) 15 (48.4)

Based on task assessments, participation was generally higher in the example PDSA
lesson. The candidate and mentor compared participation rates for individual students and
found that students with consistently low participation rates had higher participation rates
in the PDSA lessons. While there are many potential contributing factors to participation
rates in a lesson, student feedback on the classroom survey was also quite positive for the
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approach of examining data. For example, multiple students stated in a class survey, “I
liked picking my own numbers.” Students considered the lessons to be more accessible.

4.3. Teacher Candidate Growth in Reformed Teaching

Lessons led by the teacher candidate were scored three times by a field experience
supervisor. The supervisor’s observations provided an independent measure of her ability
to use reform-based teaching methods. The lesson observed at Time 1 was an exploration
of rotational symmetry. The lesson observed at Time 2 was an introduction to identifying
trigonometric ratios on a right triangle, a precursor to the trigonometric pattern exploration
described in Section 4.1.1 above. The lesson observed at Time 3 was the density lesson
described in Section 4.1.2 above. As shown in Figure 9, most of the growth occurred during
the Phase II Internship, which is the full-time student teaching semester.
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Figure 9. Teacher candidate RTOP-E scores. Time 1 = Phase I internship, mid-November.
Time 2 = Beginning of Phase II internship, late January. Time 3 = Second half of Phase II, late March.

This growth trend is consistent with prior cohorts [42] and comparable to the cohort
means at each time point. A repeated-measures ANOVA (RM-ANOVA) was used to
analyze differences across time. Mauchly’s test of sphericity indicated that the assumption
of sphericity was not violated, W(df = 2) = 0.921, p = 0.386. The RM-ANOVA showed that
the growth was significant, F(2, 48) = 3.197, p = 0.05.

The supervisor noted at Time 1 that the lesson included multiple opportunities for
student collaboration and discussion within groups. He noted, “[the candidate] comfortably
discussed the activity with various groups and visited all of the groups during the period.”
Issues to be addressed focused on classroom management issues and equitable access
to technology used in the lesson and equitable participation of students in whole-class
discussions.

At Time 2, the supervisor noted that the lesson acknowledged students’ cultural
perspectives. Students were given opportunities to lead discussions. Issues to be ad-
dressed focused on suggestions for multiple ways to represent and clarify the trigonometric
reference angle.

At Time 3, the supervisor remarked on several strengths of the lesson, especially its
cultural relevance: “the ability to make mathematics relevant to students and show how
it can be used to plan for living in various environments, urban and suburban. Relating
mathematics to different content areas such as urban planning. Allowing students to use
research in the development of mathematical concepts.” Issues to be addressed included
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planning for students to write a summative paragraph of their findings and to share their
work in class.

5. Discussion and Conclusions

The present study focused on how PDSA cycles support pedagogical innovation in
the classroom (Research Question 1) and how reform-based teaching can be transferred
from theory into practice during full-time student teaching (Research Question 2). The
PDSA cycles provided a structure for improving pedagogy in subsequent lessons. The
results showed that the integration of candidate and mentor observations and reflections,
student feedback, and independent observation feedback provided the data needed for
the candidate to improve the way inquiry was used in the lessons. The RTOP-E scores
demonstrated that measurable growth in the candidate’s use of reform-based teaching was
observed by the supervisor and mentor.

The PDSA cycles for this project focused on engaging students in pre-exploration and
collaborative discussions. Student participation was noticeably improved during these
activities compared with traditional mathematics instruction. For example, the candidate
and mentor observed that students who frequently gave up on exploratory activities instead
engaged in productive struggle. The strong connections to their local community in the
density project led to student excitement about the mathematics, expressed to the candidate
and mentor through the classroom survey and informal class discussions. As noted in
Section 4.1.2, students led their own investigations by posing their own questions and
designing their own experiments. The supervisor noticed that students led more of the
classroom discussions in this lesson compared with prior observed lessons. The willingness
of students to take on more responsibilities during the trigonometry activities (e.g., leading
classroom discussions) surprised the teachers and spurred them to give more responsibility
for the learning to the students in the density lesson (e.g., picking their own research
questions).

Based on the improved participation rates, we concluded that the student data collec-
tion sequence provided an accessible entry point to begin scientific inquiry in mathematics.
The process provided an opportunity for students to develop curiosity about mathematical
phenomena and to explore their own research questions. Such open-ended opportuni-
ties are sometimes described as “opening the conceptual space” (e.g., Niesser et al. [57])
because they allow students to understand the content in multiple ways and through
multiple perspectives rather than through a narrow interpretation provided by a lecturer.
Such an approach allows students to analyze conceptions that are partially correct and
determine whether such conceptions are valid in various contexts [58]. In the present study,
students analyzed data to determine the extent to which the patterns they noticed held true.
According to survey results, the use of culturally relevant topics was especially compelling
to students, and the open-ended nature of these exploratory activities allowed students to
see mathematics through their own cultural lenses.

As shown in Table 1, the PDSA cycles provided a structure in which both mentor
and candidate could direct their own professional learning. The NIC meetings provided
a monthly forum in which the mentor and candidate explored mathematics pedagogy
with a community of educators, planned strategies for improving their classroom practice,
and received feedback on their change ideas. Between NIC meetings, the mentor and
candidate completed multiple PDSA cycles and wrote up the results and reflections on a
PDSA form. Both mentor and candidate found that the PDSA cycles provided structure
to their daily reflections, especially the explicit focus on planning to collect data about
outcomes resulting from the change idea. We concluded that the PDSA process opened up
communication between the teacher candidate and the mentor to mutually support their
professional learning as they enacted, studied, and refined their pedagogical change ideas.

The mentor and supervisor both noticed in their observations that the teacher candi-
date developed stronger classroom communication skills; for example, the ability to clearly
convey mathematical ideas to students (e.g., using multiple representations as noted at
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Time 2 observation). The mentor found that she became more acclimated to shifting respon-
sibility for thinking to her students, which was also shown in the supervisor feedback. She
also noticed an increase in the number of lessons developed by the candidate that focused
on discovery, exploration, and inquiry rather than processes and procedures outside the
formally observed lessons.

The PrimeD framework guided the teacher preparation program, structuring the
program challenge space and directing the process for developing pedagogical change ideas
as a professional community and testing those ideas in specific classroom contexts. PrimeD
is recommended as one way to structure teacher preparation to facilitate professional
learning. The results of the present case study provide encouraging results for teachers to
use data collection and inquiry activities to frame mathematics as a vibrant, interesting,
and relevant scientific endeavor.
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Appendix A

Appendix A.1. Secondary Mathematics Challenge Space

Development of the challenge space is ongoing and includes input from classroom
mentor teachers, mathematics coaches and supervisors, and teacher candidates and pro-
gram completers. The goals of the program are viewed through four constructs: teacher
knowledge, teacher orientation (e.g., attitudes, beliefs, self-efficacy), teacher practice, and
student outcomes. Teacher knowledge and orientation influence each other and inform
teacher practice. Teacher practice includes reflection on student outcomes, thereby rein-
forcing or refining teacher knowledge and orientation and informing the program (i.e., a
feedback loop).
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used to refer exclusively to children in PreK-12 classrooms; “Teacher” refers to teacher candidates as
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Appendix A.2. Vision

The mathematics teacher preparation program is designed to help candidates explore,
enact, and insist upon equitable teaching practices to support robust mathematics learning
communities. Learning communities are defined as collaborative groups that are pursuing
common goals for mathematics learning experiences. Learning communities that are
safe, humanizing, collaborative, and culturally aware empower participants to direct their
engagement in scientific inquiry and the examination of diverse ideas and perspectives.
Candidates enter the field ready to improve the quality of mathematics teaching and
learning for each and every student in their classrooms, schools, and districts and to
become societal change agents in the field.

Appendix A.3. Goals

Teacher Knowledge

• Subject Matter Knowledge. Teachers have a robust knowledge of mathematics, under-
standing how concepts and procedures are interrelated and how to frame mathematics
knowledge in a meaningful way to help students learn (Mathematics Knowledge for
Teaching).

• Pedagogical Content Knowledge. Teachers develop robust pedagogical knowledge to
support deep mathematics learning in their classrooms, including the use of tools for
teaching mathematics (Knowledge for Teaching Mathematics).

• Knowledge of Orientation. Teachers understand and respect the relevance of the
affect of each member of a learning community (e.g., attitudes, culture, beliefs, values,
confidence, and anxiety) in learning mathematics.

• Knowledge of Discernment. Teachers understand that discernment encompasses the
connections between cognition, metacognition, and learning and decision-making pro-
cesses. Knowledge of discernment includes understanding developmental processes
and the socio-emotional and sociocultural components of learning.

• Knowledge of Individual Context. Teachers understand that learning and decision-
making processes take place within the context of the intersectionality of social categories.

• Knowledge of Environmental Context. Teachers understand the importance of build-
ing an inclusive and equitable environment to support a robust learning community.

Appendix A.4. Teacher Orientation

Orientation plays an important role in how teachers approach the profession individ-
ually as well as in collaboration with students, colleagues, schools, and the community.
Orientation includes, but is not limited to, constructs such as attitudes, perceptions, self-
efficacy, beliefs, confidence, self-concept, motivation, value of mathematics, interest in
mathematics, enjoyment of mathematics, enjoyment of teaching, usefulness of mathemat-
ics, mathematics goals, professional goals, attributions of success/failure, mathematics
anxiety, professional anxiety, professional dispositions, commitment to lifelong learning,
and perceptions of power and agency.

These orientations can be about a wide range of topics, including, but not limited
to, mathematics, teaching and learning, assessment, students, socio-cultures, families and
caregivers, collaboration, the profession, and schools and districts.

Teachers examine orientation as an ongoing part of their growth and learning to ensure
that all aspects of the profession are approached through a productive lens. Teachers are
willing to change their views when appropriate.

Appendix A.5. Teacher Practice

• Culture. Teachers establish a culture of access and equity through classroom structures
and culturally relevant pedagogy to support each and every student in learning and
participating in mathematics deeply. These classroom structures empower students
to value diverse perspectives by elevating their voices, providing leadership oppor-
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tunities, and developing a strong learning community. Teachers model vulnerability,
viewing mistakes as learning opportunities. Varied approaches are visible and valued.

• Active Engagement. Teachers actively engage students in learning mathematics
and/or science with meaning.

• Conceptual Understanding. Teachers explicitly foster, model, and insist upon con-
ceptual understanding and coherence for all learners at all levels as a primary means
for promoting procedural understanding in mathematics. Teachers insist that all
teaching activities and learning experiences embrace the development of conceptual
understanding as the fundamental core of learning and form the foundation for peer
discussions.

• Connections. Teachers structure lessons through a phenomena-first approach, recog-
nizing that authentic contexts are the foundation of the lesson and frame the content
to be learned. Contexts are not simply enrichment that happens after the “real” lesson
if at all.

• Reasoning. Inquiry-based projects are incorporated in every unit. Quantitative reason-
ing is modeled as scientific inquiry (claim, evidence, rationale).

• Questioning. Questioning is purposefully crafted to foster higher-order thinking
and alternative modes of thinking about mathematics. Teachers pose questions of
their students and encourage their students to ask deep, rich questions about their
mathematical reasoning and that of their peers.

• Assessment. The ability to provide students feedback through formative (ongoing)
and summative (reflective) assessment is differentiated from and valued more than
grades. Assessments are ongoing, are aligned to standards, and (in)form teacher prac-
tice. Teachers understand that assessment can take many forms including formative
(ongoing) and summative (reflective) assessment. Teachers incorporate a variety of
assessments to ensure that each and every student has an opportunity to express their
current understanding, including, but not limited to, observations, student-to-student
and student-to-teacher dialogue, projects, performance tasks, interviews, portfolios,
presentations, exit slips, and dynamic technology-based activities. Teachers recog-
nize that understanding develops over time and leverage opportunities to reassess
throughout the learning process.

Appendix A.6. Student Outcomes

Teachers assess and reflect upon a wide range of student outcomes to inform their
practice, such as social and emotional well-being, persistence, goal setting, achievement,
thinking/reasoning/explaining, orientation, cognition and meta-cognition, and learning
behaviors.
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