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1. Introduction

Interest in invariant subspaces goes back to Rumer, Teller and Weyl [34], who studied
the quantum mechanical description of molecules. In particular, they devised diagram-
matic bases for the invariant spaces. For SL(n), a set of diagrams spanning the invariant
space was constructed by Cautis, Kamnitzer and Morrison [5], generalizing Kuperberg’s
webs [22] for SL(2) and SL(3).

The dimension of the invariant subspace of a tensor product VN of an irreducible
representation V' of a Lie algebra g is equal to the number of highest weight elements of
weight zero in BN where B is the crystal basis associated to V [43,30]. The symmetric
group acts on V®V by permuting tensor positions. By Schur-Weyl duality, this action
commutes with the action of the Lie group. In particular, the symmetric group acts on the
invariant space of V®. It was shown by Westbury [43] that the action of the long cycle
corresponds to the action of promotion on highest weight elements of weight zero in B&Y.
In this setting promotion is defined using Henriques’ and Kamnitzer’s commutor [12],
see [7,43,44]. Note that the full action of the symmetric group on invariant tensors is not
yet known in general.

In general, it is desirable to have a correspondence between highest weight elements
of weight zero in B®Y and diagram bases, such as chord diagrams, which intertwine
promotion and rotation. For Kuperberg’s webs [22], this was achieved by Petersen,
Pylyavskyy and Rhoades [29], Russell [35] and Patrias [28] by showing that the growth
algorithm of Khovanov and Kuperberg [19] intertwines promotion with rotation. For
the vector representation of the symplectic group and the adjoint representation of
the general linear group, such a correspondence between highest weight elements of
weight zero and chord diagrams which intertwines promotion and rotation was given
in [30].

In this paper, we construct an injection from the set of r-fans of Dyck paths (resp.
vacillating tableaux) of length n into the set of chord diagrams on [n] that intertwines
promotion and rotation. There is a natural correspondence between r-fans of Dyck paths
(resp. vacillating tableaux) and highest weight elements in the tensor product of the spin
crystal (resp. vector representation) of type B,.. We present this injection in two different
ways:

(1) as fillings of promotion matrices [23] (see Section 3.1);
(2) in terms of Fomin growth diagrams [9,32,21] (see Sections 3.2-3.4).

While the first description shows that the map intertwines promotion and rotation,
the second description shows injectivity. Our proof strategy uses virtualization of crys-
tals (see for example [3]) and results of [30] for oscillating tableaux of weight zero
(or equivalently highest weight words of weight zero for the vector representation type

C,):
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Fig. 1. Overview of strategy and results for r-fans of Dyck paths.

(1) Find a virtual crystal morphism for the spin crystals (resp. crystals for the vector
representation) of type B, into the r-th (resp. second) tensor power of the crystal of
the vector representation of type C. (see Section 2.2).

(2) Use this virtualization to map an r-fan of Dyck paths (resp. vacillating tableau) to
an oscillating tableau (see Section 2.3).

(3) Show that this virtualization commutes with promotion and the filling rules.

(4) Show that blowing up the filling of the growth diagram corresponds to the filling of
the oscillating tableau. In this sense, the blow up on growth diagrams is the analogue
of the virtualization on crystals.

An overview of our strategy is shown in Figs. 1 and 2.

Having the injective map to chord diagrams gives a first step towards a diagrammatic
basis for the invariant subspaces. In addition, Fontaine and Kamnitzer [7] as well as
Westbury [43] tied the promotion action on highest weight elements of weight zero to the
cyclic sieving phenomenon introduced by Reiner, Stanton and White [33]. In Section 4.4,
we make this cyclic sieving phenomenon more concrete by providing the polynomial in
terms of the energy function. For r-fans of Dyck paths, we conjecture another polynomial,
which is the g-deformation of the number of r-fans of Dyck paths, to give a cyclic
sieving phenomenon. For vacillating tableaux, we give a polynomial inspired by work of
Jagenteufel [16] for a cyclic sieving phenomenon.

The paper is organized as follows. In Section 2, we give a brief review of crystal bases
and virtual crystals and provide the virtual crystals for spin and vector representation
of type B, into type C,.. We also define promotion on crystals via the crystal commutor.
In Section 3, we give the various filling rules to construct the map to chord diagrams.
Section 4 is reserved for the statements and proofs of our main results.
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Fig. 2. Overview of strategy and results for vacillating tableaux.
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2. Crystal bases
2.1. Background on crystals

Crystal bases form a combinatorial skeleton of representations of quantum groups
associated to Lie algebras. They were first introduced by Kashiwara [17] and Lusztig [24].

Axiomatically, for a given root system ® with index set I and weight lattice A, a
crystal is a nonempty set B together with maps

ei,fi: B%Bu{@}
EiyPi- B—Z (21)
wt: B— A

for i € I, satisfying certain conditions (see for example [3, Definition 2.13]). The operators
e; and f; are called raising and lowering operators. The map wt is the weight map. The
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map ¢&; (resp. ;) measures how often e; (resp. f;) can be applied to the given crystal
element. For all crystals considered in this paper, we have for b € B

gi(b) =max{k >0 eF(b) #0} and ;(b) = max{k >0 fF(b) # 0}. (2.2)

An element b € B is called highest weight if e;(b) = 0 for all ¢ € I.
Here we define certain crystals for the root systems B, and C,. explicitly. Let e; € Z"
be the i-th unit vector with 1 in position ¢ and 0 everywhere else.

Definition 2.1. The spin crystal of type B, denoted by Bspin, consists of all r-tuples
€= (€1,€2,...,€ ), where ¢; € {£}. The weight of € is

T

1
Wt(E) = 5 Z €;€;.

i=1

The crystal operator f, annihilates € unless ¢, = +. If ¢, = 4, f,. acts on ¢ by changing
€. from + to — and leaving all other entries unchanged. The crystal operator f; for
1 < ¢ < r annihilates € unless ¢; = + and ¢;;.17 = —. In the latter case, f; acts on € by
changing ¢; to — and €;41 to +. Similarly, the crystal operator e, annihilates € unless
€. = —. If ¢, = —, e, acts on € by changing ¢, from — to +. The crystal operator e; for
1 < i < r annihilates € unless ¢; = — and ¢;;+1 = +. In the latter case, e; acts on € by
changing €; to + and €;41 to —.

The crystal Bspin of type B3 is depicted in Fig. 3.

Definition 2.2. Here we define the crystals for the vector representation of type B, and

C,.

(1) The crystal Co of type C,. consists of the elements {1,2,...,r,7,...,2,1}. The crystal
operator f; for 1 <4 < r maps i to i + 1, maps 7 + 1 to ¢ and annihilates all other
elements. The crystal operator f. maps r to 7 and annihilates all other elements.
Similarly, the crystal operator e; for 1 < i < r maps i + 1 to 4, maps i to ¢ + 1 and
annihilates all other elements. The crystal operator e, maps 7 to r and annihilates
all other elements. Furthermore, wt(i) = e; and wt(i) = —e;.

(2) The crystal Bo of type B, consists of the elements {1,2,...,7,0,7,...,2,1}. The
crystal operator f; for 1 <4 < r maps 4 to i + 1, maps 7 + 1 to ¢ and annihilates all

other elements. The crystal operator f,. maps r to 0, 0 to ¥ and annihilates all other
elements. Similarly, the crystal operator e; for 1 < i < r maps i + 1 to i, maps i to
i+ 1 and annihilates all other elements. The crystal operator e, maps 7 to 0, 0 to
r and annihilates all other elements. Furthermore, wt(i) = e; and wt(i) = —e; for
i # 0 and wt(0) = 0.

The crystals Co for type Cy and B for type By are depicted in Fig. 4.
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Fig. 3. Left: One component of the crystal V= C§3 of type C3. Middle: The virtual crystal V inside V of
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Fig. 4. Left: The crystal C of type Ca. Right: The crystal B of type Ba.
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A remarkable property of crystals is that they respect tensor products. Given two
crystals B and C associated to the same root system @, the tensor product B ® C as a
set is the Cartesian product B x C. The weight of b® ¢ € B®C is the sum of the weights
wt(b ® ¢) = wt(b) + wt(c). Furthermore

fb®e) = filb) @ c if pi(c) < ei(b),
' b® fi(e) if pi(c) > &i(b),

and

ei(b®c) = {ei(b) ©e %f pi(c) <eild),
b@ei(c) if pi(c) = ei(b).

2.2. Virtual crystals

Stembridge [39] characterized crystals which are associated with quantum group rep-
resentations for simply-laced root systems in terms of local rules on the crystal graph.
Crystals for non-simply-laced root systems can be constructed using virtual crystals,
see [3, Chapter 5].

In this paper, we utilize virtual crystals to construct Fomin growth diagrams and the
promotion operators for type B, using results for type C,.. Hence let us briefly review
the set-up for virtual crystals. Let X < Y be an embedding of Lie algebras such that
the fundamental weights w; and simple roots «; map as follows

X Y

wi '_>’Yi Z w] )
j€a(i)

X Y

Qg Y Z a; .
Jj€a(i)

Here ~; is a multiplication factor, o: IX — IY /aut is a bijection and aut is an automor-
phism on the Dynkin diagram for Y.

Let V be an ambient crystal associated to the Lie algebra Y. In [3, Chapter 5] it is
assumed that V is a crystal for a simply-laced root system. However, in general it may
be assumed that V is a crystal corresponding to a quantum group representation (which
is the case in our setting).

Definition 2.3. If there is an embedding of Lie algebras X — Y, then V C V is a virtual
crystal for the root system ®X if

V1. The ambient crystal Visa Stembridge crystal or a crystal associated to a repre-
sentation for the root system ®Y with crystal operators €;, fi, &, @; for i € IV and
weight function wt.

Please cite this article in press as: J. Pappe et al., Promotion and growth diagrams for fans of Dyck
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V2. If be V and i € I, then £;(b) has the same value for all j € o(i) and that value is
a multiple of 7;. The same is true for @;(b).
V3. The subset VU {0} C VU {0} is closed under the virtual crystal operators

e; 1= H e/’ and f;:= H fi.
j€o(i) j€a(i)
Furthermore, for all b € V

gi(b) =max{k >0 eF(b) #0} and ;(b) = max{k >0 fF(b) # 0}.

The tensor product of two virtual crystals for the same embedding X — Y is again
a virtual crystal (see for example [3, Theorem 5.8]).

2.2.1. Virtual crystal B, — C.. spin to vector

We will now apply the theory of virtual crystals to the embedding B, < C,.. In this
setting 167 = IB» = {1,2,...,7}, 0(i) = {i}, i = 2 for 1 <i < r and v, = 1. We
consider as the ambient crystal

V=Cg.

Define an ordering < on the set [r] U [F] as follows:

1<2<-<r<r<--- <1

Denote by | - | the map from [r] U [F] to [r] that sends letters to their corresponding
unbarred values.

Definition 2.4. Let V C V be given by

Vi={0,®v,_18 - Qu €V |v> vj and |v;| # |v;| for all i > j}.
Let fisz,ei:é\f for1<i<randfr:ﬁ, e, = 6.
Lemma 2.5. V U {(0} is closed under the operators f; and e; for 1 <i < 7.

Proof. Let v =v, ®v,_1 ®---®v; € V. We break into cases depending on the value of
i.

Assume that i = r. By the definition of V, v must either contain an r or 7, but not
both. If v contains an 7, then this 7 must be to the left of all other unbarred letters
and to the right of all barred letters. As f, changes the r to a 7, f.(v) is still in V. If v
contains an 7, then f,.(v) =0 € VU {0}.

Assume that ¢ # r. Note that the conditions imposed on v imply that there exists
exactly two indices j and k such that |v;| = ¢ and |vg| =i + 1. By the ordering imposed
on v, v can only be in the following forms:

Please cite this article in press as: J. Pappe et al., Promotion and growth diagrams for fans of Dyck
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e - ®I+H1I®I®---
¢ - RIRIFI®- -
¢ - RIV-RiIF1IR---
e RIFLIR QIR

For the first three cases, f;(v) = ). When v is of the form -+ ® i +1® -+ ®i® -+, f;
replaces the 7 + 1 with ¢ and the 7 with 7 4+ 1. Since v does not contain an i nor an i + 1,
fi(v) is an element of V.

The fact that e;(v) € V for all i € 1 < ¢ < r follows similarly. Thus, V is closed under
the operators f; and e;. O

Lemma 2.6. All elements of V are in the connected component of V with highest weight
elementr@r—1Q---® 1.

Proof. Clearly r®r—1®---®1 is a highest weight element of V and the only element
in V without any barred letters.

Consider v = v, ®---®wv; € V containing a barred letter. Observe that the number of
barred letters in e;(v) is at most the number of barred letters in v whenever e;(v) # 0.
Since V is finite and V is closed under e;, it suffices to show that e; (v) # () for some 1.
Let v; denote the rightmost tensor factor in v that is a barred letter, and let i = |v;].
We break into cases depending on the value of 7.

If i = r, then v; = 7 and v cannot contain an r. This implies that e, (v) # () as it acts
on v by replacing v; by r. The number of barred letters has decreased by one.

If : # r, then v; = i. As v; is the rightmost barred letter in v, v must be of the form
- ®i®--®i+1®---. Thus, e; acts by changing ¢ to 7 + 1 and i + 1 to i. Note that
the rightmost barred letter is closer to . 0O

Definition 2.7. Let ¥: Bg,in — V be the map
\11(6162"'67‘) :’Ur®vr—1®"'®vla

where v, > v,_1 > --- > v1 such that if ¢, = + then v contains an ¢ and if ¢; = — then
v contains an ¢ for all 1 <7 < 7.

Lemma 2.8. The map ¥ is a bijective map that intertwines the crystal operators on Bepin
and V.

Proof. From the definition of ¥, it is clearly bijective. Let € = €1€2--- €, € Bspin. Since
the raising and lowering operators of a crystal are partial inverses, it suffices to prove
that f;(e) # 0 if and only if f;(¥(e)) # 0 and ¥(f;(€)) = f;(¥(¢)) whenever f;(e) # 0.

Assume that f;(¥(e)) # 0. If i = r, then ¥(e) contains an r implying €, = +. Therefore
fr(e) # 0. If i # r, then e contains both an i and an 7 + 1. Thus, ¢; = + and €;11 = —
implying fi(e) # 0.

Please cite this article in press as: J. Pappe et al., Promotion and growth diagrams for fans of Dyck
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Assume that f;(e) # (0. If i = r, then e, = + and f, acts on € by replacing e, with a
—. This implies that ¥(f.(¢)) can be obtained from ¥(e) by changing the r to 7, which
agrees with the action of f,.. Therefore U(f,(¢)) = f-(¥(e)). If ¢ # r, then ¢; must be a +
and €;11 must be a —. Thus, f; swaps the signs of ¢; and ¢;41. Since ¢; = 4+ and €;41 = —,
U (e) must contain both an i + 1 and an i. This implies ¥(f;(€)) can be obtained from
U(e) by replacing the i + 1 with 4 and the ¢ with i + 1. Observe that f; acts on W(e) in
exactly the same manner. Hence, U(f;(€)) = f;(¥(e)). O

Proposition 2.9. V is a virtual crystal for the embedding of Lie algebras B, — C,..

Proof. The ambient crystal Visa crystal coming from a representation (see for exam-
ple [3]), ensuring V1. Using Lemmas 2.5 and 2.8, we have ¥(Bgpin) = V is closed under
the crystal operators f; and e;. Since the elements in both Bsyin and V satisfy (2.2), the
string lengths of Bsyin are the same as the string lengths in V), showing V3. It is also not
hard to see from Definition 2.4, that @;(v),&;(v) € 2Z for v € ¥V and 1 < i < r, proving
V2. O

An example of the virtual crystal construction for Bgpi, is given in Fig. 3. The virtual

crystal of this section also follows from [18]. An affine version of this virtual crystal
construction (which implies the one in this section) has appeared in [10, Lemma 4.2].

2.2.2. Virtual crystal B, — C,. vector to vector
The crystal B of Definition 2.2 can be realized as a virtual crystal inside the ambient
crystal V = CSQ.
Definition 2.10. Define V C V= CSQ of type C, as
V={a®a|l<a<r}U{a®a|l<a<r}U{rar}

Withfi:ﬁ,ei:é\?f0r1<i<randf1~:fr,erz/e}.

Lemma 2.11. V U {0} of Definition 2.10 is closed under the operators f; and e; for
1 < i< r and all elements in V are in the connected component of V with highest weight
1®1.

Proof. We leave this to the reader to check. O

Definition 2.12. Let ¥: Bg — V be the map ¥(a) = a®a and ¥(a) =a®aforl <a < r
and ¥(0) =r Q7.

Lemma 2.13. The map ¥ of Definition 2.12 is a bijective map that intertwines the crystal
operators on B and V.
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Fig. 5. Far Left: One connected component S of the crystal pe2 — (CE\’Q)®2 of type Ca. Middle Left: The
connected component S of the virtual crystal V®2 inside S induced by Definition 2.10. Middle Right: The
corresponding connected component 7 of the crystal 6%2 of type Bs that corresponds to S under the

embedding given in Definition 2.12. Far Right: The connected component U of (Bspin ® Bspin)®2 of type Ba
corresponding to 7 under the isomorphism given in Fig. 6.

Proof. We leave this to the reader to check. O

Proposition 2.14. V of Definition 2.10 is a virtual crystal for the embedding of Lie alge-
bras B, < C,.

Proof. We leave this to the reader to check. O

An example of the virtual crystal construction for B is given in Fig. 5. The virtual
crystal of this section also follows from [18]. An affine version of this virtual crystal
construction (which implies the one in this section) has appeared in [10, Theorem 4.8].
2.3. Highest weights of weight zero

A weight A € A is called minuscule if (\,a") € {0,£1} for all coroots aV. A crystal

B is called minuscule if wt(b) is minuscule for all b € B. Note that Bspin is a minuscule
crystal (see for example [3, Chapter 5.4]).
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A weight A is called dominant if (\,a;) > 0 for all i € I. Let AT C A denote the
set of all dominant weights. Except for spin weights, dominant weights can be identified
with partitions, where the fundamental weight w;, corresponds to a column of height h
in the partition. A partition X is a sequence A = (A1, Aa, ..., A¢) such that A\ > Ay >
-+» = XA > 0. We identify partitions that differ by trailing zeroes. That is, (3,2,0,0) is
identified with the partition (3,2).

Let By, Ba, ..., B, be minuscule crystals. For any highest weight element

U=Up, Q- Qu € B, Q- QB

we may bijectively associate a sequence of dominant weights § = u°, p!, ..., ", where
p? =37 wt(u;). The final weight 1 := p™ of such a sequence is also the weight of the
crystal element w. If p is zero, u is a highest weight element of weight zero.

Note that the number of highest weight elements of weight zero in a tensor product
of crystals is equal to the dimension of the invariant subspace, see for example [43,30].

2.8.1. Oscillating tableaux
Oscillating tableaux were introduced by Sundaram [40].

Definition 2.15 (Sundaram [}0]). An r-symplectic oscillating tableau O of length n and
shape p is a sequence of partitions

O=0=p"pn ... .u"=p)

such that the Ferrers diagrams of two consecutive partitions differ by exactly one cell,
and each partition p’ has at most r nonzero parts.

The r-symplectic oscillating tableaux of length n and shape p are in bijection with
highest weight elements in C5" of type C, and weight x. This can be seen by induction
on n. For n = 1, the only highest weight element is 1 and the only oscillating tableau is
(p,0). Suppose the claim is true forn — 1. f u = b ug € Cg” is highest weight, then

ug € Cg(nil)

must be highest weight and hence by induction corresponds to an oscillating
tableau (0 = pu®, put, ..., u"~1). The element b is either an unbarred or barred letter. If b
is the unbarred letter a, p™ differs from p”~! by a box in row a. If b is the barred letter
@, 1" has one less box in row a than u™~!. More precisely, for a highest weight element
by ® - ® by € CE", the corresponding oscillating tableau satisfies p¢ = Y7 wt(b;).
This map can be reversed and it is not hard to see that the result is a highest weight

element using the tensor product rule.

2.3.2. r-fans of Dyck paths
Next we relate highest weight elements of weight zero in Bg;ir; of type B, and r-fans of

Dyck paths. A Dyck path of length n is a path from (0,0) to (n,0) consisting of up-steps
(1,1) and down-steps (1, —1) which never crosses the line y = 0.
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Definition 2.16. An r-fan of Dyck paths F of length n is a sequence

F=0=pp',...,p" =0)

of partitions u’ with at most r parts such that the Ferrers diagram of two consecutive
partitions differs by exactly one cell in each part. In other words, ¢ differs from u'+! by
(£1,£1,...,+1) for 0 < i < n.

Example 2.17. For = 3 and n = 4, the following is a 3-fan of Dyck paths

F = ((000), (111), (220), (111), (000)).

N
spin

is highest weight if and only if >"7 ; wt(e;) is dominant for all 1 < ¢ < n. Hence highest

Since Bepin of type B, is minuscule, by the above discussion e =€, ® --- ® €; € B

weight elements of weight zero can be identified with an r-fan of Dyck paths of length
n: the j-th entry of ¢; is + if and only if the j-th Dyck path has an up-step at position
1. In particular, for a highest weight element e of weight zero, the sequence of dominant
weights p4 := Y7 2wt(e;) for 0 < ¢ < n defines an r-fan of Dyck paths consistent with
Definition 2.16.

A similar bijection was given in [26].

Example 2.18. The 3-fan of Dyck paths of Example 2.17 corresponds to the element
€= (_a ) _) ® <_7 _7+> & (+a =+, _) & (+7 +7+) € B;X[))fln

Following Definition 2.7, we obtain an embedding from the set of r-fans of Dyck paths
into the set of oscillating tableaux.

Definition 2.19. For an r-fan of Dyck paths F = () = A%, A!,..., A" = () we define the
oscillating tableau tx_,o(F) = (0 = p°, ..., u™ = () as follows. Let vt = W(A! — \I71)

for 1 <t < n with ¥ as in Definition 2.7. Then
M"“:)\t—i-z:wt(vfﬂ) for0<t<n,0<s<r.
i=1

2.3.3. Vacillating tableauz
Next we define vacillating tableaux which correspond to highest weight elements in
B%” of type B,

Definition 2.20. A (2r + 1)-orthogonal vacillating tableau of length n is a sequence of
partitions V = () = X\°,..., A\") such that:

(i) A% has at most 7 parts.
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Fig. 6. Left: B of type B3, Right: The component in Bgin ® Bspin of type B3z isomorphic to Bg.

(if) Two consecutive partitions either differ by a box or are equal.
(iii) If two consecutive partitions are equal, then all their r parts are greater than 0.

We call A" the weight of V.

A highest weight element v = u, ® --- Q@ u; € Bg” of type B, corresponds to the
(2r + 1)-vacillating tableau (0 = A%, A,... A"), where A2 = >"7 | wt(u;).

Note that By is not minuscule. The crystal By is isomorphic to the component with
highest weight element (+,—,...,—) ® (+,...,+) in Bspin @ Bspin, see Fig. 6. From this
we obtain a map from the set of vacillating tableaux of weight zero and length n into
the set of fans of Dyck paths of length 2n that we now explain. Denote by 1 the vector
e; +ey+ -+ e, and write p < v if v = p + e; for some 1.

Definition 2.21. For a vacillating tableau of weight zero V.= () = \°,... A" = ) we
define the fan of Dyck paths vy (V) = (0 = 0, ..., u?" = 0) as follows:

P2 =9\
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2. X141 if Ni—1 < A7)
prt={2. 41 if XL > N\
2- N1 41 —2e, if NiTL=\

Similarly, following Definition 2.12, we obtain an embedding from the set of vacillating
tableaux of weight zero into the set of oscillating tableaux.

0 =X, .. 0 =0) we

Definition 2.22. For a vacillating tableau of weight zero V =
define the oscillating tableau 1y o (V) = (0 = u°, ..., u** = ) as follows:

M2i:2')\i

. , (0 NN
,U,2171 _ )\271 + 2\ + 1 ' 7& 4
—e, if X7l =)\,

2.4. Promotion via crystal commutor

For finite crystals By of classical type of highest weight A\, Henriques and Kam-
nitzer [12] introduced the crystal commutor as follows. Let np, : By — By be the Lusztig
involution, which maps the highest weight vector to the lowest weight vector and inter-
changes the crystal operators f; with e;, where wg(a;) = —a under the longest element
wp. This can be extended to tensor products of such crystals by mapping each connected
component to itself using the above. Then the crystal commutor is defined as

o: By® B, — B, ® By
b®crr np,eBs, (18, (c) @15, (b)).

If we want to emphasize the crystals involved, we write 04, 5: AQ B - B® A.
Following [7,43,44], we define the promotion operator using the crystal commutor.

Definition 2.23. Let C be a crystal and u € C®" a highest weight element. Then promo-
tion pr on u is defined as ocon-1 ¢ (u).

Remark 2.24. Note that inverse promotion is given by o¢ cen-1(u). The conventions
in the literature about what is called promotion and what is called inverse promotion
are not always consistent. OQur convention here agrees with the definition of promotion
on posets that removes the letters 1 and slides letters (see for example [38,2]). The
convention here is the opposite of the convention on tableaux which removes the largest
letter and uses jeu de taquin slides (see for example [31,4]).

Example 2.25. Consider the crystal C' = B of type As (see [3]). Then

u=19392020111c C%°
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is highest weight and
Uc®57c(u) =20103012x 1.

The recording tableaux for the RSK insertion of the words 132211 and 213121 (from
right to left) are

6] 5]

’CHCAJH
’%I\DH

and

which are related by the usual (inverse) promotion operator (removing the letter 1, doing
jeu-de-taquin slides, filling the empty cell with the largest letter plus one and subtracting
1 from all entries) on standard tableaux.

Example 2.26. Promotion on the element € in Example 2.18 is

IBE2 Bepin (=(—")(++t)e(H - )1 (+++).

Note that if U: C — V C ﬁ is a virtual embedding, then virtualization intertwines
with promotion

Vo O’C@n—l7c’ = U‘A;@n_l v oW (2.3)

by Axioms V2 and V3 in Definition 2.3 as long as the folding ¢ and the multiplication
factors ~; respect the map wg(a;) = —ay. This is the case for the virtualizations in this

paper.
2.5. Promotion via local rules

Adapting local rules of van Leeuwen [41], Lenart [23] gave a combinatorial realization
of the crystal commutor 0 4, g by constructing an equivalent bijection between the highest
weight elements of A ® B and B ® A respectively. The local rules of Lenart [23] can
be stated as follows: four weight vectors A, p, k,v € A depicted in a square diagram

A v

K 2

satisfy the local rule, if 4 = domw (k +v — A), where W is the Weyl group of

the root system ® underlying A and B. Furthermore, domy(p) is the dominant weight
in the Weyl orbit of p.

Theorem 2.27 ([23, Theorem 4.4]). Let A and B be crystals embedded into tensor products
Ay ®---® Ay and By ® --- ® By of crystals of minuscule representations, respectively.
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Let w = Wi ® - - - ®@wy be a highest weight element in A® B with corresponding tableau

(0 = u07#17 e ’Nk+2
grid of squares as in (2.4), labeling the edges along the left border with wy, ..., wy and

= p) Then o4 p(w) can be computed as follows. Create a k x £

the edges along the top border with wi41, ..., Wkte:
Wk+1 Wk+¢
1k ; - ke
A0 e
i l— 5
(2.4)
! , >

g

L e

>l P B
in K H W H

0

=

For each square use the local Tule to compute the weight vectors on the square’s corners.
Given a horizontal edge from k to p in the jth column, label the edge by the element in
Aj with weight p — k. Similarly, given a vertical edge from p to v in the ith row, label
the edge by the element in B; with weight v — p. The labels Wyyg ... W1 of the edges along
the right and the bottom border of the grid then form o4 g(w) with corresponding tableau

((D = Hovﬂla s ."ak+2717uk+[ = /J)

Example 2.28. Performing Lenart’s local rules on the elements in Example 2.25 gives

which recovers oces (1 ®3®2020101)=2010301®2® 1.
3. Chord diagrams
3.1. Promotion matrices
In this section we describe a map from highest weight words of weight zero to chord
diagrams that intertwines promotion and rotation.

We start with the definition of chord diagrams and their rotation.

Definition 3.1. A chord diagram of size n is a graph with n vertices depicted on a circle
which are labeled 1,...,n in counter-clockwise orientation.
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1. Calculate promo-
tion over and over
again using a calcula-
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2. Cut and glue
the schema to
obtain a square

3. Fill all cells
according to a
function ® with

4. Interpret the
filled square as
adjacency matrix

5. Read the
chord diagram
from the adja-

tion schema integers of a graph cency matrix.
A v
P\, K, v, 1)
K H

Fig. 7. Overview of the steps in our map.

The rotation of a chord diagram is obtained by rotating all edges clockwise by 27”
around the center of the diagram.

In our setting all chord diagrams are undirected graphs with possibly multiple edges
between the same two vertices. We can therefore identify chord diagrams with their
adjacency matriz. The adjacency matrix is a symmetric n x n matrix M = (mi;)1<i,j<n
with non-negative integer entries and m;; denotes the number of edges between vertex i
and vertex j.

Proposition 3.2. Let M be the adjacency matriz of a chord diagram G. Denote by rot M
the toroidal shift of M, that is, the matrix obtained from M by first cutting the top row
and pasting it to the bottom and then cutting the leftmost column and pasting it to the
right.

Then rot M is the adjacency matriz corresponding to the rotation of G.

The proof of this proposition is easy and left to the reader as an exercise.

Let us now outline the idea to construct such a rotation and promotion intertwining
map and then provide the details on the individual steps on the examples of oscillating
tableaux, r-fans of Dyck paths and vacillating tableaux. A visual guideline can be seen
in Fig. 7.

Construction 3.3. The construction is given as follows:

Step 1: Iteratively calculate promotion of a highest weight word of weight zero and
length n using Lenart’s schema (2.4) a total of n times.

Step 2: Group the results into a square grid, called the promotion matriz.

Step 3: Fill the cells of the square grid with certain non-negative integers according to a
filling rule ® that only depends on the four corners of the cells in the schema (2.4).

Step 4: Regard the filling as the adjacency matrix of a graph, which is the chord diagram.

We now discuss the filling rules in the various cases. Note that the filling rules are
new even in the case of oscillating tableaux as the proofs in [30] did not follow this

construction.
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Fig. 8. The transformation into a promotion matrix. The highlighted part is cut away and glued on the left.

3.1.1. Chord diagrams for oscillating tableauz

Recall that the Weyl group of type C, is the hyperoctahedral group ), of signed
permutations of {+1,£2, ..., +r}. Weights are elements in Z" and dominant weights are
weakly decreasing integer vectors with non-negative entries (or equivalently partitions).
Thus, the dominant representative domg_ (\) of a weight A is obtained by sorting the
absolute values of its entries into weakly decreasing order.

We slightly modify Lenart’s schema for the crystal commutor (2.4) by omitting edge
labels as only the weights on the corners are needed. Additionally, given an oscillating
tableau O = () = u® put,..., u™ = p), we start each row with the zero weight () and
end each row with the weight u, which makes it easier to iteratively use this schema
to calculate promotion. This way the promotion of the oscillating tableau O = () =
uO pt, ..., u™ = p) is the unique sequence () = 4°, at, ..., 4™ = u), such that all squares
in the diagram

/LO /~L1 Iu2 Mnfl Mn
[/,0 ﬂl ﬂn—Q ﬂn— 1 ﬂn

satisfy the local rule of Section 2.5.

Using this schema we iteratively calculate promotion a total of n times and depict the
results in a diagram as seen in Fig. 8 on the left. This diagram consists of n promotion
schemas glued together. As pr™ = id, the labels on the top and the bottom row must be
equal to u, ..., u".

We now transform this diagram by copying everything to the right of the n-th column
into the triangular empty space on the left, see Fig. 8. In this way the labels on the right
corners of the n-th column are duplicated. We obtain an n x n grid, where each corner
of a cell is labeled with a dominant weight and the labels on the top and bottom border
are equal and the labels on the left and right border are equal. This grid is called the
promotion matriz of O.
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To obtain an adjacency matrix, we fill the cells of this diagram with non-negative
integers according to the following rule.

Definition 3.4. The filling rule for oscillating tableaux is

1 if K+ v — A contains a negative entry,
B(A, R, v, 1) = s ey (3.1)
0 else,
where the cells are labeled as depicted below:
A v
DX\, K, v, 1)
K a (3.2)

Definition 3.5. Denote by Mo the function that maps an r-symplectic oscillating tableau
of length n to an n x n adjacency matrix using Construction 3.3 and the filling rule (3.1).

Next, we generalize the above construction for r-fans of Dyck paths and vacillating
tableaux.

3.1.2. Chord diagrams for r-fans of Dyck paths
Given an r-fan of Dyck paths F = () = u% !, ..., u"™ = 0), we construct an adjacency
matrix via Construction 3.3 using the following filling rule:

Definition 3.6. The filling rule for fans of Dyck paths is

O (A, K, v, u) = number of negative entries in kK + v — A, (3.3)
where the cells are labeled as in (3.2).
Remark 3.7. Note that for oscillating tableaux at most one negative entry can occur.
Thus the filling rule (3.3) for fans of Dyck paths is a natural generalization of the

rule (3.1).

Definition 3.8. Denote by Mg the function that maps an r-fan of Dyck paths of length
n to an n x n adjacency matrix using Construction 3.3 and the filling rule (3.3).

Example 3.9. Consider the following fan corresponding to the sequence of vectors F =
(000,111, 222,311,422, 331,222,111, 000).
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(1) We apply promotion a total of n = 8 times, to obtain the full orbit.

000 111 222 311 422 331 222 111 000
000 111 200 311 220 111 000 111 000
000 111 222 311 220 111 222 111 000
000 111 200 111 200 311 200 111 000
000 111 220 311 422 311 222 111 000
000 111 220 331 220 311 200 111 000
000 111 222 111 220 111 220 111 000
000 111 000 111 200 311 220 111 000
000 111 222 311 422 331 222 111 000.

(2) We group the results into the promotion matrix and fill the cells of the square grid
according to ®. For better readability we omitted zeros.

000 111 222 311 422 331 222 111 000
3
111 000 111 200 311 220 111 000 111
2 1
222 111 000 111 222 311 220 111 222
2 1
311200111000 111 200 111 200 311
2 1
422 311 222 111 000 111 220 311 422
2 1
331 220 311 200 111 000 111 220 331
1 1 1
222 111 220 111 220 111 000 111 222
1 1 1
111 000 111 200 311 220 111 000 111

3
000 111222 311 422 331 222 111 000

(3) Regard the filling as the adjacency matrix of a graph, the chord diagram.

2 1
00000003 2/\ \3
00200010
02000100 s . N\

Mp(F) = | 00002010

P77 100020100 ,
00101010 N
4 7
01010100 \3 y/
30000000 AN
5 6

3.1.3. Chord diagrams for vacillating tableauz

Note that Bg is not minuscule and thus Theorem 2.27 is not directly applicable.
Using Definition 2.12 we can embed B in CI%)Z which gives a map vy _,o from vacillating
tableaux to oscillating tableaux of twice the length which commutes with the crystal
commutor. That is
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Ly 0 © prBD = Lly—-50 © JB%n—l’BD = U(ng)@m_l’C%g OLly 50- (3.4)

This follows directly from the properties of virtualization.

Let V be a vacillating tableau of length n and weight zero. Let O = (0 =
u® ut, ..., u®" = () be the corresponding oscillating tableau using t1-_, 0. Then we obtain
the promotion of V using the following schema

.U/O Ml /LQ /-1/3 ‘u2n—1 /J/QH
1 ~n2n—1
L P (3.5)
[LO Ial ﬂ2n73 ﬂ2n72 [L2n71 /:LZn'

Following Construction 3.3, we apply promotion a total of n times and use the cut-
and-glue procedure to obtain a 2n x 2n square. We fill the squares using the filling rule
for oscillating tableaux as given by (3.1).

To obtain an n X n adjacency matrix, we subdivide the 2n x 2n matrix into 2 x 2
blocks and take the sum of each block.

Definition 3.10. Denote by My _, o the function that maps a vacillating tableau V of
weight zero of length n to an n x n adjacency matrix using ty_,0, Schema (3.5), Con-
struction 3.3, filling rule (3.1), and block sums.

Example 3.11. Consider the vacillating tableau of length 9
V = (000, 100, 200,210,211,111,111, 110, 100, 000).

We first embed V into an oscillating tableau using the bijection ¥ from Bg to V given in
Definition 2.12. Specifically, we use ¥ to establish a correspondence between the highest
weight element in B%g associated to V and a highest weight element in (C§2)®9, from
which we obtain ty0(V) as

woo(V) = (000,100, 200, 300, 400, 410, 420, 421, 422, 322, 222, 221,
222,221, 220, 210, 200, 100, 000).

(1) We apply promotion a total of n = 9 times on the above schema (2n = 18 times on
the oscillating tableau ty—,0(V)), to obtain the full orbit. Below the first iteration
of promotion, we show all 9 applications of promotion.

000 100 200 300 400 410 420 421 422 322 222 221 222 221 220 210 200 100 000
100 200 300 310 320 321 322 222 221 220 221 220 221 211 210 110 100
000 100 200 210 220 221 222 221 220 221 222 221 222 221 220 210 200 100 000
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000 100 200 300 400 410 420 421 42 220 210 200 100 000
100 200 300 310 320 321 32 221 211 210 110 100
000 100 200 210 220 221 222 22 21 222 221 220 210 200

100 110 210 211 221 220 221 222 3 322 321 320 310 300
000 100 200 210 220 221 222 322 422 421 422 421 420 410 400
100 110 210 211 221 321 421 420 421 420 421 411 410

000 100 200 210 220 320 420 421 422 421 422 421 420

100 110 210 310 410 411 421 420 421 420 421

000 100 200 300 400 410 420 421 422 421 422

100 200 300 310 320 321 322 321 322

000 100 200 210 220 221 222 221 222

100 110 210 211 221 220 221

000 100 200 210 220 221 222

100 110 210 211 221

000 100 200 210 220

100 110 210

000 100 200

100

000

100
200
300
310
320
321
322
222
221
220
221
220
221
211
210
110
100

J. Pappe et al. / Journal of Algebra

000
100
200
210
220
221
222
221
220
221
222
221
222
221
220
210
200

oo (oooo) eoe_see

100 000

110 100

210 200 100 000
211 210 110 100
221 220 210 200
220 221 211 210
221 222 221 220 210
222 322 321 320 3
322 422 421 420
321 421 420 421
322 422 421 422
321 421 420 421 420
320 420 421 422
310 410 411 421
300 400 410 420

0 000
100
200
300
400
410
420
421
122
421
422

100 000
200 100
300 200
310 210
320 220
321 221
322 222
321 221
322 222

100 000
110 10

210
211
221
220
221

23

200 100 000
210 110 100
220 210 200 100
221 211 210 110 100
222 221 220 210

000

200 100 000

(2) We group the results into the promotion matrix and fill the cells of the square grid

according to ® in (3.1). For better readability, we subdivided the diagram into 2 x 2

blocks and took the sum of the entries in each block, as well as omitted the zeros.

000 200 400 420 422 222 222 220 200 000

200000200 220 222 220 ! 222 ! 222220 200
400 ...200...000..200 2202 222422 422 420 400
420 220 200 000 200 220 420 ! 422 ! 422420
422 222220 200000 200 400 . 420 ! 422 ! 422
222 2202 222 ..220.200 000200 220 222 222
222 ! 222 422 420 400 200 000 200 220 ! 222
22()1 222 422 ! 422420 220 200 000 200 . 220
200 220 420 ! 422 ! 422 222 220 .200 000 200
000 200400 - 420 ! 422 222 ! 222 ..220 200 000

(2) Regard the filling as the adjacency matrix of a graph, the chord diagram.

MV%O(V) =

000001100
000020000
000000110
000000011
020000000
100000001
101000000
001100000

000101000

5

6
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Alternatively, we may obtain an adjacency matrix by embedding B as a connected
component of Bg?n (see Section 2.3.3). As discussed in Definition 2.21, this embedding
gives rise to the map ty_ p from vacillating tableaux to r-fans of Dyck paths of twice
the length. From the r-fans of Dyck paths, we apply Mg to obtain a 2n x 2n matrix.
Subdividing this matrix into 2 x 2 blocks and taking block sums produces an n X n

adjacency matrix for vacillating tableaux.

Definition 3.12. Denote by My _,r the function that maps a vacillating tableau V of
weight zero and length n to an n x n adjacency matrix using ¢y, p, Construction 3.3,
filling rule (3.3), and block sums.

3.1.4. Promotion and rotation
For the various maps Mx with X € {O,F,V — O,V — F} constructed in this
section, we obtain the following main result.

Proposition 3.13. The map Mx for X € {O,F,V — O,V — F} intertwines promotion
and rotation, that is

Mx o pr =rotoMx.

Proof. Let T be either a fan of Dyck paths, an oscillating tableau of weight zero or a
vacillating tableau of weight zero of length n and denote by T its promotion.

For 0 < i,j < n let u® be the (j — i)-th entry of pri(T), where indexing starts with
zero and is understood modulo n. For 1 < 7,j < n denote by m; ; the entry in the i-th
row and j-th column of Mx (T). Similarly, denote by i*’ the (j — i)-th entry of pr’:(?)
and by m; ; the i-th row and j-th column of Mx (T).

i—1,j—1

In all of our constructions m; ; depends on the four partitions ' i—1j

ptI
)
and p™J via some function m; ; = ® (=171 phi= = 1d 0 ydY) Analogously we have
~ _ =4 /\_17_1 /\'7'_1 /\'_17' /\'7'
Tn’i,j_(I)(/J‘Z RN U TS jaﬂlj)'
A simple calculation gives
R S 15l el il i
IORER TN TR AN TR
RN B S S I BN & S 2 B RN
= Q(pt T T ) = m

~

where indices are understood modulo n. Thus, Mx(T) = rot(Mx(T)). O

Note that the promotion matrix Mx(T) is sometimes referred to as the promotion-
evacuation diagram of T as it also encodes information about the evacuation of T.
Following [30], a generalization of Schiitzenberger’s evacuation operator can be defined
on crystals as follows.

Definition 3.14. Let C be a crystal and v € C®” a highest weight element. Then cvacu-
ation evac on u is defined as
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(Iggn—2®@pr)o---o(lg ® pr)opr(u),
where (1gen-—m @ pr)(wy @ -+ @ W2 @ W1) = Wy @+ @ W41 @ Pr(wp, @ - @ wy).

Given a tableau T corresponding to a highest weight element u, we denote by evac(T)
the tableau associated to the highest weight element evac(u).

Proposition 3.15. The map Mx for X € {O,F\V — O,V — F} intertwines evacuation
and the anti-transpose, that is

Mx o evac = antroMy,
where the anti-transpose antr of a matriz is its transpose over its anti-diagonal.

Proof. Let T be either a fan of Dyck paths, an oscillating tableau of weight zero, or
a vacillating tableau of weight zero of length n. From the definition of evac and the
construction of Mx, we have that evac(T) is precisely the tableau obtained by reading
the right border of Mx from bottom to top. Note that in order to prove the statement
for My o it suffices to show it for Mp as ¥ intertwines IBE™ By and T(cg?yom 82 for
all m > 1 by Equation (2.3), where ¥ is the virtualization map given in Definition 2.12.
Similarly, in order to prove the statement for My _, p it suffices to prove it for Mp.

Consider partitions A, k, v, pu labeling the corner of a cell in Mx as in (3.2), where
X € {O,F}. By [41, Lemma 4.1.2], we have p = domw (x + v — A) if and only if
A = domw(k + v — ) as Bsin and Co are minuscule. This implies that partitions
labeling the corners of every cell in M o evac and antr oM x are equal.

To complete the proof we show that filling rules ®(\, &, v, 1) given in (3.1) and (3.3)
satisfy ®(\, k,v, u) = ®(u, k,v,\). As partitions connected by a vertical or horizontal
edge in Mg differ by exactly one box, we have that ®(\, k,v, u) = 1 if and only if A =
w=A1,...,2,0,...,0), \; = 1 for some i, and k = v = (A1,...,2,-1,0,0,...,0). Thus,
the filling rule for oscillating tableaux satisfies ®(\, &, v, u) = ®(u, &, v, A). By a similar
argument the filling rule for fans of Dyck paths also satisfies the desired symmetry. 0O

3.2. Fomin growth diagrams

Generally speaking, a Fomin growth diagram is a means to bijectively map sequences
of partitions satisfying certain constraints to fillings of a Ferrers shape with non-negative
integers [9,32,42,21]. In this setting, we draw the Ferrers shape in French notation (to
fix how the growth diagrams are arranged).

To map a filling of a Ferrers shape to a sequence of partitions we iteratively label all
corners of cells of the shape with partitions by certain local rules. Given a cell, where
already all three partitions on the left and bottom corners are known, the forward rules
determine the fourth partition on the top right corner based on the filling of the cell.
Conversely, given the three partitions on the top and right corners of a cell, the backwards
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Y )

Fig. 9. A cell of a growth diagram filled with a non-negative integer m.

rules determine the last partition and the filling of the cell. When defining the local rules
we label the cells as seen in Fig. 9.

For partitions ¢ and «, we define their union d U« to be the partition containing ;4 c;
cells in row ¢, where §; and a; denote the number of cells in row i of § and a respectively.
Recall that we pad partitions with 0’s if necessary. We denote d Ud by 25. We define the
intersection of two partitions N« to be the partition containing min{d;, o;} cells in row
i.

We begin by describing the local rules for a filling of a Ferrers shape with at most
one 1 in each row and in each column and 0’s everywhere else (omitted for readability).
Moreover, we require that any two adjacent partitions in the labeling of our growth
diagram (for example, v — « and v — ¢ in Fig. 9) must either coincide or the one at
the head of the arrow is obtained from the other by adding a unit vector. We record the
local forward rules and local backward rules for this case of 0/1 filling, which are stated
explicitly in [21, p. 4-5].

Given a 0/1 filling of a Ferrers shape and partitions labeling the bottom and left side
of the Ferrers shape, we apply the following local forward rules to complete the labeling.

(F1) If vy = 0 = «, and there is no 1 in the cell, then 8 = ~.

(F2) If vy = § # a, then 8 = a.

(F3) If vy =« # 6, then 8 =4.

(F4) If v, 9, a are pairwise different, then § = d§ U a.

(F5) If v # § = «, then § is formed by adding a square to the (k + 1)-st row of § = «,
given that 6 = o and ~ differ in the k-th row.

(F6) If v = § = o, and if there is a 1 in the cell, then S is formed by adding a square to

the first row of v = 4§ = a.

Given a Ferrers shape and partitions labeling the top and right side, we apply the

following local backward rules to complete the labeling and recover the filling.

(Bl) If 8 =0 =, then v = 0.

(B2) If 8 = d # a, then v = .

(B3) If 5 =« # 0, then y = 4.

(B4) If 8,9, a are pairwise different, then v =d N a.

(B5) If B # 0 = a, then v is formed by deleting a square from the (k — 1)-st row of
0 = «, given that § = o and S differ in the k-th row with k > 2.
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(B6) If B # 6 = o, and if B and § = « differ in the first row, then v = § = « and the
cell is filled with a 1.

Construction 3.16 (/30]). Let O = (0 = u° ut,...,u™ = 0) be an oscillating tableau.
The associated triangular growth diagram is the Ferrers shape (n —1,n—2,...,2,1,0).
Label the cells according to the following specification:

(1) Label the north-east corners of the cells on the main diagonal from the top-left to
the bottom-right with the partitions in O.

(2) For each i € {0,...,n — 1} label the corner on the first subdiagonal adjacent to the
labels p* and p**! with the partition p® N pitt.

(3) Use the backwards rules B1-B6 to obtain all other labels and the fillings of the cells.

We denote by Go(O) the symmetric nxn matrix one obtains from the filling of the growth
diagram by putting zeros in the unfilled cells and along the diagonal and completing this
to a symmetric matrix.

Starting from a filling of a growth diagram one obtains the oscillating tableau by
setting all vectors on corners on the bottom and left border of the diagram to be the
empty partition and applying the forwards growth rules F1-F6.

Next, we will extend these local rules to any filling of a Ferrers shape with non-negative
integers.

3.83. Fomin growth diagrams: rule Burge

Given a filling of a Ferrers shape (A1, ..., \¢) with non-negative integers, we produce
a “blow up” construction of the original shape for the Burge variant which contains
south-east chains of 1’s, as done by [21]. We begin by separating entries. If a cell is filled
with a positive entry m, we replace the cell with an m x m grid of cells with 1’s along
the diagonal (from top-left to bottom-right). If there exist several nonzero entries in one
column, we arrange the grids of cells also from top-left to bottom-right, so that the 1’s
form a south-east chain in each column. We make the same arrangements for the rows,
also establishing a south-east chain in each row. The resulting blow up Ferrers diagram
then contains ¢; columns in the original j-th column, where ¢; is equal to the sum of the
entries in column j or 1 if the j-th column contains only 0’s, and r; rows in the original
i-th row, where r; is equal to the sum of the entries in row 4 or 1 if the i-th row contains
only 0’s. See Fig. 10.

Since the filling of the blow up growth diagram consists of 1’s and 0’s, we now apply
the forward local rules. To start, we label all of the corners of the cells on the left side
and the bottom side of the blow up growth diagram by (). Then we apply the forward
local rules to determine the partition labels of the other corners, using the 0/1 filling
and partitions defined in previous iterations of the forward local rule. Finally, we “shrink
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2 blow u
blow up,

Fig. 10. An example of the blow up construction for Burge rules replacing positive integer entries with south-
east chains of 1’s in each column and row. (For interpretation of the colors in the figure(s), the reader is
referred to the web version of this article.)

back” the labeled blow up growth diagram to obtain a labeling of the original Ferrers
diagram by only considering the partitions labeling positions {(c¢1+---+c¢;, ri+---+7¢) |
1<i<¥4,1<j< A—it1}- These positions are precisely the intersections of the bolded
black lines in Fig. 10. To shrink back, we ignore the labels on intersections involving any
blue (or not bold) lines in the blow up growth diagram and assign the partition labeling
(1 +---+¢j,1m+ -+ 1) to the position (j,¢ —i + 1) in the original Ferrers diagram.
The resulting labeling has the property that partitions on adjacent corners differ by a
vertical strip [21, Theorem 11].

We now describe the direct Burge forward and backwards rules [21, Section 4.4].
Consider a cell filled by a non-negative integer m, and labeled by the partitions 7, J, «,
where v C § and v C «, a/v and §/v are vertical strips. Moreover, denote by 14 the
truth function

L. — 1 if A is true,
0 otherwise.

Then S is determined by the following procedure:

Burge F0: Set CARRY :=m and i := 1.

Burge F1: Set §; := max{J;, o;} + min{1,,—5,=0,, CARRY}

Burge F2: If 5, = 0, then stop and return 5 = (f1,052,...,0i—1). If not, then set
CARRY := CARRY —min{1l,,—5,—a,, CARRY } + min{d;,a;} —y; and i := i +1
and go to F1.

Note that this algorithm is reversible. Given 3, d,  such that 5/ and 8/« are vertical
strips, the backwards algorithm is defined by the following rules:

Burge B0: Set i := max{j | §; is positive} and CARRY := 0.
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000 111 222 311 422 331 222 111 000 000
3
111 000 111 200 311 220 111 000 111 000 111
2 1
222 111 000 . 111 222 311 220 111 222 000 [111 222
2 1 2
311 200 111 000 111 200 111 200 311 000 (111 211 311
2 1
422 311 222 111 000 111 220 311 422 000 111 211 |311 422
2 1 2
331220 311 200 111 000 . 111 220 331 000 111 |211 311 |321 331
1 1 1 1 1
222 111 220 111 220 111 000 111 222 000 111 211 211 |221 |221 222
1 1 1 1 1 1
111000 111 200 311 220 111 000 111 000 |111 j111 |111 {111 |111 111 111
3 3
000 111 222 311 422 331 222 111 000 000 000 [000 |000 [000 [000 000 {000 000

Fig. 11. On the left the filled promotion matrix of F = (000,111, 222, 311,422,331, 222,111, 000). On the
right the triangular growth diagram for the same fan.

Burge B1: Set ; := min{d;, @;} — min{1,,—n,=g,, CARRY}.

Burge B2: Set CARRY := CARRY —min{lg,—4,—q,, CARRY} + §8; — max{d;, o;} and
i:=14—1.If i = 0, then stop and return v = (v1,72,...) and m = CARRY. If
not, got to B1.

Construction 3.17. Let F = (0 = p° ut,...,u™ = 0) be an r-fan of Dyck paths. The
associated triangular growth diagram is the Ferrers shape (n—1,n—2,...,2,1,0). Label
the cells according to the following specification:

(1) Label the north-east corners of the cells on the main diagonal from the top-left to
the bottom-right with the partitions in F.

(2) For each i € {0,...,n — 1} label the corner on the first subdiagonal adjacent to the
labels pf and p‘*! with the partition p? Nttt

(3) Use the backwards rules Burge B0, B1 and B2 to obtain all other labels and the
fillings of the cells.

We denote by Gp(F) the symmetric n X n matrix one obtains from the filling of
the growth diagram by putting zeros in the unfilled cells and along the diagonal and
completing this to a symmetric matrix.

Starting from a filling of a growth diagram one obtains the r-fan by filling the cells
of a growth diagram, setting all vectors on corners on the bottom and left border of the
diagram to be the empty partition and applying the forwards growth rules Burge FO-F2.

An example is given in Fig. 11.
3.4. Fomin growth diagrams: rule RSK

Given a filling of a Ferrers shape (A1, ..., A¢) with non-negative integers, we produce
a “blow up” construction of the original shape for the RSK variant which contains north-
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east chains of 1’s, as done by [21]. We begin by separating entries. If a cell is filled with
positive entry m, we replace the cell with an m x m grid of cells with 1’s along the
off-diagonal (from bottom-left to top-right). If there exist several nonzero entries in one
column, we arrange the grids of cells also from bottom-left to top-right, so that the 1’s
form a north-east chain in each column. We make the same arrangements for the rows,
also establishing a north-east chain in each row. The resulting blow up Ferrers diagram
then contains ¢; columns in the original j-th column, where ¢; is equal to the sum of the
entries in column j or 1 if the j-th column contains only 0’s, and r; rows in the original
i-th row, where r; is equal to the sum of the entries in row ¢ or 1 if the i-th row contains
only 0’s.

Since the filling of the blow up growth diagram consists of 1’s and 0’s, we now apply the
forward local rules. To start, we label all of the corners of the cells on the left side and the
bottom side of the blow up growth diagram by @). Then, we apply the forward local rules
to determine the partition labels of the other corners, using the 0/1 filling and partitions
defined in previous iterations of the forward local rule. Finally, we “shrink back” the
labeled blow up growth diagram to obtain a labeling of the original Ferrers diagram by
only partitions labeling positions {(¢1 +---+¢j,ri+---+7re) | 1 <1< 4,1 < j < Apmig1 )
To shrink back, we assign the partition labeling (¢; + --- + ¢;,7; + -+ + 7¢) in the
blow up growth diagram to the position (j,¢ — ¢ + 1) in the original Ferrers diagram.
The resulting labeling has the property that partitions on adjacent corners differ by a
horizontal strip [21, Theorem 7].

The direct RSK forward rules are as follows [21, Section 4.1]: Consider a cell as in
Fig. 9 filled by a non-negative integer m, and labeled by the partitions =, §, a, where
v C 6 and v C «a, a/y and 6/ are horizontal strips. Then S is determined by the
following procedure:

RSK F0: Set CARRY :=m and i := 1.

RSK F1: Set §5; := max{d;, a;} + CARRY

RSK F2: If 5; = 0, then stop and return 8 = (61,82,...,08i—1). If not, then set
CARRY := min{d;,a;} —v; and i := i + 1 and go to F1.

Note that this algorithm is reversible. Given 8, J, « such that 5/§ and 5/« are hori-
zontal strips, the backwards algorithm is defined by the following rules:

RSK BO0: Set i := max{j | 5, is positive} and CARRY := 0.

RSK B1: Set 7; := min{d;, o;} — CARRY.

RSK B2: Set CARRY := 3; — max{d;,;} and i := i — 1. If i = 0, then stop and return
v = (y1,72,-..) and m = CARRY. If not, got to B1.

Construction 3.18. Let V = () = u% put,...,u" = 0) be a vacillating tableau of
weight zero. The associated triangular growth diagram is the Ferrers shape (n — 1,n —
2,...,2,1,0). Label the cells according to the following specification:
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000
000 200

000 200 400

000 200 [400 420

000 200 [400 [420 422

2
000 200 [200 [220 [222 222

000 100 [100 (210 {221 |221 222

1 1
000 000 (000 (100 {210 {210 220 220

1 1
000 |000 |000 000 [100 [100 [200 |200 200

1 1
000 000 |000 [000 {000 |0OO 000 |0O0O |O0O 000

Fig. 12. The triangular growth diagram for the vacillating tableau V = (000,100,200, 210,211,111,
111,110, 100, 000).

(1) Label the north-east corners of the cells on the main diagonal from the top-left to
the bottom-right with the partitions 24’

(2) For each i € {0,...,n — 1} label the corner on the first subdiagonal adjacent to
the labels 2 and 2u'*! with the partition 2(u’ N p'+!) when p® # it and the
partition obtained by removing a cell from the final row of 2u* when p® = p**+t.

(3) Use the backwards rules RSK B0, B1 and B2 to obtain all other labels and the

fillings of the cells.

We denote by Gy (V) the symmetric n x n matrix one obtains from the filling of
the growth diagram by putting zeros in the unfilled cells and along the diagonal and
completing this to a symmetric matrix.

Starting from a filling of a growth diagram one obtains the vacillating tableau by
setting all vectors on corners on the bottom and left border of the diagram to be the
empty partition and applying the forwards growth rules RSK FO-F2.

The triangular growth diagram of the vacillating tableau from Example 3.11 is de-
picted in Fig. 12.

4. Main results

In this section, we state and prove our main results for oscillating tableaux, fans of
Dyck paths, and vacillating tableaux. In particular, we show in Theorems 4.4, 4.5 and 4.11
that the fillings of the growth diagrams coincide with the fillings of the promotion—
evacuation diagrams. This in turn shows that the maps Mg, My _o and My _p are
injective. Having these injective maps to chord diagrams gives a first step towards a
diagrammatic basis for the invariant subspaces. In Section 4.4, we give various new
cyclic sieving phenomena associate to the promotion action.
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We begin by defining the following notation used later in this section. Let M =

(aiyj)f”;:l be a kn x kn matrix. It will often be convenient to consider M as the block

matrix (Bf];))” where B{®) is the k x k matrix given by (ap.q)ki

4,j=1> () p=k(i—1)+1,q=k(j—1)+1"
We also follow the convention that for all p,q > n we have B,(,’fq) = BZ-(?, where p = i

mod n and ¢ =5 mod n.

Definition 4.1. For a kn x kn matrix M with block matrix decomposition given by
(Bi(,kj))?,j:p denote by blocksumy (M) the n x n matrix (b;;);';—;, where b; ; is equal

to the sum of all entries in Bi(?.

Given an n x n matrix M = (a; )} ;—;, we recursively define its skewed partial row
sums 7;; by setting r;; = 0 for all 1 < ¢ < n and letting 7; j41 = 7;; + a;; for
1 < j < n—1. Note that as before, we use the convention that a, , = a; ; whenever p =4
mod n and ¢ = j mod n. Similarly, the skewed partial column sums ¢; ; can be defined.
Partial inverses to blocksumy are given by blowupzE and blowup,';IE which we presently
define.

Definition 4.2. Let M = (a;;);;—; be a matrix with non-negative integer entries such
that for each row and for each column the sum of the entries is k. Let r; ; and ¢; ; be its
skewed partial row and column sums respectively. Let Bgs: jE be the k x k matrix, where
BlSJE is the zero-matrix if a; ; = 0 and a zero-one-matrix if a; ; # 0 consisting of 1’s

in positions (r;; + 1,¢;5 +1),..., (75 + aij,cij + a; ;) and zeros elsewhere. We define
blowup>E (M) to be the block matrix (BYE)R ).

Similarly, let BZJ\;E be the k x k matrix, where BEJE is the zero-matrix if a;; = 0
and a zero-one-matrix if a; ; # 0 consisting of 1’s in positions (k —7; j, k —¢;j —a;; +
1),...,(k—7i; — (aij — 1),k — ¢ ;) and zeros elsewhere. We define blowup™(M) to be
the block matrix (B%E)ﬁjzl.
Remark 4.3. Note that blowup®t (M) and blowup"E (M) are the unique kn x kn zero-one-
matrices whose blocksumy equals M and for all 1 < i < n, the nonzero entries in the

matrices

[Biis Bijiv1, Bijit2, - Bijign—1] and
[Bii, Bit1,i, Bit2,is- - s Bitn—1,i]

form a south-east chain or a north-east chain, respectively.
4.1. Results for oscillating tableaux

The next result was not stated explicitly in [30], but can be deduced from the proof
in the paper.
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Theorem 4.4. For an oscillating tableau of weight zero O the fillings of the growth dia-
gram (Construction 3.16) and the fillings of the promotion-evacuation (Construction 3.3)
diagram coincide, that is

Go(0) =Mo(0).
Proof. This follows from the proof of [30, Corollary 6.17, Lemma 6.26]. O

4.2. Results for r-fans of Dyck paths

We state our main results.

Theorem 4.5. For an r-fan of Dyck paths F
Gr(F) = Mg(F).

In other words, the fillings of its growths diagram (Construction 5.17) and the fillings of
the promotion-evacuation diagram coincide.

In particular we obtain the corollary:
Corollary 4.6. The map Mg is injective.
We now state and prove some results which are needed for the proof of Theorem 4.5.

Lemma 4.7. Let F be an r-fan of Dyck paths of length n. Then

L0 © prBspin(F) = prgD otp_ol(F).

0= M(O 0 ) = ). We first prove that pre (1) =

Proof. Let tpo(F) = u =
= () = p®0,. ,u(l 7)) = ()). From the definition of tr_,0,

pregr (1). Let pre, (1)
we have p(%%) = (1%) for all 0 < k < r where (1°) denotes the empty partition 0.
Using the local rules for promotion and induction, we see that the sequence of partitions
(uF0 L p*r=R)) s equal to ((19),...,(177%)) for all 0 < k < r. This implies the
following equality

p=((19), (AY),..., (17), g @D )y

(r,0) (r—l,l)’ o ,M(O,T)’ /1’(07T+1)7 o 7,u(0 rn))

= (",

By a similar argument, the sequence of partitions (u =+ . . pkErn))

(1%),...,(19)) for all 1 < k < r implying

is equal to
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(T’O)u ,U'(T’l)a AR M(7l77-(n_1)_1)7 (17-)7 (17 - 1)7 AR (10))

(ryrn—r—1)
)

preq (1) = (u

— (/J,(T’O), M(r,l)’ Y H(r,rn—r)’ M(r—l,rn—r—l), o 7M(O,r))-

By Theorem 2.27, we obtain the desired equality

prcl%” (/“L) = pl’c%r (M(T,O)v N’(T_Ll)v s 7M(O7T)v #(O,T+1)a te ,M(O,Tn))

(r,1) (r,r(n—1))

= (um0 p 0

’H(T'—l,T'(7L—1)+1)7 o 7M(O,T'n))

= preg (1)

Let w = wy, @ Wp_1 @ - Qwy € Bf?,ﬁ, and v = Vpy @ Vpp1 @ -+ - Qv € (c§’")®"
be the highest weight crystal elements associated to F and p, respectively. In order to
show tp_,0 © prBSPin(F) = prc%r(p), it suffices to show that \If(prBspin (w)) = prcgr(v)7
where VU is the crystal isomorphism defined in Definition 2.7. Let V C CST be the virtual
crystal defined in Definition 2.4. As W is a crystal isomorphism, we have \Il(prBspin (w)) =
pry,(¥(w)) = pry(v). As Lusztig’s involution for crystals of type B, and C, interchanges
the crystal operators f; and e;, the virtualization induced by the embedding B, — C,
commutes with Lusztig’s involution. In addition virtualization is preserved under tensor
products (see for example [3, Theorem 5.8]). Thus, we have pry,(v) = Preer (v). O

Lemma 4.8. Let F be an r-fan of Dyck paths with length n, and let (Bffj))ﬁjzl be the
block matriz decomposition of the rn X rn adjacency matriz Mo (tp—oF). Then for all

1 <i < n, the nonzero entries in the matrices

B") BTy BOD, ] and
[Bi(j‘)lfi’ B’i(:-)li’ tey Bz'(:-)n—l,i]

form a south-east chain of r 1’s.

Proof. By the definition of oscillating tableaux and the local rules for promotion,
Mo is a zero-one matrix. From Lemma 4.7, Proposition 3.2, and Proposition 3.13,

it suffices to prove that the nonzero entries in [B;:LH, B,(:zlﬂ, ey Br(f’%nfl] and
[Bgl),Bgl), e B,(LT%]T form a south-east chain. Recall that by construction, the Fomin

growth diagram of tp_,o(F) is a triangle diagram with the entries of tp_, o (F) labeling its
diagonal. As F is an r-fan of Dyck paths, the partition (17) sits at the corners (r,r(n—1))
and (r(n — 1),r) in the Fomin growth diagram of tp_,o(F). By Theorem 4.4, we have
Mo (tr—o(F)) = Go(tr—o(F)). This implies that the filling of the leftmost  columns
and bottommost r rows matches Mo (tp—o(F)). As all the entries of Mo (tp—o(F)) are
either 0 or 1, we have by [21, Theorem 2] that there are exactly r 1’s forming a south-east
chain in the leftmost r columns and in the bottommost r rows. O

Remark 4.9. The proof of Lemma 4.8 implies that the diagonal block matrices BE;) of
Mo (tr—0F) are all zero matrices.
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Proposition 4.10. Let F be an r-fan of Dyck paths of length n. Then
Mz (F) = blocksum,. (Mo (tr—o(F))).
Moreover,
blowup;™ (M (F)) = Mo(tr0(F)).

Proof. By Remark 4.9, the diagonal entries of Mg (F) and blocksum,. (Mo (tr—0(F))) are
all zero. Let a; ; with i # j be the entry in Mz (F) that is the filling of the cell labeled by
A v

K |M

(r)
J

i,

in the promotion matrix of F. To show that the number of 1’s appearing in B

of Mo (tr—0(F)) is also equal to a; ;, we first compute a; ; for i # j. By Definition (3.3),
a; ; is the number of negative entries in kK + v — A. Since A, v and &, u are consecutive
partitions in an r-fan of Dyck paths, we know that they differ by a vector of the form
(£1,...,4+1). We may write v — X and p — & as

v—A=e; +--te, —e,, — e,
B—K=6€+ +e, —€,, — " —€,
where
{in, . sin} =[] ={jr, - dr}s
1 << andik+1>~~->ir,
J1 < <Jmand jmi1 >0 > gr

By the definition of y from the local rules of Lenart [23] (see Section 2.5), we have

p=domg (k+v—N\)
=domg, (k+ei, + - +e, —ey,, — - —e)
Recall that domg,. applied to a weight sorts the absolute values of the entries of the weight
into weakly decreasing order. In particular, domg, (k +e;, +---+e€;, —e;, , — - —e;)
will change all of the —1 entries of k+e;, +---+e;, —e;,_ ., —---—e;, to +1 and then sort

all entries into weakly decreasing order (note that sorting will not change the number of
cells). We thus have two equations for p:

p=domg (k+ej +---+e, —e, B — —e;)

=Kte,t+---+e —e€ ., — €.

Therefore, domg,, changed m — k negative entries in xk +v — A to +1 in y, showing that
Qi 5 =1 — k.

Please cite this article in press as: J. Pappe et al., Promotion and growth diagrams for fans of Dyck
paths and vacillating tableaux, J. Algebra (2023), https://doi.org/10.1016/j.jalgebra.2023.07.038




36 J. Pappe et al. / Journal of Algebra see (ssse) esso—see

From the virtualization given in Definition 2.7, the partitions labeling the top of the
first row of cells in BZ-(Z-) are A, (D XDy where MO = A +e;, +-- -+e;,. Similarly,

the partitions labeling the bottom of the r-th row of cells in Bi(? are k, k1. kD,
where £ = k + e;, + -t ej,. In particular, we have
\C )\(1) cC.---C )\(kfl) C )\(k) ») )\(k‘H) PETES) )\(Tfl) S,
K C ﬁ(l) Cc---C K(m—l) C ,{(m) B K(m""l) DEEEED) ,{(T'_l) D U
D74
!
Let " abel a cell in the first row of Bi(?, and note that the pairs \,2’ and
k', i’ differ by a unit vector since they are adjacent partitions in an oscillating tableau.
N cv
7 — /
It is impossible for the inclusions L% M since N c v/ implies &' +v' — X =k’ + ¢;

for some ¢, and by definition y/ = domg, (k' + €;) = &’ + e; which contradicts u’ C &’.
N DV

’ /
When L[# 9H occurs, we know that ' + 1/ — N = k' — e; for some ¢ since v/ C X.

Since k' C /' = domg, (k' — e;), it must be that y/ = k' + e; and therefore k' — e;
contained a negative entry. Therefore, when X D v/ and «’ C p’ there is a 1 filling the
A/ l//

!/
, then there is a negative

K|

cell. Conversely, when there is a 1 filling a cell labeled
in kK + v — XN =k’ & ¢; for some ¢, which is only possible when &' + 1/ — X = k' — e;.
As a result, ¥ C p/ and N D v/,

By Theorem 4.4, each row and each column in Mo (tp—o(F)) contains exactly one
1. Therefore there is at most one cell in the first row of ng) where the containment
between the top and bottom pairs of partitions is flipped. By the cases described above,
containment between pairs of partitions labeling the bottom of the first row of cells in
BZ(Z-) either exactly matches the containment between pairs of partitions labeling the
top of the first row or the switch in containment in the bottom occurs immediately
to the right of the switch in containment in the top. The same outcome is observed
recursively in the remaining rows of cells in Bi(’rj). Since we already knew the labels of
the bottom of the r-th row to be increasing up to ("), we conclude that the number
of 1’s appearing in B;Z) is equal to m — k, which we showed above is equal to a; ;.
Therefore, Mp(F) = blocksum, (Mo (tp—0o(F))). Further, since the 1’s in Mo (tp—0(F))

form a south-east chain, by Remark 4.3 we have blowup>t (Mg (F)) = Mo (tr—0(F)). O

We can now prove Theorem 4.5.
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Proof. Let F = (u°,...,u™) be an r-fan of Dyck paths of length n. We have

Mp(F) = blocksum,.(Mo (¢r—0(F))) by Proposition 4.10
= blocksum,.(Go (tr—o(F))) by Theorem 4.4.

It remains to show that blocksum,.(Go(tr—o(F))) = Gg(F). The diagonal entries of
blocksum, (Go(tr—o(F))) and Gp(F) are all zero by Remark 4.9 and by definition of
G respectively. As Gp and Gg are symmetric matrices, it suffices to show that the
lower triangular entries of blocksum,(Go(tr—o(F))) and Gr(F) agree. Let G denote the
triangular growth diagram associated with ¢tp_o(F). By the definition of tp_o and
Construction 3.16, the coordinate (kr,(n — k)r) is labeled with partition p* for 0 <
k < n. As G has a 0/1 filling, the local rules guarantee that the partition v* labeling
the coordinate (kr,(n — k — 1)r) of G is contained within the partition p* N p**! for
0 < k < n— 1. Moreover, |u* /v*| +|uFT1 /%] is equal to the total number of 1’s lying in
either a column from kr+1 to (k+1)r or in a row from (n—k—1)r+1 to (n—k)r. From
Lemma 4.8 and the fact that Go is symmetric, there exist exactly r such 1’s which implies
|k /R + [+ vk = r. Since p¥ and p*+1 differ by exactly k boxes, v* = p* N pkt?
foral 0 <k <n—1.

Let H denote the triangular growth diagram with filling given by the lower tri-
angular entries of blocksum,(Go(tr—0o(F))) and local rules given by the Burge rules.
From Lemma 4.8, blowup®E(blocksum,(Go(tr—o(F)))) = Go(tr—o(F)). A result by
Krattenthaler [21] implies that the labellings of the hypotenuse of H are given
by (u°, 00 ut, ..., vt um). As the Burge rules are injective and the growth dia-
gram associated to F under Construction 3.17 has hypotenuse labeled by (u°, u° N
phopt oo pm T 0™, p™), the lower triangular entries of blocksum,.(Go (tr—o(F))) and
Gp(F) are equal. O

4.3. Results for vacillating tableaux
We state our main results.
Theorem 4.11. For a vacillating tableau V
Gy (V) =My_0(V) =My, p(V).

In other words, the filling of the growth diagram (see Construction 3.18), the filling of the
promotion matriz My _,0(V), and the filling of the promotion matriz My _, p(V) coincide.

In particular we obtain the corollary:

Corollary 4.12. The maps My _,o and My _, g are injective.
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We will first prove the second equality in Theorem 4.11. To do so, we need the following
lemma.

Lemma 4.13. We have the following:

(i) My o = blocksumg o Mg oty 0.
(ii) Denote by E the r X r identity matriz, then

My _r + 2(7‘ — 1)E = blocksumg o Mg oty .

Proof. Let V be a vacillating tableau of length n and weight zero and let X € {O, F'}.
Denote by T = (0 = pu°, put, ..., u®" = () the corresponding oscillating tableau (resp.
r-fan of Dyck path) to V using ty_ x.

Recall that My _, x is defined using the Schema (3.5) to calculate promotion. Let

ﬁl, ..., 13”1 be the partitions in the middle row in of this schema.
Note that we have u? = ?"~2 = 2e; and

n :ﬁl :ﬁQn—l — 2t = e ifX=0,
1 ifX=F.

/-1/1 /”'2 ﬂ2n—l @
R and
@ ﬁl ﬂQn—2 ~2n—1

satisfy the local rule and

o N 0 if X =0,
<I>(u17(2),,u2,ﬂ1) — q)(’aQn—l7 A2n—2,®7ﬂ2n—1) — {T 4 1f Y_F

Thus we have
pry(tv—x (V) = (0, ,@1» e >/§2n717 0)
and obtain My x + Lx—p - 2(r — 1)E = blocksums o Mx o 1y x.

O

The following relates the growth diagrams for ty_,o(V) and 1y, (V).
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Lemma 4.14. Denote by S the 2r x 2r block diagonal matriz consisting of v copies of the

block {(1) (ﬂ along the diagonal and zeros everywhere else. Then

Growyr=Gootyo+(r—1)8.

Proof. Let V = (A% ..., A") be a vacillating tableau of weight zero. Denote with O =
(U, ..., u*") = 1ty o(V) the corresponding oscillating tableaux and denote with F =
(W0, ...,v*) = 1y _,0(F) the r-fan of Dyck paths.

Consider the portion of the growth diagram for the oscillating tableau involving only
(u%=2, 4?1 4?") and the portion of the growth diagram for the fan of Dyck paths
involving only (1?72, 12=1 12%). We label the partitions as follows.

HQFQ p2i—2
« u?l*l d V2z— 1
(4.1)
m ' n
LR R T yoolb

Claim. We have p*=2 = v%72 42 =12 a =4, vy=4,0 = 3, m=0andn=r—1.
Moreover all partitions on consecutive corners on the lower left border of the diagrams

in (4.1) differ by at most one cell.

We consider the three cases A~ = A\i, A=t C A" and A\i~1 D )%
By Definition 2.21, Construction 3.16, Definition 2.22 and Construction 3.17 we have

’u2z—2 — 1/21—2 _ 2)\z—17 MQz _ VZ@ _ 2)\17

_ 22 2i—1 _ ,,2i—1 24
a=pm N pT, o=p" Np
& = V27,—2 N V21—17 S = VQz—l N ]/21.

Case I. Assume \'~! = \?. In this case we have u?~! = 2\ —e, and v?*~1 = 2)\'+1—2e,.
and get

=0=02\)N 2\ —e,) =2)\" —e,,
S=(2X)N 2N +1 —2e,) =2\ —e,.

Q

jo)
Il

Using the backwards rules for growth diagrams we obtain

y=4=2\"—-e,, m=0 and n=r—1
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Case IL. Assume A~ C A% In this case we have 2=t = X=1 4+ \P and v —1 = 2\~ 1 1.
Furthermore we obtain

Using the backwards rules for growth diagrams we obtain
y=4=2\"1 m=0 and n=r—1

Case III. Assume A*~! D A%, This case is symmetric to Case II.
This proves the claim.

The rest of the growth diagrams must agree, as the Burge growth rules and Fomin
growth rules agree in the case where labels on consecutive corners differ by at most one

cell. O
Note that Lemma 4.14 implies
blocksums o Gg o 1y, = blocksums 0 Gp o Ly —0 + 2(r — 1)E. (4.2)
Now we can prove the second identity of Theorem 4.11.

Proof. We have

My 0 = blocksumy o Mg o 1y 0
= blocksumsy o Gp o 1y 0
= blocksums 0 Gp oty ,p —2(r — 1)E
= blocksuma o Mp oty g —2(r—1)E

=Myor

It is possible to invert Lemma 4.13 (i) as follows.

Lemma 4.15. Let V be a vacillating tableau of weight zero with length n, and let (BZ(?)"

by Lemma 4.13 (i)

by Theorem 4.4

by Equation (4.2)

by Theorem 4.5

by Lemma 4.13 (ii). O

ij=1

be the block matriz decomposition of the 2n x 2n adjacency matriz Mo (ty oV). Then

for all 1 < i < n, the nonzero entries in the matrices

2 2 2
B& 1, B, BEL, )

2 2 2
[Bi(-l-)l,i’ Bz'(+)27i’ ce Bz'(+)n—1,i]

and
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form a north-east chain. In particular, we have
NE _
blowups = oMy .0 = Mg oty 0.

Proof. From Propositions 3.2 and 3.13, it suffices to prove that the nonzero entries in
[Br(leﬂ, Bffzﬂrw ce Bg%nfl] and [Bfl)7 B:fl)7 e BSLQ%}T form a south-east chain. Recall
that by construction, the Fomin growth diagram of ty_,o(V) is a triangle diagram with
the entries of 1y o (V) labeling its diagonal. As V is a vacillating tableau of weight zero,
the partition (2) sits at the corners (2,2(n — 1)) and (2(n — 1),2) in the Fomin growth
diagram of ty,0(V). By Theorem 4.4, we have Mo (ty—0(V)) = Go(ty—o(V)). This
implies that the filling of the first 2 columns and first 2 rows matches Mo (10 (V)). As
all the entries of Mo (1 0(V)) are either 0 or 1, we have that all the nonzero entries in

the first 2 rows and the first 2 rows form a north-east chain by [21, Theorem 2]. O
We can now prove the first part of Theorem 4.11.
Proof. Putting together the current results we obtain:

blowupgIE oMy_o=Mpow _0o by Lemma 4.15

=Gpoiyo by Theorem 4.4.

It thus remains to show: Gy = blocksumsoGpory . Let V be a fixed vacillating tableau
of weight zero and length n. Let O = ty0(V). Let M = (m; ;)1<ij<2n = Go(O) and
let Bz(?j) be its block matrix decomposition. Let «; ; for 0 < j <7 < 2n be the partition
in the i-th row and j-th column in the growth diagram of O. Above calculation shows
that the nonzero entries in the matrices

2 2 2
[Bi(d)Jrlv Bi(,i)—i-27 S BZ-(J)Jrn_l] and
2 (2 2
[Bi(+)1,i7 Bi+)2,i7 LR Bi(+)n71,i]
form north-east chains.
Thus the squares
Q2i2j Q24,2(j+1)

Q2(341),25 | ¥2(i41),2(j+1)

with thI‘y ma;,2; + m2i41,25 + m24,254+1 + mM2i4+1,25+1 Satisfy the rules RSK FO-F2 and
RSK B0-B2. As in proof of Lemma 4.14, the entries of the first subdiagonal of M are
zero. Hence M is uniquely determined by the labels 24, 2i and g 2,+1. Again by proof
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of Lemma 4.14 we have ag;2; = 2% and ag; 2,41 = (2A7) U (2A"T1). As these partitions
agree with the labels in Construction 3.18, we get Gy (V) = blocksumy(Go(0)). O

Problem 4.16. Find a characterization of the image of the injective maps Mg, My _0o
and MV—>F-

Remark 4.17. For Mo the solution to the above problem is known (see [30]). The set of
r-symplectic oscillating tableaux of weight zero are in bijection with the set of (r + 1)-
noncrossing perfect matchings of {1,2,...,n}.

4.4. Cyclic sieving

The cyclic sieving phenomenon was introduced by Reiner, Stanton and White [33] as
a generalization of Stembridge’s ¢ = —1 phenomenon.

Definition 4.18. Let X be a finite set and C be a cyclic group generated by c acting on
X. Let ¢ € C be a |C|*" primitive root of unity and f(q) € Z[g] be a polynomial in q.
Then the triple (X, C, f) exhibits the cyclic sieving phenomenon if for all d > 0 we have
that the size of the fixed point set of ¢ (denoted XCd) satisfies |Xcd\ = f(¢%).

In this section, we will state cyclic sieving phenomena for the promotion action on
oscillating tableaux, fans of Dyck paths, and vacillating tableaux. In Section 4.4.1 we
review an approach using the energy function. In Sections 4.4.2 and 4.4.3 we give new
cyclic sieving phenomena for fans of Dyck paths and vacillating tableaux, respectively.

4.4.1. Cyclic sieving using the energy function

We first introduce the energy function on tensor products of crystals. The energy
function is defined on affine crystals, meaning that the crystal Cg needs to be upgraded
to a crystal of affine Kac—-Moody type C,(l) and the crystals Bg and Bspin need to be
upgraded to crystals of affine Kac—Moody type Bﬁl) . In particular, these affine crystals
have additional crystals operators fy and eg. For further details, see for example [27,25,
10].

For an affine crystal B, the local energy function

H:BB—Z

is defined recursively (up to an overall constant) by

+1 ifi=0and Eo(bl) > (po(bg),
H(e;j(by ®by)) =H(by ®ba) +<¢ —1 ifi=0and eo(b1) < wo(be),

0 otherwise.
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Fig. 13. Left: Affine crystal Can of type Cél)‘ Middle: Affine crystal Ba[:ﬂ of type Bél). Right: Affine crystal
B:;n of type Bél).

The crystals we consider here are simple, meaning that there exists a dominant weight
A such that B contains a unique element, denoted u(B), of weight A\ such that every

extremal vector of B is contained in the Weyl group orbit of A\. We normalize H such
that

H(u(B) @ u(B)) = 0.

Example 4.19. The affine crystal Cf’]f of type C’T(l) is, for example, constructed in [10,
Theorem 5.7]. The case of type 02(1) is depicted in Fig. 13. Using the ordering 1 < 2 <
<P <T <. <2<1, we have that Hla®b) =0ifa <band H(a®b) =1ifa > b.

Example 4.20. The affine crystal Ban of type B,(«l) is, for example, constructed in [10,
Theorem 5.1]. The case Bél) is depicted in Fig. 13. Using the ordering 1 <2 < --- <71 <

0<7<---<2<1,wehave that Ha®b) =0ifa<band a®@b# 020, H1I®1) = 2,
and H(a ® b) = 1 otherwise.

Example 4.21. The affine crystal Bj;in of type Bﬁl) is constructed in [10, Theorem 5.3].
The case Bél) is depicted in Fig. 13. The classical highest weight elements in B B

spin spin
are (€1,...,6)® (+,+,...,+) with e, =+ for 1 <i < kand e = — for k < i < r for
some 0 < k < r. Denoting by m(eq,...,€e,) the number of — in the ¢;, we have
m(€y, ..., )+ 1
H((erroer) ® (4., 4)) = | M) £

By definition, the local energy is constant on classical components.
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The energy function
E:B* 57
is defined as follows for b; @ --- ® b,, € B®™

n—1
B ®-@b,) =Y iH(b; @bis1).

i=1

Let us now define a polynomial in ¢ using the energy function for highest weight elements
in B®" of weight zero

fn,r(Q) =g § qE(b)’
beBE™
wt(b)=0
e;(b)=0 for 1<i<r

where 7 is the rank of the type of the underlying root system and c, , is a constant
depending on the type. Namely,

0  for Bg all r and Bgpin for r = 0,3 (mod 4),
Cn,r = n
g2 for Cg all r and Bepin for r = 1,2 (mod 4).

The following theorem clarifies statements in [43].

Theorem 4.22. Let X be the set of highest weight elements in B®" of weight zero,
where the Kirillov—Reshetikhin crystal corresponding to B is classically irreducible. Then
(X, Ch, fn.r(q)) exhibits the cyclic sieving phenomenon, where C,, is the cyclic group of
order m on n tensor factors inherited from the evaluation modules as in [7, Theorem

4.2].

Proof. In [7, Proof of Theorem 4.2], Fontaine and Kamnitzer proved that (X, Cp, fn.(q))
exhibits the cyclic sieving phenomenon, where ﬁw(q) is a polynomial defined in terms
of current algebra actions on Weyl modules of Fourier and Littelmann [8]. These argu-
ments use that the fusion product is independent of the parameters, which was proven
by Ardonne and Kedem [1]. When the Kirillov—Reshetikhin crystals are classically ir-
reducible, the cyclic vectors for the evaluation representations are uniquely determined
as the tensor product of classically highest weight elements. By [11], this polynomial is
equal to the energy function polynomial up to an overall constant, proving the claim. O

When the crystal B is minuscule, it was shown by Fontaine and Kamnitzer [7] that the
cyclic action on B®" is given by promotion. In particular, for oscillating tableaux and
fans of Dyck paths Theorem 4.22 gives a cyclic sieving phenomenon with the promotion
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action since the corresponding crystals are minuscule. The crystals corresponding to
vacillating tableaux are not minuscule.

For the vector representation of type A, highest weight elements in the tensor product
of weight zero under RSK are in correspondence with standard tableaux of rectangular
shape. The energy function relates to the major index under correspondence. Hence in
this case, Theorem 4.22 relates to results in [31].

Note that the Kirillov-Reshetikhin crystals corresponding to Co, Bspin, and B are
classically irreducible, and hence Theorem 4.22 gives a cyclic sieving phenomenon for
oscillating tableaux, fans of Dyck paths, and vacillating tableaux.

4.4.2. Cyclic sieving for fans of Dyck paths

Recall from Section 2.3.2 that highest weight elements of weight zero in Bfi?n" of
type B, are in bijection with r-fans of Dyck paths of length 2n. Denote by D,(f) the
set of all r-fans of Dyck paths of length 2n. The cardinality of this set is given by

[icicicn1 it.{:;%, see [6,20]. Define the g-analogue of this formula as

[i + j 4 2]
In,r(q) = H [H_i-]q, (4.3)
1<i<j<n—1 Ja

where [m]q =1 +q+q2 +-~-+qm_1.

Conjecture 4.23. The triple (D&T),an,gn,r(q)) ezhibits the cyclic sieving phenomenon,

where Cay, is the cyclic group of order 2n that acts on Dgf) by applying promotion.

Example 4.24. We have

G *f12(0) = g22(q) = ¢* + @ + 1
and

90320) =+ + ¢ +2¢% +¢" +2¢° + ¢® + 2¢* + ¢ + > + 1,
T Cfe2(@) =" +¢" +2¢¥ +¢" +3¢° + ¢ +2¢* + P + P + 1.

Note that gs2(q) = fs,2(¢) (mod ¢° —1).

In general, we conjecture that gy, (¢) = fonr(¢) (mod ¢*"—1) which has been verified
for all n +r < 10.
Note that by [20, Theorem 10]

i+ +2r o
gr@= ]I @228»((1&2,”.7(1 b.

[i + jlq
1<ig<yjsn—1 A
I Ar<r
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Remark 4.25. Conjecture 4.23 is equivalent to [13, Conjecture 5.2], [15, Conjecture 4.28],
and [14, Conjecture 5.9] on plane partitions and root posets.

Remark 4.26. There is a bijection between r-fans of Dyck paths of length 2(n — 2r) and
r-triangulations of n-gons. A cyclic sieving phenomenon in this setting was conjectured
by Serrano and Stump [36]. Even though the polynomial in this conjectured cyclic sieving
phenomenon is g, 2, r, the cyclic group acting is Cs,,, which is different from our setting.

4.4.3. Cyclic sieving for vacillating tableaux

Before giving our cyclic sieving phenomenon result for vacillating tableaux, we review
Jagenteufel’s major statistic for vacillating tableaux [16]. As vacillating tableaux are in
bijection with highest weight elements of BE™, it suffices to define the major statistic on
highest weight elements of B%”.

Let u =u, ® --- ® ug ® u; be a highest weight element in B%” of type B,.. As before
let < denote the ordering 1 <2< ---<r <0< 7 < --- <2< 1 on the elements of B.
We say that position i is a descent for u if

(1) wip1 > ug, and
(2) if the suffix u;—1 ® - - ® us ® u1 has an equal number of j’s and 4’s, then w; 41 @u; #
J®j.

Denote the set of descents of u by Des(u). Define the major index of w, denoted by
maj(u), as the sum of its descents 3, pes(,) @ Let hn(g) denote the polynomial in ¢
given by

hn,r(q) = Z gt

uGV,ET)

where Vyfr) denotes the set of all highest weight elements of weight zero in Bg" of type
B,.
From [16, Theorem 2.1] and [43, Theorem 6.8], we obtain the following result.

Theorem 4.27. The triple (VTST),Cn,hnm(q)) exhibits the cyclic sieving phenomenon,
where the cyclic group on n elements, Cy,, acts on V,S") by applying promotion.

Using the descent-preserving bijection in [16], we obtain another interpretation of
hn(¢) in terms of standard Young tableaux. Adopting the notation and terminology
of [37] for standard Young tableaux, we say that ¢ is a descent for the standard Young
tableau T if i 4+ 1 sits in a lower row than ¢ in T in English notation. Given this, we
analogously define maj(T") to be the sum of the descents of T'. Letting SYT(A) denote the
set of all standard Young tableaux of shape A, the polynomial h,, (¢) can be reinterpreted
as follows.
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Theorem 4.28. [16] Let n,r > 1. Then

hn,r(q) = Z qmaj(T)a

TESYT(N)

where A ranges over all partitions of n with only even parts and length at most 2r + 1
when n is even and \ ranges over all partitions of n with only odd parts and length
exactly 2r + 1 when n is odd.

Example 4.29. We have

f7,2(q) :q22+q21+q20+q19+2q18+2q17+2q16+q15+2q14+q13+q12
h7’2(q):q18+q17+2q16+2q15+3q14+2q13+2q12_|_q11_,’_q10

Note that f72(q) = hr2(g) (mod g7 —1).
Data availability
No data was used for the research described in the article.
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