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Maize roots exude at least six SLs, tw| Check for
updates

PLANT SCIENCE

Maize resistance to witchweed through changes in

strigolactone biosynthesis

C. L%, L. Dong'*, J. Durairaj’t, J.-C. Guan®, M. Yoshimura*>®, P. Quinodoz®, R. Horber®, K. Gaus®,
J. Li’, Y. B. Setotaw’, J. Qi7, H. De Groote®, Y. Wang?, B. Thiombiano', K. Flokova"®, A. Walmsley’,
T. V. Charnikhova', A. Chojnacka’, S. Correia de Lemos?*°, Y. Ding™, D. Skibbe'?, K. Hermann®,
C. Screpanti®, A. De Mesmaeker®, E. A. Schmelz", A. Menkir®, M. Medema?, A. D. J. Van Dijk?, J. Wu/’,

K. E. Koch®, H. J. Bouwmeester**

Maize (Zea mays) is a major staple crop in Africa, where its yield and the livelihood of millions are compromised
by the parasitic witchweed Striga. Germination of Striga is induced by strigolactones exuded from maize
roots into the rhizosphere. In a maize germplasm collection, we identified two strigolactones, zealactol and
zealactonoic acid, which stimulate less Striga germination than the major maize strigolactone, zealactone.
We then showed that a single cytochrome P450, ZmCYP706C37, catalyzes a series of oxidative steps in the
maize-strigolactone biosynthetic pathway. Reduction in activity of this enzyme and two others involved in
the pathway, ZmMAX1b and ZmCLAMT], can change strigolactone composition and reduce Striga germination
and infection. These results offer prospects for breeding Striga-resistant maize.

ood security is a growing challenge in the

face of climate change and increasing

food needs (). Maize (Zea mays) is one of

the most important staple crops in the

world, especially in Africa. There, its yield
is compromised by the parasitic witchweeds
Striga hermonthica and Striga astatica. Dam-
age from these Striga species threatens the
livelihood of millions of people, particularly
in sub-Saharan regions (fig. S1) (2, 3). Striga
seeds lay dormant in soil until their germina-
tion is triggered by strigolactones (SLs), sig-
naling compounds exuded by the roots of
plants, including maize. The first known SL,
strigol, was discovered in the 1960s in the root
exudates of cotton (4). In addition to having
been co-opted as a cue for root-parasitic plants,
SLs serve as host signals for beneficial arbus-
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cular mycorrhizal fungi (AMF) and are plant
hormones with developmental roles (5-9).

Thus far, more than 35 different SLs have
been discovered, all containing the conserved
D-ring (Fig. 1A) (10-12). The canonical SLs
include two groups, the “strigol-type” and
“orobanchol-type,” whereas noncanonical
SLs lack the A-, B-, and/or C-rings (10-12).
Plants usually exude a blend of different SLs,
and the composition of the root exudate can
vary greatly between and sometimes also
within plant species. Many of the SLs display
substantial differences in their biological ac-
tivity, such as the induction of AMF hyphal
branching and parasitic plant germination
(9, 13-15). The biological importance of SL
blends is far from understood, but in sorghum
(Sorghum bicolor), a change in SLs from
5-deoxystrigol to orobanchol decreased Striga
germination and increased field resistance (I6).

The mechanisms of SL biosynthesis have
only been partially elucidated. Three enzymes—
DWARF 27 (D27) and two carotenoid cleavage
dioxygenases 1(CCDs), CCD7 and CCD8—
catalyze the conversion of B-carotene to car-
lactone (CL) (Fig. 1A) (17, 18). In Arabidopsts,
CL is oxidized to form carlactonoic acid (CLA)
by a cytochrome P450 (CYP) monooxygenase,
CYP711A1, encoded by More Axillary Growth
1 (MAX1) homolog AtMAX1 (19). Arabidopsis
has a single copy of this MAX1, whereas maize
has three homologs, and rice has five (I8, 20).
Although both the Arabidopsis AtMAX1 and
the maize ZmMAX1b form CLA from CL, the
rice MAX1 homologs, Os900 and Os1400, in-
stead convert CL to 4-deoxyorobanchol (4DO)
and orobanchol, respectively (I8, 21). Dicots
also form orobanchol, but from CLA rather
than CL, and with a different cytochrome
P450, CYP722C. A homolog of this CYP722C
can also produce 5-deoxystrigol from CLA
(22, 23).

which have been structurally identifie. .2
zealactone and zeapyranolactone (Fig. 1A)
(24-26). However, the identities of the other
four SLs remained elusive, as well as the bio-
synthetic differences between the six and their
individual roles in Striga germination. In this
study, we reveal natural variation in the maize
SL blend, identify three new maize SLs, eluci-
date the entire maize SL biosynthetic pathway,
and show that changes in the composition of
the SL blend correspond to differences in Striga
germination and infection. These findings
create a pathway for reducing the notorious
agricultural problem of Striga infection through
breeding maize for favorable SL composition.

Natural variation in strigolactone production
by maize

To assess the extent of variation in the pro-
duction of SLs by maize, we grew a collection
of maize genotypes, sampled their root exu-
date, and analyzed SLs with multiple reaction
monitoring (MRM) liquid chromatography-
tandem mass spectroscopy (LC/MS/MS) (Fig.
1B and figs. S2 and S3) (24, 25). Quantities of
exuded SLs varied among these lines (Fig. 1B
and fig. S3). Moreover, one of the genotypes,
NP2222, displayed a distinctive SL profile, lack-
ing detectable levels of all but two SLs, an
unknown SL and designated compound 5 (Fig.
1B and fig. S3). Compound 5 was previously
noted in maize root exudate (24), but its low
abundance and chemical instability hampered
structural characterization. Therefore, on the
basis of nuclear magnetic resonance (NMR)
spectra and retrosynthetic analysis (24, 27-29),
we postulated structures and subsequently
synthesized compound 5 as well as the other
unknown SL (figs. S4 to S12). The synthetic
products were identical to the natural ones
in maize root exudate and were designated
zealactol (compound 5) and zealactonoic acid
(ZA) (the other unknown SL) (figs. S9 and S12).
Bioassay of Striga germination showed that
both zealactol and ZA were less inductive than
zealactone (Fig. 1C), an outcome that highlights
how strongly minute differences in SL structure
can alter their biological activity. These find-
ings are further supported by work on sorghum
(16). To unravel the mechanistic basis for these
differences in SL blends, we revealed the bio-
synthetic pathway of maize SLs.

Three maize genes encode the carlactone
biosynthetic pathway

Through homology, we identified the maize
orthologs D27, CCD7, and CCD8, which catalyze
the formation of CL from B-carotene in other
plant species (tables S1 and S2). To confirm
ZmCCD8 function, we analyzed root exudate
of two independent zmcecd8 mutants (in W22
and Mol7 backgrounds) (30). Zealactone was
not detected, although it was the major SL in
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Fig. 1. Discovery of two strigolactones with low Striga germination-inducing activity from maize

line screening. (A) Strigolactone (SL) biosynthetic pathway of maize. The enzymes identified in this study
are shown in bold. SLs detected in maize root exudate are indicated in blue. Structures in square brackets
are putative. (B) Detection of three maize SLs (zealactone, mass/charge ratio (m/z) 377 > 97; zealactol,
m/z 331 > 97, ZA, m/z 363 > 249) in root exudate of a collection of maize lines. Names of lines selected
for further analysis are indicated in bold. Data for the other four maize SLs are shown in fig. S3. (C) Induction
of germination of Striga by zealactone, zealactol, and ZA (0.347 puM). GR24 (0.335 pM) and water were
used as positive and negative control, respectively. Bars indicate means + SEM. Ns, not significant (P > 0.05),
***¥P < 0.001, one-way ANOVA test followed by Tukey's multiple comparisons test comparing the mean

of each column with the mean of every other column.

wild-type exudate (fig. S13A), showing that
ZmCCD8 is a key enzyme in maize SL bio-
synthesis (17, 31, 32). The transient expres-
sion of ZmD27 (GRMZM2G158175), ZmCCD7
(GRMZM?2G158657), and ZmCCD8 (GRMZM2-
G446858) together in Nicotiana benthamiana
led to accumulation of CL (Figs. 1A and 2A, fig.
S14A, and table S3), which is consistent with
results from rice and tomato orthologs (21, 33).

Identification of gene candidates for
carlactone conversion

On the basis of the structures of the maize
SLs identified thus far (Fig. 1A and fig. S2)
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(24-26), we postulated the involvement of
a methyl transferase and several CYPs in
the pathway downstream of CL. Several bio-
informatic approaches were combined to
select candidate genes for further functional
characterization.

Mutual Rank (MR)-based global gene
coexpression analysis (34, 35) showed that of
the three maize MAX1 homologs, only ZmMAX1b
tightly coexpressed with ZmCCD8 (fig. S15),
making it the strongest candidate for the next
biosynthetic step. Analysis of root exudate from
a gmmaxla smmaxlc double mutant (supple-
mentary materials) showed wild-type levels

of zealactone, thus excluding both homologs
from being the biosynthetic genes we sought
(fig. S13B). Earlier research also demonstra-
ted that ZmMAX1b (GRMZM2G023952) con-
verts CL to CLA more efficiently than does
ZmMAXla (GRMZM2GO018612) or ZmMAXIc
(GRMZM2G070508) (18). The amounts of CL
in leaf extracts decreased after coinfiltration
of ZmMAX1b with ZmD27, ZmCCD7, and
ZmCCDS8 in N. benthamiana, (Fig. 2A), con-
firming that ZmMAX1b uses CL as a substrate
(18). However, only traces of the expected
product, CLA, were detected in this expres-
sion system (Fig. 2B and fig. S14B). To resolve
this enigma, N. benthamiana extracts were
analyzed with LC-quadrupole time-of-flight
(QTOF)-MS. Prominent peaks of CLA-hexose
and CLA-dihexose conjugates were detected
in samples expressing the maize CL pathway
genes together with ZmMAXI1b. These con-
jugates were lacking in control samples and
other gene combinations (Fig. 2C and table S4).
Similar conjugation has been demonstrated
for the transient production of other acidic
compounds with N. benthamiana (36, 37).

For selection of remaining candidate genes,
we combined three approaches: (i) MR-based
coexpression with ZmCCD8 and ZmMAXID as
baits (fig. S15), (ii) coexpression modules in
MaizeGGM2016 (38), and (iii) differential gene
expression in a gmccd8 mutant (Fig. 2D). For
the latter, we assumed that SL pathway genes
downstream of CCD8 would be transcription-
ally regulated in the gmccd8 mutant (33). The
ZmCCD7, ZmCCD8, and ZmMAX1b genes clus-
tered together in MaizeGGM2016 module 091,
suggesting that the 32 other genes in this mod-
ule were candidates for the missing pathway
genes (table S5). In the roots of gmccd8 seed-
lings, 1301 genes were differentially expressed
(DEGs) (less than or equal to twofold change,
false discovery rate (FDR) < 0.05) compared
with the B73 wild type (tables S5 and S6).
These three approaches shared a seven-gene
overlap (Fig. 2D and table S2) in which three
[GRMZM2G033126, GRMZM2G158342, and
GRMZM2G023952 (ZmMAX1ID)] formed a pu-
tative gene cluster on chromosome 3 (Fig. 2,
D and E, and fig. S15) (39). Genes homol-
ogous to these also cluster in other Poaceae
species (fig. S16), but the functional impor-
tance is unknown. So too is the identity of SLs
produced by some of these species, such as
switchgrass.

ZmCLAMTL is a carlactonoic acid
methyltransferase

Because SLs zealactone and zeapyranolactone
are methylesters, their proposed precursor has
been methyl carlactonoate (MeCLA) (24). Thus,
we sought a methyltransferase gene that
causes the formation of MeCLA from CLA.
‘We bioinformatically identified a top candidate
(GRMZM2G033126) (Fig. 2, D and E), which
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Fig. 2. Identification of gene candidates
for maize strigolactone biosynthesis.

(A and B) Representative MRM-LC/MS/MS
chromatograms of carlactone (CL),
[M+H]"'m/z 303 > 97 (A), and

carlactonoic acid (CLA),

[M-H'm/z 331 > 113 (B), in

N. benthamiana leaf samples transiently
expressing maize strigolactone

(SL) precursor pathway genes.

(C) Untargeted metabolomics to

identify CLA conjugates in N. benthamiana
leaf samples. m/z 539.21: CLA + hexose +
formic acid - H,0; m/z 701.26: CLA +

2 hexose + formic acid - H,0 (D) Venn
diagram of candidate gene numbers

from several analyses: module091 from
maizeGGM, genes differentially expressed

in zmced8 roots (compared with wild type),
and the top 100 genes coexpressed with
ZmCCD8 and ZmMAX1b (34, 35). (E) Putative
SL biosynthetic gene cluster on
chromosome 3 consisting of ZmMCLAMTI,
ZmMAX1b, and ZmCYP706C37, adapted
from screenshot from UCSC Genome
Browser on Z. mays (B73 RefGen_v3)
Assembly (zm3) (http://genome.ucsc.edu)
(39). (F) Representative chromatograms

of methylcarlactonoic acid (MeCLA),
[M+H]"'m/z 347 > 97, in N. benthamiana leaf
samples. STD, standard; EV, empty

vector infiltrated control sample. CL
pathway, maize carlactone biosynthetic
pathway genes, ZmD27, ZmCCD7, and
ZmCCD8. CLA pathway, CL pathway genes +
ZmMAX1b. MeCLA pathway, CLA pathway
genes + ZmCLAMTI. Bars indicate mean + SEM.

successfully produced MeCLA in N. benthamiana
when transiently expressed together with
genes for the maize CLA pathway (Fig. 2F).
We therefore identified GRMZM2G033126 as a
carlactonoic acid methyltransferase gene and
named the enzyme ZmCLAMT1 (Fig. 1A). The
maize gene is an ortholog of At4g36470, which
was recently found to encode a carlactonoic
acid methyltransferase CLAMT in Arabidopsis
(40, 41).

ZmCYP706C37 catalyzes formation of several
maize strigolactones

The other candidate genes were coinfiltrated
by different combinations of precursor-pathway
genes. Coinfiltration of ZmCYP706C37 (GRM-
ZM2G158342) (42) by those encoding the
MeCLA pathway decreased levels of MeCLA,
indicating that this CYP can use MeCLA as a
substrate (fig. S17A) and produce zealactone
(Fig. 3A and fig. S2). To check for other pos-
sible biosynthetic pathways, we also coexpressed
ZmCYP706C37 with genes encoding the CL
pathway enzymes. This combination resulted
in production of zealactol (Fig. 4A and fig. S17B).

Li et al., Science 379, 94-99 (2023) 6 January 2023

Relative intensity (%)

Formation of both zealactone and zealactol
involves complex rearrangement of the SL A
ring and, for zealactol, a hydroxylation at C19
as well. To exclude the possibility of endoge-
nous enzymes from N. benthamiana contribut-
ing to these complex conversions, we expressed
ZmCYP706C37 in yeast, isolated its micro-
somes, and analyzed product formation with
different substrates (Figs. 3B and 4:B). This ap-
proach confirmed that ZmCYP706C37 can
convert MeCLA to zealactone and CL to zea-
lactol (Fig. 1A).

To form zealactone from MeCLA, ZmCYP706-
C37 must catalyze several consecutive oxidative
reactions with 3-hydroxy-MeCLA and 3-oxo-
MeCLA as putative intermediates (Figs. 1A
and 3C). The latter two compounds were prev-
iously synthesized as intermediates in the
total synthesis of heliolactone (43). We used
them here as substrates in our ZmCYP706C37-
expressing yeast-microsome assay, and both
were successfully converted to zealactone
(Fig. 3D). We developed an MRM method for
detection of these compounds (fig. S2) and
identified them as intermediate products in
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the conversion of MeCLA to zealactone (fig.
S18). Moreover, analysis of maize root exudate
revealed that 3-oxo-MeCLA is also a natural
maize SL previously referred to as compound
6 (fig. S19 and Fig. 1A) (24). These results de-
monstrate that a single enzyme, ZmCYP706-
C37, can catalyze the many oxidative steps
necessary for the conversion of MeCLA to zea-
lactone that were previously hypothesized
to require several enzymes (Figs. 1A and
3C) (24).

For additional insight into the parallel bio-
synthetic pathway of CL to zealactol, we fur-
ther analyzed samples from N. benthamiana
and yeast microsome assays with untargeted
metabolomics and MRM-LC-MS/MS. This pro-
cess revealed another putative intermediate,
3-0x0-19-hydroxy-CL (compound 7) (Fig. 1A
and figs. S2 and S20 and table S7). LC-QTOF-
MS analysis showed that the accurate mass
of compound 7 is consistent with its putative
structure (fig. S20). On the basis of these data,
we included compound 7 as an intermedi-
ate in the postulated steps required to con-
vert CL to zealactol (Fig. 4C and fig. S21).
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Fig. 3. Zealactone biosynthesis. (A) Representative
MRM-LC/MS/MS chromatograms of zealactone,
[M+H]*'m/z 377 > 97, in N. benthamiana leaf
samples. (B and D) Representative MRM-LC/MS/MS
chromatograms of zealactone from in vitro assays
with yeast microsomes expressing ZmCYP706C37 or
empty vector (EV) with methyl carlactonoate
(MeCLA), 3-hydroxy-MeCLA, or 3-oxo-MeCLA as
substrate. (C) Proposed enzymatic conversion of
methyl carlactonoate (MeCLA) to zealactone.

Fig. 4. Zealactol and zealactonoic acid bio-
synthesis. (A) Representative MRM-LC/MS/MS
chromatograms of zealactol, [M+H-H,0]*'m/z 331 >
97, in N. benthamiana leaf samples. (B) Represent-
ative MRM-LC/MS/MS chromatograms of

zealactol from in vitro assays with yeast
microsomes expressing ZmCYP706C37 or empty
vector (EV) with carlactone (CL) as substrate.

(C) Reactions from CL to zealactol and ZA catalyzed
by ZmCYP706C37 and ZmMAX1b. Structure in
square brackets is putative. (D) Representative
MRM-LC/MS/MS chromatograms of ZA,
[M+H]*'m/z 363 > 249, in N. benthamiana leaf
samples. STD, standard; EV, empty vector control.
CL pathway, maize carlactone biosynthetic

pathway genes, ZmD27, ZmCCD7, and ZmCCD8.

Moreover, agroinfiltration of the CL pathway
genes with ZmCYP706C37 and ZmMAXIDb re-
sulted in production of ZA, a result also con-
firmed with LC-QTOF-MS (Fig. 4, C and D, and
fig. S22).

Last, analysis of root exudate from a zmcyp706-
¢37 mutant [EMS4-045ad8, stop-codon gained
(fig. S23A)] showed no detectable levels of
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zealactol, ZA, zealactone, or three other SLs
derived from the latter (fig. S23B) (44). Al-
though 3-oxo0-MeCLA was detectable in the mu-
tant exudate, it was present at a much lower
level than in that of the wild type. Instead,
CLA and MeCLA accumulated in the mutant
exudate, whereas they are absent in the wild
type exudate (fig. S23, C and D). Together, these

data support our functional characterization
of ZmCYP706C37.

Biosynthetic control of the maize
strigolactone blend

To determine how the different maize SLs are
biosynthetically related, we applied 3-hydroxy-
MeCLA, 3-0x0-MeCLA, and zealactol to seedlings
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Fig. 5. Changes in the maize strigolactone blend result in changes in Striga resistance. (A and

D) Induction of Striga germination by root exudates of selected maize lines. GR24 (0.335 pM) and water
were used as positive and negative control, respectively. (B and E) Striga infection of selected maize lines.
Emerged Striga numbers were recorded; representative photos highlight the differences. DAG, days after
germination of maize. (C) SL levels in the root exudate of zmmaxIb and its wild type, W22. Bars indicate
means = SEM, ns = not significant (P > 0.05), *P < 0.05, **P < 0.01, ***P < 0.001, two-tailed, unpaired

t test.

of another commercial line, NK Falkone, which
were treated with fluridone, an inhibitor of
SL biosynthesis (45). Each of these three com-
pounds complemented zealactone production
(fig. S24A), confirming that they can serve as
biosynthetic precursors for zealactone. Com-
bined transient expression of ZmMAX1b and
ZmCLAMTI in N. benthamiana leaves and
subsequent infiltration of zealactol also showed
that the latter can be converted to zealactone
by ZmMAX1b together with ZmCLAMT]1 (Fig.
1A and fig. S25). Application of zealactone to
fluridone-treated plants led to the formation

Li et al., Science 379, 94-99 (2023) 6 January 2023

of zeapyranolactone and two other maize SLs,
designated compounds 3 and 4, suggesting
that zealactone is their precursor (Fig. 1A and
fig. S24, B to D) (24).

Next, we sought mechanisms underlying the
distinctive maize SL profile of NP2222 (fig. S26).
This line produces zealactone in fluridone-
treated seedlings, as does NK Falkone, but
only from MeCLA and 3-oxo-MeCLA, not from
zealactol (figs. S24A and S26A), suggesting
inactivity of MAX1b and/or CLAMT]I. As pre-
viously noted, ZA accumulated in the root

exudate of NP2222 (Fig. 1B and fig. S26D),

indicating dysfunction of CLAMT1. Zealactol
added to either NK Falkone or NP2222 was con-
verted to ZA, showing that ZmMAXIb is active
in NP2222 (fig. S26, B and C). Inspection of the
CLAMTI sequence in a proprietary NP2222 ge-
nome database revealed a large insertion in
the second exon of this gene, and reverse tran-
scriptase polymerase chain reaction (RT-PCR)
showed that regions flanking the insertion were
not transcribed (fig. S26E). These collective data
indicate disfunction of CLAMTI in NP2222.

To analyze biological consequences of the
different SL profiles, several maize lines were
selected for Striga germination and infection
assays. The NP2222 root exudate induced much
lower germination than that of NK Falkone.
Results were consistent with their respective
SL profiles and differences in germination-
inducing activity of the individual SLs (Figs. 1C
and 5A and fig. S26D). CML52 and NC358,
both with high proportions of zealactol and
ZA, induced significantly less Striga germi-
nation than did CML69 and Ky21, which pro-
duced mostly zealactone despite similar total
SL peak areas (Figs. 1C and 5A, and fig. S27, A
and B). These differences were also reflected in
a Striga infection assay with a containerized
system, in which Striga emergence was less for
low-zealactone genotypes (Fig. 5B). In addi-
tion to their SL blend, these lines may have
other genetic differences that could affect these
results. However, we also analyzed a gene-
suppression mutant of ZmMAX1b (transposon
insertion in a W22 background) (fig S28, A
and B). This mutant exuded significantly less
izealactone and zealactone-derived SLs, whereas
the level of zealactol was higher than in the
‘W22 control (Fig. 5C). The gmmax1b mutant
also induced less Striga germination and em-
ergence (Fig. 5E). Results confirm that a change
in activity of specific SL biosynthetic enzymes
in maize can change the SL composition and
confer Striga resistance. Although the under-
lying mechanisms are completely different,
these findings resemble those of igs sorghum
(16) and present a promising prospect for Striga
resistance breeding in maize. The zmmaxIib
mutant did not exhibit a branching pheno-
type, in contrast to smccd8 (fig. S28C). Also,
2mcyp706¢37, which is located parallel to or
downstream of ZmMAX1b, did not display an
obvious branching phenotype either. This all
suggests that the downstream SLs are not nor
precursors of the branching inhibiting hormone
and are therefore safe breeding targets that will
not result in unwanted pleiotropic effects.

Conclusions

We have shown that two parallel SL biosyn-
thetic pathways operate in maize and that
both pathways produce the major maize SL,
zealactone. Changes in flux through these path-
ways can alter the maize SL profile by shifting
the balance between zealactone and zealactol
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plus ZA. Zealactol and ZA induce much less
Striga germination, thus imparting a strong
reduction in Striga infection to genotypes that
exude more zealactol and ZA than zealactone.
Future research should investigate whether
these changes in the SL blend affect coloni-
zation by AM fungi, which was not observed
for Igs sorghum (I6). Our results offer a per-
spective for breeding Striga resistance through
modification of the SL blend in maize and thus
potentially reducing the devastating effects of
this parasitic weed in Africa.
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Diversity reveals infection resistance

Parasitic witchweed (Striga) reduces the yield of maize grown in infected fields. Strigolactones from maize roots
encourage Striga germination. Li et al. analyzed the natural variation in types of strigolactones exuded from maize
roots. Maize genotypes that produced mainly zealactol suffered less Striga infection than those that produced mainly
zealactone. A single cytochrome P450 catalyzes several of the oxidative steps in strigolactone biosynthesis, including
conversion of precursors to either zealactol or zealactone. —PJH
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