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ABSTRACT

Efficient computation on tree data structures is important in com-
pilers, numeric computations, and web browser layout engines.
Efficiency is achieved by statically scheduling the computation into
a small number of tree traversals and by performing the traversals
in parallel when possible. Manual design of such traversals leads
to bugs, as observed in web browsers. Automatic schedulers avoid
these bugs but they currently cannot explore a space of legal traver-
sals, which prevents exploring the trade-offs between parallelism
and minimizing the number of traversals.

We describe HECATE, a synthesizer of tree traversals that can
produce both serial and parallel traversals. A key feature is that
the synthesizer is extensible by the programmer who can define a
template for new kinds of traversals. HECATE is constructed as a
solver-aided domain-specific language, meaning that the synthe-
sizer is generated automatically by translating the tree traversal
DSL to an SMT solver that synthesizes the traversals. We improve
on the general-purpose solver-aided architecture with a scheduling-
specific symbolic evaluation that maintains the engineering advan-
tages solver-aided design but generates efficient ILP encoding that
is much more efficient to solve than SMT constraints.

On the set of GRAFTER problems, HECATE synthesizes traversals
that trade off traversal fusion to exploit parallelism. Additionally,
HEecATE allows defining a tree data structure with an arbitrary
number of children. Together, parallelism and data structure im-
provements accelerate the computation 2X on a tree rendering
problem. Finally, HECATE’s domain-specific symbolic compilation
accelerates synthesis 3x compared to the general-purpose compi-
lation to an SMT solver; when scheduling a CSS engine traversal,
this ILP-based synthesis executes orders of magnitude faster.
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1 INTRODUCTION

Traversal of tree structures is the foundation behind many ap-
plications: compilers leverage traversals of abstract syntax trees
(ASTs) to analyze and optimize source codes. Layout engines in
web browsers rely on traversals of render trees to determine the
locations and appearances of HTML elements on web pages. Im-
plementing tree traversals is a daunting task as it needs to strike a
good balance between modularity and performance. On one hand,
due to the complexity of modern layout engines, browser develop-
ers have to manually design scheduling strategies for rendering
tree traversals in exchange for better performance. On the other
hand, tree traversals in compilers are designed in a modular way,
where mutually dependent traversals read and update attributes of
ASTs [41]. This provides a great opportunity for automated sched-
uling of tree traversals. In particular, traversals that operate on the
same node can be merged to reduce the overhead of node visiting
and improve locality.

Even though manual scheduling of tree traversals offers fine-
grained control for maximizing performance of a layout engine,
the complexity of layout semantics (e.g., from W3C CSS standards)
make it difficult to maintain the infrastructure and fix the notorious
bugs. For instance, the Servo layout engine contains several bugs
that have been open for over five years [14, 25] due to a mismatch
between the intended semantics and the architecture chosen for its
implementation'.

Automated scheduling of tree traversals aims to merge modular
passes (or visitors) that operate on the same node of a tree. However,
existing approaches are far from satisfactory. For instance, there are
approaches that are specialized to certain types of tree traversals,

1A Servo developer remarked that “it took three weeks before I realize[d] the actual
complexity of the problem”, which refers to the bug that is still open by the time of
this submission; the Servo developers have resolved to delay fixing it until a complete
rewrite of the layout engine is done [38].
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such as TreeFuser [40] and Grafter [41]. But they leverage deter-
ministic rewrite rules as well as automata-based representations
that are complex to maintain. Synthesis-based tools like FTL [32]
express tree computations using attribute grammars and leverage
constraint solvers (i.e., Prolog) to find candidate solutions that sat-
isfy the dependencies among tree computations. However, FTL
requires domain experts for translating the layout semantics into
constraints in Prolog, which is error-prone.

Motivated by these observations, we introduce HECATE, a syn-
thesizer of tree traversals that can produce both serial and parallel
traversals. In particular, HECATE provides a high-level tree language
for defining templates for new kinds of traversals. Furthermore, the
core synthesis engine of HECATE is built on top of a solver-aided
framework [45], which lifts the execution of an interpreter for tree
language programs into constraints that can be solved by off-the-
shelf solvers. As a result, HECATE eliminates the enormous engi-
neering efforts in FTL while preserving the efficiency and flexibility
of exploring different design choices. To use HECATE to synthesize
a concrete traversal, the developer only needs to specify a sim-
ple traversal template with holes yet to be filled with computation
rules defined by the tree language. After that, HECATE completes
the traversals using a counterexample-guided inductive synthesis
(CEGIS) loop [43]: the synthesizer searches for a candidate traversal
that works for the initial examples. The verifier then looks for a
counterexample that fails for the traversal and invokes the syn-
thesizer again to find a new candidate that is consistent with the
counterexample. The process continues until the verifier cannot
find additional counterexamples.

As we show later in the evaluation, direct interpretation of full se-
mantics of a tree traversal will lead to difficult-to-solve constraints
due to path explosions. To address this, HECATE employs a domain-
specific symbolic compilation strategy, which maintains the usabil-
ity of symbolic compilation, yet scales to problems orders of magni-
tude larger. The key insight is a semantic projection layer between
the interpreter and the symbolic compilation engine that tailors
the constraint generation procedure. Specifically, we introduce a
trace language that disentangles complex dependencies from time
domain to relational domain, where constraints can be equivalently
expressed independent of time, thus clearing out path explosions
while still ensuring the correctness of constraints. Under domain-
specific symbolic compilation, the trace language generates integer
linear programming (ILP) constraints that can be solved efficiently.

We implement HECATE and compare it against GRAFTER and FTL,
showing that our tool is expressive, efficient, and flexible. On the
set of GRAFTER problems, HECATE synthesizes traversals that trade
off traversal fusion to exploit parallelism. Additionally, HECATE
allows defining a tree data structure with an arbitrary number of
children. Together, parallelism and data structure improvements
accelerate the computation 2X on a tree rendering problem. Fi-
nally, HECATE’s domain-specific symbolic compilation accelerates
synthesis 3X compared to the general-purpose compilation to an
SMT solver; when scheduling a CSS engine traversal, this ILP-based
synthesis executes orders of magnitude faster.

To summarize, we make the following contributions:

e We propose a CEGIS framework for tree traversals.
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1 class Box{

2 public:

3 int wo,h@; // input (default)
4 int wi,h1; // helper

5 int w,h; // output (final)

6

7

8

9

B

class Inner: public Box{
public:
Box* fc; // first child
Box* nx; // next sibling
12 }
void Inner::calcWidth() {
fc->calcWidth();
nx->calcWidth();
w = max( wo, fc->wl );
wl = max( w, nx->wl );
18}
void Inner::calcHeight() {
fc->calcHeight();
nx->calcHeight();
h = max( ho, fc->h1 );
h1 = h + nx->h1;
24 3}

class Leaf: public Box{
public:
Box* nx; // next sibling
29 3}
void Leaf::calcWidth() {
nx->calcWidth();
w = wo;
wl = max( w, nx->wl );
34 }
void Leaf::calcHeight() {
nx->calcHeight();
h = ho;
h1 = h + nx->h1;

36
37

39 }
(a) unfused version

C ® N WM A W N R

/* same as unfused
*
*
*
*

*/

/* same as unfused

*

*

*

*/

void Inner::fusedCalc() {
fc->fusedCalc();
nx->fusedCalc();
w = max( wo, fc->wl );
wl = max( w, nx->wl );
h = max( he, fc->h1 );
h1 = h + nx->h1;

/* same as unfused

*

*

*/

void Inner::fusedCalc() {
nx->fusedCalc();

w = wo;
wl = max( w, nx->wl );
h = ho;
h1 = h + nx->h1;
}

(b) fused version

Figure 1: Pseudo-code class definitions (unfused and fused
versions) for rendering tree example.

e We propose a domain-specific trace language that disentan-
gles complex dependencies from time domain to relational
domain, which results in easy-to-solve constraints.

e We implement the proposed ideas in a tool called HECATE
and demonstrate that it achieves 3X speed-up on GRAFTER
benchmarks compared to general-purpose symbolic compi-

lation.

2 OVERVIEW

In this section, we illustrate how HECATE works using a running

example.

A Rendering Tree Example. Layout engines in modern web

browsers utilize the box model in rendering procedures. This exam-
ple demonstrates simplified behaviors of two types of boxes: Inner
boxes and Leaf boxes where the former can hold child boxes and
the latter can’t. Figure 1(a) shows the realization of the boxes. In
the example:
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(d)

©

Leaf node

Inner node

O
O

- VAL access path

dependency

Figure 2: A motivating example tree with different proper-
ties shown (a): access paths; (b)-(e): dependencies between
attributes of nodes.

e Line 16: The final width of an Inner box (denoted by w) is
decided by the larger one between its default width (denote
by we) and the maximum width of its children (denoted by
fe->w1).

Line 22: The final height of an Inner box (denoted by h) is
decided by the larger one between its default height (denoted
by he) and the summed height of its children (denoted by
fc->h1).

Line 33, 38: For a Leaf node, its final width and height are
decided by its provided default values (denoted by we and he,
respectively).

Specifically, the helper variable w1 records the maximum
final width among a node and all its siblings accessible by nx,
and the helper variable h1 records the summed final height
of a node and all its siblings accessible by nx. In other words,
a node can refer to w1 of its first child as the maximum final
width among all its children, and refer to h1 of its first child
as the summed final height of all its children.

The two methods calcWidth and calcHeight demonstrate the com-
putations for final width and height, respectively.

Typically, rendering a box requires a proper tree traversal to
compute all the attribute values. Besides, in real-world use case
scenarios, a finer-grained scheduling of computations is usually
required as an optimization. As shown in Figure 1(b), a more effi-
cient method fusedCalc is synthesized to perform width and height
computations at the same time. Because attribute values may de-
pend upon one another, solving for a correct order of attribute
evaluations becomes challenging.

How HecATE Works. Now with HECATE, the user starts by pro-
viding: 1) a symbolic traversal as shown in Figure 4(a) with slots ¢;
in which we can schedule at most one computation rule from the
grammar, 2) an example tree shown in Figure 2(a), and 3) the corre-
sponding semantics written in HECATE’s visitor language (shown
in Figure 3). HECATE then automatically synthesizes a concrete tra-
versal by filling the slots with computation rules while respecting
all the read-write dependencies, as shown in Figure 4(b).

More specifically, executing the traversal over the example tree
on an Inner node (e.g., n1) first recursively computes the attributes

1032

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

1 interface Box{

2 input wo,h@: int;

3 output wl,w,h1,h: int;

4}

5 class Inner: Box{

6 children {

7 nx : Optional[Box];

8 fc : Optional[Box];

9 3}

10 rules {

11 self.w := max( self.w@, fc.wl );
12 self.wl := max( self.w, nx.wl );
13 self.h := max( self.he, fc.hl );
14 self.hl := self.h + nx.h1;

15 3

16 }

17 class Leaf: Box{

18 children {

19 nx : Optional[Box];

20 }

21 rules {

22 self.w := self.w0;

23 self.wl := max( self.w, nx.wl );
24 self.h := self.ho;

25 self.h1 := self.h + nx.h1;

26 3

27 }

Figure 3: Class definitions in HEcATE for rendering tree ex-
ample.

1 traversal layout { 1 traversal layout {
2 case Inner{ 2 case Inner{
3 recur fc; 3 recur fc;
4 recur nx; 4 recur nx;
5 lo; 5 eval self.w;
6 1; 6 eval self.h;
7 178 7 eval self.wl;
8 13; 8 eval self.hi;
9 3 9 }
10 case Leaf{ 10 case Leaf{
11 recur nx; 11 recur nx;
12 ly; 12 eval self.w;
13 I5; 13 eval self.h;
14 1g; 14 eval self.wl;
15 17 15 eval self.hl;
16 } 16 }
17 } 17 }

(a) symbolic (b) concrete

Figure 4: Symbolic and concrete tree traversals for rendering
tree example.

of its child nodes (line 3 in Figure 4(b), i.e., n3 and n4 in Figure 2(a))
and its next sibling (line 4, i.e., ny ), and then attributes of itself (line
5-8). For a Leaf node, the computation is similar but without the
recursion on the children.

Figure 5 illustrates the overview of HECATE, which instantiates a
CEGIS loop with two phases: 1) Given the specification that contains
class definitions as attribute grammar, initial trees, and a symbolic
traversal, the synthesizer searches for a concrete traversal, and
sends it to the verifier; 2) The verifier checks the correctness of the
concrete traversal over all possible example trees (up to depth k)
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Figure 5: Overview of HECATE.

and returns a counterexample tree that fails the current traversal.
Then the synthesizer finds a new candidate that is consistent with
the newly added counterexample tree. This process continues until
the verifier can not find additional counterexamples to refute the
current traversal, which will be returned as the correct solution.

To synthesize the desired traversal, HECATE leverages ROSETTE [45]
to lift an interpreter for tree traversal into a synthesizer through
symbolic compilation. In particular, given a symbolic traversal with
slots, symbolic compilation expands each slot into all possible
choices of computation rules, and executes the traversal to generate
dependency constraints under different choices. A concrete traver-
sal is then obtained by solving the constraints using off-the-shelf
SMT solvers [18, 24].

While a faithful interpretation of the semantics of the traver-
sal usually causes path explosions, as choices of rules depend on
choices made on preceding execution steps, it generates complex
SMT constraints that are hard to solve, thus damaging the perfor-
mance. Our solution is to insert a domain-specific layer below the
interpreter and above the symbolic engine (i.e., ROSETTE), which
exposes a domain-specific trace language that still allows us to write
the interpreter conveniently, while avoiding explicit path condi-
tions and generating compact ILP constraints that are easier to
solve by off-the-shelf ILP solvers [24].

3 PROBLEM FORMULATION

In order to precisely describe our synthesis problem, we first present
some definitions that we use throughout the paper.

3.1 Attribute Grammar for Tree Visitors

To represent tree structures and their visitors that contain a set
of computation rules over attributes, we introduce a tree visitor
language L, based on attribute grammar [26]. Figure 6 defines the
syntax of £, in an object-oriented style:

o A class (i.e., (class)) represents the type(s) of a tree node.

e A node can refer to its child nodes via (children) block, and
each node also stores values of primitive fields — we call
these fields attributes.

o A (rules) block contains computation rules and each rule is a
(cstmt) statement.

o The left-hand-side (LHS) of a statement specifies an access
path (sel) to an attribute that is computed by the expression
in the right-hand-side (RHS).

e An expression on the RHS can be: constants, binary expres-
sions, branches, aggregations, and function calls, etc.

e Each attribute can be assigned exactly once.
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(interface) := interface (id) { ((tup);)*}
(class) == class (tup) { (children) (rules) }
(children) := children { ((tup);)* }

(rules) == rules { ((cstmt);)* }

(tup) w= (id):(id)(.(id))"

(sel) a= (id)((id))?.(id)

(expr) u= (const) | (sel) | f( (expr)*)

| (expr) (op) (expr) | fold( (expr)+)

| if (expr) then (expr) else (expr)
(cstmt) u= (sel) := (expr)
(op) s= | X+
f € functions (const) € constants (id) € identifiers

Figure 6: Syntax for attribute grammar £,.

(traversal) u= traversal (id) { (case)™ }
(case) u= case (id) { ((tstmt);)* }
(recur) == recur (node)

(iterate) u= iterate { ((tstmt);)*}
(parallel) := parallel { ((tstmt);)* }

(eval) u= eval (cstmt)

(tstmt) u= 1| (recur) | (iterate) | {eval)

(id) € identifiers (node) € nodes

Figure 7: Syntax for tree traversal language £;.

As aresult, L, is specialized for modeling the behaviors of read-
ing and writing of attributes of the current node and its children,
which essentially describes the dependency relations between at-
tributes of nodes.

Example 3.1. The code snippet from Figure 3 declares the at-
tribute grammar for nodes of types Inner and Leaf, which share
the same set of attributes declared by the interface Box. Specifically:

e each Inner node has two children nx and fc that point to its
next sibling and first child respectively;
e alLeaf node does not have children.

Rules for computing the attributes vary across different classes. e.g.,

e attributes w and h of a Leaf node only depend on attributes
from itself,

e attribute w from an Inner node depends on the default width
of itself (i.e., self.w0) and the maximum width of its children
(i.e., fc.wl),

e attribute h from an Inner node depends on the default height
of itself (i.e., self.he) and the summed height of its children
(i.e., fc.h1).

3.2 Language for Tree Traversals

To formally define a tree traversal, we first introduce domains
for different notations.

Syntax. Figure 7 summarizes the language .L; for expressing
tree traversals. In particular, A traversal (traversal) is declared with
a list of (case) blocks. Each (case) block matches a node type and
contains statements of the following forms:
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o (recur) recursively visits a child of the current node,
(iterate) iteratively visits every child of the current node,
(parallely in parallel visits every child of the current node?,
(eval) evaluates an attribute computation rule, and

a slot 1 represents zero or one computation rule yet to be
determined”.

Domains. Our system contains the following domains:

Each traversal operates over a set of trees denoted by E.
Each tree contains a set of nodes (i.e., N).

A time domain t € T enforces the order of different rules.
An attribute grammar provides a list of attributes A that
uniquely determine their corresponding computation rules.
Each traversal provides a list of slots (i.e., I) for holding com-
putation rules from the attribute grammar.

Each node n has a set of locations (i.e., L) that refer to its
corresponding attributes in runtime.

Definition 3.2. Traversal. Given a tree, a traversal defines a total
order relation < over the set of all locations of the tree.

Example 3.3. A concrete post-order traversal (i.e., Figure 4(b)) on
the tree in Figure 2 yields the following total order of locations:

ngW < ng.h < ngwl < ng.hl < n3.w < ns.h < n3.wl < ns.hl
<n1.w < ni.h < npwl < ni.hl < npw < na.h < npwl < ny.hi

<ng.w < ng.h < nyg.wl < ng.hl

where in every time step t € T one location is visited. Note that
different traversals may induce different orders.

A traversal is symbolic if it contains at least one slot 1 and is
concrete otherwise.

Example 3.4. Figure 4(a) declares a symbolic and post-order tra-
versal over nodes of types Inner and Leaf. Figure 4(b) is an instanti-
ation of the previous symbolic traversal. In particular, the traversal
first computes the attributes for the leaves of type Leaf, and then
the attributes of the nodes of type Inner.

Note that the concrete post-order traversal preserves the read-
write dependencies induced by the attribute grammar in Figure 3.
On the contrary, a pre-order traversal would not be valid since it vi-
olates the read-write dependencies imposed by attributes including
w and h of a Inner node. We then define the tree traversal synthesis
problem as follows:

Definition 3.5. Tree Traversal Synthesis. Given an attribute
grammar £, and a symbolic traversal P; with holes, a tree traversal
synthesis problem is to induce a concrete traversal P; by complet-
ing the holes ¢ in P; with computation rules in £, such that for
arbitrary instantiated trees from L,: 1) all attributes are computed,
and 2) all read-write dependencies are preserved.

Example 3.6. Given the attribute grammar £, in Figure 3 and the
symbolic traversal in Figure 4(a), HECATE synthesizes the concrete
traversal in Figure 4(b). Given arbitrary tree derived from Figure 2,
the synthesized traversal computes all attributes of the tree exactly
once and respects all read-write dependencies.

21f parallelism is impossible, HECATE falls back to (iterate).
30ne can extends the semantics of ¢ to represent one or more rules.
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As we show later, to bypass the challenge of complex SMT con-
straints that are generated by a faithful interpretation of a traversal’s
semantics, a scalable approach to solve the placement and resource
allocation problems is to use ILP to map the computation rules to
the available slots in the traversal [15, 36].

Definition 3.7. 0-1 Integer Linear Programming. Given coef-
ficients a, b and c, the 0-1 ILP problem is to solve for x as follows:

mian,—xi s.t. Vai,j.Zai,jxj < bj,
- -

J
where all entries are integers and in particular x; € {0, 1}.

We obtain a set of ILP constraints that is easy to solve by ILP
solvers from domain-specific symbolic compilation via program
written in trace language, which is deferred to Section 5 for a
detailed discussion.

4 TREE TRAVERSAL SYNTHESIS

In this section, we formally introduce our synthesis framework
for tree traversals that is based on counterexample-guided induc-
tive synthesis (CEGIS). In what follows, we first give a high-level
overview of the synthesis framework, then we show how to reduce
the synthesis problem to a general-purpose symbolic compilation
problem based on RoseTTE. Finally, we briefly discuss its limitation.

4.1 System Overview

As shown in Figure 5, HECATE takes as inputs an attribute grammar
L, a symbolic traversal with unknown slots in £;, and an initial
tree for validating the correctness of the traversal. The output
of HECATE is a concrete traversal that respects all the read-write
dependencies imposed by the attribute grammar.

Synthesis. Figure 8(a) sketches the core synthesis engine that is
built on top of ROSETTE [45], a hybrid symbolic compiler that com-
bines symbolic execution and bounded model checking to compute
compact constraints. In particular, the general-purpose interpreter
interpret for tree traversals takes as inputs a grammar grammar, a
traversal traversal, and a concrete tree tree. Following the total
order induced by traversal, the outermost loop of the interpreter
recursively visits each node in tree and its corresponding locations
loc (line 2). When evaluating a symbolic choice for a slot, sym-
bolic evaluation considers each alternative concrete rule (line 3-4),
generates the constraints stating that the dependencies are ready
and the target has not been computed (line 6-7), sets the target
attribute as ready, and updates the program state (line 8). The in-
terpreter behaves as a regular emulator when it runs with concrete
traversals and trees. For instance, running it with the post-order
traversal in Figure 4(b) and the example tree in Figure 2 will pass
all assertions and terminate normally. What is more interesting is
that given a symbolic traversal traversal with slots yet to be filled,
ROSETTE runs the interpreter with traversal and a concrete tree
tree under symbolic evaluation; this encodes all possible concrete
traversals that preserve the dependencies in tree, effectively lifting
the interpreter to be a synthesizer.
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1 (define (interpret grammar traversal tree)
2 (for ([loc (traversal grammar tree)])
3 (letx ([rule (get-rule loc)]
4 [node-attr (get-lhs rule loc)])
5 (for ([dep-attr (get-rhs rule loc)])
6 (assert (ready? dep-attr)))
7 (assert (not (ready? node-attr)))
8 (set-ready! node-attr))))

(a) general-purpose interpreter
1 (define (interpret grammar traversal tree)
2 (for ([loc (traversal grammar tree)])
3 (let* ([rule (get-rule loc)]
4 [node-attr (get-lhs rule loc)])
5 (for ([dep-attr (get-rhs rule loc)])
6 (read dep-attr))
7 (write node-attr))))
8

(b) domain-specific interpreter

Figure 8: Code snippets of general-purpose interpreter and
domain-specific interpreter.

Verification. To ensure that the synthesized traversal traversal
is not only correct on the initial example tree but also on all pos-
sible trees *, we again leverage ROSETTE to build our verifier. In
particular, the core of the verifier is another interpreter that is
almost identical to the one in Figure 8(a). Now the inputs of the
interpreter include a concrete traversal traversal that needs to be
verified, as well as a symbolic tree tr that encodes the space of all
possible concrete examples up to depth k. In that case, symbolically
evaluating fr on traversal yields a formula stating that tree is
correct on all instantiations of £r. If the formula is satisfiable, the
verifier then returns a counterexample to the synthesizer that will
look for another candidate. Similar to prior work in Neo [20] and
Bonsat [15], our symbolic tree tr is encoded as a bounded m-ary
tree derived from the attribute grammar. We omit the details since
it is not the main contribution.

We call the interpreter in Figure 8(a) general-purpose symbolic
compilation. By nature, its encoding (general-purpose encoding)
establishes read-write dependencies across different execution time
steps. While general-purpose encoding is fairly intuitive and straight-
forward to implement, it may lead to complex constraints that are
difficult to solve.

4.2 General-Purpose Symbolic Compilation

In this section, we elaborate on the details behind general-purpose
symbolic compilation. Using the domains introduced in Section 3.2,
we first define a set of relational operators to formalize the general-
purpose symbolic compilation:

o Assignment. The assignment operator maps an attribute a €
A andaslot: € [toaboolean variable in B, i.e.,, 0 : AXI — B.
Since each attribute a is uniquely computed by a computation
rule from the attribute grammar, predicate o(a, 1) evaluates
to true iff the rule for computing attribute a is scheduled at
slot 1.

4Similar to prior work [15], we verify trees up to depth k.

1035

Yanju Chen, Junrui Liu, Yu Feng, Rastislav Bodik

o Dereference. Recall that in Figure 6, each computation rule
for an attribute is composed of multiple access paths sel ap-
pearing in a statement. During tree traversal, the dereference
operator {(n, sel) returns the concrete location [ (i.e., N x A)
that access path sel of node n points to.

e Ready Bit. The ready bit operator maps a node n € N, an
attribute a € A, and a time step ¢ € T to a boolean variable
inB,ie.,d: NXAXT — B. Here, predicate §(n, a, t) returns
true iff the attribute a of node n is already computed (i.e.,
ready for being read by other computation rules) before time
step t.

e Symbolic Choice. Recall that a symbolic traversal P; contains
at least one slot : that represents at most one attribute compu-
tation yet to be scheduled. To handle this case, we introduce
a symbolic choice operator choose for non-deterministically
choosing an attribute (to compute) from a list of available at-
tributes A. For instance, (choose [Inner.h, Inner.w, nonel)
returns one of the attributes from the list.

Now, during the general-purpose symbolic compilation in Fig-
ure 8(a), the interpreter executes statements in traversal trav and
dynamically inserts assertions (line 6-7) to state the correctness
of every single computation rule. In particular, the correctness en-
forces read-write dependency using the ready bit operator 8. There-
fore, for a statement with chosen attribute, e.g., eval self.h at slot
12 of node ny, ROSETTE compiles it into the following constraints:

8(Z (n1, sel.h0), 1) A 8(L (ny, fe.h1), £) A ~8(Z (my, self.h), £)

where t is the current time step and rule self.h := max( self.he,
fc.h1 ) (line 13 in Figure 3) is used to compute attribute self.h
for node n; of type Inner. Here, the above constraints state two
properties about the read-write dependencies: 1) attributes of nodes
(i.e., self.he for ny and fc.h1 for n3) should be ready before they
are read, and 2) the attribute of a node (i.e., self.h for ny) should
not be ready until it is written.

The interpreter starts by executing a slot statement 1 in the sym-
bolic traversal. In that case, each i is dynamically replaced by a
statement that non-deterministically chooses an available attribute
a; to schedule : eval (choose [ay, ...,an]). After that, ROSETTE
symbolically evaluates the above statement and compiles it into
a formula stating all possible cases where each case is guarded
by the conjunction of assignment operators o that represent the
cumulative choices so far.

Example 4.1. For instance, at time step ¢, when the interpreter
executes slot 1y, i.e. line 7 in Figure 4(a), on Inner node n; in Fig-
ure 10(a), it can choose one of the five options from none, Inner.wi,
Inner.w, Inner.h1 and Inner.h according to its attribute grammar
in Figure 10(b):

eval (choose S)
where

S: [none, Inner.wl, Inner.w, Inner.h1, Inner.h]

>We omit the empty case for simplicity.
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which is further transformed into the following formula:
(o(none, 1) = true)
V (o(Innerwl,ip) = 8({(ny,selfw),t) A S(L(ny,nx.wl), )
A=6({ (ny, self.wl), t))
V (o(Inner.w,iz) = 8({(ny,self.wd),t) AS(L(ny, fcwl), )
A=6({ (ny, self.w), 1))
V (o(Inner.h1,1p) = 8({(ny,self.h),t) AS({(n1,nx.h1),1)
A=8(L (ny, self.h1), 1))
V (o(Inner.h,13) = 8({(ny,self.ho),t) AS({(ny, fc.h1), 1)
A=6({ (ny, self.h),t))

where o(Inner.h,1) evaluates to true iff we decide to compute
attribute Inner.h at slot 1, using its corresponding rule self.h :=
max( self.ho, fc.h1 ) from class Inner. Here in particular, ev-
ery assignment predicate ¢ implies a conjunction of three ready
bit predicates § asserting corresponding properties of read-write

dependencies. For example, the last clause
o(Inner.h 1) = 8({(ny,self.h0),t) AS({(ny,fc.h1),z)
A=8({(ny, self.h), )

indicates that in order to schedule rule Inner.h at slot iy,

e self.ho and fc.h1 should be ready before time step ¢, and
e self.h should not be scheduled before time step t.

In addition to correctness constraints, we also enforce auxiliary
constraints to induce valid traversals. For instance, the following
constraint requires every slot be filled with at most one rule:

Vl.(\/ /\ —o(a,1) Ao(ap,1)) vV (Aﬂa(a, 1)).

ay aag a

And the following requires every rule be used by only one slot:

Va. \/ /\ —o(a, 1) Ao(a,1p).
(e

Performance Analysis. While it is intuitive and straightforward to
build a tree traversal synthesizer using general-purpose encoding,
it suffers from path explosion by faithfully following the execution
of a traversal, even with the effective state-merging and pruning
strategy from ROSETTE. Figure 9 shows how the number of sym-
bolic state grows as time goes by. Consider a tree of n nodes with an
average of k slots per node, the general-purpose symbolic compila-
tion will generate constraints based on a chain of length n - k with
dependencies between choices made in a recursive way, i.e. nested
choose operations. Assuming that every slot has a candidate set
of g rules to fill in on average, the total number of symbolic states
after compilation can be up to q"'k . As shown in our evaluations,
the general-purpose symbolic compilation creates constraints that
take a long time to solve.

5 DOMAIN-SPECIFIC SYMBOLIC COMPILATION

As discussed in Section 4, a general-purpose symbolic compila-
tion faithfully follows the execution of a traversal across different
execution time steps, which leads to constraints that are hard to
solve. To mitigate this problem, we propose a domain-specific trace
language, which projects the complex dependencies from time do-
main to relational domain and yields easy-to-solve constraints. In
what follows, we first introduce the trace language £, and then
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Figure 9: General-purpose (left) v.s. domain-specific (right)
symbolic compilations.

5 class Inner: Box{
6 children {

7 nx : Optional[Box];

8 fc : Optional[Box];

s}

10 rules {

11 self.w := max( self.wo, fc.wl );
12 self.wl := max( self.w, nx.wl );

O Leaf node 13
© Inner node 14

15 }
16 )

self.h := max( self.he, fc.h1 );
self.h1 := self.h + nx.h1;

> access path

(a) example tree (b) visitor program snippet
Figure 10: The motivating example tree as in Section 2 and
its corresponding visitor program snippet.

show how to obtain ILP constraints via domain-specific symbolic
compilation.

5.1 A Trace Language for Tree Traversals

As shown in Figure 8(b), thanks to ROSETTE, the skeleton of
domain-specific interpreter for synthesizing tree traversals can
be obtained with a minor modification over the general-purpose
version: upon executing a statement in traversal traversal, instead
of directly adding its corresponding assertions, we first translate
the statement into another program in trace language L, and then
leverage ROSETTE to lift the execution of the new trace program to
constraints that can be modeled as an integer linear programming
(ILP) problem.
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Table 1: Operations of the symbolic trace language £,.

l Operation

Description ]

(choose [ay,...an]) | choose one from the attributes
(alloc)
(read n.a)

(write n.a)

returns a fresh concrete location

logs a read from n.a

logs a write to n.a

The syntax and semantics of £, are summarized in Table 1.
Intuitively, £, understands dependency relations carried through
attributes on nodes with fully abstract contents. In particular:

e (read n.a) logs the read action of attribute a on node. n;

e (write n.a) logs the write action of attribute a on node n.

e (choose [ajy,...,an]) non-deterministically selects an at-
tribute a; to compute.

For the sake of simplicity, we use the built-in assume function in
ROSETTE to explicitly enumerate each option of symbolic choices
under different assumptions.

During the execution of the domain-specific interpreter (Fig-
ure (b)) at line 6, HECATE invokes a syntax-directed transpilation
procedure to generate the corresponding trace program, which
captures the dependency relations to ensure the correctness of tree
traversals, and provides succinct statements that eventually lead to
efficient constraints (Section 5.2).

Example 5.1. Following Example 4.1, suppose we are in the sym-
bolic traversal (i.e., Figure 4(a)) at slot i3 and the current node is ng
in Figure 10(a). And the synthesizer decides to select a rule self.h
max( self.ho, fc.h1 ) from the visitor program in Figure 10(b)
to compute the Inner.h attribute in slot i3, then a syntax-directed
transpilation procedure is invoked to generate the following trace
program:

(assume o(Inner.h,13) (readng.h@) (read ni.h1) (write ng.h)).

Semantically the above trace program states that in order to com-
pute Inner.h at slot i3, two attributes (i.e., ng.he and n1.h1) should
first be read and another attribute (i.e., ng.h) should then be writ-
ten. The trace program records read-write dependencies in a more
compact way without introducing time steps.

5.2 Symbolic Compilation of Trace Program

Even if we obtain a trace program P, using the procedure dis-
cussed in Section 5.1, the trace program itself does not mitigate
the path explosion problem because similar to the general-purpose
encoding, the symbolic choice statements in the trace program still
encode path conditions at each time step. To address this challenge,
we discuss how our domain-specific compilation further projects
the executions of the trace program into compact constraints that
can be solved by efficient ILP solvers [24].

Dependency Constraints. We first introduce a dependency opera-
tor k that takes as inputs a location I € N X A, a time step ¢ € T,
and returns a boolean variable ¢ that specifies all possible slots in
which the attribute a of location | was computed. In other words,
k encodes the dependency between locations (i.e., read) and their
corresponding attributes (i.e., write).
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We then illustrate the relationship between the trace program
and the dependency operator k. In particular, for a write instruc-
tion (write n.a) at time step t guarded by o(a, 1), the dependency
operator k gets updated by:

k(n.a, t) « o(a,1),

where attribute a is written at time step ¢ if o(a, 1) evaluates to 1
(i.e., true).

For a read instruction (read n.a) at time step t guarded by o(a, 1),
if o(a, 1) evaluates to true, then it implies that attribute a must be
written somewhere before time step ¢. Formally speaking, we have
constraint:

o(a,1) = (Ft.(ty <t) ANk(n.a,ty)),

which can be easily translated into its equivalent ILP constraint °:

o(a,1) < Z K[n.a, to],

to<t

(read constraint)

Example 5.2. Following Example 4.1 but in domain-specific sym-
bolic compilation, as shown in Figure 9, suppose we want to sched-
ule self.h := max( self.he, fc.h1 ) at slot iy of node n1, which
corresponds to the following trace program:

(assume o(Inner.h,1z) (readn;.h@) (read ns.h1) (write ny.h)).

The domain-specific encoding compiles the above trace program
into the following ILP constraints:

o(Inner.h, 1) < Z K [n1.ho, #y]
fo<t
= o(Inner.ho, 1) + o(Inner.ho, 1),
Z k[ns.h1, 4]
to<t
= o(Leaf.hl, 1) + o(Leaf.h1,15)
+ o (Leaf.h1, 1) + o(Leaf.h1,17),

(read for n;.ho)

<

o(Inner.h,i2)

(read for ns.h1)

where ¢ corresponds to the time step when visiting 1 of node n;.
According to Definition 3.2, since a traversal defines a total order
relation over all locations of a tree, we can map the location that
is currently being evaluated to a certain time step t, and generate
constraints that require all the dependencies of this location are
ready before time step ¢. This is done by « in the example. Then,
we again utilize the mapping to cancel the time step variables in
the constraints by mapping them back to potential locations, thus
resulting in a more compact constraint system.

Validity Constraints. Similar to the general-purpose encoding in
Section 4.2, we also impose extra constraints to ensure the validity
of the traversals.

e For every slot 1, at most one rule can be filled in:

Vi. Z o(a 1) <1,

a

(slot constraint)

e Every rule a is used by exact one slot &:

Va. Z o(a,1) =1.

L

(rule constraint)

®Interchangeably, we use the same domain notation B to denote the boolean domain
and 0-1 integer domain for general-purpose and domain-specific symbolic encodings,
respectively.
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Performance Analysis. To understand why the domain-specific
compilation generates better constraints than the general-purpose
version, we use Figure 9 to show a comparison between two strate-
gies. Here we use the total number of symbolic states (i.e., the input
space of all relational operators that introduce symbolic states) to
approximate the complexity of constraints. Both the assignment op-
erator 0 : A X[ — B and the readiness operator 6 : NxAXT — B
introduce symbolic states. Even though the size of the symbolic
states generated by the readiness operator can grow as the size of
the tree n, the number of attributes g, and the number of slots k
increase, it’s still bounded by a polynomial growth. In particular,
the domain-specific encoding generates a maximum of (1+n%)-q-k
symbolic states, which is more compact and less complex than the
exponential number generated by general-purpose encoding.

6 EVALUATION

In this section, we describe the results of the experimental eval-
uation, which is designed to answer the following key research
questions:

(1) (Expressiveness) Is HECATE’s tree (visitor/traversal/trace)
language expressive enough? In particular, can it express
prevailing tree traversal synthesis problems and solve them?

(2) (Performance) What is the performance of synthesized tra-
versals, compared to those generated by state-of-the-art tra-
versal synthesizers?

(3) (Flexibility) Can HECATE be extended to explore traversals
of different design choices?

(4) (Efficiency) What is the benefit of the domain-specific en-
coding compared to general-purpose encoding?

For all experiments, HECATE requires user-provided attribute
grammar, a symbolic traversal and an initial example tree as input,
and outputs a concrete traversal in tree traversal language £L;.

6.1 Comparison against GRAFTER

We first compare HECATE against GRAFTER [41], the state-of-the-art
tree traversal synthesizer based on static dependence analysis. In
particular, GRAFTER builds access automata that summarises de-
pendency relations for tree visitors, and synthesizes tree traversals
using a deterministic algorithm. We adapt the original benchmark
set from GRAFTER, which contains five representative tree traversal
synthesis problems from real-world applications. Since GRAFTER
benchmarks are written in C++, we also implement a code genera-
tor for converting concrete traversals synthesized by HECATE into
corresponding C++ versions through syntax-directed translation.
To study the benefit of domain-specific encoding discussed in Sec-
tion 5, we also implement general-purpose encoding discussed in
Section 4.2, which we denote as HecateC.

Efficiency and Expressiveness. Table 2 shows the results of the
comparison. In particular, HECATE supports all 5 benchmarks from
GRAFTER and successfully synthesizes the correct solutions (i.e.,
traversals that are semantically equivalent to the ones generated
by GRAFTER.) within 5.9 seconds on average. Specifically, HECATE
yields an averaged speed-up of 3.1x compared to Hecate® and
8.0x compared to GRAFTER. The evaluation shows that HECATE’s
tree language is expressive to support a variety of tree traversal
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Table 2: Comparison between GRAarTER, HECATE and HecaTEC

(with general-purpose encoding). The table shows total syn-
thesis time (synthesis + verification) in second.

[ Benchmark [ # of Rules [ GRAFTER [ HECATE [ Hecate® ]

BinaryTree 16 2.6 1.1 3.2
FMM 14 7.6 1.0 1.6
Piecewise 12 12.6 2.1 3.1
AST 136 151.7 20.6 73.4
RenderTree 50 62.0 4.1 10.1

applications. Furthermore. the comparison between HECATE and
HecaTe? also demonstrates the benefits of domain-specific encod-
ing.

Performance. To evaluate the performance of the synthesized
traversals, we directly adopt the workload from GRAFTER. Since
our symbolic traversals are written in a way to “fuse" tree vis-
itors whenever possible, like GRAFTER, the performance of our
synthesized traversals are almost identical to the ones generated by
GRAFTER. However, unlike GRAFTER that uses a deterministic algo-
rithm for generating one unique solution for each benchmark, the
tree language enables HECATE to flexibly explore various traversals
of different design choices, some of which lead to dramatic perfor-
mance speed-up. In what follows, we elaborate on the details using
a case study from one of GRAFTER’s benchmarks: RenderTree. ’

Usability. To further minimize user effort, we implement a vari-
ant HECATE® that incorporates an auto-tuner that can automatically
search for useful symbolic traversals during synthesis. In particu-
lar, the user only has to provide attribute grammar, and HecaTe®
will construct the example trees and initiate an outer loop that
searches for a symbolic traversal that ensures correctness of its
corresponding synthesized concrete traversal. Our experimental
results indicate HECATE® can solve four GRAFTER benchmarks as
fast as HECATE; for the AST benchmark with complex symbolic
traversals, it takes HECATE® more than 30mins to find a solution.
We show that it is possible to get rid of more manual inputs for

HECATE using a simple auto-tuner.

6.2 Case Study: RenderTree

In the RenderTree benchmark, a document tree consists of a list
of pages containing nested horizontal and vertical containers with
concrete elements as leaf nodes (e.g., text boxes, images, and item-
ized lists). A total of five rendering passes compute various visual
attributes: (1) resolving flexible widths, (2) resolving relative widths,
(3) computing heights, (4) propagating font styles, and (5) finaliz-
ing positions of elements. Each pass potentially depends on the
attributes computed by previous passes.

Unlike GRAFTER, which only generates one unique traversal
that fuses tree visitors whenever possible, HECATE offers a number
of design choices. For instance, tree nodes frequently visit their
children, which can be modeled using either linked lists or vec-
tors. Moreover, when the children have no dependencies between
themselves, the user may parallelize the computations using the

7See Appendix A for a detailed case study for another benchmark: AST.
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Figure 11: Running time of fused traversals compared to the
unfused baseline.

1 class Inner: Box{

2 children {

3 cs: [Box]; // vector of @ or more elements
4}

5 rules {

6 self.w := fold( max, self.wd, cs.w );

7 self.h1 := fold( +, @, cs.h );

8 self.h := max( self.ho, self.hl );

s 3}

10 }

Figure 12: Class definitions in HECATE for rendering tree ex-
ample, optimized with vector data structure. Only key refac-
torings are listed.

(parallel) construct in the symbolic traversal. Then, HECATE can
verify the absence of inter-dependency between children and gener-
ate a parallel scheduling over the list of children. Here, we evaluate
the performance of the following variants: 1). HECATE": sequential
linked-list-based traversal 2). HEcaTe" : sequential vector-based
traversal 3). HECATE® : parallel vector-based traversal. Figure 11
summarizes the comparison with GRAFTER. Here, each line cor-
responds to one of the variants. The x-axis shows the tree size
and the workload is directly adopted from the GRAFTER paper. The
y-axis shows normalized running time over the unfused baseline,
averaged over 10 trials.

Linked-List-Based Traversal. Due to limitation of GRAFTER’s static
analysis, it only supports linked list for modeling variable-length
arrays of children. The HECATE™ variant uses the same linked list
data structure, and is able to synthesize a schedule that is semanti-
cally equivalent to GRAFTER’s fused traversal. Specifically, HECATE"
achieves competitive performance against GRAFTER, where both
candidates get more than 50% running time reduction over the
unfused traversal.

Sequential Vector-Based Traversal. The traversals in real-world
compilers like Clang [37] leverage vectors for iterating children.
Because the vector-based layout typically leads to better cache local-
ity and reduces the number of dynamic dispatching due to virtual
functions, it is crucial for a traversal synthesizer to explore different
design choices. However, GRAFTER does not support vector-based
representation due to limitation in its static analysis. On the other
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1 traversal layout { 1 traversal layout {
2 case Inner{ 2 case Inner{
3 iterate cs { 3 iterate cs {
4 recur cs; 4 recur cs;
5 Lo; 5 eval self.hi;
6 1; 6 eval self.w;
7 } 7 3
8 I2; 8 eval self.h;
s} s %}
10 case Leaf{...} 10 case Leaf{...}
1} 1}

(a) symbolic (b) concrete

Figure 13: Symbolic and concrete tree traversals for render-
ing tree example, optimized with vector data structure. Only
key refactorings are listed.

hand, as shown in Figure 12 and Figure 13, it only takes HECATE"

few lines of changes to refactor a linked-list-based traversal to its
vector-based version. In particular, HEcaTE" achieves around 70%
running time reduction and almost 40% speed-up over GRAFTER’S
fused traversal.

a

Parallel Vector-Based Traversal. As GRAFTER tacitly assumes that
fusion opportunities should be exploited whenever possible, it’s
designed to reduce the number of tree node visits. This heuristic,
despite being effective in some scenarios, may prevent further op-
timizations and lead to sub-optimal traversals in terms of overall
running time.

Consider the fused example shown in Figure 14(b): the fused loop
iterates over the children to call a traversal function c->fusedCalc()
before updating the running maximum for certain values. Assuming
that each c->fusedCalc() is independent from each other, we can
“de-fuse” the for loop into two: as shown in Figure 14(c) the first
loop is decomposed into parallel traversals, and the second loop
updates the running maximum in a sequential fashion. Although
the “de-fused” traversal yields a higher number of node visits, it can
benefit from parallel execution if the cost of children traversal calls
far outweighs the cost of the sequential second visit. This example
shows how unconditionally fusing computations might prevent
fine-grained optimizations.

As shown in Figure 11, as the tree size grows, the speed-up
brought by the parallel variant HecaTEF gradually overcomes its
overhead, bringing an additional 23% improvement over the se-
quential vector-based variant HECATE" .

The evaluation shows that, with minimal effort, HECATE can
effectively explore traversals of different design choices.

6.3 Synthesizing Layout Engine in FTL

To show the advantages of our domain-specific encoding, we com-
pare HECATE against FTL [32], a synthesizer specialized for layout
engines. In particular, FTL introduces a Prolog-style declarative lan-
guage for expressing partial schedules with holes. After that, FTL
devises a sophisticated synthesis algorithm that leverages Prolog’s
unification algorithm for effectively generating the schedule as a
composition of parallel tree traversals.

Benchmarks. Since FTL is not actively maintained anymore, we
can only run it on three variants of attribute grammars (i.e., CSS
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1 class Inner: public Box{ 1 /* class def same as unfused
2 public: 2 %
3 vector<Box*> cs; 3 %
4} 4 */
5 void Inner::calcWidth() { 5 void Inner::fusedCalc() {
6 w = wo; 6 w = wo;
7 for (auto c : cs) { 7 h1 = 0;
8 c->calcWidth(); 8 for (auto c : cs) {
9 w = max( w, c>w ); 9 c->fusedCalc();
10 3 10 w = max( w, c>w );
1} 11 h1 += c->h;
12 void Inner::calcHeight() { 2 3}
13 h1 = 0; 13 h = max( ho, h1);
14 for (auto c : cs) { 14 }
15 c->calcHeight(); 15
16 h1 += c->h; 16
17 } 17
18 h = max( ho, h1 ); 18
19 } 19
(a) unfused version (b) fused version
1 /* class def same as unfused */ o // sequential
2 void Inner::fusedCalc() { 10 for (auto c : cs) {
3 W = wo; 11 w = max( w, c->w );
4 hl = 0; 12 h1 += c->h;
5 // parallel 13 }
6 for (auto c : cs) { 14 h = max( he, h1 );
7 c->fusedCalc(); 15 }
8 } 16

(c) "de-fused" version

Figure 14: Pseudo-code class definitions (unfused, fused and
"de-fused" versions) for rendering tree example, optimized
with vector data structure. Only key refactorings are listed.

Name # of Rules R
CSS-float 192 H
CSS-margin 178 £
CSS-full 244 &

CSS-full

CsS-float  CSS-margin

Figure 15: Comparison against FTL: benchmark statistics
(left) and results (right).

rules) that are not supported by GRAFTER: 1) CSS-float represents
the basic CSS rules together with float rules [6, 8, 10], 2) CSS-margin
denotes the basic CSS rules together with rules for margin col-
lapse [5, 7, 9], and 3) CSS-full is the superset of the previous two
and it incorporates the most challenging CSS features such as ab-
solute position, margin collapse, float, and others. Figure 15(left)
summaries the statistics of the attribute grammars in terms of num-
ber of rules.

Performance. Figure 15(right) shows the results of the compari-
son and it takes HECATE only a fraction of time in FTL. Specifically,
for the CSS-float grammar, it takes FTL 189 seconds to synthesize
the traversal while it only takes HECATE 39 seconds to finish. As the
number of rules grows in CSS-full, both tools take a bit longer time,
but HECATE is still 5X faster than FTL. To confirm the effectiveness
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of our domain-specific encoding, we run the general-purpose encod-
ing Hecate® on all three benchmarks. HEcATE® can not terminate
within 30 mins.

This evaluation shows that HECATE can be extended to compute
complex CSS semantics supported by real-world layout engines
and the domain specific encoding plays a crucial on scaling the tool
on those complex benchmarks.

7 RELATED WORK

The closest analog to HECATE in the existing literature is FTL [32].
Like HEcATE, FTL synthesizes schedules for browser layout en-
gines; unlike HECATE, FTL translates the layout semantics to a
Prolog program, and uses the Prolog kernel to search for sched-
ules. Also unlike HECATE, FTL is specialized to a particular solver,
constraint encoding, attribute grammar language, and schedule lan-
guage; HECATE is considerably more flexible, and its trace language
allows it to scale to larger and more complex attribute grammars.
GRAFTER is another synthesizer for tree traversals. Unlike HECATE,
GRAFTER is based on static analysis, where it generates automata
that captures the dependencies indicated between statements and
invokes a deterministic algorithm to rewrite and fuse traversals
into more compact ones, thus synthesizing new traversals. While
GRAFTER is fast, extending it to new specifications may require
extra expert knowledge to devise new tree fusion theories.
Several authors have produced formalizations of browser lay-
out like those used by HECATE to define the layout semantics. Be-
sides those introduced by FTL, Cassius [35] formalizes a subset
of browser layout in linear real arithmetic in order to synthesize
CSS from examples using an SMT solver, and VizAssert [34] ex-
tends that formalization with finitization reductions to support a
large subset of the CSS standard, including floating layout, which is
widely used in modern web pages but is tricky even for experts to
reason about. The Cornipickle [22] project, meanwhile, used first-
order modal logic to define visual proproperties of specific web
pages. VizAssert later adapted Cornipickle’s logic to SMT reason-
ing. Besides web page layout in particular, there is a rich history of
work on constraint-based systems for specifying and synthesizing
layouts [1, 4, 23, 44, 48, 52] and on domain-specific languages for
describing structured graphics [51] and visual manipulations [17].
Tools for layout problems in web pages form a rich and dynamic
topic in the software engineering literature [3, 28-30, 49, 50]. Tools
to detect parts of a web page that render differently in different
browsers [16, 31, 39] are a large and important subclass of these
tools. While these tools are aimed for web page developers (unlike
HEecATE, which may be used by browser developers), their number
demonstrates the challenges that layout bugs impose on practi-
tioners and the importance of the problems HECATE addresses. In
fact, practitioners commonly test their web pages against specific
instances of browsers and operating systems by loading pages in
virtual machine instances [11-13]. The manual inspection that this
easy-to-use and widely adopted testing approach requires could
be reduced if better tooling reduces the frequency or severity of
layout bugs.
Many attribute grammar formalisms [26] assume dynamic sched-
uling, in contrast to the fully static scheduling presented here. For
a large class of attribute grammars, the problem of scheduling an
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attribute grammar onto a sequence of traversals is known to be
NP-hard [19], though polynomial-time scheduling algorithms for
restricted classes of grammars exist [32]. However, these restricted
classes have not been classified or well-studied.

Constraint solving based on satisfiability modulo theories [33]
has become a powerful tool for program analysis as practical, high-
performance solvers have become available [2, 18, 21]. Solver-based
verification and synthesis tools have a long and rich history in
programming languages community [27, 42, 43]. Traditional solver-
aided tools use a custom constraint solver or manually translate
problems into constraints for a specific existing solver. Solver-aided
domain-specific languages [45, 47] instead automatically generate
solver constraints based on symbolic execution and custom lan-
guage extensions. For example, ROSETTE [46] uses Racket’s meta-
programming features to provide a high-level interface to several
solvers. HECATE is build atop ROSETTE, but uses its trace language
to abstract over the low-level features presented in generic ROSETTE
constraints and significantly improves runtime.

8 CONCLUSION

We propose HECATE, a novel framework for synthesizing tree traver-
sals. The core of HECATE is a domain-specific symbolic compilation
strategy for tree traversal synthesis that maintains the engineering
advantages of solver-aided language, yet achieves better perfor-
mance. The evaluation shows that HECATE’s tree language is ex-
pressive as it supports traversals from all GRAFTER benchmarks and
complex features in layout engines. HECATE’s domain-specific sym-
bolic compilation is efficient as it achieves 3X speed-up compared
to general-purpose symbolic compilation. Finally, Our case analy-
sis shows that HECATE can explore traversals of different design
choices with simple modifications.
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A CASE STUDY: AST

Compilers routinely traverse abstract syntax trees (ASTs) to per-
form program transformation and validation. The AST benchmark
models a simple imperative language with variable assignments,
arithmetic expressions, decrement and increment statements, con-
ditional statements, and functions. The benchmark further imple-
ments a total of six de-sugaring and optimization passes: 1) de-
sugaring decrement statements, 2) de-sugaring increment state-
ments, 3) constant propagation, 4) replacement of variable refer-
ences to constants, 5) constant folding, and 6) elimination of un-
reachable branches.
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Figure 16: Running time of fused traversals compared to the
unfused baseline.

Similar to the RenderTree benchmark, we evaluate the perfor-
mance of three variants of HECATE: 1). HECATEL: sequential linked-
list-based traversal 2). HecaTE" : sequential vector-based traversal
3). HEcATEF : parallel vector-based traversal. Figure 16 summarizes
the comparison with GRAFTER. Each line corresponds to one of the
variants. The x-axis shows the tree size, while the y-axis shows
normalized running time over the unfused baseline, averaged over
10 trials.

Overall, the linked-list based traversal HecateX achieves around
50% running time reduction compared to unfused baseline, which
is similar to GRAFTER fused traversal. However, the choice of linked
lists for representing lists of statements is not so much a necessity as
a limitation from GRAFTER’s static analysis. HECATE" in contrast,
lets us replace the underlying data structure with vectors with
minimal code modification, leading to a further 10% reduction in
running time. Furthermore, HEcaTE  is able to take advantage of
the data-independency between optimization passes on different
AST functions. Although there is ineivitable overhead when the
parallel schedules synthesized by HEcaTEF are evaluated on smaller
trees, the performance gains gradually overcome the overhead, and
result in over 75% running time reduction over the unfused baseline.
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