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1. Introduction

Interest in invariant subspaces goes back to Rumer, Teller and Weyl [34], who studied 

the quantum mechanical description of molecules. In particular, they devised diagram-

matic bases for the invariant spaces. For SL(n), a set of diagrams spanning the invariant 

space was constructed by Cautis, Kamnitzer and Morrison [5], generalizing Kuperberg’s 

webs [22] for SL(2) and SL(3).

The dimension of the invariant subspace of a tensor product V ⊗N of an irreducible 

representation V of a Lie algebra g is equal to the number of highest weight elements of 

weight zero in B⊗N , where B is the crystal basis associated to V [43,30]. The symmetric 

group acts on V ⊗N by permuting tensor positions. By Schur–Weyl duality, this action 

commutes with the action of the Lie group. In particular, the symmetric group acts on the 

invariant space of V ⊗N . It was shown by Westbury [43] that the action of the long cycle 

corresponds to the action of promotion on highest weight elements of weight zero in B⊗N . 

In this setting promotion is defined using Henriques’ and Kamnitzer’s commutor [12], 

see [7,43,44]. Note that the full action of the symmetric group on invariant tensors is not 

yet known in general.

In general, it is desirable to have a correspondence between highest weight elements 

of weight zero in B⊗N and diagram bases, such as chord diagrams, which intertwine 

promotion and rotation. For Kuperberg’s webs [22], this was achieved by Petersen, 

Pylyavskyy and Rhoades [29], Russell [35] and Patrias [28] by showing that the growth 

algorithm of Khovanov and Kuperberg [19] intertwines promotion with rotation. For 

the vector representation of the symplectic group and the adjoint representation of 

the general linear group, such a correspondence between highest weight elements of 

weight zero and chord diagrams which intertwines promotion and rotation was given 

in [30].

In this paper, we construct an injection from the set of r-fans of Dyck paths (resp. 

vacillating tableaux) of length n into the set of chord diagrams on [n] that intertwines 

promotion and rotation. There is a natural correspondence between r-fans of Dyck paths 

(resp. vacillating tableaux) and highest weight elements in the tensor product of the spin 

crystal (resp. vector representation) of type Br. We present this injection in two different 

ways:

(1) as fillings of promotion matrices [23] (see Section 3.1);

(2) in terms of Fomin growth diagrams [9,32,21] (see Sections 3.2-3.4).

While the first description shows that the map intertwines promotion and rotation, 

the second description shows injectivity. Our proof strategy uses virtualization of crys-

tals (see for example [3]) and results of [30] for oscillating tableaux of weight zero 

(or equivalently highest weight words of weight zero for the vector representation type 

Cr):
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Fig. 1. Overview of strategy and results for r-fans of Dyck paths.

(1) Find a virtual crystal morphism for the spin crystals (resp. crystals for the vector 

representation) of type Br into the r-th (resp. second) tensor power of the crystal of 

the vector representation of type Cr (see Section 2.2).

(2) Use this virtualization to map an r-fan of Dyck paths (resp. vacillating tableau) to 

an oscillating tableau (see Section 2.3).

(3) Show that this virtualization commutes with promotion and the filling rules.

(4) Show that blowing up the filling of the growth diagram corresponds to the filling of 

the oscillating tableau. In this sense, the blow up on growth diagrams is the analogue 

of the virtualization on crystals.

An overview of our strategy is shown in Figs. 1 and 2.

Having the injective map to chord diagrams gives a first step towards a diagrammatic 

basis for the invariant subspaces. In addition, Fontaine and Kamnitzer [7] as well as 

Westbury [43] tied the promotion action on highest weight elements of weight zero to the 

cyclic sieving phenomenon introduced by Reiner, Stanton and White [33]. In Section 4.4, 

we make this cyclic sieving phenomenon more concrete by providing the polynomial in 

terms of the energy function. For r-fans of Dyck paths, we conjecture another polynomial, 

which is the q-deformation of the number of r-fans of Dyck paths, to give a cyclic 

sieving phenomenon. For vacillating tableaux, we give a polynomial inspired by work of 

Jagenteufel [16] for a cyclic sieving phenomenon.

The paper is organized as follows. In Section 2, we give a brief review of crystal bases 

and virtual crystals and provide the virtual crystals for spin and vector representation 

of type Br into type Cr. We also define promotion on crystals via the crystal commutor. 

In Section 3, we give the various filling rules to construct the map to chord diagrams. 

Section 4 is reserved for the statements and proofs of our main results.
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2. Crystal bases

2.1. Background on crystals

Crystal bases form a combinatorial skeleton of representations of quantum groups 

associated to Lie algebras. They were first introduced by Kashiwara [17] and Lusztig [24].

Axiomatically, for a given root system Φ with index set I and weight lattice Λ, a 

crystal is a nonempty set B together with maps

ei, fi : B → B � {∅}

εi, ϕi : B → Z

wt : B → Λ

(2.1)

for i ∈ I, satisfying certain conditions (see for example [3, Definition 2.13]). The operators 

ei and fi are called raising and lowering operators. The map wt is the weight map. The 
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map εi (resp. ϕi) measures how often ei (resp. fi) can be applied to the given crystal 

element. For all crystals considered in this paper, we have for b ∈ B

εi(b) = max{k � 0 | ek
i (b) �= ∅} and ϕi(b) = max{k � 0 | fk

i (b) �= ∅}. (2.2)

An element b ∈ B is called highest weight if ei(b) = ∅ for all i ∈ I.

Here we define certain crystals for the root systems Br and Cr explicitly. Let ei ∈ Z
r

be the i-th unit vector with 1 in position i and 0 everywhere else.

Definition 2.1. The spin crystal of type Br, denoted by Bspin, consists of all r-tuples 

ε = (ε1, ε2, . . . , εr), where εi ∈ {±}. The weight of ε is

wt(ε) =
1

2

r∑

i=1

εiei.

The crystal operator fr annihilates ε unless εr = +. If εr = +, fr acts on ε by changing 

εr from + to − and leaving all other entries unchanged. The crystal operator fi for 

1 � i < r annihilates ε unless εi = + and εi+1 = −. In the latter case, fi acts on ε by 

changing εi to − and εi+1 to +. Similarly, the crystal operator er annihilates ε unless 

εr = −. If εr = −, er acts on ε by changing εr from − to +. The crystal operator ei for 

1 � i < r annihilates ε unless εi = − and εi+1 = +. In the latter case, ei acts on ε by 

changing εi to + and εi+1 to −.

The crystal Bspin of type B3 is depicted in Fig. 3.

Definition 2.2. Here we define the crystals for the vector representation of type Br and 

Cr.

(1) The crystal C� of type Cr consists of the elements {1, 2, . . . , r, r, . . . , 2, 1}. The crystal 

operator fi for 1 � i < r maps i to i + 1, maps i + 1 to i and annihilates all other 

elements. The crystal operator fr maps r to r and annihilates all other elements. 

Similarly, the crystal operator ei for 1 � i < r maps i + 1 to i, maps i to i + 1 and 

annihilates all other elements. The crystal operator er maps r to r and annihilates 

all other elements. Furthermore, wt(i) = ei and wt(i) = −ei.

(2) The crystal B� of type Br consists of the elements {1, 2, . . . , r, 0, r, . . . , 2, 1}. The 

crystal operator fi for 1 � i < r maps i to i + 1, maps i + 1 to i and annihilates all 

other elements. The crystal operator fr maps r to 0, 0 to r and annihilates all other 

elements. Similarly, the crystal operator ei for 1 � i < r maps i + 1 to i, maps i to 

i + 1 and annihilates all other elements. The crystal operator er maps r to 0, 0 to 

r and annihilates all other elements. Furthermore, wt(i) = ei and wt(i) = −ei for 

i �= 0 and wt(0) = 0.

The crystals C� for type C2 and B� for type B2 are depicted in Fig. 4.
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Fig. 3. Left: One component of the crystal V̂ = C
⊗3
�

of type C3. Middle: The virtual crystal V inside V̂ of 
type B3. Right: The spin crystal Bspin of type B3.

Fig. 4. Left: The crystal C� of type C2. Right: The crystal B� of type B2.
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A remarkable property of crystals is that they respect tensor products. Given two 

crystals B and C associated to the same root system Φ, the tensor product B ⊗ C as a 

set is the Cartesian product B × C. The weight of b ⊗ c ∈ B ⊗ C is the sum of the weights 

wt(b ⊗ c) = wt(b) + wt(c). Furthermore

fi(b ⊗ c) =

{
fi(b) ⊗ c if ϕi(c) � εi(b),

b ⊗ fi(c) if ϕi(c) > εi(b),

and

ei(b ⊗ c) =

{
ei(b) ⊗ c if ϕi(c) < εi(b),

b ⊗ ei(c) if ϕi(c) � εi(b).

2.2. Virtual crystals

Stembridge [39] characterized crystals which are associated with quantum group rep-

resentations for simply-laced root systems in terms of local rules on the crystal graph. 

Crystals for non-simply-laced root systems can be constructed using virtual crystals, 

see [3, Chapter 5].

In this paper, we utilize virtual crystals to construct Fomin growth diagrams and the 

promotion operators for type Br using results for type Cr. Hence let us briefly review 

the set-up for virtual crystals. Let X ↪→ Y be an embedding of Lie algebras such that 

the fundamental weights ωi and simple roots αi map as follows

ωX
i �→ γi

∑

j∈σ(i)

ωY
j ,

αX
i �→ γi

∑

j∈σ(i)

αY
j .

Here γi is a multiplication factor, σ : IX → IY / aut is a bijection and aut is an automor-

phism on the Dynkin diagram for Y .

Let V̂ be an ambient crystal associated to the Lie algebra Y . In [3, Chapter 5] it is 

assumed that V̂ is a crystal for a simply-laced root system. However, in general it may 

be assumed that V̂ is a crystal corresponding to a quantum group representation (which 

is the case in our setting).

Definition 2.3. If there is an embedding of Lie algebras X ↪→ Y , then V ⊆ V̂ is a virtual 

crystal for the root system ΦX if

V1. The ambient crystal V̂ is a Stembridge crystal or a crystal associated to a repre-

sentation for the root system ΦY with crystal operators êi, f̂i, ε̂i, ϕ̂i for i ∈ IY and 

weight function ŵt.
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V2. If b ∈ V and i ∈ IX , then ε̂j(b) has the same value for all j ∈ σ(i) and that value is 

a multiple of γi. The same is true for ϕ̂j(b).

V3. The subset V � {∅} ⊆ V̂ � {∅} is closed under the virtual crystal operators

ei :=
∏

j∈σ(i)

êγi

j and fi :=
∏

j∈σ(i)

f̂γi

j .

Furthermore, for all b ∈ V

εi(b) = max{k � 0 | ek
i (b) �= ∅} and ϕi(b) = max{k � 0 | fk

i (b) �= ∅}.

The tensor product of two virtual crystals for the same embedding X ↪→ Y is again 

a virtual crystal (see for example [3, Theorem 5.8]).

2.2.1. Virtual crystal Br ↪→ Cr spin to vector

We will now apply the theory of virtual crystals to the embedding Br ↪→ Cr. In this 

setting ICr = IBr = {1, 2, . . . , r}, σ(i) = {i}, γi = 2 for 1 � i < r and γr = 1. We 

consider as the ambient crystal

V̂ = C⊗r
�

.

Define an ordering < on the set [r] ∪ [r̄] as follows:

1 < 2 < · · · < r < r̄ < · · · < 1̄.

Denote by | · | the map from [r] ∪ [r̄] to [r] that sends letters to their corresponding 

unbarred values.

Definition 2.4. Let V ⊆ V̂ be given by

V := {vr ⊗ vr−1 ⊗ · · · ⊗ v1 ∈ V̂ | vi > vj and |vi| �= |vj | for all i > j}.

Let fi = f̂2
i , ei = ê2

i for 1 � i < r and fr = f̂r, er = êr.

Lemma 2.5. V � {∅} is closed under the operators fi and ei for 1 � i � r.

Proof. Let v = vr ⊗ vr−1 ⊗ · · · ⊗ v1 ∈ V. We break into cases depending on the value of 

i.

Assume that i = r. By the definition of V, v must either contain an r or r̄, but not 

both. If v contains an r, then this r must be to the left of all other unbarred letters 

and to the right of all barred letters. As fr changes the r to a r̄, fr(v) is still in V. If v

contains an r̄, then fr(v) = ∅ ∈ V � {∅}.

Assume that i �= r. Note that the conditions imposed on v imply that there exists 

exactly two indices j and k such that |vj | = i and |vk| = i + 1. By the ordering imposed 

on v, v can only be in the following forms:
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• · · · ⊗ i + 1 ⊗ i ⊗ · · ·

• · · · ⊗ ī ⊗ i + 1 ⊗ · · ·

• · · · ⊗ ī ⊗ · · · ⊗ i + 1 ⊗ · · ·

• · · · ⊗ i + 1 ⊗ · · · ⊗ i ⊗ · · ·

For the first three cases, fi(v) = ∅. When v is of the form · · · ⊗ i + 1 ⊗ · · · ⊗ i ⊗ · · · , fi

replaces the i + 1 with ī and the i with i + 1. Since v does not contain an ī nor an i + 1, 

fi(v) is an element of V.

The fact that ei(v) ∈ V for all i ∈ 1 � i � r follows similarly. Thus, V is closed under 

the operators fi and ei. �

Lemma 2.6. All elements of V are in the connected component of V̂ with highest weight 

element r ⊗ r − 1 ⊗ · · · ⊗ 1.

Proof. Clearly r ⊗ r − 1 ⊗ · · · ⊗ 1 is a highest weight element of V̂ and the only element 

in V without any barred letters.

Consider v = vr ⊗ · · · ⊗ v1 ∈ V containing a barred letter. Observe that the number of 

barred letters in ei(v) is at most the number of barred letters in v whenever ei(v) �= ∅. 

Since V̂ is finite and V is closed under ei, it suffices to show that ei(v) �= ∅ for some i. 

Let vj denote the rightmost tensor factor in v that is a barred letter, and let i = |vj |. 

We break into cases depending on the value of i.

If i = r, then vj = r̄ and v cannot contain an r. This implies that er(v) �= ∅ as it acts 

on v by replacing vj by r. The number of barred letters has decreased by one.

If i �= r, then vj = ī. As vj is the rightmost barred letter in v, v must be of the form 

· · · ⊗ ī ⊗ · · · ⊗ i + 1 ⊗ · · · . Thus, ei acts by changing ī to i + 1 and i + 1 to i. Note that 

the rightmost barred letter is closer to r̄. �

Definition 2.7. Let Ψ: Bspin → V be the map

Ψ(ε1ε2 · · · εr) = vr ⊗ vr−1 ⊗ · · · ⊗ v1,

where vr > vr−1 > · · · > v1 such that if εi = + then v contains an i and if εi = − then 

v contains an ī for all 1 � i � r.

Lemma 2.8. The map Ψ is a bijective map that intertwines the crystal operators on Bspin

and V.

Proof. From the definition of Ψ, it is clearly bijective. Let ε = ε1ε2 · · · εr ∈ Bspin. Since 

the raising and lowering operators of a crystal are partial inverses, it suffices to prove 

that fi(ε) �= ∅ if and only if fi(Ψ(ε)) �= ∅ and Ψ(fi(ε)) = fi(Ψ(ε)) whenever fi(ε) �= ∅.

Assume that fi(Ψ(ε)) �= ∅. If i = r, then Ψ(ε) contains an r implying εr = +. Therefore 

fr(ε) �= ∅. If i �= r, then ε contains both an i and an i + 1. Thus, εi = + and εi+1 = −

implying fi(ε) �= ∅.
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Assume that fi(ε) �= ∅. If i = r, then εr = + and fr acts on ε by replacing εr with a 

−. This implies that Ψ(fr(ε)) can be obtained from Ψ(ε) by changing the r to r̄, which 

agrees with the action of fr. Therefore Ψ(fr(ε)) = fr(Ψ(ε)). If i �= r, then εi must be a +

and εi+1 must be a −. Thus, fi swaps the signs of εi and εi+1. Since εi = + and εi+1 = −, 

Ψ(ε) must contain both an i + 1 and an i. This implies Ψ(fi(ε)) can be obtained from 

Ψ(ε) by replacing the i + 1 with ī and the i with i + 1. Observe that fi acts on Ψ(ε) in 

exactly the same manner. Hence, Ψ(fi(ε)) = fi(Ψ(ε)). �

Proposition 2.9. V is a virtual crystal for the embedding of Lie algebras Br ↪→ Cr.

Proof. The ambient crystal V̂ is a crystal coming from a representation (see for exam-

ple [3]), ensuring V1. Using Lemmas 2.5 and 2.8, we have Ψ(Bspin) = V is closed under 

the crystal operators fi and ei. Since the elements in both Bspin and V̂ satisfy (2.2), the 

string lengths of Bspin are the same as the string lengths in V, showing V3. It is also not 

hard to see from Definition 2.4, that ϕ̂i(v), ̂εi(v) ∈ 2Z for v ∈ V and 1 � i < r, proving

V2. �

An example of the virtual crystal construction for Bspin is given in Fig. 3. The virtual 

crystal of this section also follows from [18]. An affine version of this virtual crystal 

construction (which implies the one in this section) has appeared in [10, Lemma 4.2].

2.2.2. Virtual crystal Br ↪→ Cr vector to vector

The crystal B� of Definition 2.2 can be realized as a virtual crystal inside the ambient 

crystal V̂ = C⊗2
�

.

Definition 2.10. Define V ⊆ V̂ = C⊗2
�

of type Cr as

V = {a ⊗ a | 1 � a � r} ∪ {a ⊗ a | 1 � a � r} ∪ {r ⊗ r}

with fi = f̂2
i , ei = ê2

i for 1 � i < r and fr = f̂r, er = êr.

Lemma 2.11. V � {∅} of Definition 2.10 is closed under the operators fi and ei for 

1 � i � r and all elements in V are in the connected component of V̂ with highest weight 

1 ⊗ 1.

Proof. We leave this to the reader to check. �

Definition 2.12. Let Ψ: B� → V be the map Ψ(a) = a ⊗a and Ψ(a) = a⊗a for 1 � a � r

and Ψ(0) = r ⊗ r.

Lemma 2.13. The map Ψ of Definition 2.12 is a bijective map that intertwines the crystal 

operators on B� and V.
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Fig. 5. Far Left: One connected component Ŝ of the crystal V̂⊗2 = (C
⊗2
�

)⊗2 of type C2. Middle Left: The 
connected component S of the virtual crystal V⊗2 inside S induced by Definition 2.10. Middle Right: The 
corresponding connected component T of the crystal B

⊗2
�

of type B2 that corresponds to S under the 
embedding given in Definition 2.12. Far Right: The connected component U of (Bspin ⊗ Bspin)⊗2 of type B2

corresponding to T under the isomorphism given in Fig. 6.

Proof. We leave this to the reader to check. �

Proposition 2.14. V of Definition 2.10 is a virtual crystal for the embedding of Lie alge-

bras Br ↪→ Cr.

Proof. We leave this to the reader to check. �

An example of the virtual crystal construction for B� is given in Fig. 5. The virtual 

crystal of this section also follows from [18]. An affine version of this virtual crystal 

construction (which implies the one in this section) has appeared in [10, Theorem 4.8].

2.3. Highest weights of weight zero

A weight λ ∈ Λ is called minuscule if 〈λ, α∨〉 ∈ {0, ±1} for all coroots α∨. A crystal 

B is called minuscule if wt(b) is minuscule for all b ∈ B. Note that Bspin is a minuscule 

crystal (see for example [3, Chapter 5.4]).
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A weight λ is called dominant if 〈λ, α∨
i 〉 � 0 for all i ∈ I. Let Λ+ ⊆ Λ denote the 

set of all dominant weights. Except for spin weights, dominant weights can be identified 

with partitions, where the fundamental weight ωh corresponds to a column of height h

in the partition. A partition λ is a sequence λ = (λ1, λ2, . . . , λ�) such that λ1 � λ2 �

· · · � λ� � 0. We identify partitions that differ by trailing zeroes. That is, (3, 2, 0, 0) is 

identified with the partition (3, 2).

Let B1, B2, . . . , Bn be minuscule crystals. For any highest weight element

u = un ⊗ · · · ⊗ u1 ∈ Bn ⊗ · · · ⊗ B1

we may bijectively associate a sequence of dominant weights ∅ = μ0, μ1, . . . , μn, where 

μq :=
∑q

i=1 wt(ui). The final weight μ := μn of such a sequence is also the weight of the 

crystal element u. If μ is zero, u is a highest weight element of weight zero.

Note that the number of highest weight elements of weight zero in a tensor product 

of crystals is equal to the dimension of the invariant subspace, see for example [43,30].

2.3.1. Oscillating tableaux

Oscillating tableaux were introduced by Sundaram [40].

Definition 2.15 (Sundaram [40]). An r-symplectic oscillating tableau O of length n and 

shape μ is a sequence of partitions

O = (∅ = μ0, μ1, . . . , μn = μ)

such that the Ferrers diagrams of two consecutive partitions differ by exactly one cell, 

and each partition μi has at most r nonzero parts.

The r-symplectic oscillating tableaux of length n and shape μ are in bijection with 

highest weight elements in C⊗n
�

of type Cr and weight μ. This can be seen by induction 

on n. For n = 1, the only highest weight element is 1 and the only oscillating tableau is 

(∅, �). Suppose the claim is true for n − 1. If u = b ⊗ u0 ∈ C⊗n
�

is highest weight, then 

u0 ∈ C
⊗(n−1)
�

must be highest weight and hence by induction corresponds to an oscillating 

tableau (∅ = μ0, μ1, . . . , μn−1). The element b is either an unbarred or barred letter. If b

is the unbarred letter a, μn differs from μn−1 by a box in row a. If b is the barred letter 

a, μn has one less box in row a than μn−1. More precisely, for a highest weight element 

bn ⊗ · · · ⊗ b1 ∈ C⊗n
�

, the corresponding oscillating tableau satisfies μq =
∑q

i=1 wt(bi). 

This map can be reversed and it is not hard to see that the result is a highest weight 

element using the tensor product rule.

2.3.2. r-fans of Dyck paths

Next we relate highest weight elements of weight zero in B⊗n
spin of type Br and r-fans of 

Dyck paths. A Dyck path of length n is a path from (0, 0) to (n, 0) consisting of up-steps 

(1, 1) and down-steps (1, −1) which never crosses the line y = 0.
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Definition 2.16. An r-fan of Dyck paths F of length n is a sequence

F = (∅ = μ0, μ1, . . . , μn = ∅)

of partitions μi with at most r parts such that the Ferrers diagram of two consecutive 

partitions differs by exactly one cell in each part. In other words, μi differs from μi+1 by 

(±1, ±1, . . . , ±1) for 0 � i < n.

Example 2.17. For r = 3 and n = 4, the following is a 3-fan of Dyck paths

F = ((000), (111), (220), (111), (000)).

Since Bspin of type Br is minuscule, by the above discussion ε = εn ⊗ · · · ⊗ ε1 ∈ B⊗n
spin

is highest weight if and only if 
∑q

i=1 wt(εi) is dominant for all 1 � q � n. Hence highest 

weight elements of weight zero can be identified with an r-fan of Dyck paths of length 

n: the j-th entry of εi is + if and only if the j-th Dyck path has an up-step at position 

i. In particular, for a highest weight element ε of weight zero, the sequence of dominant 

weights μq :=
∑q

i=1 2wt(εi) for 0 � q � n defines an r-fan of Dyck paths consistent with 

Definition 2.16.

A similar bijection was given in [26].

Example 2.18. The 3-fan of Dyck paths of Example 2.17 corresponds to the element

ε = (−, −, −) ⊗ (−, −, +) ⊗ (+, +, −) ⊗ (+, +, +) ∈ B⊗4
spin.

Following Definition 2.7, we obtain an embedding from the set of r-fans of Dyck paths 

into the set of oscillating tableaux.

Definition 2.19. For an r-fan of Dyck paths F = (∅ = λ0, λ1, . . . , λn = ∅) we define the 

oscillating tableau ιF →O(F) = (∅ = μ0, . . . , μrn = ∅) as follows. Let vt = Ψ(λt − λt−1)

for 1 � t � n with Ψ as in Definition 2.7. Then

μtr+s = λt +

s∑

i=1

wt(vt+1
i ) for 0 � t < n, 0 � s < r.

2.3.3. Vacillating tableaux

Next we define vacillating tableaux which correspond to highest weight elements in 

B⊗n
�

of type Br.

Definition 2.20. A (2r + 1)-orthogonal vacillating tableau of length n is a sequence of 

partitions V = (∅ = λ0, . . . , λn) such that:

(i) λi has at most r parts.
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Fig. 6. Left: B� of type B3, Right: The component in Bspin ⊗ Bspin of type B3 isomorphic to B�.

(ii) Two consecutive partitions either differ by a box or are equal.

(iii) If two consecutive partitions are equal, then all their r parts are greater than 0.

We call λn the weight of V.

A highest weight element u = un ⊗ · · · ⊗ u1 ∈ B⊗n
�

of type Br corresponds to the 

(2r + 1)-vacillating tableau (∅ = λ0, λ1, . . . , λn), where λq =
∑q

i=1 wt(ui).

Note that B� is not minuscule. The crystal B� is isomorphic to the component with 

highest weight element (+, −, . . . , −) ⊗ (+, . . . , +) in Bspin ⊗ Bspin, see Fig. 6. From this 

we obtain a map from the set of vacillating tableaux of weight zero and length n into 

the set of fans of Dyck paths of length 2n that we now explain. Denote by 1 the vector 

e1 + e2 + · · · + er and write ρ < ν if ν = ρ + ei for some i.

Definition 2.21. For a vacillating tableau of weight zero V = (∅ = λ0, . . . , λn = ∅) we 

define the fan of Dyck paths ιV →F (V) = (∅ = μ0, . . . , μ2n = ∅) as follows:

μ2i = 2 · λi
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μ2i−1 =

⎧
⎪⎪⎨
⎪⎪⎩

2 · λi−1 + 1 if λi−1 < λi,

2 · λi + 1 if λi−1 > λi,

2 · λi−1 + 1 − 2er if λi−1 = λi.

Similarly, following Definition 2.12, we obtain an embedding from the set of vacillating 

tableaux of weight zero into the set of oscillating tableaux.

Definition 2.22. For a vacillating tableau of weight zero V = (∅ = λ0, . . . , λn = ∅) we 

define the oscillating tableau ιV →O(V) = (∅ = μ0, . . . , μ2n = ∅) as follows:

μ2i = 2 · λi

μ2i−1 = λi−1 + λi +

{
0 if λi−1 �= λi,

−er if λi−1 = λi.

2.4. Promotion via crystal commutor

For finite crystals Bλ of classical type of highest weight λ, Henriques and Kam-

nitzer [12] introduced the crystal commutor as follows. Let ηBλ
: Bλ → Bλ be the Lusztig 

involution, which maps the highest weight vector to the lowest weight vector and inter-

changes the crystal operators fi with ei′ , where w0(αi) = −αi′ under the longest element 

w0. This can be extended to tensor products of such crystals by mapping each connected 

component to itself using the above. Then the crystal commutor is defined as

σ : Bλ ⊗ Bμ → Bμ ⊗ Bλ

b ⊗ c �→ ηBμ⊗Bλ
(ηBμ

(c) ⊗ ηBλ
(b)).

If we want to emphasize the crystals involved, we write σA,B : A ⊗ B → B ⊗ A.

Following [7,43,44], we define the promotion operator using the crystal commutor.

Definition 2.23. Let C be a crystal and u ∈ C⊗n a highest weight element. Then promo-

tion pr on u is defined as σC⊗n−1,C(u).

Remark 2.24. Note that inverse promotion is given by σC,C⊗n−1(u). The conventions 

in the literature about what is called promotion and what is called inverse promotion 

are not always consistent. Our convention here agrees with the definition of promotion 

on posets that removes the letters 1 and slides letters (see for example [38,2]). The 

convention here is the opposite of the convention on tableaux which removes the largest 

letter and uses jeu de taquin slides (see for example [31,4]).

Example 2.25. Consider the crystal C = B� of type A2 (see [3]). Then

u = 1 ⊗ 3 ⊗ 2 ⊗ 2 ⊗ 1 ⊗ 1 ∈ C⊗6
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is highest weight and

σC⊗5,C(u) = 2 ⊗ 1 ⊗ 3 ⊗ 1 ⊗ 2 ⊗ 1.

The recording tableaux for the RSK insertion of the words 132211 and 213121 (from 

right to left) are

1 2 6

3 4

5 and

1 3 5

2 6

4

which are related by the usual (inverse) promotion operator (removing the letter 1, doing 

jeu-de-taquin slides, filling the empty cell with the largest letter plus one and subtracting 

1 from all entries) on standard tableaux.

Example 2.26. Promotion on the element ε in Example 2.18 is

σ
B

⊗3
spin ,Bspin

(ε) = (−, −, −) ⊗ (−, +, +) ⊗ (+, −, −) ⊗ (+, +, +).

Note that if Ψ: C → V ⊆ V̂ is a virtual embedding, then virtualization intertwines 

with promotion

Ψ ◦ σC⊗n−1,C = σ
V̂⊗n−1,V̂

◦ Ψ (2.3)

by Axioms V2 and V3 in Definition 2.3 as long as the folding σ and the multiplication 

factors γi respect the map w0(αi) = −αi′ . This is the case for the virtualizations in this 

paper.

2.5. Promotion via local rules

Adapting local rules of van Leeuwen [41], Lenart [23] gave a combinatorial realization 

of the crystal commutor σA,B by constructing an equivalent bijection between the highest 

weight elements of A ⊗ B and B ⊗ A respectively. The local rules of Lenart [23] can 

be stated as follows: four weight vectors λ, μ, κ, ν ∈ Λ depicted in a square diagram 

λ ν

κ μ
satisfy the local rule, if μ = domW (κ + ν − λ), where W is the Weyl group of 

the root system Φ underlying A and B. Furthermore, domW (ρ) is the dominant weight 

in the Weyl orbit of ρ.

Theorem 2.27 ([23, Theorem 4.4]). Let A and B be crystals embedded into tensor products 

A� ⊗ · · · ⊗ A1 and Bk ⊗ · · · ⊗ B1 of crystals of minuscule representations, respectively. 
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Let w = wk+� ⊗· · ·⊗w1 be a highest weight element in A ⊗B with corresponding tableau 

(∅ = μ0, μ1, . . . , μk+� = μ) Then σA,B(w) can be computed as follows. Create a k × �

grid of squares as in (2.4), labeling the edges along the left border with w1, . . . , wk and 

the edges along the top border with wk+1, . . . , wk+�:

(2.4)

For each square use the local rule to compute the weight vectors on the square’s corners. 

Given a horizontal edge from κ to μ in the jth column, label the edge by the element in 

Aj with weight μ − κ. Similarly, given a vertical edge from μ to ν in the ith row, label 

the edge by the element in Bi with weight ν −μ. The labels ŵk+� . . . ŵ1 of the edges along 

the right and the bottom border of the grid then form σA,B(w) with corresponding tableau 

(∅ = μ0, μ̂1, . . . , μ̂k+�−1, μk+� = μ).

Example 2.28. Performing Lenart’s local rules on the elements in Example 2.25 gives

which recovers σC⊗5,C(1 ⊗ 3 ⊗ 2 ⊗ 2 ⊗ 1 ⊗ 1) = 2 ⊗ 1 ⊗ 3 ⊗ 1 ⊗ 2 ⊗ 1.

3. Chord diagrams

3.1. Promotion matrices

In this section we describe a map from highest weight words of weight zero to chord 

diagrams that intertwines promotion and rotation.

We start with the definition of chord diagrams and their rotation.

Definition 3.1. A chord diagram of size n is a graph with n vertices depicted on a circle 

which are labeled 1, . . . , n in counter-clockwise orientation.
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1. Calculate promo-
tion over and over 
again using a calcula-
tion schema

2. Cut and glue 
the schema to 
obtain a square

3. Fill all cells 
according to a 
function Φ with 
integers

4. Interpret the 
filled square as 
adjacency matrix 
of a graph

5. Read the 
chord diagram 
from the adja-
cency matrix.

λ ν

κ μ

Φ(λ, κ, ν, μ)

⎛
⎜⎜⎜⎝

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

⎞
⎟⎟⎟⎠

◦

◦

◦

◦

◦

◦

◦

◦

Fig. 7. Overview of the steps in our map.

The rotation of a chord diagram is obtained by rotating all edges clockwise by 2π
n

around the center of the diagram.

In our setting all chord diagrams are undirected graphs with possibly multiple edges 

between the same two vertices. We can therefore identify chord diagrams with their 

adjacency matrix. The adjacency matrix is a symmetric n × n matrix M = (mij)1�i,j�n

with non-negative integer entries and mij denotes the number of edges between vertex i

and vertex j.

Proposition 3.2. Let M be the adjacency matrix of a chord diagram G. Denote by rot M

the toroidal shift of M , that is, the matrix obtained from M by first cutting the top row 

and pasting it to the bottom and then cutting the leftmost column and pasting it to the 

right.

Then rot M is the adjacency matrix corresponding to the rotation of G.

The proof of this proposition is easy and left to the reader as an exercise.

Let us now outline the idea to construct such a rotation and promotion intertwining 

map and then provide the details on the individual steps on the examples of oscillating 

tableaux, r-fans of Dyck paths and vacillating tableaux. A visual guideline can be seen 

in Fig. 7.

Construction 3.3. The construction is given as follows:

Step 1: Iteratively calculate promotion of a highest weight word of weight zero and 

length n using Lenart’s schema (2.4) a total of n times.

Step 2: Group the results into a square grid, called the promotion matrix.

Step 3: Fill the cells of the square grid with certain non-negative integers according to a 

filling rule Φ that only depends on the four corners of the cells in the schema (2.4).

Step 4: Regard the filling as the adjacency matrix of a graph, which is the chord diagram.

We now discuss the filling rules in the various cases. Note that the filling rules are 

new even in the case of oscillating tableaux as the proofs in [30] did not follow this 

construction.
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Fig. 8. The transformation into a promotion matrix. The highlighted part is cut away and glued on the left.

3.1.1. Chord diagrams for oscillating tableaux

Recall that the Weyl group of type Cr is the hyperoctahedral group Hr of signed 

permutations of {±1, ±2, . . . , ±r}. Weights are elements in Zr and dominant weights are 

weakly decreasing integer vectors with non-negative entries (or equivalently partitions). 

Thus, the dominant representative domHr
(λ) of a weight λ is obtained by sorting the 

absolute values of its entries into weakly decreasing order.

We slightly modify Lenart’s schema for the crystal commutor (2.4) by omitting edge 

labels as only the weights on the corners are needed. Additionally, given an oscillating 

tableau O = (∅ = μ0, μ1, . . . , μn = μ), we start each row with the zero weight ∅ and 

end each row with the weight μ, which makes it easier to iteratively use this schema 

to calculate promotion. This way the promotion of the oscillating tableau O = (∅ =

μ0, μ1, . . . , μn = μ) is the unique sequence (∅ = μ̂0, μ̂1, . . . , μ̂n = μ), such that all squares 

in the diagram

satisfy the local rule of Section 2.5.

Using this schema we iteratively calculate promotion a total of n times and depict the 

results in a diagram as seen in Fig. 8 on the left. This diagram consists of n promotion 

schemas glued together. As prn = id, the labels on the top and the bottom row must be 

equal to μ0, . . . , μn.

We now transform this diagram by copying everything to the right of the n-th column 

into the triangular empty space on the left, see Fig. 8. In this way the labels on the right 

corners of the n-th column are duplicated. We obtain an n × n grid, where each corner 

of a cell is labeled with a dominant weight and the labels on the top and bottom border 

are equal and the labels on the left and right border are equal. This grid is called the 

promotion matrix of O.
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To obtain an adjacency matrix, we fill the cells of this diagram with non-negative 

integers according to the following rule.

Definition 3.4. The filling rule for oscillating tableaux is

Φ(λ, κ, ν, μ) =

{
1 if κ + ν − λ contains a negative entry,

0 else,
(3.1)

where the cells are labeled as depicted below:

λ ν

κ μ

Φ(λ, κ, ν, μ)

. (3.2)

Definition 3.5. Denote by MO the function that maps an r-symplectic oscillating tableau 

of length n to an n ×n adjacency matrix using Construction 3.3 and the filling rule (3.1).

Next, we generalize the above construction for r-fans of Dyck paths and vacillating 

tableaux.

3.1.2. Chord diagrams for r-fans of Dyck paths

Given an r-fan of Dyck paths F = (∅ = μ0, μ1, . . . , μn = ∅), we construct an adjacency 

matrix via Construction 3.3 using the following filling rule:

Definition 3.6. The filling rule for fans of Dyck paths is

Φ(λ, κ, ν, μ) = number of negative entries in κ + ν − λ, (3.3)

where the cells are labeled as in (3.2).

Remark 3.7. Note that for oscillating tableaux at most one negative entry can occur. 

Thus the filling rule (3.3) for fans of Dyck paths is a natural generalization of the 

rule (3.1).

Definition 3.8. Denote by MF the function that maps an r-fan of Dyck paths of length 

n to an n × n adjacency matrix using Construction 3.3 and the filling rule (3.3).

Example 3.9. Consider the following fan corresponding to the sequence of vectors F =

(000, 111, 222, 311, 422, 331, 222, 111, 000).
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(1) We apply promotion a total of n = 8 times, to obtain the full orbit.

000 111 222 311 422 331 222 111 000
000 111 200 311 220 111 000 111 000

000 111 222 311 220 111 222 111 000
000 111 200 111 200 311 200 111 000

000 111 220 311 422 311 222 111 000
000 111 220 331 220 311 200 111 000

000 111 222 111 220 111 220 111 000
000 111 000 111 200 311 220 111 000

000 111 222 311 422 331 222 111 000.

(2) We group the results into the promotion matrix and fill the cells of the square grid 

according to Φ. For better readability we omitted zeros.

(3) Regard the filling as the adjacency matrix of a graph, the chord diagram.

MF (F) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 3

0 0 2 0 0 0 1 0

0 2 0 0 0 1 0 0

0 0 0 0 2 0 1 0

0 0 0 2 0 1 0 0

0 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0

3 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

12

3

4

5 6

7

8
3

1

2

1
1

2

1

1

3.1.3. Chord diagrams for vacillating tableaux

Note that B� is not minuscule and thus Theorem 2.27 is not directly applicable. 

Using Definition 2.12 we can embed B� in C⊗2
�

which gives a map ιV →O from vacillating 

tableaux to oscillating tableaux of twice the length which commutes with the crystal 

commutor. That is



JID:YJABR AID:19168 /FLA [m1L; v1.342] P.22 (1-49)

22 J. Pappe et al. / Journal of Algebra ••• (••••) •••–•••

ιV →O ◦ prB�
= ιV →O ◦ σ

B
⊗n−1
�

,B�
= σ(C

⊗2
�

)⊗n−1,C⊗2
�

◦ ιV →O. (3.4)

This follows directly from the properties of virtualization.

Let V be a vacillating tableau of length n and weight zero. Let O = (∅ =

μ0, μ1, . . . , μ2n = ∅) be the corresponding oscillating tableau using ιV →O. Then we obtain 

the promotion of V using the following schema

(3.5)

Following Construction 3.3, we apply promotion a total of n times and use the cut-

and-glue procedure to obtain a 2n × 2n square. We fill the squares using the filling rule 

for oscillating tableaux as given by (3.1).

To obtain an n × n adjacency matrix, we subdivide the 2n × 2n matrix into 2 × 2

blocks and take the sum of each block.

Definition 3.10. Denote by MV →O the function that maps a vacillating tableau V of 

weight zero of length n to an n × n adjacency matrix using ιV →O, Schema (3.5), Con-

struction 3.3, filling rule (3.1), and block sums.

Example 3.11. Consider the vacillating tableau of length 9

V = (000, 100, 200, 210, 211, 111, 111, 110, 100, 000).

We first embed V into an oscillating tableau using the bijection Ψ from B� to V given in 

Definition 2.12. Specifically, we use Ψ to establish a correspondence between the highest 

weight element in B⊗9
�

associated to V and a highest weight element in (C⊗2
�

)⊗9, from 

which we obtain ιV →O(V) as

ιV →O(V) = (000, 100, 200, 300, 400, 410, 420, 421, 422, 322, 222, 221,

222, 221, 220, 210, 200, 100, 000).

(1) We apply promotion a total of n = 9 times on the above schema (2n = 18 times on 

the oscillating tableau ιV →O(V)), to obtain the full orbit. Below the first iteration 

of promotion, we show all 9 applications of promotion.

000 100 200 300 400 410 420 421 422 322 222 221 222 221 220 210 200 100 000
100 200 300 310 320 321 322 222 221 220 221 220 221 211 210 110 100
000 100 200 210 220 221 222 221 220 221 222 221 222 221 220 210 200 100 000
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(2) We group the results into the promotion matrix and fill the cells of the square grid 

according to Φ in (3.1). For better readability, we subdivided the diagram into 2 × 2

blocks and took the sum of the entries in each block, as well as omitted the zeros.

(2) Regard the filling as the adjacency matrix of a graph, the chord diagram.

MV →O(V) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 1 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1

0 2 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 0 1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

2

3

4

5 6

7

8

9

1

1

2 1

1

1

1

1
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Alternatively, we may obtain an adjacency matrix by embedding B� as a connected 

component of B⊗2
spin (see Section 2.3.3). As discussed in Definition 2.21, this embedding 

gives rise to the map ιV →F from vacillating tableaux to r-fans of Dyck paths of twice 

the length. From the r-fans of Dyck paths, we apply MF to obtain a 2n × 2n matrix. 

Subdividing this matrix into 2 × 2 blocks and taking block sums produces an n × n

adjacency matrix for vacillating tableaux.

Definition 3.12. Denote by MV →F the function that maps a vacillating tableau V of 

weight zero and length n to an n × n adjacency matrix using ιV →F , Construction 3.3, 

filling rule (3.3), and block sums.

3.1.4. Promotion and rotation

For the various maps MX with X ∈ {O, F, V → O, V → F} constructed in this 

section, we obtain the following main result.

Proposition 3.13. The map MX for X ∈ {O, F, V → O, V → F} intertwines promotion 

and rotation, that is

MX ◦ pr = rot ◦MX .

Proof. Let T be either a fan of Dyck paths, an oscillating tableau of weight zero or a 

vacillating tableau of weight zero of length n and denote by T̂ its promotion.

For 0 � i, j < n let μi,j be the (j − i)-th entry of pri(T), where indexing starts with 

zero and is understood modulo n. For 1 � i, j � n denote by mi,j the entry in the i-th 

row and j-th column of MX(T). Similarly, denote by μ̂i,j the (j − i)-th entry of pri(T̂)

and by m̂i,j the i-th row and j-th column of MX(T̂).

In all of our constructions mi,j depends on the four partitions μi−1,j−1, μi,j−1, μi−1,j

and μi,j via some function mi,j = Φ̃(μi−1,j−1, μi,j−1, μi−1,j , μi,j). Analogously we have 

m̂i,j = Φ̃(μ̂i−1,j−1, ̂μi,j−1, ̂μi−1,j , ̂μi,j).

A simple calculation gives

m̂i,j = Φ̃(μ̂i−1,j−1, μ̂i,j−1, μ̂i−1,j , μ̂i,j)

= Φ̃(μi,j , μi+1,j , μi,j+1, μi+1,j+1) = mi+1,j+1,

where indices are understood modulo n. Thus, MX(T̂) = rot(MX(T)). �

Note that the promotion matrix MX(T) is sometimes referred to as the promotion-

evacuation diagram of T as it also encodes information about the evacuation of T. 

Following [30], a generalization of Schützenberger’s evacuation operator can be defined 

on crystals as follows.

Definition 3.14. Let C be a crystal and u ∈ C⊗n a highest weight element. Then evacu-

ation evac on u is defined as
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(1C⊗n−2 ⊗ pr) ◦ · · · ◦ (1C ⊗ pr) ◦ pr(u),

where (1C⊗n−m ⊗ pr)(wn ⊗ · · · ⊗ w2 ⊗ w1) = wn ⊗ · · · ⊗ wm+1 ⊗ pr(wm ⊗ · · · ⊗ w1).

Given a tableau T corresponding to a highest weight element u, we denote by evac(T)

the tableau associated to the highest weight element evac(u).

Proposition 3.15. The map MX for X ∈ {O, F, V → O, V → F} intertwines evacuation 

and the anti-transpose, that is

MX ◦ evac = antr ◦MX ,

where the anti-transpose antr of a matrix is its transpose over its anti-diagonal.

Proof. Let T be either a fan of Dyck paths, an oscillating tableau of weight zero, or 

a vacillating tableau of weight zero of length n. From the definition of evac and the 

construction of MX , we have that evac(T) is precisely the tableau obtained by reading 

the right border of MX from bottom to top. Note that in order to prove the statement 

for MV →O it suffices to show it for MO as Ψ intertwines σ
B

⊗m

�
,B�

and σ(C
⊗2
�

)⊗m,C⊗2
�

for 

all m � 1 by Equation (2.3), where Ψ is the virtualization map given in Definition 2.12. 

Similarly, in order to prove the statement for MV →F it suffices to prove it for MF .

Consider partitions λ, κ, ν, μ labeling the corner of a cell in MX as in (3.2), where 

X ∈ {O, F}. By [41, Lemma 4.1.2], we have μ = domW (κ + ν − λ) if and only if 

λ = domW (κ + ν − μ) as Bspin and C� are minuscule. This implies that partitions 

labeling the corners of every cell in MX ◦ evac and antr ◦MX are equal.

To complete the proof we show that filling rules Φ(λ, κ, ν, μ) given in (3.1) and (3.3)

satisfy Φ(λ, κ, ν, μ) = Φ(μ, κ, ν, λ). As partitions connected by a vertical or horizontal 

edge in MO differ by exactly one box, we have that Φ(λ, κ, ν, μ) = 1 if and only if λ =

μ = (λ1, . . . , λi, 0, . . . , 0), λi = 1 for some i, and κ = ν = (λ1, . . . , λi−1, 0, 0, . . . , 0). Thus, 

the filling rule for oscillating tableaux satisfies Φ(λ, κ, ν, μ) = Φ(μ, κ, ν, λ). By a similar 

argument the filling rule for fans of Dyck paths also satisfies the desired symmetry. �

3.2. Fomin growth diagrams

Generally speaking, a Fomin growth diagram is a means to bijectively map sequences 

of partitions satisfying certain constraints to fillings of a Ferrers shape with non-negative 

integers [9,32,42,21]. In this setting, we draw the Ferrers shape in French notation (to 

fix how the growth diagrams are arranged).

To map a filling of a Ferrers shape to a sequence of partitions we iteratively label all 

corners of cells of the shape with partitions by certain local rules. Given a cell, where 

already all three partitions on the left and bottom corners are known, the forward rules 

determine the fourth partition on the top right corner based on the filling of the cell. 

Conversely, given the three partitions on the top and right corners of a cell, the backwards 
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α β

γ δ

m

Fig. 9. A cell of a growth diagram filled with a non-negative integer m.

rules determine the last partition and the filling of the cell. When defining the local rules 

we label the cells as seen in Fig. 9.

For partitions δ and α, we define their union δ∪α to be the partition containing δi+αi

cells in row i, where δi and αi denote the number of cells in row i of δ and α respectively. 

Recall that we pad partitions with 0’s if necessary. We denote δ ∪ δ by 2δ. We define the 

intersection of two partitions δ ∩α to be the partition containing min{δi, αi} cells in row 

i.

We begin by describing the local rules for a filling of a Ferrers shape with at most 

one 1 in each row and in each column and 0’s everywhere else (omitted for readability). 

Moreover, we require that any two adjacent partitions in the labeling of our growth 

diagram (for example, γ → α and γ → δ in Fig. 9) must either coincide or the one at 

the head of the arrow is obtained from the other by adding a unit vector. We record the 

local forward rules and local backward rules for this case of 0/1 filling, which are stated 

explicitly in [21, p. 4-5].

Given a 0/1 filling of a Ferrers shape and partitions labeling the bottom and left side 

of the Ferrers shape, we apply the following local forward rules to complete the labeling.

(F1) If γ = δ = α, and there is no 1 in the cell, then β = γ.

(F2) If γ = δ �= α, then β = α.

(F3) If γ = α �= δ, then β = δ.

(F4) If γ, δ, α are pairwise different, then β = δ ∪ α.

(F5) If γ �= δ = α, then β is formed by adding a square to the (k + 1)-st row of δ = α, 

given that δ = α and γ differ in the k-th row.

(F6) If γ = δ = α, and if there is a 1 in the cell, then β is formed by adding a square to 

the first row of γ = δ = α.

Given a Ferrers shape and partitions labeling the top and right side, we apply the 

following local backward rules to complete the labeling and recover the filling.

(B1) If β = δ = α, then γ = β.

(B2) If β = δ �= α, then γ = α.

(B3) If β = α �= δ, then γ = δ.

(B4) If β, δ, α are pairwise different, then γ = δ ∩ α.

(B5) If β �= δ = α, then γ is formed by deleting a square from the (k − 1)-st row of 

δ = α, given that δ = α and β differ in the k-th row with k � 2.
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(B6) If β �= δ = α, and if β and δ = α differ in the first row, then γ = δ = α and the 

cell is filled with a 1.

Construction 3.16 ([30]). Let O = (∅ = μ0, μ1, . . . , μn = ∅) be an oscillating tableau. 

The associated triangular growth diagram is the Ferrers shape (n − 1, n − 2, . . . , 2, 1, 0). 

Label the cells according to the following specification:

(1) Label the north-east corners of the cells on the main diagonal from the top-left to 

the bottom-right with the partitions in O.

(2) For each i ∈ {0, . . . , n − 1} label the corner on the first subdiagonal adjacent to the 

labels μi and μi+1 with the partition μi ∩ μi+1.

(3) Use the backwards rules B1-B6 to obtain all other labels and the fillings of the cells.

We denote by GO(O) the symmetric n ×n matrix one obtains from the filling of the growth 

diagram by putting zeros in the unfilled cells and along the diagonal and completing this 

to a symmetric matrix.

Starting from a filling of a growth diagram one obtains the oscillating tableau by 

setting all vectors on corners on the bottom and left border of the diagram to be the 

empty partition and applying the forwards growth rules F1-F6.

Next, we will extend these local rules to any filling of a Ferrers shape with non-negative 

integers.

3.3. Fomin growth diagrams: rule Burge

Given a filling of a Ferrers shape (λ1, . . . , λ�) with non-negative integers, we produce 

a “blow up” construction of the original shape for the Burge variant which contains 

south-east chains of 1’s, as done by [21]. We begin by separating entries. If a cell is filled 

with a positive entry m, we replace the cell with an m × m grid of cells with 1’s along 

the diagonal (from top-left to bottom-right). If there exist several nonzero entries in one 

column, we arrange the grids of cells also from top-left to bottom-right, so that the 1’s 

form a south-east chain in each column. We make the same arrangements for the rows, 

also establishing a south-east chain in each row. The resulting blow up Ferrers diagram 

then contains cj columns in the original j-th column, where cj is equal to the sum of the 

entries in column j or 1 if the j-th column contains only 0’s, and ri rows in the original 

i-th row, where ri is equal to the sum of the entries in row i or 1 if the i-th row contains 

only 0’s. See Fig. 10.

Since the filling of the blow up growth diagram consists of 1’s and 0’s, we now apply 

the forward local rules. To start, we label all of the corners of the cells on the left side 

and the bottom side of the blow up growth diagram by ∅. Then we apply the forward 

local rules to determine the partition labels of the other corners, using the 0/1 filling 

and partitions defined in previous iterations of the forward local rule. Finally, we “shrink 
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Fig. 10. An example of the blow up construction for Burge rules replacing positive integer entries with south-
east chains of 1’s in each column and row. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

back” the labeled blow up growth diagram to obtain a labeling of the original Ferrers 

diagram by only considering the partitions labeling positions {(c1 + · · ·+cj , ri + · · ·+r�) |

1 � i � �, 1 � j � λ�−i+1}. These positions are precisely the intersections of the bolded 

black lines in Fig. 10. To shrink back, we ignore the labels on intersections involving any 

blue (or not bold) lines in the blow up growth diagram and assign the partition labeling

(c1 + · · · + cj , ri + · · · + r�) to the position (j, � − i + 1) in the original Ferrers diagram. 

The resulting labeling has the property that partitions on adjacent corners differ by a 

vertical strip [21, Theorem 11].

We now describe the direct Burge forward and backwards rules [21, Section 4.4]. 

Consider a cell filled by a non-negative integer m, and labeled by the partitions γ, δ, α, 

where γ ⊂ δ and γ ⊂ α, α/γ and δ/γ are vertical strips. Moreover, denote by 1A the 

truth function

1A =

{
1 if A is true,

0 otherwise.

Then β is determined by the following procedure:

Burge F0: Set CARRY := m and i := 1.

Burge F1: Set βi := max{δi, αi} + min{1γi=δi=αi
, CARRY}

Burge F2: If βi = 0, then stop and return β = (β1, β2, . . . , βi−1). If not, then set 

CARRY := CARRY − min{1γi=δi=αi
, CARRY} +min{δi, αi} −γi and i := i +1

and go to F1.

Note that this algorithm is reversible. Given β, δ, α such that β/δ and β/α are vertical 

strips, the backwards algorithm is defined by the following rules:

Burge B0: Set i := max{j | βj is positive} and CARRY := 0.
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000 111 222 311 422 331 222 111 000

111 000 111 200 311 220 111 000 111

222 111 000 111 222 311 220 111 222

311 200 111 000 111 200 111 200 311

422 311 222 111 000 111 220 311 422

331 220 311 200 111 000 111 220 331

222 111 220 111 220 111 000 111 222

111 000 111 200 311 220 111 000 111

000 111 222 311 422 331 222 111 000

3

2 1

2 1

2 1

2 1

1 1 1

1 1 1
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000
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000
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000
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2

2

1 1

1 1 1

3

Fig. 11. On the left the filled promotion matrix of F = (000, 111, 222, 311, 422, 331, 222, 111, 000). On the 
right the triangular growth diagram for the same fan.

Burge B1: Set γi := min{δi, αi} − min{1γi=αi=βi
, CARRY}.

Burge B2: Set CARRY := CARRY − min{1βi=δi=αi
, CARRY} + βi − max{δi, αi} and 

i := i − 1. If i = 0, then stop and return γ = (γ1, γ2, . . . ) and m = CARRY. If 

not, got to B1.

Construction 3.17. Let F = (∅ = μ0, μ1, . . . , μn = ∅) be an r-fan of Dyck paths. The 

associated triangular growth diagram is the Ferrers shape (n −1, n −2, . . . , 2, 1, 0). Label 

the cells according to the following specification:

(1) Label the north-east corners of the cells on the main diagonal from the top-left to 

the bottom-right with the partitions in F.

(2) For each i ∈ {0, . . . , n − 1} label the corner on the first subdiagonal adjacent to the 

labels μi and μi+1 with the partition μi ∩ μi+1.

(3) Use the backwards rules Burge B0, B1 and B2 to obtain all other labels and the 

fillings of the cells.

We denote by GF (F) the symmetric n × n matrix one obtains from the filling of 

the growth diagram by putting zeros in the unfilled cells and along the diagonal and 

completing this to a symmetric matrix.

Starting from a filling of a growth diagram one obtains the r-fan by filling the cells 

of a growth diagram, setting all vectors on corners on the bottom and left border of the 

diagram to be the empty partition and applying the forwards growth rules Burge F0-F2.

An example is given in Fig. 11.

3.4. Fomin growth diagrams: rule RSK

Given a filling of a Ferrers shape (λ1, . . . , λ�) with non-negative integers, we produce 

a “blow up” construction of the original shape for the RSK variant which contains north-
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east chains of 1’s, as done by [21]. We begin by separating entries. If a cell is filled with 

positive entry m, we replace the cell with an m × m grid of cells with 1’s along the 

off-diagonal (from bottom-left to top-right). If there exist several nonzero entries in one 

column, we arrange the grids of cells also from bottom-left to top-right, so that the 1’s 

form a north-east chain in each column. We make the same arrangements for the rows, 

also establishing a north-east chain in each row. The resulting blow up Ferrers diagram 

then contains cj columns in the original j-th column, where cj is equal to the sum of the 

entries in column j or 1 if the j-th column contains only 0’s, and ri rows in the original 

i-th row, where ri is equal to the sum of the entries in row i or 1 if the i-th row contains 

only 0’s.

Since the filling of the blow up growth diagram consists of 1’s and 0’s, we now apply the 

forward local rules. To start, we label all of the corners of the cells on the left side and the 

bottom side of the blow up growth diagram by ∅. Then, we apply the forward local rules 

to determine the partition labels of the other corners, using the 0/1 filling and partitions 

defined in previous iterations of the forward local rule. Finally, we “shrink back” the 

labeled blow up growth diagram to obtain a labeling of the original Ferrers diagram by 

only partitions labeling positions {(c1 + · · ·+cj , ri + · · ·+r�) | 1 � i � �, 1 � j � λ�−i+1}. 

To shrink back, we assign the partition labeling (c1 + · · · + cj , ri + · · · + r�) in the 

blow up growth diagram to the position (j, � − i + 1) in the original Ferrers diagram. 

The resulting labeling has the property that partitions on adjacent corners differ by a 

horizontal strip [21, Theorem 7].

The direct RSK forward rules are as follows [21, Section 4.1]: Consider a cell as in 

Fig. 9 filled by a non-negative integer m, and labeled by the partitions γ, δ, α, where 

γ ⊂ δ and γ ⊂ α, α/γ and δ/γ are horizontal strips. Then β is determined by the 

following procedure:

RSK F0: Set CARRY := m and i := 1.

RSK F1: Set βi := max{δi, αi} + CARRY

RSK F2: If βi = 0, then stop and return β = (β1, β2, . . . , βi−1). If not, then set 

CARRY := min{δi, αi} − γi and i := i + 1 and go to F1.

Note that this algorithm is reversible. Given β, δ, α such that β/δ and β/α are hori-

zontal strips, the backwards algorithm is defined by the following rules:

RSK B0: Set i := max{j | βj is positive} and CARRY := 0.

RSK B1: Set γi := min{δi, αi} − CARRY.

RSK B2: Set CARRY := βi − max{δi, αi} and i := i − 1. If i = 0, then stop and return 

γ = (γ1, γ2, . . . ) and m = CARRY. If not, got to B1.

Construction 3.18. Let V = (∅ = μ0, μ1, . . . , μn = ∅) be a vacillating tableau of 

weight zero. The associated triangular growth diagram is the Ferrers shape (n − 1, n −

2, . . . , 2, 1, 0). Label the cells according to the following specification:
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Fig. 12. The triangular growth diagram for the vacillating tableau V = (000, 100, 200, 210, 211, 111,

111, 110, 100, 000).

(1) Label the north-east corners of the cells on the main diagonal from the top-left to 

the bottom-right with the partitions 2μi.

(2) For each i ∈ {0, . . . , n − 1} label the corner on the first subdiagonal adjacent to 

the labels 2μi and 2μi+1 with the partition 2(μi ∩ μi+1) when μi �= μi+1 and the 

partition obtained by removing a cell from the final row of 2μi when μi = μi+1.

(3) Use the backwards rules RSK B0, B1 and B2 to obtain all other labels and the 

fillings of the cells.

We denote by GV (V) the symmetric n × n matrix one obtains from the filling of 

the growth diagram by putting zeros in the unfilled cells and along the diagonal and 

completing this to a symmetric matrix.

Starting from a filling of a growth diagram one obtains the vacillating tableau by 

setting all vectors on corners on the bottom and left border of the diagram to be the 

empty partition and applying the forwards growth rules RSK F0-F2.

The triangular growth diagram of the vacillating tableau from Example 3.11 is de-

picted in Fig. 12.

4. Main results

In this section, we state and prove our main results for oscillating tableaux, fans of 

Dyck paths, and vacillating tableaux. In particular, we show in Theorems 4.4, 4.5 and 4.11

that the fillings of the growth diagrams coincide with the fillings of the promotion–

evacuation diagrams. This in turn shows that the maps MF , MV →O and MV →F are 

injective. Having these injective maps to chord diagrams gives a first step towards a 

diagrammatic basis for the invariant subspaces. In Section 4.4, we give various new 

cyclic sieving phenomena associate to the promotion action.
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We begin by defining the following notation used later in this section. Let M =

(ai,j)kn
i,j=1 be a kn × kn matrix. It will often be convenient to consider M as the block 

matrix (B
(k)
i,j )n

i,j=1, where B
(k)
i,j is the k × k matrix given by (ap,q)ki,kj

p=k(i−1)+1,q=k(j−1)+1. 

We also follow the convention that for all p, q > n we have B
(k)
p,q := B

(k)
i,j , where p ≡ i

mod n and q ≡ j mod n.

Definition 4.1. For a kn × kn matrix M with block matrix decomposition given by 

(B
(k)
i,j )n

i,j=1, denote by blocksumk(M) the n × n matrix (bi,j)n
i,j=1, where bi,j is equal 

to the sum of all entries in B
(k)
i,j .

Given an n × n matrix M = (ai,j)n
i,j=1, we recursively define its skewed partial row 

sums ri,j by setting ri,i = 0 for all 1 � i � n and letting ri,j+1 = ri,j + ai,j for 

1 � j � n −1. Note that as before, we use the convention that ap,q = ai,j whenever p ≡ i

mod n and q ≡ j mod n. Similarly, the skewed partial column sums ci,j can be defined. 

Partial inverses to blocksumk are given by blowupSE
k and blowupNE

k which we presently 

define.

Definition 4.2. Let M = (ai,j)n
i,j=1 be a matrix with non-negative integer entries such 

that for each row and for each column the sum of the entries is k. Let ri,j and ci,j be its 

skewed partial row and column sums respectively. Let BSE
i,j be the k × k matrix, where 

BSE
i,j is the zero-matrix if ai,j = 0 and a zero-one-matrix if ai,j �= 0 consisting of 1’s 

in positions (ri,j + 1, ci,j + 1), . . . , (ri,j + ai,j , ci,j + ai,j) and zeros elsewhere. We define 

blowupSE(M) to be the block matrix (BSE
i,j )n

i,j=1.

Similarly, let BNE
i,j be the k × k matrix, where BBE

i,j is the zero-matrix if ai,j = 0

and a zero-one-matrix if ai,j �= 0 consisting of 1’s in positions (k − ri,j , k − ci,j − ai,j +

1), . . . , (k − ri,j − (ai,j − 1), k − ci,j) and zeros elsewhere. We define blowupNE(M) to be 

the block matrix (BNE
i,j )n

i,j=1.

Remark 4.3. Note that blowupSE(M) and blowupNE(M) are the unique kn ×kn zero-one-

matrices whose blocksumk equals M and for all 1 � i � n, the nonzero entries in the 

matrices

[Bi,i, Bi,i+1, Bi,i+2, . . . , Bi,i+n−1] and

[Bi,i, Bi+1,i, Bi+2,i, . . . , Bi+n−1,i]

form a south-east chain or a north-east chain, respectively.

4.1. Results for oscillating tableaux

The next result was not stated explicitly in [30], but can be deduced from the proof 

in the paper.
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Theorem 4.4. For an oscillating tableau of weight zero O the fillings of the growth dia-

gram (Construction 3.16) and the fillings of the promotion-evacuation (Construction 3.3) 

diagram coincide, that is

GO(O) = MO(O).

Proof. This follows from the proof of [30, Corollary 6.17, Lemma 6.26]. �

4.2. Results for r-fans of Dyck paths

We state our main results.

Theorem 4.5. For an r-fan of Dyck paths F

GF (F) = MF (F).

In other words, the fillings of its growths diagram (Construction 3.17) and the fillings of 

the promotion-evacuation diagram coincide.

In particular we obtain the corollary:

Corollary 4.6. The map MF is injective.

We now state and prove some results which are needed for the proof of Theorem 4.5.

Lemma 4.7. Let F be an r-fan of Dyck paths of length n. Then

ιF →O ◦ prBspin
(F) = prr

C�
◦ ιF →O(F).

Proof. Let ιF →O(F) = μ = (∅ = μ(0,0), . . . , μ(0,rn) = ∅). We first prove that prr
C�

(μ) =

pr
C

⊗r

�

(μ). Let pri
C�

(μ) = (∅ = μ(i,0), . . . , μ(i,rn) = ∅). From the definition of ιF →O, 

we have μ(0,k) = (1k) for all 0 � k � r where (10) denotes the empty partition ∅. 

Using the local rules for promotion and induction, we see that the sequence of partitions 

(μ(k,0), . . . , μ(k,r−k)) is equal to ((10), . . . , (1r−k)) for all 0 � k � r. This implies the 

following equality

μ = ((10), (11), . . . , (1r), μ(0,r+1), . . . , μ(0,rn))

= (μ(r,0), μ(r−1,1), . . . , μ(0,r), μ(0,r+1), . . . , μ(0,rn)).

By a similar argument, the sequence of partitions (μ(k,rn−k), . . . , μ(k,rn)) is equal to 

((1k), . . . , (10)) for all 1 � k � r implying
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prr
C�

(μ) = (μ(r,0), μ(r,1), . . . , μ(r,r(n−1)−1), (1r), (1r − 1), . . . , (10))

= (μ(r,0), μ(r,1), . . . , μ(r,rn−r−1), μ(r,rn−r), μ(r−1,rn−r−1), . . . , μ(0,r)).

By Theorem 2.27, we obtain the desired equality

pr
C

⊗r

�

(μ) = pr
C

⊗r

�

(μ(r,0), μ(r−1,1), . . . , μ(0,r), μ(0,r+1), . . . , μ(0,rn))

= (μ(r,0), μ(r,1), . . . , μ(r,r(n−1)), μ(r−1,r(n−1)+1), . . . , μ(0,rn)) = prr
C�

(μ).

Let w = wn ⊗ wn−1 ⊗ · · · ⊗ w1 ∈ B⊗n
spin and v = vrn ⊗ vrn−1 ⊗ · · · ⊗ v1 ∈ (C⊗r

�
)⊗n

be the highest weight crystal elements associated to F and μ, respectively. In order to 

show ιF →O ◦ prBspin
(F) = pr

C
⊗r

�

(μ), it suffices to show that Ψ(prBspin
(w)) = pr

C
⊗r

�

(v), 

where Ψ is the crystal isomorphism defined in Definition 2.7. Let V ⊆ C⊗r
�

be the virtual 

crystal defined in Definition 2.4. As Ψ is a crystal isomorphism, we have Ψ(prBspin
(w)) =

prV(Ψ(w)) = prV(v). As Lusztig’s involution for crystals of type Br and Cr interchanges 

the crystal operators fi and ei, the virtualization induced by the embedding Br ↪→ Cr

commutes with Lusztig’s involution. In addition virtualization is preserved under tensor 

products (see for example [3, Theorem 5.8]). Thus, we have prV(v) = pr
C

⊗r

�

(v). �

Lemma 4.8. Let F be an r-fan of Dyck paths with length n, and let (B
(r)
i,j )n

i,j=1 be the 

block matrix decomposition of the rn × rn adjacency matrix MO(ιF →OF). Then for all 

1 � i � n, the nonzero entries in the matrices

[B
(r)
i,i+1, B

(r)
i,i+2, . . . , B

(r)
i,i+n−1] and

[B
(r)
i+1,i, B

(r)
i+2,i, . . . , B

(r)
i+n−1,i]

form a south-east chain of r 1’s.

Proof. By the definition of oscillating tableaux and the local rules for promotion, 

MO is a zero-one matrix. From Lemma 4.7, Proposition 3.2, and Proposition 3.13, 

it suffices to prove that the nonzero entries in [B
(r)
n,n+1, B

(r)
n,n+2, . . . , B

(r)
n,2n−1] and 

[B
(r)
2,1 , B

(r)
3,1 , . . . , B

(r)
n,1]T form a south-east chain. Recall that by construction, the Fomin 

growth diagram of ιF →O(F) is a triangle diagram with the entries of ιF →O(F) labeling its 

diagonal. As F is an r-fan of Dyck paths, the partition (1r) sits at the corners (r, r(n −1))

and (r(n − 1), r) in the Fomin growth diagram of ιF →O(F). By Theorem 4.4, we have 

MO(ιF →O(F)) = GO(ιF →O(F)). This implies that the filling of the leftmost r columns 

and bottommost r rows matches MO(ιF →O(F)). As all the entries of MO(ιF →O(F)) are 

either 0 or 1, we have by [21, Theorem 2] that there are exactly r 1’s forming a south-east 

chain in the leftmost r columns and in the bottommost r rows. �

Remark 4.9. The proof of Lemma 4.8 implies that the diagonal block matrices B
(r)
i,i of 

MO(ιF →OF) are all zero matrices.
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Proposition 4.10. Let F be an r-fan of Dyck paths of length n. Then

MF (F) = blocksumr(MO(ιF →O(F))).

Moreover,

blowupSE
r (MF (F)) = MO(ιF →O(F)).

Proof. By Remark 4.9, the diagonal entries of MF (F) and blocksumr(MO(ιF →O(F))) are 

all zero. Let ai,j with i �= j be the entry in MF (F) that is the filling of the cell labeled by 

λ ν

κ μ
in the promotion matrix of F. To show that the number of 1’s appearing in B

(r)
i,j

of MO(ιF →O(F)) is also equal to ai,j , we first compute ai,j for i �= j. By Definition (3.3), 

ai,j is the number of negative entries in κ + ν − λ. Since λ, ν and κ, μ are consecutive 

partitions in an r-fan of Dyck paths, we know that they differ by a vector of the form 

(±1, . . . , ±1). We may write ν − λ and μ − κ as

ν − λ = ei1
+ · · · + eik

− eik+1
− · · · − eir

,

μ − κ = ej1
+ · · · + ejm

− ejm+1
− · · · − ejr

,

where

{i1, . . . , ir} = [r] = {j1, . . . , jr},

i1 < · · · < ik and ik+1 > · · · > ir,

j1 < · · · < jm and jm+1 > · · · > jr.

By the definition of μ from the local rules of Lenart [23] (see Section 2.5), we have

μ = domHr
(κ + ν − λ)

= domHr
(κ + ei1

+ · · · + eik
− eik+1

− · · · − eir
).

Recall that domHr
applied to a weight sorts the absolute values of the entries of the weight 

into weakly decreasing order. In particular, domHr
(κ + ei1

+ · · · + eik
− eik+1

− · · · − eir
)

will change all of the −1 entries of κ +ei1
+ · · ·+eik

−eik+1
−· · ·−eir

to +1 and then sort 

all entries into weakly decreasing order (note that sorting will not change the number of 

cells). We thus have two equations for μ:

μ = domHr
(κ + ei1

+ · · · + eik
− eik+1

− · · · − eir
)

= κ + ej1
+ · · · + ejm

− ejm+1
− · · · − ejr

.

Therefore, domHr
changed m − k negative entries in κ + ν − λ to +1 in μ, showing that 

ai,j = m − k.
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From the virtualization given in Definition 2.7, the partitions labeling the top of the 

first row of cells in B
(r)
i,j are λ, λ(1), . . . , λ(r−1), ν, where λ(�) = λ +ei1

+· · ·±ei�
. Similarly, 

the partitions labeling the bottom of the r-th row of cells in B
(r)
i,j are κ, κ(1), . . . , κ(r−1), μ, 

where κ(�) = κ + ej1
+ · · · ± ej�

. In particular, we have

λ ⊂ λ(1) ⊂ · · · ⊂ λ(k−1) ⊂ λ(k) ⊃ λ(k+1) ⊃ · · · ⊃ λ(r−1) ⊃ ν,

κ ⊂ κ(1) ⊂ · · · ⊂ κ(m−1) ⊂ κ(m) ⊃ κ(m+1) ⊃ · · · ⊃ κ(r−1) ⊃ μ.

Let 

λ′ ν′

κ′ μ′

label a cell in the first row of B
(r)
i,j , and note that the pairs λ′, ν′ and 

κ′, μ′ differ by a unit vector since they are adjacent partitions in an oscillating tableau. 

It is impossible for the inclusions 

λ′ ⊂ ν′

κ′ ⊃ μ′

since λ′ ⊂ ν′ implies κ′ + ν′ − λ′ = κ′ + ei

for some i, and by definition μ′ = domHr
(κ′ + ei) = κ′ + ei which contradicts μ′ ⊂ κ′. 

When 

λ′ ⊃ ν′

κ′ ⊂ μ′

occurs, we know that κ′ + ν′ − λ′ = κ′ − ei for some i since ν′ ⊂ λ′. 

Since κ′ ⊂ μ′ = domHr
(κ′ − ei), it must be that μ′ = κ′ + ei and therefore κ′ − ei

contained a negative entry. Therefore, when λ′ ⊃ ν′ and κ′ ⊂ μ′ there is a 1 filling the 

cell. Conversely, when there is a 1 filling a cell labeled

λ′ ν′

κ′ μ′

, then there is a negative 

in κ′ + ν′ − λ′ = κ′ ± ei for some i, which is only possible when κ′ + ν′ − λ′ = κ′ − ei. 

As a result, κ′ ⊂ μ′ and λ′ ⊃ ν′.

By Theorem 4.4, each row and each column in MO(ιF →O(F)) contains exactly one 

1. Therefore there is at most one cell in the first row of B
(r)
i,j where the containment 

between the top and bottom pairs of partitions is flipped. By the cases described above, 

containment between pairs of partitions labeling the bottom of the first row of cells in 

B
(r)
i,j either exactly matches the containment between pairs of partitions labeling the 

top of the first row or the switch in containment in the bottom occurs immediately 

to the right of the switch in containment in the top. The same outcome is observed 

recursively in the remaining rows of cells in B
(r)
i,j . Since we already knew the labels of 

the bottom of the r-th row to be increasing up to κ(m), we conclude that the number 

of 1’s appearing in B
(r)
i,j is equal to m − k, which we showed above is equal to ai,j . 

Therefore, MF (F) = blocksumr(MO(ιF →O(F))). Further, since the 1’s in MO(ιF →O(F))

form a south-east chain, by Remark 4.3 we have blowupSE
r (MF (F)) = MO(ιF →O(F)). �

We can now prove Theorem 4.5.
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Proof. Let F = (μ0, . . . , μn) be an r-fan of Dyck paths of length n. We have

MF (F) = blocksumr(MO(ιF →O(F))) by Proposition 4.10

= blocksumr(GO(ιF →O(F))) by Theorem 4.4.

It remains to show that blocksumr(GO(ιF →O(F))) = GF (F). The diagonal entries of 

blocksumr(GO(ιF →O(F))) and GF (F) are all zero by Remark 4.9 and by definition of 

GF respectively. As GO and GF are symmetric matrices, it suffices to show that the 

lower triangular entries of blocksumr(GO(ιF →O(F))) and GF (F) agree. Let G denote the 

triangular growth diagram associated with ιF →O(F). By the definition of ιF →O and 

Construction 3.16, the coordinate (kr, (n − k)r) is labeled with partition μk for 0 �

k � n. As G has a 0/1 filling, the local rules guarantee that the partition νk labeling

the coordinate (kr, (n − k − 1)r) of G is contained within the partition μk ∩ μk+1 for 

0 � k � n − 1. Moreover, |μk/νk| + |μk+1/νk| is equal to the total number of 1’s lying in 

either a column from kr +1 to (k +1)r or in a row from (n −k −1)r +1 to (n −k)r. From 

Lemma 4.8 and the fact that GO is symmetric, there exist exactly r such 1’s which implies 

|μk/νk| + |μk+1/νk| = r. Since μk and μk+1 differ by exactly k boxes, νk = μk ∩ μk+1

for all 0 � k � n − 1.

Let H denote the triangular growth diagram with filling given by the lower tri-

angular entries of blocksumr(GO(ιF →O(F))) and local rules given by the Burge rules. 

From Lemma 4.8, blowupSE(blocksumr(GO(ιF →O(F)))) = GO(ιF →O(F)). A result by 

Krattenthaler [21] implies that the labellings of the hypotenuse of H are given 

by (μ0, ν0, μ1, . . . , νn−1, μn). As the Burge rules are injective and the growth dia-

gram associated to F under Construction 3.17 has hypotenuse labeled by (μ0, μ0 ∩

μ1, μ1, . . . , μn−1 ∩ μn, μn), the lower triangular entries of blocksumr(GO(ιF →O(F))) and 

GF (F) are equal. �

4.3. Results for vacillating tableaux

We state our main results.

Theorem 4.11. For a vacillating tableau V

GV (V) = MV →O(V) = MV →F (V).

In other words, the filling of the growth diagram (see Construction 3.18), the filling of the 

promotion matrix MV →O(V), and the filling of the promotion matrix MV →F (V) coincide.

In particular we obtain the corollary:

Corollary 4.12. The maps MV →O and MV →F are injective.
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We will first prove the second equality in Theorem 4.11. To do so, we need the following 

lemma.

Lemma 4.13. We have the following:

(i) MV →O = blocksum2 ◦ MO ◦ ιV →O.

(ii) Denote by E the r × r identity matrix, then

MV →F + 2(r − 1)E = blocksum2 ◦ MF ◦ ιV →F .

Proof. Let V be a vacillating tableau of length n and weight zero and let X ∈ {O, F}. 

Denote by T = (∅ = μ0, μ1, . . . , μ2n = ∅) the corresponding oscillating tableau (resp. 

r-fan of Dyck path) to V using ιV →X .

Recall that MV →X is defined using the Schema (3.5) to calculate promotion. Let 
ˆ̂μ1, . . . , ˆ̂μ2n−1 be the partitions in the middle row in of this schema.

Note that we have μ2 = μ̂2n−2 = 2e1 and

μ1 = ˆ̂μ1 = ˆ̂μ2n−1 = μ̂2n−1 =

{
e1 if X = O,

1 if X = F .

It is easy to see that the squares

μ1 μ2

∅ ˆ̂μ1
and

ˆ̂μ2n−1 ∅

μ̂2n−2 μ̂2n−1

satisfy the local rule and

Φ(μ1, ∅, μ2, ˆ̂μ1) = Φ(ˆ̂μ2n−1, μ̂2n−2, ∅, μ̂2n−1) =

{
0 if X = O,

r − 1 if X = F .

Thus we have

prX(ιV →X(V)) = (∅, ˆ̂μ1, . . . , ˆ̂μ2n−1, ∅)

and obtain MV →X + 1X=F · 2(r − 1)E = blocksum2 ◦ MX ◦ ιV →X . �

The following relates the growth diagrams for ιV →O(V) and ιV →F (V).
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Lemma 4.14. Denote by S the 2r × 2r block diagonal matrix consisting of r copies of the 

block 

[
0 1
1 0

]
along the diagonal and zeros everywhere else. Then

GF ◦ ιV →F = GO ◦ ιV →O + (r − 1)S.

Proof. Let V = (λ0, . . . , λn) be a vacillating tableau of weight zero. Denote with O =

(μ0, . . . , μ2n) = ιV →O(V) the corresponding oscillating tableaux and denote with F =

(ν0, . . . , ν2n) = ιV →O(F ) the r-fan of Dyck paths.

Consider the portion of the growth diagram for the oscillating tableau involving only 

(μ2i−2, μ2i−1, μ2i) and the portion of the growth diagram for the fan of Dyck paths 

involving only (ν2i−2, ν2i−1, ν2i). We label the partitions as follows.

(4.1)

Claim. We have μ2i−2 = ν2i−2, μ2i = ν2i, α = α̂, γ = γ̂, δ = δ̂, m = 0 and n = r − 1. 

Moreover all partitions on consecutive corners on the lower left border of the diagrams 

in (4.1) differ by at most one cell.

We consider the three cases λi−1 = λi, λi−1 ⊂ λi and λi−1 ⊃ λi.

By Definition 2.21, Construction 3.16, Definition 2.22 and Construction 3.17 we have

μ2i−2 = ν2i−2 = 2λi−1, μ2i = ν2i = 2λi,

α = μ2i−2 ∩ μ2i−1, δ = μ2i−1 ∩ μ2i,

α̂ = ν2i−2 ∩ ν2i−1, δ̂ = ν2i−1 ∩ ν2i.

Case I. Assume λi−1 = λi. In this case we have μ2i−1 = 2λi−er and ν2i−1 = 2λi+1 −2er

and get

α = δ = (2λi) ∩ (2λi − er) = 2λi − er,

α̂ = δ̂ = (2λi) ∩ (2λi + 1 − 2er) = 2λi − er.

Using the backwards rules for growth diagrams we obtain

γ = γ̂ = 2λi − er, m = 0 and n = r − 1.
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Case II. Assume λi−1 ⊂ λi. In this case we have μ2i−1 = λi−1 +λi and ν2i−1 = 2λi−1 +1. 

Furthermore we obtain

α = (2λi−1) ∩ (λi−1 + λi) = 2λi−1,

α̂ = (2λi−1) ∩ (2λi−1 + 1) = 2λi−1,

δ = (λi−1 + λi) ∩ (2λi) = λi−1 + λi,

δ̂ = (2λi−1 + 1) ∩ (2λi) = λi−1 + λi.

Using the backwards rules for growth diagrams we obtain

γ = γ̂ = 2λi−1, m = 0 and n = r − 1.

Case III. Assume λi−1 ⊃ λi. This case is symmetric to Case II.

This proves the claim.

The rest of the growth diagrams must agree, as the Burge growth rules and Fomin 

growth rules agree in the case where labels on consecutive corners differ by at most one 

cell. �

Note that Lemma 4.14 implies

blocksum2 ◦ GF ◦ ιV →F = blocksum2 ◦ GO ◦ ιV →O + 2(r − 1)E. (4.2)

Now we can prove the second identity of Theorem 4.11.

Proof. We have

MV →O = blocksum2 ◦ MO ◦ ιV →O by Lemma 4.13 (i)

= blocksum2 ◦ GO ◦ ιV →O by Theorem 4.4

= blocksum2 ◦ GF ◦ ιV →F − 2(r − 1)E by Equation (4.2)

= blocksum2 ◦ MF ◦ ιV →F − 2(r − 1)E by Theorem 4.5

= MV →F by Lemma 4.13 (ii). �

It is possible to invert Lemma 4.13 (i) as follows.

Lemma 4.15. Let V be a vacillating tableau of weight zero with length n, and let (B
(2)
i,j )n

i,j=1

be the block matrix decomposition of the 2n × 2n adjacency matrix MO(ιV →OV). Then 

for all 1 � i � n, the nonzero entries in the matrices

[B
(2)
i,i+1, B

(2)
i,i+2, . . . , B

(2)
i,i+n−1] and

[B
(2)
i+1,i, B

(2)
i+2,i, . . . , B

(2)
i+n−1,i]
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form a north-east chain. In particular, we have

blowupNE
2 ◦ MV →O = MO ◦ ιV →O.

Proof. From Propositions 3.2 and 3.13, it suffices to prove that the nonzero entries in 

[B
(2)
n,n+1, B

(2)
n,n+2, . . . , B

(2)
n,2n−1] and [B

(2)
2,1 , B

(2)
3,1 , . . . , B

(2)
n,1]T form a south-east chain. Recall 

that by construction, the Fomin growth diagram of ιV →O(V) is a triangle diagram with 

the entries of ιV →O(V) labeling its diagonal. As V is a vacillating tableau of weight zero, 

the partition (2) sits at the corners (2, 2(n − 1)) and (2(n − 1), 2) in the Fomin growth 

diagram of ιV →O(V). By Theorem 4.4, we have MO(ιV →O(V)) = GO(ιV →O(V)). This 

implies that the filling of the first 2 columns and first 2 rows matches MO(ιV →O(V)). As 

all the entries of MO(ιV →O(V)) are either 0 or 1, we have that all the nonzero entries in 

the first 2 rows and the first 2 rows form a north-east chain by [21, Theorem 2]. �

We can now prove the first part of Theorem 4.11.

Proof. Putting together the current results we obtain:

blowupNE
2 ◦ MV →O = MO ◦ ιV →O by Lemma 4.15

= GO ◦ ιV →O by Theorem 4.4.

It thus remains to show: GV = blocksum2◦GO ◦ιV →O. Let V be a fixed vacillating tableau 

of weight zero and length n. Let O = ιV →O(V). Let M = (mi,j)1�i,j�2n = GO(O) and 

let B
(2)
i,j be its block matrix decomposition. Let αi,j for 0 � j � i � 2n be the partition 

in the i-th row and j-th column in the growth diagram of O. Above calculation shows 

that the nonzero entries in the matrices

[B
(2)
i,i+1, B

(2)
i,i+2, . . . , B

(2)
i,i+n−1] and

[B
(2)
i+1,i, B

(2)
i+2,i, . . . , B

(2)
i+n−1,i]

form north-east chains.

Thus the squares

α2i,2j α2i,2(j+1)

α2(i+1),2j α2(i+1),2(j+1)

with entry m2i,2j + m2i+1,2j + m2i,2j+1 + m2i+1,2j+1 satisfy the rules RSK F0-F2 and 

RSK B0-B2. As in proof of Lemma 4.14, the entries of the first subdiagonal of M are 

zero. Hence M is uniquely determined by the labels α2i, 2i and α2i,2i+1. Again by proof 
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of Lemma 4.14 we have α2i,2i = 2λi and α2i,2i+1 = (2λi) ∪ (2λi+1). As these partitions 

agree with the labels in Construction 3.18, we get GV (V) = blocksum2(GO(O)). �

Problem 4.16. Find a characterization of the image of the injective maps MF , MV →O

and MV →F .

Remark 4.17. For MO the solution to the above problem is known (see [30]). The set of 

r-symplectic oscillating tableaux of weight zero are in bijection with the set of (r + 1)-

noncrossing perfect matchings of {1, 2, . . . , n}.

4.4. Cyclic sieving

The cyclic sieving phenomenon was introduced by Reiner, Stanton and White [33] as 

a generalization of Stembridge’s q = −1 phenomenon.

Definition 4.18. Let X be a finite set and C be a cyclic group generated by c acting on 

X. Let ζ ∈ C be a |C|th primitive root of unity and f(q) ∈ Z[q] be a polynomial in q. 

Then the triple (X, C, f) exhibits the cyclic sieving phenomenon if for all d � 0 we have 

that the size of the fixed point set of cd (denoted Xcd

) satisfies |Xcd

| = f(ζd).

In this section, we will state cyclic sieving phenomena for the promotion action on 

oscillating tableaux, fans of Dyck paths, and vacillating tableaux. In Section 4.4.1 we 

review an approach using the energy function. In Sections 4.4.2 and 4.4.3 we give new 

cyclic sieving phenomena for fans of Dyck paths and vacillating tableaux, respectively.

4.4.1. Cyclic sieving using the energy function

We first introduce the energy function on tensor products of crystals. The energy 

function is defined on affine crystals, meaning that the crystal C� needs to be upgraded 

to a crystal of affine Kac–Moody type C
(1)
r and the crystals B� and Bspin need to be 

upgraded to crystals of affine Kac–Moody type B
(1)
r . In particular, these affine crystals 

have additional crystals operators f0 and e0. For further details, see for example [27,25,

10].

For an affine crystal B, the local energy function

H : B ⊗ B → Z

is defined recursively (up to an overall constant) by

H(ei(b1 ⊗ b2)) = H(b1 ⊗ b2) +

⎧
⎪⎪⎨
⎪⎪⎩

+1 if i = 0 and ε0(b1) > ϕ0(b2),

−1 if i = 0 and ε0(b1) � ϕ0(b2),

0 otherwise.
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Fig. 13. Left: Affine crystal Caf
�

of type C(1)
2 . Middle: Affine crystal Baf

�
of type B(1)

2 . Right: Affine crystal 
B

af
spin of type B(1)

2 .

The crystals we consider here are simple, meaning that there exists a dominant weight 

λ such that B contains a unique element, denoted u(B), of weight λ such that every 

extremal vector of B is contained in the Weyl group orbit of λ. We normalize H such 

that

H(u(B) ⊗ u(B)) = 0.

Example 4.19. The affine crystal Caf
� of type C

(1)
r is, for example, constructed in [10, 

Theorem 5.7]. The case of type C
(1)
2 is depicted in Fig. 13. Using the ordering 1 < 2 <

· · · < r < r < · · · < 2 < 1, we have that H(a ⊗ b) = 0 if a � b and H(a ⊗ b) = 1 if a > b.

Example 4.20. The affine crystal Baf
� of type B

(1)
r is, for example, constructed in [10, 

Theorem 5.1]. The case B
(1)
2 is depicted in Fig. 13. Using the ordering 1 < 2 < · · · < r <

0 < r < · · · < 2 < 1, we have that H(a ⊗ b) = 0 if a � b and a ⊗ b �= 0 ⊗ 0, H(1 ⊗ 1) = 2, 

and H(a ⊗ b) = 1 otherwise.

Example 4.21. The affine crystal Baf
spin of type B

(1)
r is constructed in [10, Theorem 5.3]. 

The case B
(1)
2 is depicted in Fig. 13. The classical highest weight elements in Baf

spin ⊗Baf
spin

are (ε1, . . . , εr) ⊗ (+, +, . . . , +) with εi = + for 1 � i � k and εi = − for k < i � r for 

some 0 � k � r. Denoting by m(ε1, . . . , εr) the number of − in the εi, we have

H((ε1, . . . , εr) ⊗ (+, . . . , +)) =
⌊m(ε1, . . . , εr) + 1

2

⌋
.

By definition, the local energy is constant on classical components.
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The energy function

E : B⊗n → Z

is defined as follows for b1 ⊗ · · · ⊗ bn ∈ B⊗n

E(b1 ⊗ · · · ⊗ bn) =

n−1∑

i=1

iH(bi ⊗ bi+1).

Let us now define a polynomial in q using the energy function for highest weight elements 

in B⊗n of weight zero

fn,r(q) = qcn,r

∑

b∈B
⊗n

wt(b)=0
ei(b)=0 for 1�i�r

qE(b),

where r is the rank of the type of the underlying root system and cn,r is a constant 

depending on the type. Namely,

cn,r =

{
0 for B� all r and Bspin for r ≡ 0, 3 (mod 4),

q
n
2 for C� all r and Bspin for r ≡ 1, 2 (mod 4).

The following theorem clarifies statements in [43].

Theorem 4.22. Let X be the set of highest weight elements in B⊗n of weight zero, 

where the Kirillov–Reshetikhin crystal corresponding to B is classically irreducible. Then 

(X, Cn, fn,r(q)) exhibits the cyclic sieving phenomenon, where Cn is the cyclic group of 

order n on n tensor factors inherited from the evaluation modules as in [7, Theorem 

4.2].

Proof. In [7, Proof of Theorem 4.2], Fontaine and Kamnitzer proved that (X, Cn, f̃n,r(q))

exhibits the cyclic sieving phenomenon, where f̃n,r(q) is a polynomial defined in terms 

of current algebra actions on Weyl modules of Fourier and Littelmann [8]. These argu-

ments use that the fusion product is independent of the parameters, which was proven 

by Ardonne and Kedem [1]. When the Kirillov–Reshetikhin crystals are classically ir-

reducible, the cyclic vectors for the evaluation representations are uniquely determined 

as the tensor product of classically highest weight elements. By [11], this polynomial is 

equal to the energy function polynomial up to an overall constant, proving the claim. �

When the crystal B is minuscule, it was shown by Fontaine and Kamnitzer [7] that the 

cyclic action on B⊗n is given by promotion. In particular, for oscillating tableaux and 

fans of Dyck paths Theorem 4.22 gives a cyclic sieving phenomenon with the promotion 
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action since the corresponding crystals are minuscule. The crystals corresponding to 

vacillating tableaux are not minuscule.

For the vector representation of type A, highest weight elements in the tensor product 

of weight zero under RSK are in correspondence with standard tableaux of rectangular 

shape. The energy function relates to the major index under correspondence. Hence in 

this case, Theorem 4.22 relates to results in [31].

Note that the Kirillov–Reshetikhin crystals corresponding to C�, Bspin, and B� are 

classically irreducible, and hence Theorem 4.22 gives a cyclic sieving phenomenon for 

oscillating tableaux, fans of Dyck paths, and vacillating tableaux.

4.4.2. Cyclic sieving for fans of Dyck paths

Recall from Section 2.3.2 that highest weight elements of weight zero in B⊗2n
spin of 

type Br are in bijection with r-fans of Dyck paths of length 2n. Denote by D
(r)
n the 

set of all r-fans of Dyck paths of length 2n. The cardinality of this set is given by ∏
1�i�j�n−1

i+j+2r
i+j

, see [6,20]. Define the q-analogue of this formula as

gn,r(q) =
∏

1�i�j�n−1

[i + j + 2r]q
[i + j]q

, (4.3)

where [m]q = 1 + q + q2 + · · · + qm−1.

Conjecture 4.23. The triple (D
(r)
n , C2n, gn,r(q)) exhibits the cyclic sieving phenomenon, 

where C2n is the cyclic group of order 2n that acts on D
(r)
n by applying promotion.

Example 4.24. We have

q−4f4,2(q) = g2,2(q) = q4 + q2 + 1

and

g3,2(q) = q12 + q10 + q9 + 2q8 + q7 + 2q6 + q5 + 2q4 + q3 + q2 + 1,

q−6f6,2(q) = q10 + q9 + 2q8 + q7 + 3q6 + q5 + 2q4 + q3 + q2 + 1.

Note that g3,2(q) = f6,2(q) (mod q6 − 1).

In general, we conjecture that gn,r(q) = f2n,r(q) (mod q2n−1) which has been verified 

for all n + r � 10.

Note that by [20, Theorem 10]

gn,r(q) =
∏

1�i�j�n−1

[i + j + 2r]q
[i + j]q

=
∑

λ
λ1�r

s2λ(q, q2, . . . , qn−1).
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Remark 4.25. Conjecture 4.23 is equivalent to [13, Conjecture 5.2], [15, Conjecture 4.28], 

and [14, Conjecture 5.9] on plane partitions and root posets.

Remark 4.26. There is a bijection between r-fans of Dyck paths of length 2(n − 2r) and 

r-triangulations of n-gons. A cyclic sieving phenomenon in this setting was conjectured 

by Serrano and Stump [36]. Even though the polynomial in this conjectured cyclic sieving 

phenomenon is gn−2r,r, the cyclic group acting is C2n, which is different from our setting.

4.4.3. Cyclic sieving for vacillating tableaux

Before giving our cyclic sieving phenomenon result for vacillating tableaux, we review 

Jagenteufel’s major statistic for vacillating tableaux [16]. As vacillating tableaux are in 

bijection with highest weight elements of B⊗n
�

, it suffices to define the major statistic on 

highest weight elements of B⊗n
�

.

Let u = un ⊗ · · · ⊗ u2 ⊗ u1 be a highest weight element in B⊗n
�

of type Br. As before 

let < denote the ordering 1 < 2 < · · · < r < 0 < r̄ < · · · < 2̄ < 1̄ on the elements of B�. 

We say that position i is a descent for u if

(1) ui+1 > ui, and

(2) if the suffix ui−1 ⊗ · · · ⊗ u2 ⊗ u1 has an equal number of j’s and j̄’s, then ui+1 ⊗ ui �=

j̄ ⊗ j.

Denote the set of descents of u by Des(u). Define the major index of u, denoted by 

maj(u), as the sum of its descents 
∑

i∈Des(u) i. Let hn,r(q) denote the polynomial in q

given by

hn,r(q) =
∑

u∈V
(r)

n

qmaj(u)

where V
(r)

n denotes the set of all highest weight elements of weight zero in B⊗n
�

of type 

Br.

From [16, Theorem 2.1] and [43, Theorem 6.8], we obtain the following result.

Theorem 4.27. The triple (V
(r)

n , Cn, hn,r(q)) exhibits the cyclic sieving phenomenon, 

where the cyclic group on n elements, Cn, acts on V
(r)

n by applying promotion.

Using the descent-preserving bijection in [16], we obtain another interpretation of 

hn,r(q) in terms of standard Young tableaux. Adopting the notation and terminology 

of [37] for standard Young tableaux, we say that i is a descent for the standard Young 

tableau T if i + 1 sits in a lower row than i in T in English notation. Given this, we 

analogously define maj(T ) to be the sum of the descents of T . Letting SYT(λ) denote the 

set of all standard Young tableaux of shape λ, the polynomial hn,r(q) can be reinterpreted 

as follows.



JID:YJABR AID:19168 /FLA [m1L; v1.342] P.47 (1-49)

J. Pappe et al. / Journal of Algebra ••• (••••) •••–••• 47

Theorem 4.28. [16] Let n, r � 1. Then

hn,r(q) =
∑

T ∈SYT(λ)

qmaj(T ),

where λ ranges over all partitions of n with only even parts and length at most 2r + 1

when n is even and λ ranges over all partitions of n with only odd parts and length 

exactly 2r + 1 when n is odd.

Example 4.29. We have

f7,2(q) = q22 + q21 + q20 + q19 + 2q18 + 2q17 + 2q16 + q15 + 2q14 + q13 + q12

h7,2(q) = q18 + q17 + 2q16 + 2q15 + 3q14 + 2q13 + 2q12 + q11 + q10

Note that f7,2(q) = h7,2(q) (mod q7 − 1).

Data availability

No data was used for the research described in the article.
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