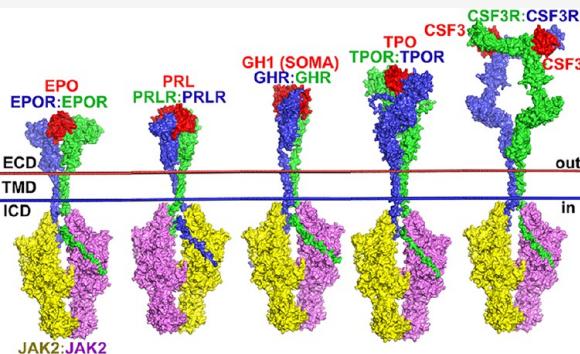


1 Structural Modeling of Cytokine-Receptor-JAK2 Signaling 2 Complexes Using AlphaFold Multimer

3 Irina D. Pogozheva, Stanislav Cherepanov, Sang-Jun Park, Malini Raghavan, Wonpil Im,
 4 and Andrei L. Lomize*

Cite This: <https://doi.org/10.1021/acs.jcm.3c00926>

Read Online

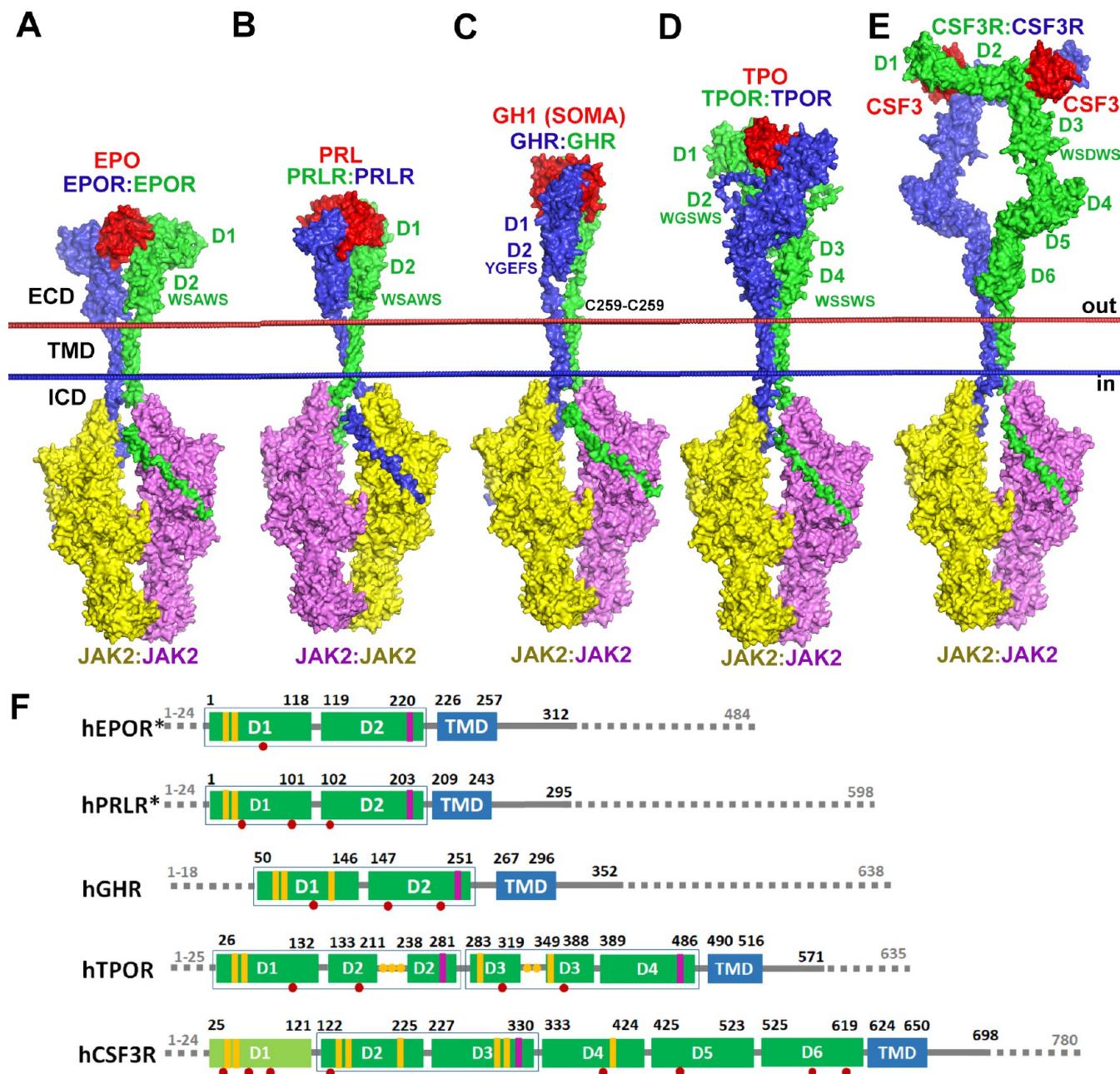

ACCESS |

Metrics & More

Article Recommendations

Supporting Information

5 ABSTRACT: Homodimeric class 1 cytokine receptors include the
 6 erythropoietin (EPOR), thrombopoietin (TPOR), granulocyte colony-
 7 stimulating factor 3 (CSF3R), growth hormone (GHR), and prolactin
 8 receptors (PRLR). These cell-surface single-pass transmembrane (TM)
 9 glycoproteins regulate cell growth, proliferation, and differentiation and
 10 induce oncogenesis. An active TM signaling complex consists of a
 11 receptor homodimer, one or two ligands bound to the receptor
 12 extracellular domains, and two molecules of Janus Kinase 2 (JAK2)
 13 constitutively associated with the receptor intracellular domains.
 14 Although crystal structures of soluble extracellular domains with ligands
 15 have been obtained for all of the receptors except TPOR, little is known
 16 about the structure and dynamics of the complete TM complexes that
 17 activate the downstream JAK-STAT signaling pathway. Three-dimen-
 18 sional models of five human receptor complexes with cytokines and JAK2 were generated here by using AlphaFold Multimer. Given
 19 the large size of the complexes (from 3220 to 4074 residues), the modeling required a stepwise assembly from smaller parts, with
 20 selection and validation of the models through comparisons with published experimental data. The modeling of active and inactive
 21 complexes supports a general activation mechanism that involves ligand binding to a monomeric receptor followed by receptor
 22 dimerization and rotational movement of the receptor TM α -helices, causing proximity, dimerization, and activation of associated
 23 JAK2 subunits. The binding mode of two eltrombopag molecules to the TM α -helices of the active TPOR dimer was proposed. The
 24 models also help elucidate the molecular basis of oncogenic mutations that may involve a noncanonical activation route. Models
 25 equilibrated in explicit lipids of the plasma membrane are publicly available.


1. INTRODUCTION

26 Cytokines are small secreted glycoproteins that regulate
 27 hematopoiesis, neurogenesis, adaptive and innate immunity,
 28 lactation, reproduction, growth, and metabolism through
 29 binding to cognate receptors.¹ Cytokine receptors are cell-
 30 surface glycoproteins with a single transmembrane (TM) α -
 31 helix. They lack kinase activity and therefore rely on
 32 cytoplasmic tyrosine kinases to mediate intracellular processes.
 33 In particular, class 1 and 2 cytokines act via binding to cytokine
 34 receptors on the surface of target cells to activate the
 35 cytoplasmic nonreceptor protein tyrosine kinase from the
 36 Janus Kinases (JAK) family that initiates the downstream JAK-
 37 STAT signaling pathway. The cytokine-initiated signaling
 38 involves five consecutive steps: (1) binding of a cytokine to
 39 a specific receptor and formation of the active receptor dimer;
 40 (2) activation of the receptor-associated JAKs by dimerization
 41 and *trans*-phosphorylation in their activation loops; (3)
 42 phosphorylation of receptor tyrosine residues by the activated
 43 JAK; (4) binding of a STAT transcription factor to
 44 phosphotyrosines of receptor, leading to phosphorylation,
 45 dimer rearrangement, and nuclear translocation of STAT to

drive the expression of cytokine-responsive genes; and (5) switching off the activated receptor by tyrosine phosphatases (SHPs), suppressors of cytokine signaling (SOCS), receptor internalization, and downregulation.² Human genomes encode more than 50 cytokine receptors, four members of the JAK family (JAK1, JAK2, JAK3, and TYK2), seven STATs (STAT1–4, STAT5a, STAT5b, and STAT6), two SHPs (SHP1 and SHP2), and eight SOCS (SOCS1–7 and CIS).^{1–3} Specific members of the JAK, STAT, and SOCS families are linked to individual receptors (Table S1).

Cytokines of the JAK-STAT pathway are α -helical proteins that form either 4- α -helical bundles with up-up-down-down topology (class 1, Figure S1) or structures with 5–6 antiparallel α -helices arranged in an up-down fashion (class 59

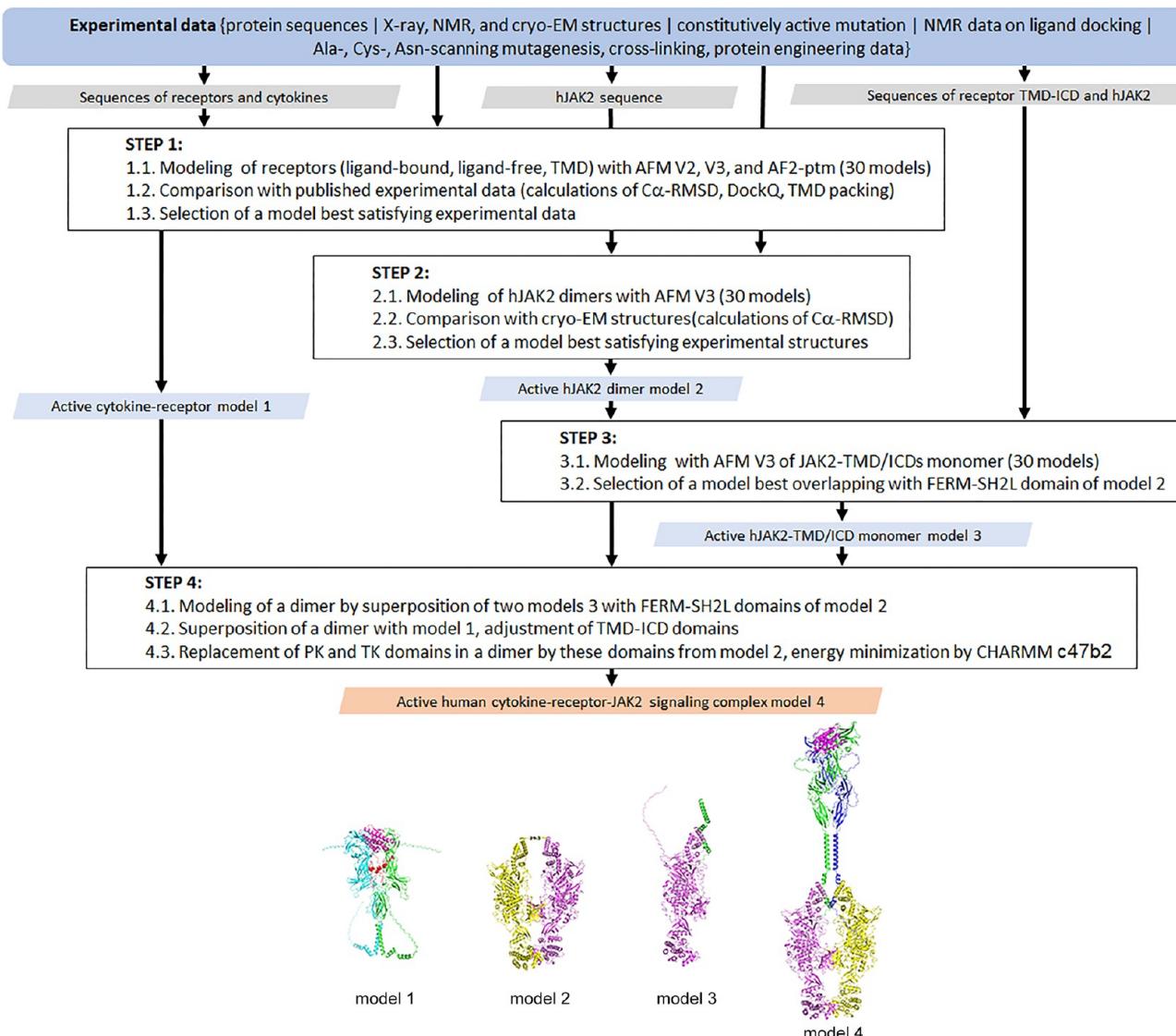

Received: June 19, 2023

Figure 1. AlphaFold Multimer (AFM)-based models of active signaling complexes of human homodimeric class 1 cytokine receptors: EPOR (A), PRLR (B), GHR (C), TPOR (D), and CSF3R (E). The complexes are composed of receptor homodimers, one (A–D) or two (E) ligands, and two JAK2 molecules bound to the intracellular domains (ICD) of receptors. Molecules are shown by surface representation and colored red for ligand, blue and green for receptor subunits, yellow and pink for JAK2 subunits. The extracellular domains (from D1 to D6) and WSXWS motifs of the receptors are indicated for each complex. The GHR complex has an intermolecular C259-C259 disulfide bond. Hydrophobic membrane boundaries are shown as red (extracellular side) and blue (intracellular side) spheres. (F) Domain architecture of the five cytokine receptors studied. The dark green boxes indicate fibronectin type III (FnIII) domains. The light green boxes indicate immunoglobulin-like (Ig-like) domains. Blue boxes indicate TMDs. The boxes around the two domains indicate cytokine homology modules (CHMs). The gray lines indicate unstructured regions or signal sequences. The yellow bars indicate disulfides. The purple bars indicate the WSXWS motifs. The red circles indicate N-glycosylation sites. The yellow circles indicate cysteine residues in loops of D2 and D3 domains of TPOR, which may form disulfides or metal-bound clusters. The dashed lines indicate disordered regions that have been omitted in the final models but included during some of our AFM calculations. Asterisks indicate receptors with residue numbers corresponding to mature proteins lacking signal sequences.

2). The class 1 cytokine receptors are the largest group of 34 proteins encoded by the human genome.⁴ These single-pass TM proteins have different lengths, domain architectures, and quaternary structures. The class 1 receptor family includes five subfamilies: (1) homodimeric receptors that bind one or two ligands per receptor pair; (2, 3, and 4) subfamilies of

interleukin (IL) receptor: the IL-12/23, IL-2, and IL-6 receptors forming heterodimers, heterotrimers, or heterotetramers with ligand:receptor stoichiometries of 1:2, 1:3, and 2:4; and (5) a subfamily of IL-3 interleukin receptors forming a 12-meric complex composed of 8 receptors and 4 cytokine molecules.²

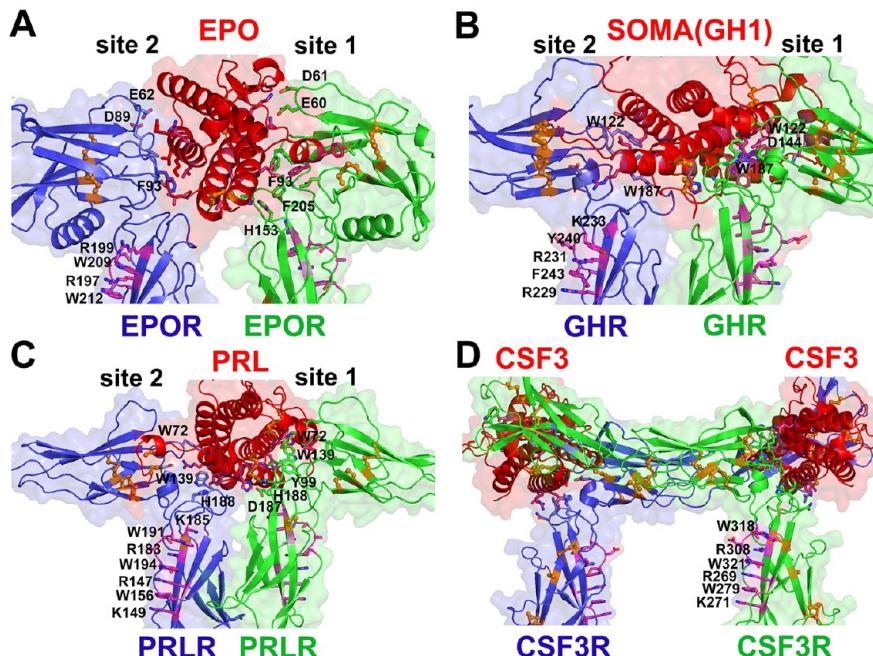


Figure 2. Computational workflow for modeling of cytokine-receptor-JAK2 signaling complexes. Models 1–4 are shown for the human TPO-TPOR-JAK2 (1:2:2) signaling complex.

72 The class I subfamily of homodimeric receptors includes
73 receptors for erythropoietin (EPOR), growth hormone
74 (GHR), prolactin (PRLR), thrombopoietin (TPOR, also
75 called MPL or CD110), granulocyte colony-stimulating factor
76 (CSF3R), and leptin. These receptors (Figure 1) use two
77 identical chains, each composed of the β -structural extrac-
78 ellular domain (ECD) responsible for ligand binding, a single-
79 helical TM domain (TMD) driving receptor dimerization, and
80 a disordered intracellular domain (ICD) responsible for JAK2
81 binding and STAT signaling.² EPOR, GHR, and PRLR are
82 structurally simple^{5–7} with an ECD containing a single
83 cytokine homology module (CHM) formed by two fibronectin
84 type III (FnIII) domains, D1 and D2. The membrane-distal
85 D1 domain carries two conserved disulfides, whereas the
86 membrane-proximal D2 domain features a characteristic
87 WSXWS motif⁸ replaced by the YGEFS motif in GHR
88 (Figure 1C). The TPOR ECD is twice as large as that
89 composed of four FnIII domains: D1 and D2 forming the
90 CHM1, D3 and D4 forming the CHM2.^{9,10} The ECD of the
91 long-chain CSF3R contains six domains: the immunoglobulin-

like (Ig-like) D1 domain, two FnIII domains, D2 and D3, forming CHM, and three extra FnIII domains, D4, D5, and D6.¹¹ The long-chain leptin receptor with a more complex domain architecture¹² will not be studied here.

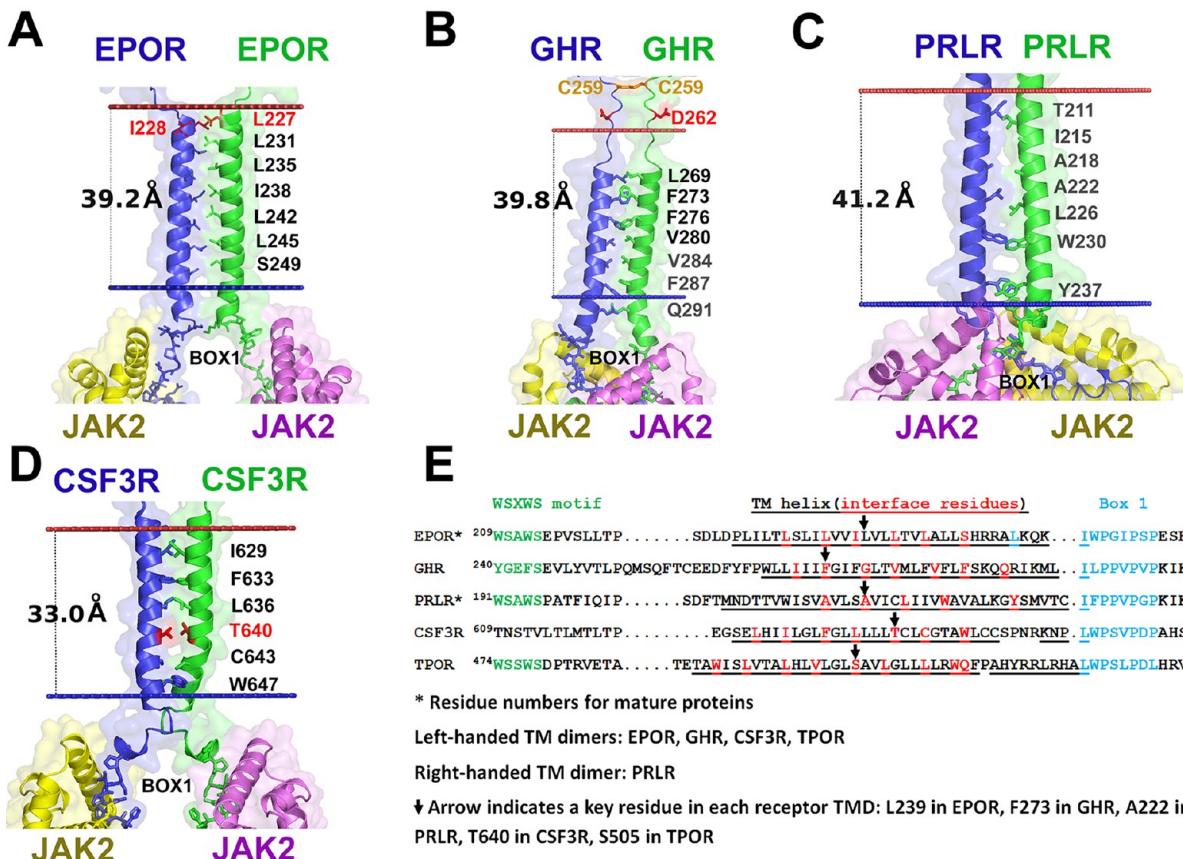
Crystal structures of 1:2 complexes of natural cytokines with soluble receptor ECDs have been solved for human erythropoietin (EPO)-EPOR,¹³ human somatotropin (GH1)-GHR,¹⁴ and human prolactin (PRL) with rat PRLR¹⁵ (PDB IDs: 1EER, 3HHR, 3NPZ, respectively). In these crystal structures, two similar receptor chains create an interface for binding the asymmetric surfaces of a cytokine molecule. Site 1 is formed by helices α 1 and α 4 and the loop connecting α 3 and α 4, while site 2 is composed of α 1 and α 3 helices. Crystallographic and biophysical studies demonstrated that a cytokine initially binds to a single receptor via the high-affinity site 1^{16,17} and then to the second receptor through the low-affinity site 2.¹⁸ The largest CSF3R-CSF3 complex has a different 2:2 receptor-ligand stoichiometry and represents the association of two 1:1 units.¹¹ The CSF3 binding site is formed by CHM (D2 and D3) of one chain and the Ig-like domain

Figure 3. Ligand binding pockets in models of active homodimers of class 1 cytokine receptors: EPOR (A), GHR (B), PRLR (C), and CSF3R (D) with bound cytokine ligands. Protein molecules are shown by semitransparent surfaces and cartoon representations are colored red for ligands, and blue and green for receptor subunits. Interacting receptor and cytokine residues are shown as sticks. Cysteine residues are shown as balls-and-sticks colored orange. Residues involved in the WSXWS signature motif are shown as purple sticks. A set of interdigitated arginine and tryptophan residues from this motif together with neighboring tryptophan, arginine, and lysine residues participate in the network of cation-π interactions.

112 (D1) of the other chain. At present, there are no experimental
 113 structures of the TPOR or its domains. Hence, experimentally
 114 based computational models have been proposed for the
 115 TPOR TM-ICD in complex with the JAK2 dimer¹⁹ or for the
 116 full-length human TPOR in complexes with thrombopoietin
 117 (TPO) or oncogenic calreticulin (CRT) mutants that bind to
 118 TPOR to cause its aberrant activation in myeloproliferative
 119 neoplasms (MPNs).^{20,21}

120 In the absence of experimental atomic-level structures of
 121 cytokine receptor signaling complexes, computational model-
 122 ing provides a valuable alternative. A transformative break-
 123 through in the protein structure prediction has recently been
 124 achieved by developing a new deep learning AlphaFold
 125 method that uses coevolutionary and structural information.²²
 126 AlphaFold version 2.0 (AF2) produces models of nearly
 127 experimental quality for single-chain proteins and outperforms
 128 other methods in predicting contact interfaces of multidomain
 129 proteins^{23,24} and protein complexes,^{25–27} including TM homo-
 130 and heterodimers.^{28,29} The high speed and quality of
 131 predictions by AF2 justified its applications on a proteomic
 132 scale.³⁰ More than 200 million protein models of single-chain
 133 proteins from 48 organisms were generated using this method
 134 and deposited into the AlphaFold DataBase.³¹ The recently
 135 released AlphaFold Multimer (AFM) was recognized as the
 136 best computational tool for modeling protein complexes.³²

137 In this study we used the publicly available AFM ColabFold
 138 version³³ to model active signaling complexes of human class 1
 139 homodimeric cytokine receptors, including EPOR, PRLR,
 140 GHR, TPOR, and CSF3R. Each signaling complex is
 141 composed of one or two (for CSF3R) cytokines bound to a
 142 receptor homodimer interacting with the JAK2 dimer. The
 143 accuracy of the models was verified through comparison to
 144 published experimental data. A comparison of ligand-free and
 145 cytokine-bound models revealed molecular mechanisms of


146 receptor activation leading to dimerization and activation of
 147 receptor-bound JAK2. These models reveal atomic details of
 148 protein-protein interactions, demonstrating conformational
 149 changes and structural flexibilities in the ECDs, TMDs, and
 150 ICDs of receptors and JAK2 domains in signaling complexes.
 151 This understanding aids in deciphering the nature of the
 152 oncogenic mutations.

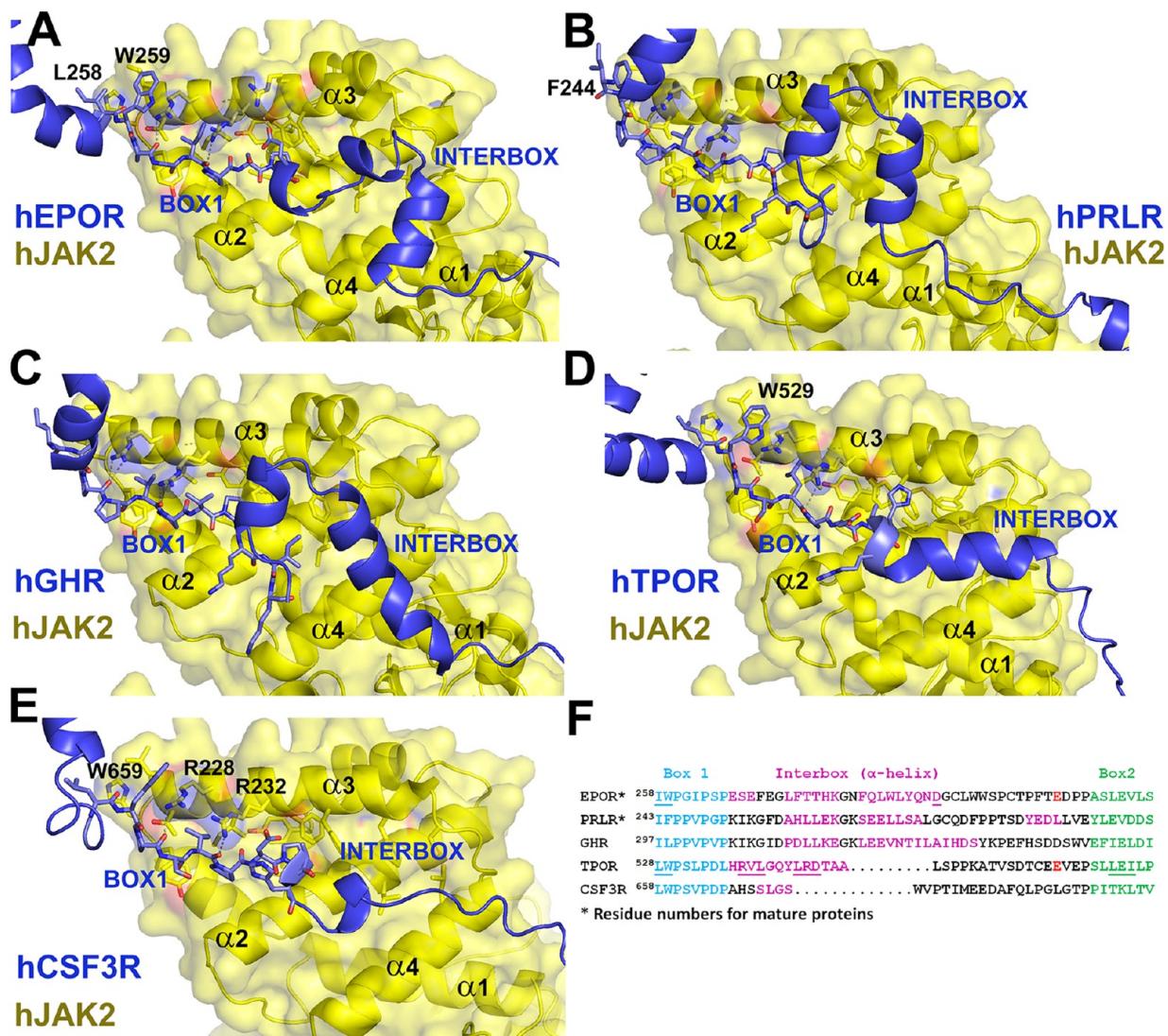
2. RESULTS

153 **2.1. Four-Step Modeling on Cytokine Receptor**
154 Signaling Complexes. The direct modeling of complexes
 155 composed of 5 or 6 proteins using AFM was not feasible due
 156 to their very large size and multidomain architecture.
 157 Therefore, for each cytokine receptor, we separately calculated
 158 several smaller overlapping parts and assembled them into a
 159 complete ligand-receptor-kinase complex. The modeling was
 160 performed in four steps (see workflow in *Figures 2* and *S2*).
 161

162 At the first step, we generated complexes of cytokines with
 163 their receptor dimers that included ECDs, TMDs, and parts of
 164 ICDs. We also modeled dimers of ligand-free receptors and
 165 compared them with the corresponding ligand-bound dimers.
 166 In addition, we calculated dimers of peptides representing the
 167 TM and juxtamembrane regions (TM-JM). At the second step,
 168 we modeled the active dimer of human JAK2. At the third step,
 169 we produced complexes of a monomeric JAK2 with a TMD-
 170 ICD fragment of each receptor.

171 At the first three steps, we generated up to 30 various
 172 models for each protein complex using different AF2 methods
 173 (AFM V2 or V3 and AF2-ptm) with different random seed
 174 numbers and numbers of recycles. For each set, we selected a
 175 single model that was the most compatible with the available
 176 experimental data. We calculated the C α -atom root-mean-
 177 square deviations (C α -RMSDs) and DocQ scores using
 178 available X-ray, NMR, and cryo-EM structures and chose
 179

Figure 4. TM α -helical dimers with predicted locations of membrane boundaries in AFM models of signaling complexes of EPOR (A), GHR (B), PRLR (C), and CSF3R (D). Each complex is composed of two receptor molecules (colored blue and green), bound cytokine(s) (not shown), and subunits of a JAK2 homodimer (colored yellow and pink). The TM α -helices form left-handed dimers with positive crossing angles (via extended leucine zipper heptad repeat pattern) for EPOR, GHR and CSF3R, and a right-handed dimer for PRLR (via AxxxA²²²xxL motif). Residues from the TMD dimerization interface and Box1 residues are shown as sticks. Cysteine residues are shown as balls-and-sticks colored orange, and C259 residues of the intermolecular disulfide in the active complex of GHR are highlighted. Residues involved in mutations leading to constitutive activation^{43,44} are colored red. Protein molecules are shown as semitransparent surfaces and cartoon representations. Membrane boundaries were calculated by the PPM 3.0 method.³⁴ (E) Sequence alignments of receptor TMDs including juxtamembrane regions. Asterisks indicate receptors with a residue number of mature proteins lacking signal peptides. TM α -helical residues are underlined, and those at the dimerization interface are colored red. The WSXWS and related motifs are colored green. Residues in the “switch” and Box1 motifs are colored blue. Arrows indicate key residues in the TMDs of cytokine receptors.

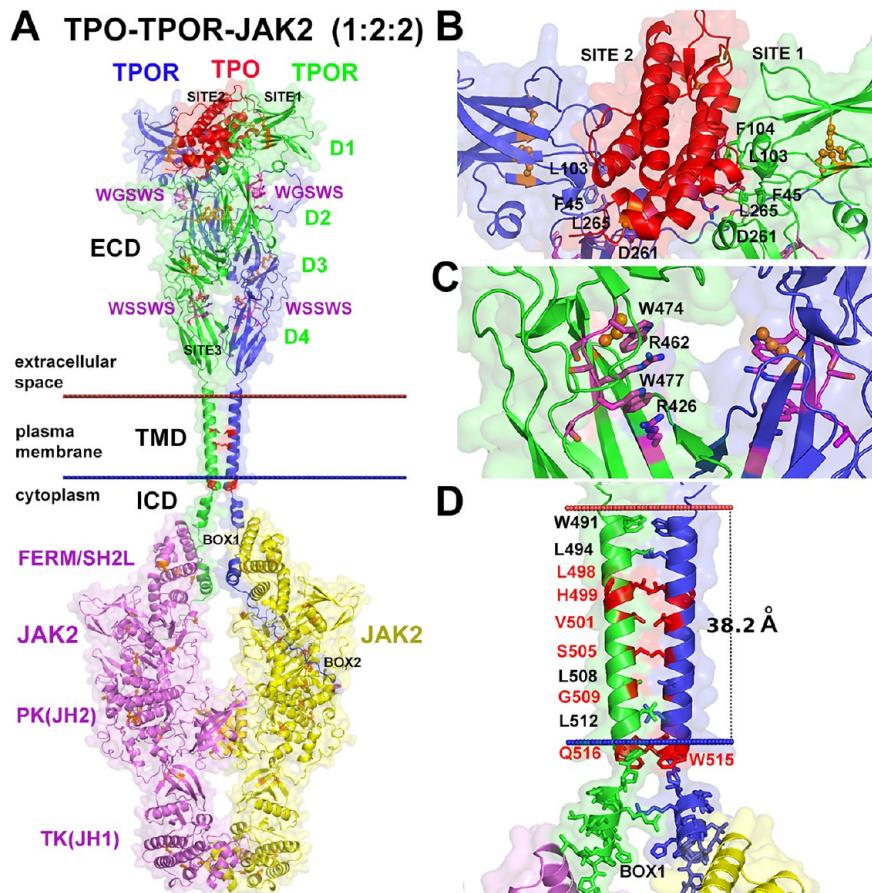

178 TMD conformations that agree with experimentally identified
 179 TMD dimerization modes. We also validated models through
 180 published mutagenesis and protein engineering data, disulfide
 181 cross-linking, constitutively active mutants, and other data. At
 182 each step, we selected one model that best satisfied
 183 experimental data (models 1 and 2) or provided the best
 184 superposition with the JAK2 model (model 3).

185 At the fourth step, the full-length active signaling complex of
 186 each receptor was assembled from the best models of ligand-
 187 bound receptor dimer (model 1) and of the TMD/ICD-bound
 188 kinase monomer (model 3) selected in the previous steps. The
 189 final model (model 4) was refined by energy minimization and
 190 positioned in the membrane by the PPM 3.0 method.³⁴ The
 191 models of five receptor-cytokine signaling complexes were
 192 determined with rather high reliability scores for most
 193 structural domains but lower reliability for loops and TM
 194 helices (Figure S3).

195 **2.2. Step 1: Modeling and Validation of the Receptor**
 196 **Homodimers with and without Ligands.** 2.2.1. **Complexes**
 197 **of EPOR, GHR, and PRLR Homodimers with Cytokines.**
 198 Models of cytokine-receptor complexes were generated by
 199 AFM for five human receptors and the extensively studied

200 murine EPOR and validated using available experimental data. 200
 201 The ECDs in the models of five cytokine-bound receptor 201
 202 dimers, EPO-EPOR₂, GH1-GHR₂, PRL-PRLR₂, CSH1-PRLR₂, 202
 203 and GH1-PRLR₂, superimpose well with the corresponding 203
 204 crystal structures (PDB IDs: 1EER, 3HHR, 3NPZ, 1F6F, and 204
 205 1BP3, respectively) with the Ca -RMSD less than 2 Å (Table 205
 206 S2). The main residues involved in ligand-receptor interactions 206
 207 (Figure 3) are the same as in the corresponding experimental 207 f3
 208 structures.^{13–16,35} For example, hydrophobic and aromatic 208
 209 residues, such as F93, F205, and M150 in hEPOR, W122 and 209
 210 W187 (W104 and W169 in mature protein) in hGHR, and 210
 211 W72 and W139 in hPRLR, contribute significantly to the 211
 212 hormone-receptor interactions. The ligand-receptor complexes 212
 213 were found to be of high quality for site 1 of ligand ($\text{DockQ} \geq$ 213
 214 0.81),³⁶ and medium quality for site 2 of ligand ($0.51 \leq$ 214
 215 $\text{DockQ} < 0.81$) in all complexes (Table S3). 215

216 Models of ligand-bound EPOR, GHR, PRLR, and TPOR 216
 217 show a significant asymmetry of ECDs of two receptor chains. 217
 218 Binding of ligands through two dissimilar surfaces (sites 1 and 218
 219 2) induces movement of D1-D2 domains of both chains 219
 220 relative to each other in vertical (along the membrane normal, 220
 221 z-axis) and horizontal (in the xy plane) directions. The vertical 221
 222 z-axis


Figure 5. Recognition of the Box1 receptor motifs by the FERM domain of JAK2. Fragments of AFM-models generated at step 3 for cytokine receptor TMD-ICD in complex with JAK2. Specific interactions among ICDs of human EPOR (A), PRLR (B), GHR (C), TPOR (D), and CSF3R (E) and the $\alpha 1$ - $\alpha 4$ subdomains of FERM are shown. Pro-rich fragments of the Box1 motifs interact with $\alpha 3$ of FERM; α -helical fragments of the “interbox” regions interact with $\alpha 2$ and $\alpha 4$ of FERM; and Box2 motifs interact with the SH2L domain (see Figure S8). R228 and R232 from the FERM $\alpha 3$ form H-bonds with the main chain carbonyls of the Box1 fragment. (F) Sequence alignments of receptor ICD fragments interacting with the JAK2 FERM-SH2L, based on the AFM models. Residues in the “switch” and Box1 motifs are colored blue. Box2 motifs are colored green, and the interbox regions forming α -helices are colored purple. Underlined residues are known to be important for JAK2 activation.^{38,45}

222 shift (by 5 to 8 Å) of the site 1 ECD is translated to the
 223 upward piston movement of the corresponding TM α -helix.
 224 Thus, TM helices of the dimer are positioned in the membrane
 225 at different heights (Figure 4). The vertical shift is pronounced
 226 in models of the short-chain receptors but is not seen in
 227 models of multidomain long-chain receptors. The asymmetry
 228 is absent in complexes of hEPOR dimers with two similar
 229 molecules of peptide mimetics (PDB IDs: 1EBA, 1EBP) and in
 230 the ligand-free receptor dimers (see below).

231 For one of these receptors, hPRLR, we generated models of
 232 complexes with three different human hormones known to
 233 interact with this receptor *in vivo*: prolactin (PRL),
 234 somatotropin (GH1), and placental lactogen (CSH1). These
 235 models demonstrate many similarities but also some differ-
 236 ences. For example, in all three models, zinc-binding centers
 237 are in ligand binding site 1. Zn^{2+} ions may link the $\alpha 1$ and $\alpha 4$
 238 helices of hormones (residues H27 and D183 of hPRL,

residues H18 and E174 of hGH1 and hCSH1) with hPRLR 239 (residues D187 and H188), in agreement with experimental 240 studies.⁶ The ECD-ligand complexes of hPRLR with hGH1 241 and hCSH1 are rather similar (with Ca-RMSD of 0.9 Å) but 242 differ from the complex with hPRL (Ca-RMSD of 2.3 and 2 Å, 243 respectively). These differences are likely caused by the width 244 differences of hGH1 and hCSH1 compared to hPRL. The 245 separation of the two ECDs to accommodate larger ligands 246 increases the distances between the N-termini of TM helices 247 and slightly shifts the helix crossing point toward the C- 248 terminal end. There is no change in the distances between the 249 helix ends that interact with JAK2. 250

An important part of the structure is the pair of interacting TM α -helices. These α -helices are rather long (27–36 residues or 40 to 54 Å) (Figure 4A–C), consistent with NMR studies.³⁷ The polar C-terminal parts of TM α -helices extend from the membrane into the cytosol, where some hydrophobic

Figure 6. AFM-generated model for the full-length human TPO-TPOR-JAK2 (1:2:2) signaling complex. (A) Overview of the complex in a membrane. Protein molecules are shown as semitransparent surfaces and cartoon representations are colored red for TPO, blue and green for TPOR subunits, and yellow and pink for the JAK2 subunits. Cysteine residues are shown as balls-and-sticks colored orange. Domains of TPOR and JAK2 are indicated. The two WSXWS motifs in D2 and D4 of ECDs, and the Box1 and Box2 regions in ICDs, are highlighted. Disease-associated recurrently mutated residues in the TMD (V501, S505, and W515) which cause constitutive TPOR activation^{58,59} are colored red. (B) The TPO binding pocket in the ECDs of TPOR model. TPOR residues interacting with TPO are shown as sticks. F45, L103, F104, D261, and L265 have been previously implicated in TPO binding.^{51,52} (C) Close-up of the WSSWS motif in the D4 domain of ECD. Aromatic and basic residues involved in the network of cation-π interactions are shown as purple sticks. (D) Close-up of the TMD and Box1 region of TPOR interacting with JAK2. TM α -helices of TPOR have left-handed arrangements (with a positive crossing angle); residues at the interface are depicted by sticks, residues with natural or engineered mutations (S505N, L498W/H499C,Y, L498W/W515 K, H499G/V501S, H499C,Y/S505N, H499L/G509N, H499L,C,Y/W515 K, V501A/W515L,R, S505N/T487A, S505N/S493C, S505N/V501A,M, S505C/W515L, S505N/Q516, and S505N/V501N/A506 V) associated with constitutive activation of TPOR^{10,53,54,56,57,59,60} are colored red. TPOR residues forming the Box1 motif are shown as sticks. Membrane boundaries were calculated by the PPM 3.0 method.³⁴

256 residues from the helix ends along with Box1 residues interact 257 with JAK2 (Figure 5). For example, the L²⁵³xxxL²⁵⁷W²⁵⁸ 258 “switch” motif in mouse EPOR forms a rigid connection 259 between TMD and ICD, which is critical for the JAK2 260 activation upon EPO stimulation.³⁸

261 hPRLR is the only homodimeric receptor with a right- 262 handed arrangement of TM α -helices in the model of the 263 active receptor dimer (Table S2). Though AFM calculations 264 generated both right-handed and left-handed TM α -helix 265 arrangements for hPRLR complexes with all three ligands with 266 slightly different helix-helix interfaces, only the right-handed 267 version appeared in the models of constitutively active hPRLR 268 mutants with deleted ECDs (Δ 10–186 and Δ 1–210).^{39,40} 269 The right-handed TMD dimer also had longer TM α -helices in 270 comparison to various left-handed dimers. Therefore, the right- 271 handed dimer of hPRLR was selected as a preferred TMD 272 conformation (Figure 4C). The selected model is similar to 273 one of conformations of the PRLR dimer obtained in 274 multiscale simulations.⁴¹ The right-handed helix dimer is

characterized by a negative crossing angle and a tetrad repeat 275 motif. In the AFM model of hPRLR, TM α -helices cross at the 276 middle of the membrane at A222, while W214 and W230 of 277 both helices are located near the membrane boundaries. The 278 large distances between N–N and C–C termini of interacting 279 TM helices and the presence of adjacent flexible loops may 280 explain lack of effects of Ala- or Gly-insertions at the junctions 281 of hPRLR TMD with ECD or ICD.⁴² 282

In contrast to the right-handed TM dimer of hPRLR, 283 models of hGHR, hEPOR, and mEPOR dimers with bound 284 cytokines demonstrate a left-handed TM helix arrangement, as 285 defined by a positive crossing angle and the $(abcdefg)_n$ heptad 286 repeat motif (where the *a* and *d* positions form the interface).²⁸⁷

For example, the model of the active hGHR dimer in 288 complex with hGH1 shows a left-handed TM α -helix 289 arrangement with F273 at the *d*-position of the heptad repeat 290 motif (Figure 4B, Table S2). This helix orientation and the 291 presence of an intermolecular disulfide C259–C259 are 292 consistent with the NMR structure of the active dimer of 293

294 TM segments of hGHR.⁴⁶ The predicted active conformation
295 of the TM dimer is consistent with Cys-scanning mutagenesis
296 and cross-linking studies that localize residues L269, F273,
297 F276, and V280 at the dimerization interface.⁴⁷ This TMD
298 packing also agrees with activation of hGHR by the fused
299 coiled-coil dimerization domain of the c-Jun transcription
300 factor that clamps together the TM helices.^{47,48}

301 TM α -helices of the active EPOR dimer also form a leucine
302 zipper with the reference residue, S238 in mEPOR (L239 in
303 hEPOR), occupying the *e*-position of the *heptad repeat motif*
304 (Figure 4A, Table S2). The modeled TM helix arrangement is
305 in good agreement with results of the fusion of the mEPOR
306 TMD with the coiled-coil dimerization domain of the yeast
307 transcription factor *Put3*, where the left-handed dimer *cc-*
308 *EPOR-III* with S238 in the *e*-position was constitutively
309 active.⁴⁹ This helix orientation also explains the constitutive
310 activity of L241N mutation in mEPOR (L242N in hEPOR).⁵⁰
311 The hEPOR L242N mutated residue is located at the
312 dimerization interface (*d*-position) and may stabilize the TM
313 dimer by the formation of intermolecular hydrogen bonds.
314 Furthermore, in the active ligand-bound hEPOR model, L227
315 and I228 (L226 and I227 in mEPOR) are located at the N-
316 termini of both TM helices close to each other (Figure 4A)
317 and able to form an intermolecular disulfide if substituted by
318 cysteines. Such helix arrangement is consistent with Cys-
319 scanning mutagenesis of mEPOR that found constitutive
320 activity of L226C and I227C mutants forming disulfide-linking
321 dimers.⁴⁴

322 **2.2.2. TPOR Ligand-Receptor Complex.** In the structural
323 model of the human TPO-TPOR (1:2) active complex, TPO
324 binds to the D1 (A-B and E-F loops) and D2 (F-G loop)
325 domains via multiple hydrophobic and ionic interactions. Five
326 hTPOR residues, F45, L103, F104, D261, and L265, form
327 multiple contacts with hTPO residues from their α 1, α 3, and
328 α 4 helices and the loop between α 1- α 2 (Table S5, Figure 6B).
329 These receptor residues were identified in mutagenesis studies
330 as key TPO-binding determinants.^{51,52} Two receptor ECDs
331 interact not only with the ligand but also with each other via a
332 long loop within D2 (residues 187–238) and two antiparallel
333 β -strands from D4 (residues 436–438) that form a site 3
334 between D4 domains (Figure 6A). Nonconserved cysteine
335 residues from the D2 loop form three intramolecular disulfides
336 (C193–C323, C194–C241, and C211–C322) in many AFM
337 V3 models (Table S1). We hypothesize that these disulfides
338 may stabilize a monomeric ECD structure exposed to the
339 extracellular environment, while the D2 loop constrained by
340 disulfide bonds may participate in the ligand binding and in
341 dimer stabilization.

342 In the model of the active hTPOR dimer, the TM α -helix
343 spans over 28 residues (from T289 to F517 in the RWQF
344 motif) (Figure 6C), similar to long TMDs of human and
345 mouse EPORs.³⁷ The existence of rather long TMDs
346 encompassing W491 and W515 agrees with NMR studies of
347 TMD dimers.^{53,54} However, a helix break at H499, which has
348 been suggested based on NMR data of hTPOR monomers,⁵⁵ is
349 not observed in hTPOR, either monomeric or dimeric models
350 generated by AFM. AFM-based models demonstrate the TM
351 α -helix kink at P518. After this helix kink, an additional 3-turn
352 polar helix (A519-L528) extends to the cytosol to interact with
353 JAK2, similarly to the “switch” residues of mEPOR (Figure 5A,
354 Figure 4D). The left-handed α -helix arrangement in the model
355 of the active TM dimer with S505 at the *a*-position and H499
356 at the *b*-position of the heptad repeat motif (Figure 6D) is

357 consistent with the dimerization interface of the constitutively 358 active *cc-TPOR-I* fusion construct between a dimeric coiled- 358 coil of Put3 and the TMD of mTPOR.⁵⁶ This dimerization 359 interface is also supported by Asn-scanning mutagenesis of 360 human and murine TPOR⁵³ and studies of constitutively active 361 hTPOR mutants.^{54,57}

362 Furthermore, docking of an allosteric ligand eltrombopag to 363 the TM α -helices (Figure S4) also supports the proposed AFM 364 model of the active hTPOR dimer. Two eltrombopag 365 molecules are located at both sides of the TM α -helical 366 dimer and participate in hydrophobic interactions with two 367 sets of W491, I492, I494, V495, T496, L498, and H499 368 residues near the helix N-termini and ionic interactions 369 between drug carboxyl groups and two R456 residues from 370 the D4 domains. Eltrombopag can also form Zn²⁺-mediated 371 interactions with both H499 residues, like the structurally 372 similar compound SB394725.⁵⁸ These positions of eltrombo- 373 pag are consistent with the previously identified locations of its 374 structural analogues^{55,57} and, especially, with a key role for 375 W491 in TPOR activation by eltrombopag.⁵⁴

376 **2.2.3. CSF3R Ligand-Receptor Complex.** Unfortunately, 377 AFM was unable to automatically produce models of ligand- 378 receptor complexes of the long-chain hCSF3R with TMDs 379 forming a dimer, even though the D1-D3 domains with bound 380 ligands were superimposable with the corresponding crystal 381 structure (PDB ID: 2D9Q)¹¹ with Ca-RMSD of around 3 Å 382 (Table S2). Therefore, modeling of receptor-ligand complexes 383 for hCSF3R was done stepwise separately for the ECDs and 384 TMDs. AFM modeling started from a complex of monomeric 385 hCSF3R with bound hCSF3 at a 1:1 ratio. Then, two such 386 models were superimposed with both units of the homodi- 387 meric crossover crystal structure of the hCSF3-hCSF3R 2:2 388 complex composed of two 1:1 units.¹¹ Superposition 389 demonstrated a good overlap of experimental and calculated 390 1:1 complexes of D1-D3 domains with hCSF3 (Ca-RMSD of 391 0.9 Å; Table S2), but different spatial positions of the 392 remaining receptor domains. Small adjustment of the main 393 chain angles in the D3-D4 linker allowed a juxtaposition of TM 394 α -helices to form a dimer.

395 To define helix orientations in the active ligand-bound state 396 of hCSF3R, we modeled dimers of isolated TM segments with 397 sequences corresponding to native and the constitutively active 398 oncogenic mutant, T640N^{61,62} (Table S4). The AFM models 399 of isolated TM segments with native and mutant (T640N) 400 sequences have left-handed TM helix arrangements with T640 401 (or N640) at the dimerization interface at the *a*-position of the 402 heptad repeat motif (Figure 4D). A similar helix arrangement 403 was predicted by the TMDOCK method.⁶³ To complete the 404 structure of the full-length active hCSF3R dimer, we combined 405 the model of TM dimers and the model of two multidomain 406 ECDs with two bound CSF3 ligands. In the final model of the 407 receptor-ligand complex, two gain-of-function mutations, 408 T640N and G644E,⁶¹ are located at the TM dimerization 409 interface and can stabilize the TMD dimer via hydrogen bonds. 410 The other oncogenic mutations, T612I, T615A, and T118I,⁶¹ 411 are located at the D6-D6 dimerization interface (the site 3) 412 and may contribute to stabilization of ECD dimers by forming 413 more hydrophobic contacts.

414 **2.2.4. Homodimers of Ligand-Free Receptors and TM 415 Segments.** AFM models of ligand-free receptor dimers were 416 generated for human and murine EPOR and human GHR, 417 PRLR, and TPOR. They significantly differ from the 418 corresponding experimental and modeled structures of 419

420 ligand-bound dimers, with Ca -RMSDs ranging from 5 to 9 Å
 421 due to rearrangements of ECDs and TMDS (Tables S2 and
 422 S4). Unlike the asymmetric active dimers, the ligand-free
 423 models are symmetric, have a larger contact area between
 424 ECDs of the two receptors chains, a small-sized ligand binding
 425 pocket, and altered mutual orientations of TM α -helices.
 426 However, the reliability scores are lower for ligand-free dimer
 427 models (ipTM ranging from 0.2 to 0.3) compared to the
 428 ligand-bound dimer models (ipTM ranging from 0.6 to 0.7).
 429 Models of ligand-free homodimers of hPRLR, hGHR, and
 430 mEPOR demonstrate a tighter packing of ECDs than in the
 431 ligand-bound dimers with occluded ligand binding pockets
 432 (Figure 7). The rearrangement of ECDs in the ligand-free
 433 dimers brings two symmetric D1 domains closer together

434 compared with the active dimer models and alters the D2-D2
 435 dimerization interface (site 3); thus, some residues from the
 436 ligand binding pocket form receptor-receptor interactions
 437 occluding the ligand-binding pocket. For example, the close
 438 packing of ECDs in the ligand-free hPRLR brings together
 439 D187 and H188 residues, which form a predicted Zn^{2+} binding
 440 site with cytokine ligands, hPRL, hGHI, and hCSH1, in the
 441 active structure. A new Zn^{2+} -binding site might be formed
 442 between two D2 domains of the ligand-free hPRLR (Figure
 443 7C). Molecular dynamic simulations of ECDs of hGHR also
 444 pointed to the increased contact of subunits of the ligand-free
 445 dimer.⁶⁴ Extensive contacts between ECDs of two antiparallel
 446 receptor chains are also observed in the crystallographic
 447 antiparallel dimer of the ligand-free hEPOR (PDB ID: 447
 448 1ERN).⁶⁵

449 We also investigated the possibility of formation of disulfide-
 450 linked dimers by R130C, D133C, and E134C mutants of 450
 451 hEPOR, because it has been shown that the corresponding 451
 452 mutations (R129C, E132C, and E133C) of mEPOR are 452
 453 constitutively active in the absence of ligands.^{66,67} In the active 453
 454 ligand-bound hEPOR dimers generated by AFM, as well as in 454
 455 the corresponding crystal structure (PDB ID: 1EER), D133 455
 456 and E134 from AB loops of D2 domains are close to each 456
 457 other, while R130 from D2 β -strands are rather distant ($\text{Ca}-$ 457
 Ca distance of 27–30 Å) (Figure S5A). Therefore, these 458
 459 structures are incompatible with the formation of the C130– 459
 460 C130 intermolecular disulfide. However, disulfide bonds 460
 461 between both chains are formed in the ligand-free hEPOR 461
 462 dimeric models of R130C, D133C, and E134C mutants 462
 463 generated by AlphaFold_2.0_ptm. These disulfide-linked 463
 464 dimers (see C130-C130-linked hEPOR dimer in Figure S5B) 464
 465 have the decreased ligand binding pockets and tightly packed 465
 466 parallel TM α -helices, which may bring together associated 466
 467 JAK2 molecules, consistent with their constitutive activity.
 467

468 Modeling of the ligand-free hTPOR dimer produced two 468
 469 sets of conformations with an open and closed ligand-binding 469
 470 pocket and a different arrangement of the D1-D2 domains in 470
 471 symmetric chains. The closed conformation is too narrow to fit 471
 472 TPO, while the open conformations have a wider space 472
 473 between D1 and D2 that can accommodate TPO after slight 473
 474 domain movements to match asymmetric sides of the ligand.
 474

475 Importantly, for many of the receptors, the two TM α - 475
 476 helices have different mutual orientations in the inactive 476
 477 (ligand-free) and active (ligand-bound) models generated by 477
 478 AFM (Tables S2, S4, and S6). For example, in hEPOR and 478
 479 hTPOR models, the TM α -helices are loosely packed and have 479
 480 a right-handed helix arrangement in ligand-free dimers but 480
 481 form tightly packed left-handed dimers in the ligand-bound 481
 482 states. The model of the ligand-free hPRLR dimer has a left- 482
 483 handed helix arrangement, compared to the right-handed 483
 484 dimer in the ligand-bound state (Figure 7C). Less significant 484
 485 difference in TM helix orientations is observed between 485
 486 inactive and active states of EPOR and GHR dimers, where the 486
 487 dimerization interface rotates only by $\sim 50^\circ$ and $\sim 100^\circ$, 487
 488 respectively (Table S5, Figures 7A,B and S10).
 488

489 In addition to the calculations of full-length ligand-bound 489
 490 and ligand-free complexes, we modeled dimers formed by TM- 490
 491 JM peptides (Tables S4 and S6). Interestingly, the arrange- 491
 492 ments of TM α -helices in TM-JM peptide dimers are more 492
 493 similar to TM α -helix packing in active (ligand-bound or 493
 494 constitutively active) than in inactive dimers of full-length 494
 495 receptors (Table S6). For example, AFM predicted the same 495
 496 right-handed TM helix arrangements for the full-length active 496

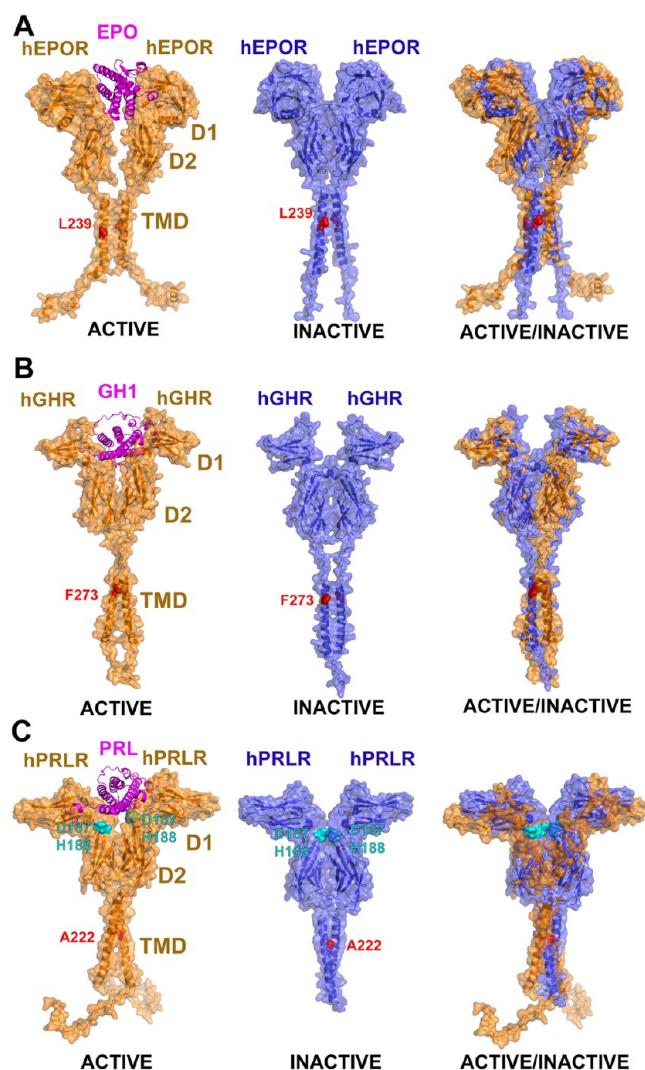
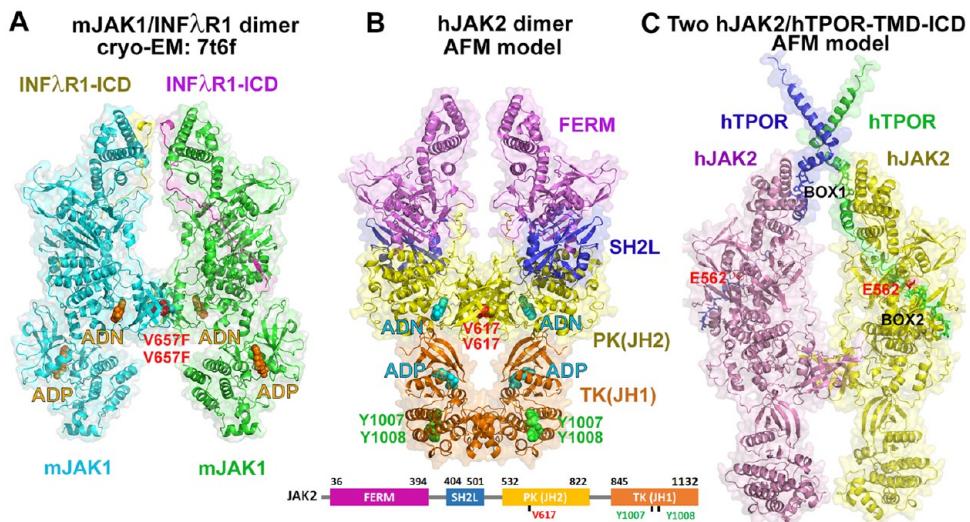


Figure 7. Comparison of AFM-generated models of active and ligand-free dimers of hEPOR (A), hGHR (B), and hPRLR (C). In the ligand-free dimer, D1 domains occlude the ligand binding pockets. Furthermore, the relative positions of the D2 domains are changed, and TM α -helix arrangements are different from those in the active dimers. The molecules are shown by cartoon and semitransparent surface representations colored orange for active dimers and blue for inactive receptor dimers; ligands in the active dimers are colored purple. Reference residues in the TMDs are shown as red spheres. Residue forming a possible Zn^{2+} -binding center in hPRLR (D187 and H188) are shown as cyan spheres.

Table 1. Characteristics of the Final Models of Five Homodimeric Class 1 Cytokine Receptor Signaling Complexes

Complex name (stoichiometry)	Residues of ligand, receptor, and JAK2	TM segment (length)	$D, \text{Å}^b$	TM helix packing	Key residue ^c	Superposition ^d	
						PDB	Ca-RMSD, \AA
hEPO*-hEPOR*-hJAK2 (1:2:2) ^a	1–166*, 1–312*, 36–1132	P226-I258 (33)	39.2 ± 2.2	L+	L239 <i>e</i>	1EER	2.1 (592/592)
						8EWY	3.0 (2052/2172)
						TMDOCK	2.8 (58/60)
						3HHR	1.9 (571/573)
						8EWY	2.6 (2052/2172)
						SOEK	3.1 (48/48)
						TMDOCK	3.0 (48/48)
hPRL*-hPRLR*-hJAK2 (1:2:2)	1–199*, 1–295*, 36–1132	M208-I243 (36)	41.2 ± 3.3	R–	A...A ²²² ...L	3NPZ	1.8 (536/587)
						8EWY	2.6 (2052/2172)
						TMDOCK	3.7 (49/68) [†]
hTPOR*-hTPOR- hJAK2 (1:2:2)	1–153*, 26–571, 36–1132	T489-F517 (29) A519-L258 (10)	38.2 ± 4.7	L+	S505 <i>a</i> H499 <i>b</i>	8EWY	3.0 (2049/2172)
						TMDOCK	2.3 (55/58)
hCSF3-hCSF3R-hJAK2 (2:2:2)	30–207, 25–676, 36–1132	S624-C650 (27) K655-L658 (4)	33.0 ± 1.6	L+	T640 <i>a</i>	2D9Q	1.3 (902/933)
						8EWY	2.6 (2052/2172)
						TMDOCK	0.2 (50/53)

^aAsterisks denote residue numbers for mature proteins (without signal peptide). ^bIntrinsic hydrophobic thickness (D) calculated by the PPM method.³⁴ ^cLetters for left-handed dimers indicate the positions of a reference residue in the $(abcdefg)_n$ heptad repeat motif, where *a*- and *d*-positions are at the dimer interface. ^dSuperpositions of Ca -atoms of final computational models with crystal structures of ligand:receptor ECD (1:2) complexes (PDB ID: 1EER, 3HHR, 3NPZ, and 2D9Q) and with the cryo-EM structure of the mJAK1 dimer (PDB ID: 8EWY) were performed by PDBeFold (3NPZ and 2D9Q) and US-Align (others). Superposition with NMR model of the GHR TM active dimer (PDB ID: SOEK) and TMDOCK models⁶³ were done by the align method of PyMOL. Ca -RMSD column includes the number of overlapped residues in the structural superposition divided by total number of residues in the structure (in parentheses).


497 (ligand-bound) hPRLR dimer and its constitutively active
498 mutants, $\Delta 1$ –186³⁹ and $\Delta 1$ –210⁴⁰, which lack large parts of
499 their extracellular domains.

500 However, the calculated arrangements of TM α -helices are
501 often close to but not exactly the same in dimers of TM-JM
502 peptides and full-length ligand-bound receptors. For example,
503 the model of full-length hTPOR has a left-handed TM α -helix
504 arrangement with S505 at the *a*-position of the heptad repeat
505 motif (Tables 1 and S2), which has been experimentally
506 proven for the full-length human and mouse TPOR⁵³ and the
507 left-handed dimer of *Put3*-fused *cc*-TPOR-*I* construct.⁵⁶
508 However, S505 occupies an alternative *d*-position the left-
509 handed dimer calculated by AFM for TM-JM peptides of
510 constitutively active hTPOR mutants, L498W/H499Y and
511 H499L/W515K,⁵⁴ consistent with the helix orientation found
512 in isolated TM helix dimer of the constitutively active S505N
513 mutant.⁵⁷ AFM calculations also reproduced two dissimilar
514 TM dimerization interfaces that were identified in *Put3*-fused
515 constructs of mEPOR⁴⁹ and its TMD segments⁵⁰ with S238
516 located at the *e*- or *a*-positions of the heptad repeat motif,
517 respectively. Furthermore, AFM predictions of helix orienta-
518 tions in isolated TMDs of hTPOR, mEPOR, and CSF3R agree
519 with low-energy models generated by the TMDOCK
520 method⁶³ (Table S6).

521 **2.3. Step 2: Modeling of the Human JAK2 Homo-**
522 **dimer.** An important component of the active signaling
523 complexes are JAK nonreceptor kinases that are constitutively
524 associated with ICDs of cytokine receptors. Each member of
525 the JAK family is composed of four structural domains: a

526 FERM (four-point-one, ezrin, radixin, moesin) domain, a Src-
527 homology 2-like domain (SH2L), a pseudokinase domain (PK
528 or JH2), and a catalytically active tyrosine kinase domain (TK
529 or JH1) (Figure 8A,B). JAK2 is the main nonreceptor kinase
530 interacting with class 1 homodimeric cytokine receptors.
531 Though experimental crystal structures were obtained for
532 individual domains of JAK2, there is no experimental structure
533 for the full-length JAK2 and its active dimer. Computational
534 models of the full-length JAK2 dimer have been proposed
535 using long-time scale molecular dynamics simulations.⁶⁸

536 Recently, cryo-EM structures were obtained for the full-
537 length mouse JAK1 active dimers in complex with the ICD
538 fragments of interferon λ receptor1 (INF λ R1) stabilized by the
539 oncogenic V657F mutation (analogous to V617F mutation of
540 JAK2) and nanobodies^{69,70} (Figure 8A). Both structures (PDB
541 IDs: 7T6F, 8EWY) demonstrate that the dimerization interface
542 is formed between β -structural N-loops of PK domains. The
543 V657F oncogenic mutation stabilizes the dimeric state by
544 participating in a cluster of contacting aromatic residues at the
545 dimerization interface. Interestingly, these dimer structures
546 demonstrate the different relative positions of TK domains
547 connected by the long flexible loops to PK domains that can be
548 closer together or farther apart from each other. Such
549 positional flexibility of the TK domains may be essential to
550 facilitate their *trans*-phosphorylation at tyrosine residues from
551 the activation loop, the key step in JAK activation, and for the
552 subsequent phosphorylation of tyrosine residues of associated
553 receptors and STAT proteins.
554

Figure 8. Experimental and computational models of the active dimeric complexes of full-length mouse JAK1 (A) and human JAK2 (B, C). Two JAK1 or JAK2 subunits dimerize via the formation of antiparallel β -strands between β -structural N-lobes of PK domains. These domains contain the oncogenic V657F mutation in mJAK1 or the wild-type V617 residue in hJAK2 (shown by red spheres). (A) cryo-EM-based model (PDB ID: 7T6F) of the mJAK1 dimer in complex with peptides from ICDs of interferon λ receptor1 (INF λ R1). JAK1 subunits are colored green and cyan; INF λ R1-derived peptides are colored yellow and purple; ligands (adenosine (ADN) and adenosine-5'-diphosphate (ADP)) are shown by orange spheres. (B) AFM-generated model of the human JAK2 dimer with colored FERM, SH2L, PK and TK domains. The cyan spheres indicate ADN in the PK domains and ADP within the TK domains. The green spheres indicate tyrosines (Y1007 and Y1008) from the flexible 15-residue activation loops (residues 993–1017) of TKs that undergo *trans*-phosphorylation during JAK2 activation. The positions of small molecules, ADP and ADN, are similar to those in the cryo-EM structure of mJAK1 (A). The lower panel shows a schematic representation of the hJAK2 domain architecture. (C) Structure of the JAK2 dimer based on AFM-generated models of two hJAK2 monomers, each in complex with a part of ICD domain of hTPOR. The TMDs of hTPOR are also shown. To form the dimer, the calculated monomeric models were superposed with the FERM-SH2L domains of the JAK2 dimer shown in panel B. Each JAK2 subunit (colored yellow and pink) is constitutively bound to the ICDs of TPOR (green or blue) via Box1 and Box2 motifs. E582 (colored red) of TPOR occupies the aberrant binding pocket for phosphorylated tyrosine in the SH2L domain of JAK2. Protein molecules are shown by semitransparent surface and cartoon representations.

At the second step of the AFM modeling, dimers of the full-length human JAK2 were generated with and without short ICD fragments of receptors (Figure S2 and Table S2). The presence of the short receptor fragments did not affect the results of the calculations. The models of the hJAK2 dimer were similar to the cryo-EM-based structures of the mJAK1 dimer (Figure 8B, Table S2), but the distances between two symmetric FERM domains in the models (L224 Ca – Ca distances) varied from 30 to 60 Å (Figure S2). We selected the model of hJAK2 dimer with the minimal distance, similar to 30 Å observed in the experimental structure of the mJAK1 dimer (PDB ID: 7T6F). The dimerization interface in the model was formed by two PK domains, similar to that in the mJAK1 dimer. The dimer is stabilized through association of β -strands connecting the SH2L and PK domains (residues 534–538), two N-lobes, and a C-helix of the PK domain. The oncogenic V617F mutation is located at the PK dimerization interface where two V617F residues of the mutant form a cluster with four aromatic residues (F537 and F595 from each JAK2 subunit), which strengthen PK-PK interactions in the JAK2 dimer (Figure S6). In the selected AFM model of the active hJAK2 dimer (Figure S2, Table 1), TK domains are close to each other, just as in the very recent cryo-EM-based structure of the mJAK1 dimer (PDB ID: 8EWY).⁷⁰ The TK-TK interactions in this model can facilitate the *trans*-phosphorylation at tyrosine residues from the activation loops of both TK domains, as discussed by Caveney et al.⁷⁰

2.4. Step 3: Modeling of Monomeric JAK2 Complexes with Receptor TMD and ICDs.

The third step included building a complex for each of five receptors composed of a

single molecule of JAK2 and receptor TMD and ICD domains; in some cases, a membrane-proximal ECD domain was also included (Figure S2). The AFM models of JAK2 monomers superimpose well with the FERM-SH2L crystal structure of hJAK2⁷¹ and with FERM-SH2L-PK domains of the cryo-EM structure of the mJAK1 dimer⁶⁹ or the modeled hJAK2 dimer: the Ca -RMSD values were less than 2.5 Å (Table S2). Interestingly, a few models generated by AFM-V3 represented the more compact autoinhibited (inactive) conformation of JAK2 with the kinase (TK) domain located close to the FERM-SH2L domains and interacting with the PK domain near the kinase active site. This JAK2 domain arrangement is similar to that observed in the crystal structure of PK-TK module of TYK2 (PDB ID: 4OLI).⁷²

It has been assumed that the JAK2 FERM-SH2L domains determine the specificity of receptor binding by engaging the receptor Box1 and Box2 cytoplasmic regions.⁷¹ Indeed, AFM-generated models demonstrate that each receptor interacts with JAK2 via the hydrophobic “switch” residues at the TM helix ends, such as L²⁵³, I²⁵⁷, and W²⁵⁸ in mEPOR,³⁸ Box1 residues positioned along the α 3 of the FERM domain, some α -helical fragments from the interbox region interacting with FERM α 2 and α 4, and Box2 residues located in the groove in the SH2L domain (Figures 5, 8C, S7, and S8). This membrane-proximal ICD region in cytokine receptors represents the minimal functional core for signal transduction.⁴⁵ It was shown that the “PxxPxxP” Box1 motif is essential for binding and activation of JAK2, while the hydrophobic “switch” motif, the acidic and hydrophobic

613 residues from Box2, and several interbox residues are required
614 for JAK2 activation⁴⁵ (Figure 4E).

615 Two interbox α -helices from the JAK2-TMD/ICD model of
616 hEPOR (Figure 5A) overlapped well (Ca-RMSD of 0.9 Å)
617 with the same helices observed in the crystal structure of
618 hEPOR ICD peptide in complex with JAK2 FERM-SH2L
619 domains (PDB ID: 6E2Q).⁷³ Interbox α -helices found in
620 JAK2-TMD/ICD models of hPRLR and hGHR (Figure 5B,C)
621 are supported by NMR studies of ICD-derived peptides in
622 lipid vesicles.^{74,75} Additionally, in the AFM models for TPOR
623 and EPOR, a glutamic acid preceding Box2 (E562 in TPOR
624 and E301 in EPOR) bind to the aberrant phosphotyrosine
625 binding pocket of SH2L (Figures 8C and S8), similar to
626 interactions observed in the crystal structure (PDB ID:
627 6E2Q).⁷³

628 The unfolded part of receptor after Box2 is not bound to
629 JAK2 and remains highly structurally flexible, which allows
630 tyrosine residues located in this region to enter the catalytic
631 site of TK to be phosphorylated (Figures S7 and S9). Two
632 TPOR tyrosines, Y631 and Y626, were identified as primary
633 and secondary phosphorylation sites, respectively, while
634 phosphorylation of Y591 was shown to participate in receptor
635 downregulation.¹⁰ Interestingly, in the AFM model, the
636 unphosphorylated activation loop of TK (residues 997–
637 1018) partially occludes the catalytic site of the TK domain
638 (Figure S9). Therefore, we suggest that activation of the TK
639 domain after its *trans*-phosphorylation could be induced by the
640 movement of the phosphorylated activation loop away from
641 the catalytic site due to electrostatic interactions between
642 phosphotyrosines (pY1007 and pY1008) and adjacent charged
643 residues. Similarly, phosphorylation of the activation loop in
644 receptor tyrosine kinases relieves the inhibition caused by
645 insertion of unphosphorylated loop into the kinase active
646 site.⁷⁶

647 **2.5. Step 4: Assembly of the Ligand-Receptor-JAK2**
648 **Complexes for Five Receptors.** Assembly of the final
649 structure of the full-length cytokine-receptor-JAK2 complexes
650 included several substeps (shown for STEP4 in Figures 2 and
651 S2). We first produced the model of the ICD-kinase dimer by
652 superposing two JAK2-TMD/ICD receptor units (model 3)
653 obtained at the step 3 with FERM-SH2L domains of the JAK2
654 dimer (model 2) selected at the step 2. Second, we joined the
655 models of the ICD-kinase dimer and the ligand-bound
656 complex (model 1 selected at the step 1) by superimposing
657 C-termini of their TM α -helices and adjusting conformations
658 of connecting residues between the TM dimer and Box1
659 motifs. Third, to improve the PK-PK dimerization interface, we
660 replaced PK and TK domains in the final model by the
661 corresponding PK-TK dimeric structure taken from the active
662 JAK2 dimer model (model 2 selected at the step 2). Finally, we
663 refined the structures using local energy minimizations with
664 CHARMM c47b2.

665 The final models of cytokine-receptor-JAK2 complexes are
666 close to the corresponding experimental structures of
667 extracellular receptor complexes and JAK2 dimers (Ca-
668 RMSD was from 1.3 to 3 Å, Table 1). The models are also
669 consistent with key residues involved in packing of TM α -
670 helices and extracellular domains (Tables 1, S3–S6) and other
671 published experimental data, as described in the Results (see
672 steps 1 to 3 above) and Discussion.

673 **2.6. Setting up All-Atom MD Simulations.** AFM
674 modeling uncovered the conformational heterogeneity of
675 cytokine receptors, especially in the region with low reliability

676 such as loops connecting protein domains, ICDs, and TM α -
677 helices (Figure S3). Though we selected one final model of
678 signaling complexes for each receptor studied (Figure 1), other
679 AFM-generated models for active ligand-receptor complexes as
680 well as inhibited and active JAK2 conformations with different
681 positions of TK domains, activation loops, and JAK2-bound
682 receptor ICDs (Figures S7 and S9), may represent different
683 states or snapshots of the conformational dynamics of receptor
684 complexes during their activation. The all-atom molecular
685 dynamics (MD) simulations of these complexes in realistic
686 membranes may shed light on structural transitions between
687 different activation states. Particularly important are the most
688 flexible and the least reliably modeled parts of these complexes,
689 such as loops, ICDs, and ends of TMD regions that may
690 change their conformations upon specific binding of small
691 molecules (e.g., eltrombopag) or interactions with physiolog-
692 ically active lipids (e.g., phosphoinositides).^{74,75}

693 To demonstrate that our models of five cytokine receptor
694 signaling complexes are suitable for all-atom MD simulations
695 in realistic lipid membranes, we built protein-lipid systems for
696 these complexes in an explicit lipid mixture corresponding to
697 the asymmetric mammalian plasma membrane (Table S8). In
698 this study, we used the CHARMM force field for proteins and
699 lipids and TIP3P water model^{77,78} with Na⁺ and Cl[−] ions (see
700 Methods). After successful equilibration of each model in a
701 multicomponent lipid bilayer system, we performed a short
702 production run of 10 ns for each system and deposited the
703 obtained structures together with simulation systems in
704 CHARMM-GUI Archive (<https://www.charmm-gui.org/docs/archive/bitopictm>). The MD simulations of signaling
705 complexes in realistic membranes used PPM-predicted
706 membrane boundaries. Further studies of the large-scale
707 structural dynamics of these complexes in the plasma
708 membrane using all-atom MD simulations are beyond the
709 scope of this work.

3. DISCUSSION

710 **3.1. AFM-Generated Structures of Signaling Com-**
711 **plexes of Homodimeric Cytokine Receptors.** We have
712 exploited the power of the Alpha Fold Multimer method³² to
713 generate three-dimensional (3D) models of active ligand-
714 receptor-kinase signaling complexes of five homodimeric class
715 1 cytokine receptors. The models are consistent, at the level of
716 atomic details, with various experimental data, such as available
717 crystal structures of ligand-receptor complexes, cryo-EM-based
718 structures of homologous JAK1 dimers, NMR studies of TM
719 helix association, along with data about various protein
720 constructs, constitutively active and disease-associated mu-
721 tants, Ala-, Cys-, and Asn-scanning mutagenesis, cross-linking,
722 NMR studies of residues of TPOR TM domain interacting
723 with eltrombopag and its analogues, and others (see Results).
724 Moreover, we used experimental data for selection of best
725 models and analysis of molecular details of complex assembly
726 and activation.

727 The obtained structural models reveal the quaternary
728 structures of full-length protein complexes. The complexes
729 are well-defined continuous structures extending from ligand-
730 stabilized ECDs of receptors to the large intracellular JAK2
731 dimer via a long membrane-spanning TMD. Ligand, the
732 cornerstone of a complex, holds together two receptor-kinase
733 units, providing rigidity and stability to the whole structure
734 (Figure 1). The first 50–60 residues in the intracellular loops
735 of receptors are bound to a groove on the JAK2 surface and

737 therefore have a fixed structure, while the remaining residues
738 are apparently disordered and flexible, which facilitates the
739 phosphorylation of specific tyrosine residues in the receptors,
740 followed by their binding to SH2 domain-containing proteins
741 from the JAK-STAT signal transduction pathway.

742 Despite the overall similarity of these five signaling
743 complexes, they are different in many aspects (Figure 1).
744 They have different domain compositions. The receptor-ligand
745 binding stoichiometry is 1:2 for all receptors, but 2:2 for the
746 CSF3-CSF3R complex. Finally, the mutual arrangements of
747 two TM α -helices in the TM dimers are receptor-specific. The
748 significant piston movement of one TM helix relative to the
749 other caused by ligand asymmetry is present only in short-
750 chain receptors where the ligand-binding domains are located
751 close to the membrane. We suggest that this piston movement
752 does not have a significant functional role.

753 The packing modes of ECDs and TMDs in dimers are
754 receptor-specific and depend on residue compositions and
755 functional states and upon the nature and stoichiometry of the
756 bound ligands (Table 1). For example, the model of the ligand-
757 bound hPRLR complex has a right-handed TM α -helix
758 arrangement, while the packing of TM α -helices in models
759 of the active state of all other receptors is left-handed.
760 Modeling of the same hPRLR receptor with three different
761 ligands demonstrates slightly different helix orientations of the
762 right-handed TMD dimers in the complexes (Table S2).
763 Altered TM α -helix arrangements in the active receptor dimer
764 may induce different physiological responses, as shown using
765 various *Put3*-fusion constructs of mEPOR⁴⁹ and mTPOR.⁵⁶

766 Furthermore, the mutual arrangements of two TM α -helices
767 are different in models of ligand-bound (active) and ligand-free
768 (inactive) complexes (Tables S2, S4, and S6). These results are
769 consistent with experimental observations of distinct rotational
770 positions of the TM helices in the active vs inactive dimers of
771 mEPOR, mTPOR, and hGHR.^{47,49,56}

772 Our modeling confirms the common concept that cytokine
773 receptor signaling complexes undergo significant structural
774 changes during their binding to ligands, dimerization, and
775 activation as well as during constitutive ligand-independent
776 activation of mutants. We explored the flexibility of cytokine
777 receptor complexes by calculating and comparing the following
778 models: (a) ligand-bound and ligand-free receptors, (b) PRLR
779 with three different ligands, (c) ECDs and TMDs of
780 constitutively active receptor mutants, and (d) JAK2 in
781 monomeric and dimeric states with and without bound
782 receptor fragments (Tables S2 and S4, Figures 2, 7, 8, and
783 10). The largest structural heterogeneity of ligand-bound
784 receptors was observed in packing of TM α -helices, as
785 mentioned above, and in ICDs (e.g., Box1, Box2, interbox,
786 and Tyr-carrying regions), while ligand-free receptors also
787 demonstrated different conformations of ECDs. Modeling of
788 monomeric JAK2 produced structures with different relative
789 orientations of TK and PK (Figure 10), while modeling of
790 dimeric JAK2 demonstrated different distances between FERM
791 domains (Figure S2). Each of the currently selected states
792 represents a snapshot of conformational dynamics of these
793 complexes, which was confirmed by experimental studies.
794 However, the physiological relevance of alternative nonselected
795 AFM-generated structures requires additional experimental
796 validation.

797 An important structural aspect of membrane proteins, such
798 as single-pass TM cytokine receptors, is their spatial positions
799 in membranes. The lack of membrane boundaries in AFM

800 models as well as in experimental structures of membrane
801 proteins requires an application of computational approaches
802 for the prediction of membrane boundary positions. One of the
803 most advanced method for positioning proteins in membranes
804 is the PPM 3.0 method that orients protein structures in planar
805 and curved membranes by optimizing their transfer energies.³⁴
806 We applied PPM 3.0 to calculate the positions of the TM
807 domains of the final models of five signaling complexes of
808 cytokine receptors (Figures 4 and 6). The hydrophobic
809 thicknesses of TM α -helices of EPOR, GHR, PRLR, CSF3R,
810 and TPOR receptors, which matches the distances between
811 lipid carbonyls in two membrane leaflets, are 39.2 Å, 39.8 Å,
812 41.2 Å, 33.0 Å, and 32.2 Å, respectively. The large hydrophobic
813 lengths of TM α -helices of cytokine receptors may suggest
814 their preferentially localization in membrane rafts characterized
815 by the increased membrane thicknesses.
815

3.2. Activation Mechanism. The exact molecular
816 mechanism of cytokine receptor activation that triggers JAK2
817 activation (Figure 9) remains a matter of debate. It is accepted
818 that dimerization is essential but not sufficient for receptor
819 activation,⁷⁹ and that receptor dimerization is driven by the
820 association of the TM α -helices.^{46,80–82} Moreover, receptor
821 activation requires a specific orientation of receptor TM helices
822 to form a productive dimeric state that brings the ICD-bound
823 JAK2 molecules into positions competent to initiate intra-
824 cellular signaling.^{49,56} However, it remains controversial
825 whether the activation mechanism involves the ligand-induced
826 receptor dimerization (activation model 1, I-III-IV pathway in
827 Figure 9) or conformational changes in preformed inactive
828 receptor dimers upon ligand binding (activation model 2, I-II-
829 IV pathway in Figure 9).⁸³
830

831 In activation model 1, receptor dimerization occurs only in
832 the presence of appropriate ligands. This model has been
833 recognized for many years and gained additional support in
834 recent studies of dimerization of cytokine receptors in living
835 cells using single-molecule fluorescence microscopy.¹⁹ These
836 studies demonstrated that human TPOR, GHR, and EPOR
837 exist as monomers at the physiological receptor densities in the
838 plasma membrane, while the basal dimerization level is
839 negligible. Evaluation of energy contributions showed that
840 binding of TPO to TPOR provides the main contribution to
841 the total dimerization energy. It was also estimated that the
842 intrinsic dimerization affinity of TPOR-JAK2 subunits is low,
843 but constitutively active oncogenic mutations in the dimeriza-
844 tion interface of JAK2 (V617F, M335I, H538L, K539L,
845 H587N, C618R, and N622I) and in the TMD of TPOR
846 (W515 K) provide additive stabilizing free energy contribu-
847 tions which promote TPOR-JAK2 dimerization and formation
848 of the active signaling complex.
848

849 An alternative activation model 2 suggests that receptor
850 predimerization occurs in the absence of ligands, and dimer
851 reorganization follows after ligand binding. This model has
852 been proposed based on the extensive structural, biochemical,
853 and mutagenesis studies of different cytokine receptors,
854 including human and mouse EPOR,^{49,82} human GHR,^{47,79,84}
855 human PRLR,⁸⁵ human and mouse TPOR,^{53,54,56} and their
856 TMD fragments.^{46,50,57} Binding of a specific ligand to the
857 inactive preformed dimer is required for conformational
858 changes and reorientation of receptor TM α -helices to form
859 an active dimeric state that induces proximity and dimerization
860 of associated JAK2 subunits.⁸³
860

861 There are several experimental observations that challenge
862 the hypothesis of binding of ligands to pre-existing dimers
862

Figure 9. Suggested activation mechanism of homodimeric class 1 cytokine receptors (exemplified by TPOR) based on the AFM modeling and published live-cell dimerization assay.¹⁹ In the absence of the TPO ligand, TPOR receptors are mainly in the monomeric state (state I),¹⁹ even though some dimerization may occur (state II). Ligand binds first via site1 to one receptor chain (state III), and then via site 2 to the second receptor chain. This leads to stabilization of the active receptor dimer (state IV) with specific rotational orientations of TM α -helices whose intracellular ends bring two JAK2 molecules close to receptor ICDs (Box1 and Box2 motifs). This enables the dimerization and activation of JAK2. Protein molecules are shown in semitransparent surface and cartoon representations, colored red for TPO, blue and green for TPOR subunits, yellow and pink for JAK2 subunits. Residues that are involved in the constitutive activation of receptor (S505, W515) and JAK2 (V617) or those that regulate the formation of the active TMD dimer (H499) are colored red.^{53,54,60,86,87}

(model 2). First, at physiological concentrations of receptors at the cell surface, the fraction of monomeric receptors (state I) is much higher than of preformed dimers (state II).¹⁹ Second, the bell-shaped dose-dimerization curve^{10,19} is consistent with the two-step ligand binding to monomeric receptors (state III): initially via site 1 to one chain, then via site 2 to the recruited second chain, which leads to formation of the ligand-receptor complex (state IV). This dimerization is inhibited by the presence of excess ligand that binds via high-affinity site 2 to receptors, blocking further receptor dimerization via site 2 interactions.

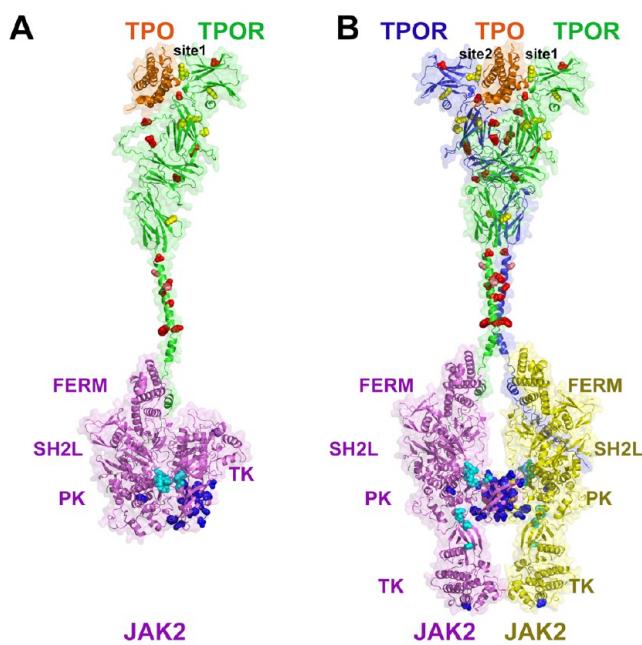
AFM-based modeling provides an insight into possible activation mechanisms. The modeling uncovered that ligand-free dimers could be formed for many receptors, but such structures have occluded ligand binding pockets incapable of accommodating large cytokine molecules along with an

unproductive arrangement of TM helices. This is in line with the notion that ligand-free ECDs lock receptors in the inactive states, as PRLR and TPOR variants lacking large parts of ECDs are constitutively active.^{85,88} Ligand binding to preformed dimers with a closed ligand binding pocket would require a significant rearrangement of their ECDs and TMDs and possibly even the dissociation of two receptor molecules. Based on these findings, AFM modeling generally provides more support for model 1 of the ligand-induced dimerization and activation, the I-III-IV pathway (Figure 9), at least for class 1 homodimeric cytokine receptor complexes.

Nonetheless, ligand binding to preformed dimers (I-II-IV pathway, Figure 9) could represent an alternative noncanonical activation pathway that is used by some receptors in particular cases. For example, we have recently proposed the two-step TPOR activation by the MPN-associated calreticulin mutants (CRTmut)²⁰ that are suggested to form a CRTmut-TPOR (2:2) complex.⁸⁹ The formation of the CRTmut-TPOR active complex takes place in endoplasmic reticulum (ER) membranes, where the local density of preformed dimers of immature TPOR molecules may be relatively high. We propose that at the first step, a dimer of CRT mutants binds to the preformed TPOR dimer with the occluded ligand binding pocket via interactions with immature mannose-rich glycans linked to N117 residues of both receptor chains. Then, as the second step, CRTmut ligands induce rearrangement of receptor ECDs followed by the insertion of positively charged C-terminal helices of CRTmut into the unlocked binding pocket between D1 and D2 domains of both TPOR chains. A generally similar model for the final active CRTmut-TPOR (2:2) complex has been proposed based on a combination of experimental and computational approaches.²¹ The CRTmut-TPOR (2:2) active complex formed by ligand binding to the preformed receptor dimer, together with ICD-associated JAK2 traffics from ER to the plasma membrane via the secretory pathway.⁹⁰ Whether other cytokine:receptor complexes might also use the I-II-IV pathway (Figure 9) remains to be further examined.

Importantly, even the ligand-induced dimerization pathway (I-III-IV) implies significant structural changes during the formation of an active signaling complex. The rotational and translational movements of both ECDs relative to each other and side chain rotations are required to adjust the binding pocket for an asymmetric ligand. However, such molecular movements do not change the overall structure of individual monomeric subunits because they are nearly identical in the active and inactive dimers ($\text{Ca-RMSD} < 0.6 \text{ \AA}$). This rotational and piston motions propagate toward the membrane leading to a receptor-specific arrangement of TM α -helices and adjacent ICD Box 1 residues to bring together ICD-bound JAK2 molecules in an orientation appropriate for productive JAK2 dimerization, activation, and subsequent triggering of signaling events. To the contrary, in the ligand-free inactive dimers, receptor-associated JAK2 subunits are spatially separated and have incorrect orientations, which prevents their dimerization.

The results of the modeling are consistent with FRET studies of hGHR signaling.⁴⁷ In the ligand-free inactive conformation of the GHR-JAK2 (2:2) complex, JAK2 subunits allow FRET reporters (mCitrine and mCFP) covalently attached to the receptor C-termini (37 residues below the Box1 motif) to approach each other at a distance of $\sim 47 \text{ \AA}$ from one side of the JAK2 dimer (Figure S10A). The active GH1-GHR-JAK2


942 (1:2:2) complex has a TM dimer interface different from that
 943 in the inactive dimer by $\sim 100^\circ$ rotation of F273 toward the
 944 dimerization interface (from *e*- to *d*-position of the heptad
 945 repeat motif). This TM helix rotation promotes JAK2
 946 dimerization via PK-PK interactions. The tightly packed
 947 JAK2 dimer prevents FRET reporters from coming closer to
 948 each other (the distance between chromophores is 75 Å)
 949 (Figure S10B). Separation of FRET reporters in the active
 950 GHR-JAK2 signaling complex is in agreement with exper-
 951 imental data.⁴⁷

952 3.3. Mapping of Oncogenic Mutant onto Signaling

953 **Complexes.** Mutations of cytokine receptors and JAK2 have
 954 been implicated in dysregulation or chronic activation of
 955 cytokine pathways leading to severe pathologies, including
 956 hematological malignancies, growth abnormalities, and aber-
 957 rant immune responses.^{5,43,90–93} Disease-associated mutations
 958 can be classified as loss-of-function (LOF) and gain-of-
 959 function (GOF) mutations. The latter usually cause the
 960 constitutive activation of cytokine receptors and JAK
 961 kinases.^{10,43,94} Mapping of known oncogenic missense
 962 mutations onto the AFM-based models of active ligand-
 963 receptor-kinase complexes may shed light on possible
 964 molecular mechanisms of pathological effects of these
 965 mutations.

966 The majority of GOF mutations in JAK2⁹⁴ are located in the
 967 PK domain, regions involved in the PK-TK inhibitory interface
 968 (Figure 10, spheres colored cyan) and PK-PK dimerization
 969 interface (Figure 10, spheres colored blue). Mutations in the
 970 PK-PK dimerization interface are mainly associated with
 971 MPNs, with a single point mutation, V617F, identified in
 972 more than 95% of polycythemia vera (PV) cases and 50–60%
 973 of essential thrombocythemia (ET) and primary myelofibrosis
 974 (PMF) cases.⁹⁵ V617F together with adjacent aromatic
 975 residues, F537 and F595, forms a hydrophobic cluster of six
 976 aromatic residues from both subunits that stabilizes the JAK2
 977 dimer (Figure S6). Other oncogenic mutations are found near
 978 this cluster (M535I, H538L, K539L, and N622I). They
 979 strengthen the hydrophobic interactions at the dimerization
 980 interface. Indeed, all these mutations induce ligand-independ-
 981 ent activation and dimerization of the receptor forming the
 982 signaling complex with JAK2.¹⁹ Mutations of the PK-TK
 983 inhibitory interface are located between the N-lobes of PK and
 984 TK. The interface is formed by hydrophobic and charged
 985 residues, including the R683-D873 pair. Mutations of
 986 interfacial residues, including this ionic pair, can weaken PK-
 987 TK interactions and facilitate movement of TK from the
 988 inactive (Figure 10A) to the active conformation (Figure 10B).
 989 Activation of JAK2 due to relieved inhibitory function of the
 990 PK domain represents a possible mechanism that triggers
 991 MPNs, acute myeloid leukemia, and acute megakaryoblastic
 992 leukemia caused by these mutations.⁹⁴

993 Oncogenic hTPOR mutations are found in all receptor
 994 domains, with LOF mutations located mainly in ECD and ICD
 995 and GOF mutations clustered at dimerization interfaces
 996 created by TM α -helices and loops inside the ECD (Figure
 997 10). LOF mutations usually induce thrombocytopenia, while
 998 GOF mutations are mainly associated with thrombocytosis and
 999 MPNs, such as PMF and ET.⁵⁸ LOF mutations, including
 1000 K39N, R102P, P106L, W154R, R257C, and P635L, show low
 1001 cell-surface expression, possibly due to defects in receptor
 1002 folding or trafficking.¹⁰ Another LOF mutation, F104S located
 1003 in the ligand-binding pocket, impairs TPO binding to the
 1004 ECDs.^{10,58} The most common GOF mutations identified in

Figure 10. Mapping of disease-associated mutations onto AFM models of TPOR complexes. (A) TPO-TPOR-JAK2 complex (1:1:1). TPO binds to TPOR via its high-affinity site 1, forming a binary (1:1) inactive complex. JAK2 is constitutively associated with the ICD of TPOR. JAK2 is in the autoinhibited (inactive) form, with the PK domain interacting with the TK domain near the kinase active site, which inhibits the TK's catalytic activity. (B) Active signaling complex of TPO-TPOR-JAK2 (1:2:2) with TK in the active state. TPOR dimer is in the TPO-bound (active) conformation with TMDs forming the left-handed dimer. TPOR mutation sites associated with myeloproliferative neoplasms (MPNs)¹⁰ are shown as yellow spheres for lost-of-function mutations, red spheres for gain-of-function mutations, and pink spheres for "enhancer" mutations in the TMD (S493, H299). MPN-associated mutations of JAK2 are shown as blue spheres for mutations at the PK-PK dimerization interface and cyan spheres for mutations at the PK-TK inhibitory interface. Molecules are shown as cartoon and semitransparent surface representations colored orange for TPO, blue and green for TPOR subunits, and yellow and pink for JAK2 subunits.

MF and ET patients, S505N and W515 K/L/A/R, are located 1005 within the TMD.¹⁰ These mutations cause constitutive 1006 activation of TPOR due to stabilization of the productive 1007 TMD dimer. There are also several "enhancer" mutations in 1008 TM α -helices that stabilize the active mode of helix 1009 dimerization,^{54,87} which may enhance the pathological effect. 1010

A more detailed analysis of GOF and LOF mutations in the 1011 context of competing structures of active signaling complexes 1012 will add to our understanding of the role of disease-associated 1013 mutations in cytokine-induced JAK-STAT signaling cascades. 1014 Knowing the molecular mechanisms of oncogenic mutations 1015 will guide the development of new cancer therapeutic agents. 1016

4. CONCLUSIONS

Using the transformative ability of the AlphaFold2Multimer to 1017 predict structures of proteins and their complexes with high 1018 accuracy, we generated models of full-length active signaling 1019 complexes for human homodimeric cytokine type 1 receptors, 1020 EPOR, GHR, PRLR, TPOR, and CSF3R. Analysis of the 1021 resulting models of signaling complexes, as well as models of 1022 inactive dimers, examines, in a structural context, highly 1023 debated questions related to the mechanism of cytokine- 1024

1025 initiated activation that triggers the JAK-STAT signaling
1026 pathway in cells.

1027 First, we demonstrate that although ligand-free receptors
1028 may form stable inactive dimers, the ligand binding pocket in
1029 such dimers is occluded, thus preventing ligand binding. At low
1030 cell-surface receptor densities, cytokines are more likely to bind
1031 and activate monomeric receptors via a two-step process:
1032 ligand-induced receptor dimerization accompanied by con-
1033 formational rearrangements in ECDs and TMDs. This may
1034 represent the canonical receptor activation mechanism. A
1035 noncanonical activation route through ligand binding to
1036 preformed inactive dimers can also occur in specific cases,
1037 such as activation of TPOR by the oncogenic CRTmut.²⁰
1038 Second, we can picture the complete process of JAK2
1039 activation. The process starts from the receptor-induced
1040 proximity of two JAK2 molecules, followed by dissociation of
1041 the PK-TK inhibitory complex in each JAK2 molecule.
1042 Subsequently, the dimerization of two symmetric PK domains
1043 stabilizes the JAK2 dimer leading to *trans*-phosphorylation of
1044 both TK activation loops and their movement away from the
1045 TK active sites, enabling tyrosine phosphorylation of receptors
1046 and other associated proteins.

1047 Many other aspects of receptor conformational dynamics
1048 were also clarified, including atomic details of a specific binding
1049 of receptor Box1 and Box2 ICD motifs to JAK2, the ancillary
1050 role of the piston TM helix movement in short-chain cytokine
1051 receptors, and the role of GOF mutations in stabilizing
1052 dimerization interfaces in receptor and JAK2 molecules. The
1053 mode of interaction of two molecules of eltrombopag, an FDA-
1054 approved TPOR agonist, with the TM α -helical dimer of
1055 hTPOR is proposed.

1056 The computational modeling described in this study also
1057 uncovers certain limitations of the AFM method. The current
1058 versions of the AFM program do not allow a direct modeling
1059 of large complexes of multidomain proteins. Therefore, such
1060 complexes must be assembled from the smaller AFM-
1061 generated parts. Moreover, in the case of multiple alternative
1062 models produced by AFM, the selection of the correct
1063 structures still requires supporting experimental data. When
1064 such data are lacking or insufficient, the modeling of complexes
1065 also needs to include comparative analysis of models obtained
1066 for sequences of different lengths, with different sets of
1067 structural domains, mutants, and subunit stoichiometries. It is
1068 anticipated that future versions of the AFM program will
1069 overcome some of these limitations, allowing predictions of
1070 multiprotein complexes directly and with improved accuracy.

1071 Despite the limitations, the computational approaches used
1072 in this work can be applied in the future to modeling of
1073 cytokine receptor complexes from other families as well as
1074 other large functional assemblies of single-pass TM proteins
1075 that trigger different intracellular pathways. Knowing 3D
1076 structures of such complexes is critical for the development of
1077 new drugs and therapeutic strategies.

5. METHODS

1078 **5.1. Modeling of signaling complexes with Alpha-
1079 Fold-Multimer (AFM).** Modeling of active signaling
1080 complexes of five cytokine receptors was performed using
1081 AlphaFold_2.0_multimer.v2 1.3.0.version (AFM V2), Alpha-
1082 Fold_2.0_ptm 1.5.2 version (AF2-ptm), and more recent
1083 AlphaFold_2.0_multimer.v3 1.5.2.version (AFM V3)³² imple-
1084 mented through ColabFold notebook.³³ ColabFold was
1085 downloaded from Github (<https://github.com/YoshitakaMo/>

1086 localcolabfold) together with the environmental databases
1087 (<https://colabfold.mmseqs.com>) and installed on a local
1088 computing cluster. ColabFold was run locally using 12, 24, 1088
1089 and 48 recycles, MMseq2 for multiple sequence alignments, 1089
1090 refinement with Amber, and no templates. The quality of 1090
1091 structural models was characterized by the mean of per residue 1091
1092 pLDDT score (predicted Local Distance Difference Test) 1092
1093 ranging between 0 and 100 that characterizes local structural 1093
1094 accuracy,^{22,96} as well as using PAE (Predicted Aligned Error) 1094
1095 or PAE-derived pTMscore (predicted TM-score) ranging from 1095
1096 0 to 1,⁹⁷ which correspond to overall topological accuracy. The 1096
1097 confidence of the predicted protein-protein interface is 1097
1098 assessed by the interface pTM-score (ipTM) ranging from 0 1098
1099 to 1.²⁶ For each run, 5 models were generated and ranked by 1099
1100 ipTM scores (Tables S2 and S3).

1101 The amino-acid sequences from UniProt⁹⁸ were used for 1101
1102 modeling the following proteins: human JAK2 (UniProt AC: 1102
1103 Q60674), five human receptors, hEPOR, hTPOR, hGHR, 1103
1104 hPRLR, and hCSF3R (UniProt ACs: P19235, P40238, 1104
1105 P10912, P16471, and Q99062, respectively), mouse EPOR 1105
1106 (UniProt AC: P14753), six human cytokines, hEPO, hTPO, 1106
1107 hGH1, hPRL, hCSH1, and hCSF3 (UniProt ACs: P01588, 1107
1108 P40225, P01241, P01236, P0DML2, and P09919, respectively) 1108
1109 (Figure S1), and mouse EPO (UniProt AC: P07321). For 1109
1110 hTPO, only the erythropoietin-like N-terminal domain 1110
1111 (residues 22–174)¹⁰ was modeled, while the glycan domain 1111
1112 was omitted. For an easy comparison with published 1112
1113 experimental data, sequences of mature proteins (lacking 1113
1114 signal peptides) were used for hEPOR, mEPOR, hPRLR, and 1114
1115 cytokines, while full-length sequences of immature proteins 1115
1116 (carrying signal peptides) were used in all other cases. 1116
1117 Intrinsically disordered regions of receptor ICDs beyond 1117
1118 Box1 or Box2 motifs were usually removed. For the four 1118
1119 receptors except PRLR, one natural ligand was used (Figure 1119
1120 S1). For human PRLR, which can be activated by three human 1120
1121 hormones, prolactin (PRL), somatotropin (GH1), and 1121
1122 placental lactogen (CSH1),⁶ three receptor-hormone pairs 1122
1123 were modeled (Table S2). The ligand-receptor stoichiometry 1123
1124 was 1:2 for all receptors, except CSF3R, for which the 2:2 1124
1125 complex was modeled.

1126 Additionally, AFM was used to obtain models for ligand-free 1126
1127 receptor dimers and receptor fragments composed of TM α - 1127
1128 helix with juxtamembrane regions, WSxWS motifs, or adding 1128
1129 membrane-proximal domains (D4 for TPOR, D6 and D5-D6 1129
1130 for CSF3R). The complete signaling complexes consist of 1130
1131 ligands, receptors, and JAK2 at a stoichiometry 1:2:2 (for 1131
1132 EPOR, GHR, PRLR, and TPOR) or 2:2:2 (for CSF3R). 1132

1133 AFM modeling was performed in 4 steps (see **Results**, 1133
1134 **Figures 2** and **S2** for the workflow). To diversify models, we 1134
1135 increased sampling for each complex by running different AF2 1135
1136 versions (AFM V2 or V3 and AF2-ptm), by changing random 1136
1137 seed numbers and the number of recycles. Each run with a 1137
1138 specified seed and a number of recycles produced 5 different 1138
1139 models. Any models with unfolded, noninteracting, or 1139
1140 incorrectly oriented monomers were excluded from the 1140
1141 subsequent analysis. At every step of the modeling, we selected 1141
1142 the single best model based on its agreement with available 1142
1143 experimental data. The consistency with experimental data was 1143
1144 assessed using Ca -RMSDs with crystal structures, DockQ 1144
1145 scores, and agreement with mutagenesis and other data on TM 1145
1146 helix packing. We also compared sets of ligand-receptor 1146
1147 interacting residues predicted by the models with the 1147
1148 corresponding sets obtained by mutagenesis (Table S5, Figures 1148

3 and 6) and checked the proper binding of receptor intracellular loops with JAK2 domains: Box-1 residues with the FERM domain (Figure 5), Box-2 residues with the SH2L domain (Figure S8), and specified tyrosine residues with the TK domain (Figures S7 and S9). An important additional criterion was the correct formation of numerous intramolecular disulfide bonds in the extracellular domains of these receptors (Table S1, Figures 3, 4, and 6). During this procedure, our goal was to obtain the most accurate models. Therefore, we were gradually increasing sampling as long as this process improved the consistency of the best model with experimental data. We found that a set of 30 models for each complex was sufficient for this purpose.

For example, the output models of ligand-bound short-chain receptors (EPOR, GHR, and PRLR) demonstrated similar ECD structures, reproducing corresponding crystal structures, but showed diverse arrangements of their TM α -helices (Figures S11 and S12). Models with strongly interacting TM α -helices were selected and compared with available protein engineering and mutagenesis data for helix packing motifs. Then, for each complex, one model that best satisfied the experimental data was chosen for the subsequent modeling of signaling complexes with JAK2 dimers, as described in the **Results**.

Hence, during the model selection, we relied mostly on the consistency of models with experimental data rather than on predicted ipTM scores. This strategy was based on the previous observations that the predicted contact scores often fail to identify the true models,⁹⁹ and experimental verification is usually required to validate and justify the physiological relevance of AF2-predicted conformations of membrane proteins.¹⁰⁰

We found that the V3 version produced better models for TPOR complexes (Figure S13A), but not for other receptors where the results with V2 and V3 versions were rather similar. AF2-ptm produced better models of disulfide-linked dimers of R130C, D133C, and E134C mutants of hEPOR than AFM V2 and V3. Calculations of full-length CSF3:CSF3R (2:2) tetrameric complexes produced models with spatially separated TM helices (Figure S13B). Therefore, these complexes were produced by a two-step procedure (see the **Results**).

The final model of each signaling complex was refined using local energy minimization with CHARMM c47b2¹⁰¹ through the pyCHARMM python module¹⁰² to remove atom hindrances. The minimization was conducted for 1000 steps (dielectric constant $\epsilon = 63$) with $\text{C}\alpha$ fixation using the CONS HARM command in CHARMM (the force of 20), and fixation of cysteines using the CONS FIX command. The structures were prepared using the PDB input manipulator on CHARMM GUI^{103,104} and then converted back using MMTSB convpdb.pl.¹⁰⁵ The models of all complexes are available through the Membranome database.¹⁰⁶

AFM-generated models were superimposed with each other and with available experimental structures by the *align* method of PyMOL (1.8.4.1) (www.pymol.org) with default parameters (cutoff = 2.0, cycles = 5, transform = 1), PDBeFold (SSM) server,¹⁰⁷ and the US-align web server.¹⁰⁸ Membrane boundaries were calculated by the PPM web tool.³⁴ The eltrombopag drug was docked to TPOR TM domain manually using PyMOL to satisfy contacts between the drug and specific residues of TPOR identified by NMR.^{55,57} The fractions of native contacts (Fnat) and DockQ scores in the final models of the complexes were evaluated using available crystal structures

and DockQ program³⁶ (Table S3). All of the figures were generated by PyMOL.

5.2. Modeling of Lipid Bilayer Systems with Signaling

Complexes. The final models of cytokine receptor signaling complexes were embedded into the lipid bilayer composed of explicit lipids forming the asymmetric mammalian plasma membrane.¹⁰⁹ The inner membrane leaflet was composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), sphingomyelin (SM), and cholesterol (CHOL), while the outer membrane leaflet was composed of PC, PE, SM, CHOL, and glucosylceramide (GlcCer) (Table S7). The TIP3P water model was used to simulate explicit water molecules, while the number of ions (Na^+ and Cl^-) incorporated corresponded to the physiological concentration (150 mM NaCl). Initial membrane structures were built using the CHARMM-GUI *Membrane Builder*.^{110–112} The simulations were performed with all-atom CHARMM36m force field,¹¹³ and executed utilizing OpenMM.¹¹⁴ Following the default equilibration protocol of CHARMM-GUI,^{101,104,115} we first applied NVT dynamics with a time step of 1 fs (fs) for 250 ps (ps). Subsequently, we employed the NPT ensemble with a time step of 1 fs and then with a time step of 2 fs. During the equilibration processes, the protein, lipid, and water molecules were subjected to the restraint potentials of their position and dihedral angles. The force constants associated with these potentials were systematically decreased over time. Ten nanoseconds (ns) production runs were performed for each system utilizing a time step of 4 fs and employing the hydrogen mass repartitioning technique¹¹⁶ in the absence of any restraint potentials. The SHAKE algorithm was employed for managing bonds involving hydrogen atoms.¹¹⁷ van der Waals interactions were truncated at a cutoff of 12 Å, with a force-switching function applied between 10 and 12 Å,¹¹⁸ while electrostatic interactions were calculated using the particle-mesh Ewald method.¹¹⁹ The manipulation of temperature and pressure (at a standard pressure of 1 bar) was achieved by utilizing Langevin dynamics with a friction coefficient of 1 ps⁻¹ and a semi-isotropic Monte Carlo barostat, respectively.

ASSOCIATED CONTENT

Data Availability Statement

Our models of five cytokine-receptor-JAK2 complexes in explicit lipids of the mammalian plasma membrane and simulation systems are available in CHARMM-GUI Archive (<https://www.charmm-gui.org/docs/archive/bitopictm>).

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.jcim.3c00926>.

13 Figures demonstrating molecular details of AFM models of cytokine receptor complexes and 7 Tables presenting quality metrics of different AFM models, characteristics of receptors and their partners, interaction residues in the binding pocket of TPOR, and lipid composition of the mammalian plasma membrane (PDF)

Model of TPOR (PDB)

Model of PRLR (PDB)

Model of GHR (PDB)

Model of EPOR (PDB)

Model of CSF3R (PDB)

1272 ■ AUTHOR INFORMATION

1273 Corresponding Author

1274 Andrei L. Lomize – Department of Medicinal Chemistry,
1275 College of Pharmacy, University of Michigan, Ann Arbor,
1276 Michigan 48109, United States; orcid.org/0000-0002-3044-7597; Email: almz@umich.edu

1278 Authors

1279 Irina D. Pogozheva – Department of Medicinal Chemistry,
1280 College of Pharmacy, University of Michigan, Ann Arbor,
1281 Michigan 48109, United States; orcid.org/0000-0002-3024-9574

1283 Stanislav Cherepanov – Biophysics Program, University of
1284 Michigan, Ann Arbor, Michigan 48109, United States;
1285 orcid.org/0000-0001-9459-1849

1286 Sang-Jun Park – Departments of Biological Sciences and
1287 Chemistry, Lehigh University, Bethlehem, Pennsylvania
1288 18015, United States; orcid.org/0000-0002-7307-3724

1289 Malini Raghavan – Department of Microbiology and
1290 Immunology, University of Michigan Medical School, Ann
1291 Arbor, Michigan 48109, United States; orcid.org/0000-0002-1345-9318

1293 Wonpil Im – Departments of Biological Sciences and
1294 Chemistry, Lehigh University, Bethlehem, Pennsylvania
1295 18015, United States; orcid.org/0000-0001-5642-6041

1296 Complete contact information is available at:

1297 <https://pubs.acs.org/10.1021/acs.jcim.3c00926>

1298 Author Contributions

1299 The paper was written through contributions of all authors. All
1300 authors have given approval to the final version of the paper. I.
1301 D. Pogozheva and A.L. Lomize wrote and edited the paper. I.
1302 D. Pogozheva, A. L. Lomize, and S. Cherepanov performed
1303 molecular modeling. S. J. Park and W. Im equilibrated lipid-
1304 protein systems for five cytokine-receptor-kinase signaling
1305 complexes for MD simulations. M. Raghavan and W. Im edited
1306 the paper.

1307 Notes

1308 The authors declare no competing financial interest.

1309 ■ ACKNOWLEDGMENTS

1310 This work was funded by the Division of Biological
1311 Infrastructure of the National Science Foundation (Award #
1312 1855425 for I.P. and A.L.) and (Award # 2011234 for W.I.)
1313 and by the National Institutes of Health (R01AI123957 for
1314 M.R.). The authors thank S. Todd for local installation of
1315 AlphaFold Multimer ColabFold version and design of a web
1316 server that was used during this work.

1317 ■ ABBREVIATIONS

1318 AFM, AlphaFold Multimer; CHM, cytokine homology
1319 module; CRT, calreticulin; CSF3, granulocyte colony-stimulat-
1320 ing factor; CSF3R, granulocyte colony-stimulating factor 3
1321 receptor; CSH1, placental lactogen or chorionic somatomam-
1322 motropin hormone 1; ECD, extracellular domain; EPOR,
1323 erythropoietin receptor; ET, essential thrombocythemia;
1324 FERM, four-point-one, ezrin, radixin, moesin; FnIII, fibronec-
1325 tin type III; GH1, somatotropin; GHR, growth hormone
1326 receptor; GOF, gain-of-function (mutation); JAK2, Janus
1327 Kinase 2; ICD, intracellular domain; IL, interleukin; LOF,
1328 loss-of-function (mutation); MD, molecular dynamics; MPN,
1329 myeloproliferative neoplasms; NVT, dynamics, constant

1330 number, constant-volume, and constant-temperature simula-
1331 tion; NPT ensemble, isothermal-isobaric ensemble; PK, 1331
1332 pseudokinase; PMF, primary myelofibrosis; PRLR, prolactin 1332
1333 receptor; PV, polycythemia vera; SH2L, Src-homology 2-like 1333
1334 SHP, tyrosine phosphatase; SOCS, suppressors of cytokine 1334
1335 signaling; TPOR, thrombopoietin receptor; TK, tyrosine 1335
1336 kinase; TM, transmembrane; TMD, transmembrane domain; 1336
1337 TM-JM, transmembrane and juxtamembrane regions 1337

■ REFERENCES

- (1) Liongue, C.; Sertori, R.; Ward, A. C. Evolution of cytokine receptor signaling. *J. Immunol.* **2016**, *197* (1), 11–18. 1339
1340
- (2) Morris, R.; Kershaw, N. J.; Babon, J. J. The molecular details of cytokine signaling via the JAK/STAT pathway. *Protein Sci.* **2018**, *27* (12), 1984–2009. 1341
1342
1343
- (3) Schindler, C.; Levy, D. E.; Decker, T. JAK-STAT Signaling: From interferons to cytokines*. *J. Biol. Chem.* **2007**, *282* (28), 1344
20059–20063. 1345
1346
- (4) Boulay, J.-L.; O’Shea, J. J.; Paul, W. E. Molecular phylogeny within type I cytokines and their cognate receptors. *Immunity* **2003**, *19* (2), 159–163. 1347
1348
1349
- (5) Dehkhoda, F.; Lee, C. M. M.; Medina, J.; Brooks, A. J. The growth hormone receptor: mechanism of receptor activation, cell signaling, and physiological aspects. *Front. Endocrinol.* **2018**, *9*, 35. 1350
1351
1352
- (6) Brooks, C. L. Molecular mechanisms of prolactin and its receptor. *Endocr. Rev.* **2012**, *33* (4), 504–525. 1353
1354
- (7) Watowich, S. S. The Erythropoietin Receptor: Molecular Structure and Hematopoietic Signaling Pathways. *J. Investig. Med.* **2011**, *59* (7), 1067–1072. 1355
1356
1357
- (8) Olsen, J. G.; Kragelund, B. B. Who climbs the tryptophan ladder? On the structure and function of the WSXWS motif in cytokine receptors and thrombospondin repeats. *Cytokine Growth Factor Rev.* **2014**, *25* (3), 337–341. 1358
1359
1360
1361
- (9) Varghese, L. N.; Defour, J. P.; Pecquet, C.; Constantinescu, S. N. The thrombopoietin receptor: structural basis of traffic and activation by ligand, mutations, agonists, and mutated calreticulin. *Front. Endocrinol.* **2017**, *8*, 59. 1362
1363
1364
1365
- (10) Hitchcock, I. S.; Hafer, M.; Sangkhae, V.; Tucker, J. A. The thrombopoietin receptor: revisiting the master regulator of platelet production. *Platelets* **2021**, *32* (6), 770–778. 1366
1367
1368
- (11) Tamada, T.; Honjo, E.; Maeda, Y.; Okamoto, T.; Ishibashi, M.; Tokunaga, M.; Kuroki, R. Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex. *Proc. Natl. Acad. Sci. U. S. A.* **2006**, *103* (9), 3135–3140. 1369
1370
1371
1372
1373
- (12) Tsirigotaki, A.; Danseroer, A.; Verschueren, K. H. G.; Marković, I.; Pollmann, C.; Hafer, M.; Felix, J.; Birck, C.; Van Putte, W.; Catteeuw, D.; Tavernier, J.; Fernando Bazan, J.; Piehler, J.; Savvides, S. N.; Verstraete, K. Mechanism of receptor assembly via the pleiotropic adipokine Leptin. *Nat. Struct. Mol. Biol.* **2023**, *30* (4), 551–563. 1374
1375
1376
1377
1378
1379
- (13) Syed, R. S.; Reid, S. W.; Li, C.; Cheetham, J. C.; Aoki, K. H.; Liu, B.; Zhan, H.; Osslund, T. D.; Chirino, A. J.; Zhang, J.; Finer, J.; Elliott, S.; Sitney, K.; Katz, B. A.; Matthews, D. J.; Wendoloski, J. J.; Egrie, J.; Stroud, R. M. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. *Nature* **1998**, *395* (6701), 511–516. 1380
1381
1382
1383
1384
1385
- (14) de Vos, A. M.; Ultsch, M.; Kossiakoff, A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. *Science* **1992**, *255* (5042), 306–312. 1386
1387
1388
- (15) van Agthoven, J.; Zhang, C.; Tallet, E.; Raynal, B.; Hoos, S.; Baron, B.; England, P.; Goffin, V.; Broutin, I. Structural characterization of the stem-stem dimerization interface between prolactin receptor chains complexed with the natural hormone. *J. Mol. Biol.* **2010**, *404* (1), 112–126. 1389
1390
1391
1392
1393
- (16) Somers, W.; Ultsch, M.; De Vos, A. M.; Kossiakoff, A. A. The X-ray structure of a growth hormone-prolactin receptor complex. *Nature* **1994**, *372* (6505), 478–481. 1394
1395
1396

- 1397 (17) Clackson, T.; Ultsch, M. H.; Wells, J. A.; de Vos, A. M. 1398 Structural and functional analysis of the 1:1 growth hormone:receptor 1399 complex reveals the molecular basis for receptor affinity. *J. Mol. Biol.* 1400 **1998**, 277 (5), 1111–1128.
- 1401 (18) Walsh, S. T.; Jevitts, L. M.; Sylvester, J. E.; Kossiakoff, A. A. 1402 Site2 binding energetics of the regulatory step of growth hormone- 1403 induced receptor homodimerization. *Protein Sci.* **2003**, 12 (9), 1960– 1404 1970.
- 1405 (19) Wilmes, S.; Hafer, M.; Vuorio, J.; Tucker, J. A.; Winkelmann, 1406 H.; Löchte, S.; Stanly, T. A.; Pulgar Prieto, K. D.; Poojari, C.; Sharma, 1407 V.; Richter, C. P.; Kurre, R.; Hubbard, S. R.; Garcia, K. C.; Moraga, I.; 1408 Vattulainen, I.; Hitchcock, I. S.; Pielher, J. Mechanism of 1409 homodimeric cytokine receptor activation and dysregulation by 1410 oncogenic mutations. *Science* **2020**, 367 (6478), 643–652.
- 1411 (20) Desikan, H.; Kaur, A.; Pogozheva, I. D.; Raghavan, M. Effects 1412 of calreticulin mutations on cell transformation and immunity. *J. Cell.* 1413 *Mol. Med.* **2023**, 27, 1032.
- 1414 (21) Papadopoulos, N.; Nédélec, A.; Derenne, A.; Şulea, T. A.; 1415 Pecquet, C.; Chachoua, I.; Vertenoil, G.; Tilman, T.; Petrescu, A. J.; 1416 Mazzucchelli, G.; Iorga, B. I.; Vertommen, D.; Constantinescu, S. N. 1417 Oncogenic CALR mutant C-terminus mediates dual binding to the 1418 thrombopoietin receptor triggering complex dimerization and 1419 activation. *Nat. Commun.* **2023**, 14 (1), 1881.
- 1420 (22) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; 1421 Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; 1422 Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A.; 1423 J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; 1424 Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; 1425 Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; 1426 Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; 1427 Hassabis, D. Highly accurate protein structure prediction with 1428 AlphaFold. *Nature* **2021**, 596 (7873), 583–589.
- 1429 (23) Akdel, M.; Pires, D. E. V.; Pardo, E. P.; Jänes, J.; Zalevsky, A.; 1430 O.; Mészáros, B.; Bryant, P.; Good, L. L.; Laskowski, R. A.; Pozzati, 1431 G.; Shenoy, A.; Zhu, W.; Kundrotas, P.; Serra, V. R.; Rodrigues, C. H. 1432 M.; Dunham, A. S.; Burke, D.; Borkakoti, N.; Velankar, S.; Frost, A.; 1433 Basquin, J.; Lindorff-Larsen, K.; Bateman, A.; Kajava, A. V.; Valencia, 1434 A.; Ovchinnikov, S.; Durairaj, J.; Ascher, D. B.; Thornton, J. M.; 1435 Davey, N. E.; Stein, A.; Eloffson, A.; Croll, T. I.; Beltrao, P. A. 1436 structural biology community assessment of AlphaFold2 applications. 1437 *Nat. Struct. Mol. Biol.* **2022**, 29 (11), 1056–1067.
- 1438 (24) Kryshtafovych, A.; Schwede, T.; Topf, M.; Fidelis, K.; Moult, J. 1439 Critical assessment of methods of protein structure prediction 1440 (CASP)-Round XIV. *Proteins* **2021**, 89 (12), 1607–1617.
- 1441 (25) Bryant, P.; Pozzati, G.; Eloffson, A. Improved prediction of 1442 protein-protein interactions using AlphaFold2. *Nat. Commun.* **2022**, 1443 13 (1), 1265.
- 1444 (26) Yin, R.; Feng, B. Y.; Varshney, A.; Pierce, B. G. Benchmarking 1445 AlphaFold for protein complex modeling reveals accuracy determinants. *Protein Sci.* **2022**, 31 (8), No. e4379.
- 1447 (27) Gao, M.; Nakajima An, D.; Parks, J. M.; Skolnick, J. 1448 AF2Complex predicts direct physical interactions in multimeric 1449 proteins with deep learning. *Nat. Commun.* **2022**, 13 (1), 1744.
- 1450 (28) Hegedüs, T.; Geisler, M.; Lukács, G. L.; Farkas, B. Ins and outs 1451 of AlphaFold2 transmembrane protein structure predictions. *Cell. Mol. 1452 Life Sci.* **2022**, 79 (1), 73.
- 1453 (29) Pei, J.; Zhang, J.; Cong, Q. Human mitochondrial protein 1454 complexes revealed by large-scale coevolution analysis and deep 1455 learning-based structure modeling. *Bioinformatics* **2022**, 38 (18), 1456 4301–4311.
- 1457 (30) Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, 1458 M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; 1459 Velankar, S.; Kleywegt, G. J.; Bateman, A.; Evans, R.; Pritzel, A.; 1460 Figurnov, M.; Ronneberger, O.; Bates, R.; Kohl, S. A. A.; Potapenko, 1461 A.; Ballard, A. J.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Clancy, E.; 1462 Reiman, D.; Petersen, S.; Senior, A. W.; Kavukcuoglu, K.; Birney, E.; 1463 Kohli, P.; Jumper, J.; Hassabis, D. Highly accurate protein structure 1464 prediction for the human proteome. *Nature* **2021**, 596 (7873), 590– 1465 596.
- 1466 (31) Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; 1467 Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; Žídek, A.; 1468 Green, T.; Tunyasuvunakool, K.; Petersen, S.; Jumper, J.; Clancy, E.; 1469 Green, R.; Vora, A.; Lutfi, M.; Figurnov, M.; Cowie, A.; Hobbs, N.; 1470 Kohli, P.; Kleywegt, G.; Birney, E.; Hassabis, D.; Velankar, S. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy 1471 models. *Nucleic Acids Res.* **2022**, 50 (D1), D439–D444.
- 1472 (32) Evans, R.; O'Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; 1473 Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; Ronneberger, 1474 O.; Bodenstein, S.; Zielinski, M.; Bridgland, A.; Potapenko, A.; Cowie, 1475 A.; Tunyasuvunakool, K.; Jain, R.; Clancy, E.; Kohli, P.; Jumper, J.; 1476 Hassabis, D. Protein complex prediction with AlphaFold-Multimer. *bioRxiv [Preprint]* **2021**, DOI: 10.1101/2021.10.04.463034.
- 1477 (33) Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, 1478 S.; Steinegger, M. ColabFold: making protein folding accessible to all. *Nat. Methods* **2022**, 19 (6), 679–682.
- 1479 (34) Lomize, A. L.; Todd, S. C.; Pogozheva, I. D. Spatial arrangement of proteins in planar and curved membranes by PPM 1480 3.0. *Protein Sci.* **2022**, 31 (1), 209–220.
- 1481 (35) Elkins, P. A.; Christinger, H. W.; Sandowski, Y.; Sakal, E.; 1482 Gertler, A.; de Vos, A. M.; Kossiakoff, A. A. Ternary complex between 1483 placental lactogen and the extracellular domain of the prolactin 1484 receptor. *Nat. Struct. Biol.* **2000**, 7 (9), 808–815.
- 1485 (36) Basu, S.; Wallner, B. DockQ: A Quality Measure for Protein- 1486 Protein Docking Models. *PLoS One* **2016**, 11 (8), No. e0161879.
- 1487 (37) Li, Q.; Wong, Y. L.; Yueqi Lee, M.; Li, Y.; Kang, C. Solution 1488 structure of the transmembrane domain of the mouse erythropoietin 1489 receptor in detergent micelles. *Sci. Rep.* **2015**, 5, 13586.
- 1490 (38) Constantinescu, S. N.; Huang, L. J.-s.; Nam, H.-s.; Lodish, H. F. 1491 The erythropoietin receptor cytosolic juxtamembrane domain 1492 contains an essential, precisely oriented, hydrophobic motif. *Mol. 1493 Cell* **2001**, 7 (2), 377–385.
- 1494 (39) Lee, R. C.; Walters, J. A.; Reyland, M. E.; Anderson, S. M. 1495 Constitutive activation of the prolactin receptor results in the 1496 induction of growth factor-independent proliferation and constitutive 1497 activation of signaling molecules. *J. Biol. Chem.* **1999**, 274 (15), 1498 10024–10034.
- 1499 (40) Tan, D.; Huang, K. T.; Ueda, E.; Walker, A. M. S2 deletion 1500 variants of human PRL receptors demonstrate that extracellular 1501 domain conformation can alter conformation of the intracellular 1502 signaling domain. *Biochemistry* **2008**, 47 (1), 479–489.
- 1503 (41) Minh Hung, H.; Dieu Hang, T.; Nguyen, M. T. Structural 1504 investigation of human prolactin receptor transmembrane domain 1505 homodimerization in a membrane environment through multiscale 1506 simulations. *J. Phys. Chem. B* **2019**, 123 (23), 4858–4866.
- 1507 (42) Liu, W.; Brooks, C. L. Functional impact of manipulation on 1508 the relative orientation of human prolactin receptor domains. *Biochemistry* **2011**, 50 (23), 5333–5344.
- 1509 (43) Floss, D. M.; Scheller, J. Naturally occurring and synthetic 1510 constitutive-active cytokine receptors in disease and therapy. *Cytokine 1511 Growth Factor Rev.* **2019**, 47, 1–20.
- 1512 (44) Lu, X.; Gross, A. W.; Lodish, H. F. Active conformation of the 1513 erythropoietin receptor: random and cysteine-scanning mutagenesis 1514 of the extracellular juxtamembrane and transmembrane domains. *J. 1515 Biol. Chem.* **2006**, 281 (11), 7002–7011.
- 1516 (45) Tong, W.; Sulahian, R.; Gross, A. W.; Hendon, N.; Lodish, H. 1517 F.; Huang, L. J. The membrane-proximal region of the thrombopoietin 1518 receptor confers its high surface expression by JAK2-dependent 1519 and -independent mechanisms. *J. Biol. Chem.* **2006**, 281 (50), 38930– 1520 38940.
- 1521 (46) Bocharov, E. V.; Lesovoy, D. M.; Bocharova, O. V.; Urban, A. 1522 S.; Pavlov, K. V.; Volynsky, P. E.; Efremov, R. G.; Arseniev, A. S. 1523 Structural basis of the signal transduction via transmembrane domain 1524 of the human growth hormone receptor. *Biochim. Biophys. Acta* **2018**, 1525 1862 (6), 1410–1420.
- 1526 (47) Brooks, A. J.; Dai, W.; O'Mara, M. L.; Abankwa, D.; Chhabra, 1527 Y.; Pelekanos, R. A.; Gardon, O.; Tunny, K. A.; Blucher, K. M.; 1528 Morton, C. J.; Parker, M. W.; Sierecki, E.; Gambin, Y.; Gomez, G. A.; 1529

- 1535 Alexandrov, K.; Wilson, I. A.; Doxastakis, M.; Mark, A. E.; Waters, M. 1536 J. Mechanism of activation of protein kinase JAK2 by the growth 1537 hormone receptor. *Science* **2014**, *344* (6185), 1249783. 1604
- 1538 (48) Behncken, S. N.; Billestrup, N.; Brown, R.; Amstrup, J.; 1539 Conway-Campbell, B.; Waters, M. J. Growth hormone (GH)- 1540 independent dimerization of GH receptor by a leucine zipper results 1541 in constitutive activation. *J. Biol. Chem.* **2000**, *275* (22), 17000– 1542 17007. 1605
- 1543 (49) Seubert, N.; Royer, Y.; Staerk, J.; Kubatzky, K. F.; Moucadel, 1544 V.; Krishnakumar, S.; Smith, S. O.; Constantinescu, S. N. Active and 1545 inactive orientations of the transmembrane and cytosolic domains of 1546 the erythropoietin receptor dimer. *Mol. Cell* **2003**, *12* (5), 1239– 1547 1250. 1606
- 1548 (50) Ruan, W.; Becker, V.; Klingmuller, U.; Langosch, D. The 1549 interface between self-assembling erythropoietin receptor trans- 1550 membrane segments corresponds to a membrane-spanning leucine 1551 zipper. *J. Biol. Chem.* **2004**, *279* (S), 3273–3279. 1607
- 1552 (51) Varghese, L. N.; Zhang, J.-G.; Young, S. N.; Willson, T. A.; 1553 Alexander, W. S.; Nicola, N. A.; Babon, J. J.; Murphy, J. M. Functional 1554 characterization of c-Mpl ectodomain mutations that underlie 1555 congenital amegakaryocytic thrombocytopenia. *Growth Factors* 1556 **2014**, *32* (1), 18–26. 1608
- 1557 (52) Chen, W. M.; Yu, B.; Zhang, Q.; Xu, P. Identification of the 1558 residues in the extracellular domain of thrombopoietin receptor 1559 involved in the binding of thrombopoietin and a nuclear distribution 1560 protein (human NUDC). *J. Biol. Chem.* **2010**, *285* (34), 26697– 1561 26709. 1609
- 1562 (53) Leroy, E.; Defour, J. P.; Sato, T.; Dass, S.; Gryshkova, V.; Shwe, 1563 M. M.; Staerk, J.; Constantinescu, S. N.; Smith, S. O. His499 regulates 1564 dimerization and prevents oncogenic activation by asparagine 1565 mutations of the human thrombopoietin receptor. *J. Biol. Chem.* 1566 **2016**, *291* (6), 2974–2987. 1610
- 1567 (54) Levy, G.; Carillo, S.; Papouliar, B.; Cassinat, B.; Zini, J. M.; 1568 Leroy, E.; Varghese, L. N.; Chachoua, I.; Defour, J. P.; Smith, S. O.; 1569 Constantinescu, S. N. Mpl mutations in essential thrombocythemia 1570 uncover a common path of activation with eltrombopag dependent on 1571 W491. *Blood* **2020**, *135* (12), 948–953. 1611
- 1572 (55) Kim, M. J.; Park, S. H.; Opella, S. J.; Marsilje, T. H.; Michellys, 1573 P. Y.; Seidel, H. M.; Tian, S. S. NMR structural studies of interactions 1574 of a small, nonpeptidyl Tpo mimic with the thrombopoietin receptor 1575 extracellular juxtamembrane and transmembrane domains. *J. Biol. 1576 Chem.* **2007**, *282* (19), 14253–14261. 1612
- 1577 (56) Staerk, J.; Defour, J.-P.; Pecquet, C.; Leroy, E.; Antoine-Poirel, 1578 H.; Brett, L.; Itaya, M.; Smith, S. O.; Vainchenker, W.; Constantinescu, 1579 S. N. Orientation-specific signalling by thrombopoietin receptor 1580 dimers. *EMBO J.* **2011**, *30* (21), 4398–4413. 1613
- 1581 (57) Matthews, E. E.; Thévenin, D.; Rogers, J. M.; Gotow, L.; Lira, 1582 P. D.; Reiter, L. A.; Brissette, W. H.; Engelmann, D. M. 1583 Thrombopoietin receptor activation: transmembrane helix dimeriza- 1584 tion, rotation, and allosteric modulation. *FASEB J.* **2011**, *25* (7), 1585 2234–2244. 1614
- 1586 (58) Plo, I.; Bellanné-Chantelot, C.; Mosca, M.; Mazzi, S.; Marty, 1587 C.; Vainchenker, W. Genetic Alterations of the Thrombopoietin/ 1588 MPL/JAK2 Axis Impacting Megakaryopoiesis. *Front. Endocrinol.* 1589 **2017**, *8*, 234. 1615
- 1590 (59) Ding, J.; Komatsu, H.; Iida, S.; Yano, H.; Kusumoto, S.; Inagaki, 1591 A.; Mori, F.; Ri, M.; Ito, A.; Wakita, A.; Ishida, T.; Nitta, M.; Ueda, R. 1592 The Asn505 mutation of the c-MPL gene, which causes familial 1593 essential thrombocythemia, induces autonomous homodimerization 1594 of the c-Mpl protein due to strong amino acid polarity. *Blood* **2009**, 1595 *114* (15), 3325–3328. 1616
- 1596 (60) Defour, J. P.; Chachoua, I.; Pecquet, C.; Constantinescu, S. N. 1597 Oncogenic activation of MPL/thrombopoietin receptor by 17 1598 mutations at W515: implications for myeloproliferative neoplasms. 1599 *Leukemia* **2016**, *30* (5), 1214–1216. 1617
- 1600 (61) Zhang, H.; Coblenz, C.; Watanabe-Smith, K.; Means, S.; 1601 Means, J.; Maxson, J. E.; Tyner, J. W. Gain-of-function mutations in 1602 granulocyte colony-stimulating factor receptor (CSF3R) reveal 1603 distinct mechanisms of CSF3R activation. *J. Biol. Chem.* **2018**, *293* 1603 (19), 7387–7396. 1604
- (62) Forbes, L. V.; Gale, R. E.; Pizzey, A.; Pouwels, K.; Nathwani, A.; Linch, D. C. An activating mutation in the transmembrane domain of the granulocyte colony-stimulating factor receptor in patients with acute myeloid leukemia. *Oncogene* **2002**, *21* (39), 5981–5989. 1608
- (63) Lomize, A. L.; Pogozheva, I. D. TMDOCK: an energy-based method for modeling alpha-helical dimers in membranes. *J. Mol. Biol.* **2017**, *429* (3), 390–398. 1611
- (64) Poger, D.; Mark, A. E. Turning the growth hormone receptor on: evidence that hormone binding induces subunit rotation. *Proteins* **2010**, *78* (5), 1163–1174. 1614
- (65) Livnah, O.; Stura, E. A.; Middleton, S. A.; Johnson, D. L.; Jolliffe, L. K.; Wilson, I. A. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. *Science* **1999**, *283* (5404), 987–990. 1618
- (66) Watowich, S. S.; Yoshimura, A.; Longmore, G. D.; Hilton, D. J.; Yoshimura, Y.; Lodish, H. F. Homodimerization and constitutive activation of the erythropoietin receptor. *Proc. Natl. Acad. Sci. U. S. A.* **1992**, *89* (6), 2140–2144. 1622
- (67) Watowich, S. S.; Hilton, D. J.; Lodish, H. F. Activation and inhibition of erythropoietin receptor function: role of receptor dimerization. *Mol. Cell. Biol.* **1994**, *14* (6), 3535–3549. 1625
- (68) Ayaz, P.; Hammarén, H. M.; Raivola, J.; Sharon, D.; Hubbard, S. R.; Silvennoinen, O.; Shan, Y.; Shaw, D. E. Structural models of full-length JAK2 kinase. *bioRxiv* [Preprint] **2019**, DOI: 10.1101/727727. 1628
- (69) Glassman, C. R.; Tsutsumi, N.; Saxton, R. A.; Lupardus, P. J.; Jude, K. M.; Garcia, K. C. Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. *Science* **2022**, *376* (6589), 163–169. 1633
- (70) Caveney, N. A.; Saxton, R. A.; Waghray, D.; Glassman, C. R.; Tsutsumi, N.; Hubbard, S. R.; Garcia, K. C. Structural basis of Janus kinase trans-activation. *Cell Rep.* **2023**, *42* (3), 112201. 1636
- (71) Ferrao, R.; Lupardus, P. J. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions. *Front. Endocrinol.* **2017**, *8*, 71. 1639
- (72) Lupardus, P. J.; Ultsch, M.; Wallweber, H.; Bir Kohli, P.; Johnson, A. R.; Eigenbrot, C. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. *Proc. Natl. Acad. Sci. U. S. A.* **2014**, *111* (22), 8025–8030. 1644
- (73) Ferrao, R. D.; Wallweber, H. J.; Lupardus, P. J. Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation. *eLife* **2018**, *7*, No. e38089. 1647
- (74) Araya-Secchi, R.; Bugge, K.; Seiffert, P.; Petry, A.; Haxholm, G. W.; Lindorff-Larsen, K.; Pedersen, S. F.; Arleth, L.; Kragelund, B. B. The prolactin receptor scaffolds Janus kinase 2 via co-structure formation with phosphoinositide-4,5-bisphosphate. *eLife* **2023**, *12*, No. e84645. 1651
- (75) Haxholm, G. W.; Nikolajsen, L. F.; Olsen, J. G.; Fredsted, J.; Larsen, F. H.; Goffin, V.; Pedersen, S. F.; Brooks, A. J.; Waters, M. J.; Kragelund, B. B. Intrinsically disordered cytoplasmic domains of two cytokine receptors mediate conserved interactions with membranes. *Biochem. J.* **2015**, *468* (3), 495–506. 1655
- (76) Endicott, J. A.; Noble, M. E. M.; Johnson, L. N. The Structural Basis for Control of Eukaryotic Protein Kinases. *Annu. Rev. Biochem.* **2012**, *81* (1), 587–613. 1660
- (77) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. *J. Chem. Phys.* **1983**, *79* (2), 926–935. 1663
- (78) Durell, S. R.; Brooks, B. R.; Ben-Naim, A. Solvent-induced forces between two hydrophilic groups. *J. Phys. Chem.* **1994**, *98* (8), 2198–2202. 1666
- (79) Waters, M. J.; Brooks, A. J. JAK2 activation by growth hormone and other cytokines. *Biochem. J.* **2015**, *466* (1), 1–11. 1668
- (80) Kubatzky, K. F.; Ruan, W.; Gurezka, R.; Cohen, J.; Ketteler, R.; Watowich, S. S.; Neumann, D.; Langosch, D.; Klingmuller, U. Self assembly of the transmembrane domain promotes signal transduction 1670

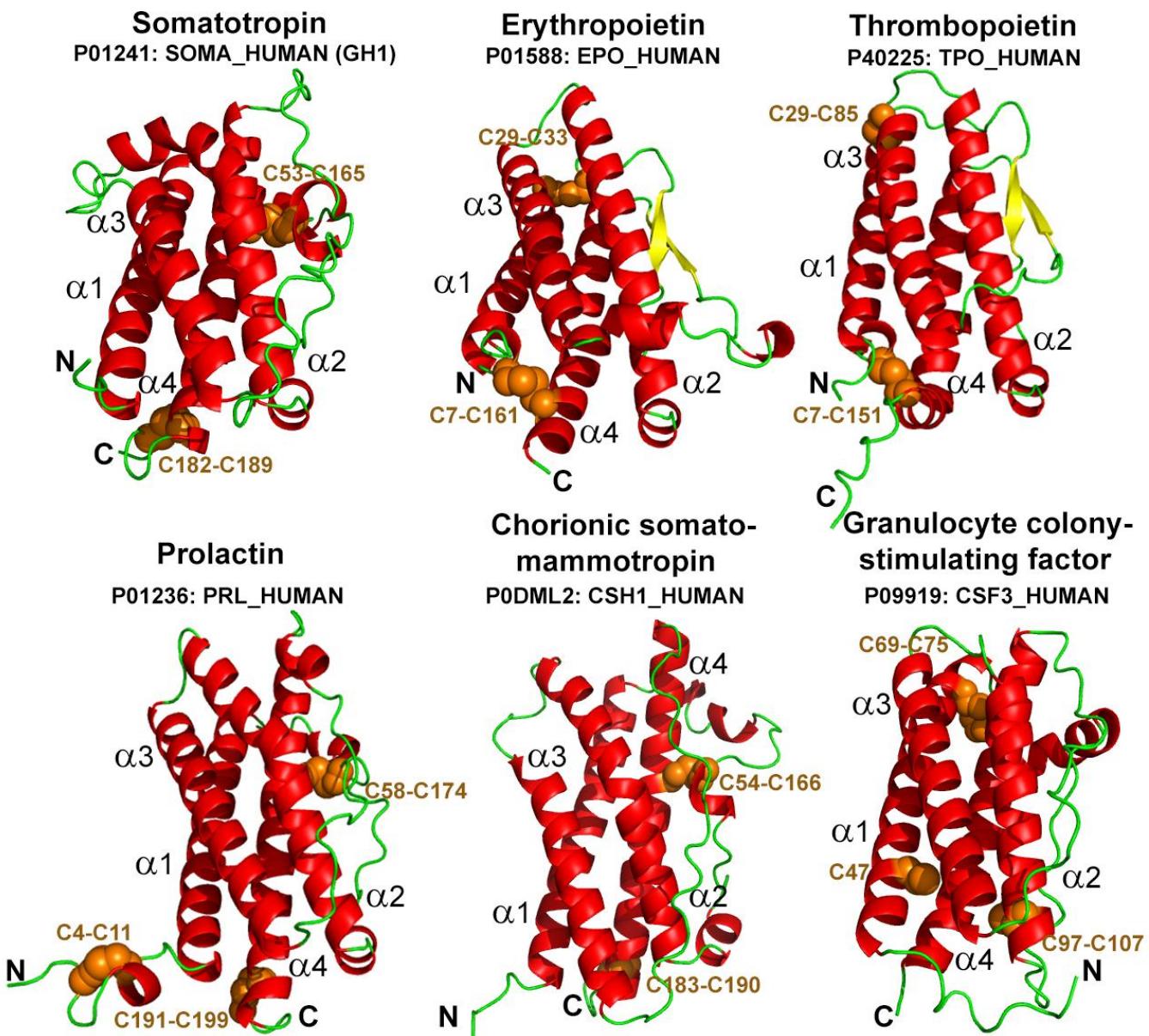
- 1672 through the erythropoietin receptor. *Curr. Biol.* **2001**, *11* (2), 110–1673 115.
- 1674 (81) Kubatzky, K. F.; Liu, W.; Goldgraben, K.; Simmerling, C.; 1675 Smith, S. O.; Constantinescu, S. N. Structural requirements of the 1676 extracellular to transmembrane domain junction for erythropoietin 1677 receptor function. *J. Biol. Chem.* **2005**, *280* (15), 14844–14854.
- 1678 (82) Constantinescu, S. N.; Keren, T.; Socolovsky, M.; Nam, H.; 1679 Henis, Y. I.; Lodish, H. F. Ligand-independent oligomerization of cell- 1680 surface erythropoietin receptor is mediated by the transmembrane 1681 domain. *Proc. Natl. Acad. Sci. U. S. A.* **2001**, *98* (8), 4379–4384.
- 1682 (83) Atanasova, M.; Whitty, A. Understanding cytokine and growth 1683 factor receptor activation mechanisms. *Crit. Rev. Biochem. Mol. Biol.* 1684 **2012**, *47* (6), 502–530.
- 1685 (84) Brown, R. J.; Adams, J. J.; Pelekanos, R. A.; Wan, Y.; 1686 McKinstry, W. J.; Palethorpe, K.; Seeber, R. M.; Monks, T. A.; Eidne, 1687 K. A.; Parker, M. W.; Waters, M. J. Model for growth hormone 1688 receptor activation based on subunit rotation within a receptor dimer. 1689 *Nat. Struct. Mol. Biol.* **2005**, *12* (9), 814–821.
- 1690 (85) Gadd, S. L.; Clevenger, C. V. Ligand-independent dimerization 1691 of the human prolactin receptor isoforms: functional implications. 1692 *Mol. Endocrinol.* **2006**, *20* (11), 2734–2746.
- 1693 (86) Defour, J.-P.; Itaya, M.; Gryshkova, V.; Brett, I. C.; Pecquet, C.; 1694 Sato, T.; Smith, S. O.; Constantinescu, S. N. Tryptophan at the 1695 transmembrane-cytosolic junction modulates thrombopoietin recep- 1696 tor dimerization and activation. *Proc. Natl. Acad. Sci. U. S. A.* **2013**, 1697 *110* (7), 2540–2545.
- 1698 (87) Varghese, L. N.; Carreño-Tarragona, G.; Levy, G.; Gutiérrez- 1699 López de Ocáriz, X.; Rapado, I.; Martínez-López, J.; Ayala, R.; 1700 Constantinescu, S. N. MPL S505C enhances driver mutations at 1701 W515 in essential thrombocythemia. *Blood Cancer J.* **2021**, *11* (11), 1702 188.
- 1703 (88) Sabath, D. F.; Kaushansky, K.; Broudy, V. C. Deletion of the 1704 extracellular membrane-distal cytokine receptor homology module of 1705 Mpl results in constitutive cell growth and loss of thrombopoietin 1706 binding. *Blood* **1999**, *94* (1), 365–367.
- 1707 (89) Pecquet, C.; Chachoua, I.; Roy, A.; Balligand, T.; Vertenoel, 1708 G.; Leroy, E.; Albu, R. I.; Defour, J. P.; Nivarthi, H.; Hug, E.; Xu, E.; 1709 Ould-Amer, Y.; Mouton, C.; Colau, D.; Vertommen, D.; Shwe, M. M.; 1710 Marty, C.; Plo, I.; Vainchenker, W.; Kralovics, R.; Constantinescu, S.; 1711 N. Calreticulin mutants as oncogenic rogue chaperones for TpoR and 1712 traffic-defective pathogenic TpoR mutants. *Blood* **2019**, *133* (25), 1713 2669–2681.
- 1714 (90) Constantinescu, S. N.; Vainchenker, W.; Levy, G.; 1715 Papadopoulos, N. Functional Consequences of Mutations in 1716 Myeloproliferative Neoplasms. *Hemisphere* **2021**, *5* (6), No. e578.
- 1717 (91) Bernichttein, S.; Touraine, P.; Goffin, V. New concepts in 1718 prolactin biology. *J. Endocrinol.* **2010**, *206* (1), 1–11.
- 1719 (92) Vainchenker, W.; Plo, I.; Marty, C.; Varghese, L. N.; 1720 Constantinescu, S. N. The role of the thrombopoietin receptor 1721 MPL in myeloproliferative neoplasms: recent findings and potential 1722 therapeutic applications. *Expert Rev. Hematol.* **2019**, *12* (6), 437–448.
- 1723 (93) Strous, G. J.; Almeida, A. D. S.; Putters, J.; Schantl, J.; Sedek, 1724 M.; Slotman, J. A.; Nespiral, T.; Hassink, G. C.; Mol, J. A. Growth 1725 hormone receptor regulation in cancer and chronic diseases. *Front. 1726 Endocrinol.* **2020**, *11*, 597573.
- 1727 (94) Hammarén, H. M.; Virtanen, A. T.; Raivola, J.; Silvennoinen, 1728 O. The regulation of JAKs in cytokine signaling and its breakdown in 1729 disease. *Cytokine* **2019**, *118*, 48–63.
- 1730 (95) Baxter, E. J.; Scott, L. M.; Campbell, P. J.; East, C.; Fourouclas, 1731 N.; Swanton, S.; Vassiliou, G. S.; Bench, A. J.; Boyd, E. M.; Curtin, N.; 1732 Scott, M. A.; Erber, W. N.; Green, A. R. Acquired mutation of the 1733 tyrosine kinase JAK2 in human myeloproliferative disorders. *Lancet* 1734 **2005**, *365* (9464), 1054–1061.
- 1735 (96) Mariani, V.; Biasini, M.; Barbato, A.; Schwede, T. IDDT: a local 1736 superposition-free score for comparing protein structures and models 1737 using distance difference tests. *Bioinformatics* **2013**, *29* (21), 2722– 1738 2728.
- 1739 (97) Zhang, Y.; Skolnick, J. Scoring function for automated 1740 assessment of protein structure template quality. *Proteins* **2004**, *57* 1740 (4), 702–710.
- 1741 (98) Consortium, T. U. UniProt: the Universal Protein Knowledge- 1742 base in 2023. *Nucleic Acids Res.* **2023**, *51* (D1), D523–D531.
- 1743 (99) Roy, R. S.; Liu, J.; Giri, N.; Guo, Z.; Cheng, J. Combining 1744 pairwise structural similarity and deep learning interface contact 1745 prediction to estimate protein complex model accuracy in CASP15. 1746 *Proteins* **2023**, DOI: 10.1002/prot.26542.
- 1747 (100) Del Alamo, D.; Sala, D.; McHaourab, H. S.; Meiler, J. 1748 Sampling alternative conformational states of transporters and 1749 receptors with AlphaFold2. *eLife* **2022**, *11*. DOI: 10.7554/ 1750 *eLife.75751*.
- 1751 (101) Brooks, B. R.; Brooks, C. L., 3rd; Mackerell, A. D., Jr.; Nilsson, 1752 L.; Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; 1753 Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; 1754 Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; 1755 Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; 1756 Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; 1757 Yang, W.; York, D. M.; Karplus, M. CHARMM: the biomolecular 1758 simulation program. *J. Comput. Chem.* **2009**, *30* (10), 1545–1614.
- 1759 (102) Buckner, J.; Liu, X.; Chakravorty, A.; Wu, Y.; Cervantes, L.; 1760 Lai, T.; Brooks, C. L., 3rd. pyCHARMM: Embedding CHARMM 1761 Functionality in a Python Framework. *ChemRxiv [Preprint]* **2023**, 1762 DOI: 10.26434/chemrxiv-2023-j6wt1.
- 1763 (103) Park, S.-J.; Kern, N.; Brown, T.; Lee, J.; Im, W. CHARMM- 1764 GUI PDB Manipulator: various PDB structural modifications for 1765 biomolecular modeling and simulation. *J. Mol. Biol.* **2023**, *435*, 1766 167995.
- 1767 (104) Jo, S.; Kim, T.; Iyer, V. G.; Im, W. CHARMM-GUI: a web- 1768 based graphical user interface for CHARMM. *J. Comput. Chem.* **2008**, 1769 *29* (11), 1859–1865.
- 1770 (105) Feig, M.; Karanicolas, J.; Brooks, C. L., 3rd. MMTSB Tool 1771 Set: enhanced sampling and multiscale modeling methods for 1772 applications in structural biology. *J. Mol. Graph. Model.* **2004**, *22* 1773 (5), 377–395.
- 1774 (106) Lomize, A. L.; Schnitzer, K. A.; Todd, S. C.; Cherepanov, S.; 1775 Outeiral, C.; Deane, C. M.; Pogozheva, I. D. Membranome 3.0: 1776 Database of single-pass membrane proteins with AlphaFold models. 1777 *Protein Sci.* **2022**, *31* (5), No. e4318.
- 1778 (107) Krissinel, E.; Henrick, K. Secondary-structure matching 1779 (SSM), a new tool for fast protein structure alignment in three 1780 dimensions. *Acta Crystallogr. D. Biol. Crystallogr.* **2004**, *60* (Pt 12 Pt 1781 1), 2256–2268.
- 1782 (108) Zhang, C.; Shine, M.; Pyle, A. M.; Zhang, Y. US-align: 1783 universal structure alignments of proteins, nucleic acids, and 1784 macromolecular complexes. *Nat. Methods* **2022**, *19* (9), 1109–1115.
- 1785 (109) Pogozheva, I. D.; Armstrong, G. A.; Kong, L.; Hartnagel, T. J.; 1786 Carpinio, C. A.; Gee, S. E.; Picarello, D. M.; Rubin, A. S.; Lee, J.; Park, 1787 S.; Lomize, A. L.; Im, W. Comparative molecular dynamics simulation 1788 studies of realistic eukaryotic, prokaryotic, and archaeal membranes. *J. 1789 Chem. Inf. Model.* **2022**, *62* (4), 1036–1051.
- 1790 (110) Jo, S.; Lim, J. B.; Klauda, J. B.; Im, W. CHARMM-GUI 1791 Membrane Builder for mixed bilayers and its application to yeast 1792 membranes. *Biophys. J.* **2009**, *97* (1), 50–58.
- 1793 (111) Wu, E. L.; Cheng, X.; Jo, S.; Rui, H.; Song, K. C.; Davila- 1794 Contreras, E. M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R. M.; 1795 Klauda, J. B.; Im, W. CHARMM-GUI Membrane Builder toward 1796 realistic biological membrane simulations. *J. Comput. Chem.* **2014**, *35* 1797 (27), 1997–2004.
- 1798 (112) Jo, S.; Kim, T.; Im, W. Automated builder and database of 1799 protein/membrane complexes for molecular dynamics simulations. 1800 *PLoS One* **2007**, *2* (9), No. e880.
- 1801 (113) Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de 1802 Groot, B. L.; Grubmüller, H.; MacKerell, A. D., Jr. CHARMM36m: 1803 an improved force field for folded and intrinsically disordered 1804 proteins. *Nat. Methods* **2017**, *14* (1), 71–73.
- 1805 (114) Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; 1806 Zhao, Y.; Beauchamp, K. A.; Wang, L. P.; Simonett, A. C.; Harrigan, 1807

- 1808 M. P.; Stern, C. D.; Wiewiora, R. P.; Brooks, B. R.; Pande, V. S.
1809 OpenMM 7: Rapid development of high performance algorithms for
1810 molecular dynamics. *PLoS Comput. Biol.* **2017**, *13* (7), No. e1005659.
1811 (115) Lee, J.; Cheng, X.; Swails, J. M.; Yeom, M. S.; Eastman, P. K.;
1812 Lemkul, J. A.; Wei, S.; Buckner, J.; Jeong, J. C.; Qi, Y.; Jo, S.; Pande,
1813 V. S.; Case, D. A.; Brooks, C. L., 3rd; MacKerell, A. D., Jr.; Klauda, J.
1814 B.; Im, W. CHARMM-GUI Input Generator for NAMD,
1815 GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simu-
1816 lations Using the CHARMM36 Additive Force Field. *J. Chem. Theory
1817 Comput.* **2016**, *12* (1), 405–413.
1818 (116) Hopkins, C. W.; Le Grand, S.; Walker, R. C.; Roitberg, A. E.
1819 Long-time-step molecular dynamics through hydrogen mass reparti-
1820 tioning. *J. Chem. Theory Comput.* **2015**, *11* (4), 1864–1874.
1821 (117) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical
1822 integration of the cartesian equations of motion of a system with
1823 constraints: molecular dynamics of n-alkanes. *J. Comput. Phys.* **1977**,
1824 *23* (3), 327–341.
1825 (118) Steinbach, P. J.; Brooks, B. R. New spherical-cutoff methods
1826 for long-range forces in macromolecular simulation. *J. Comput. Chem.*
1827 **1994**, *15* (7), 667–683.
1828 (119) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee,
1829 H.; Pedersen, L. G. A smooth particle mesh Ewald method. *J. Chem.
1830 Phys.* **1995**, *103* (19), 8577–8593.

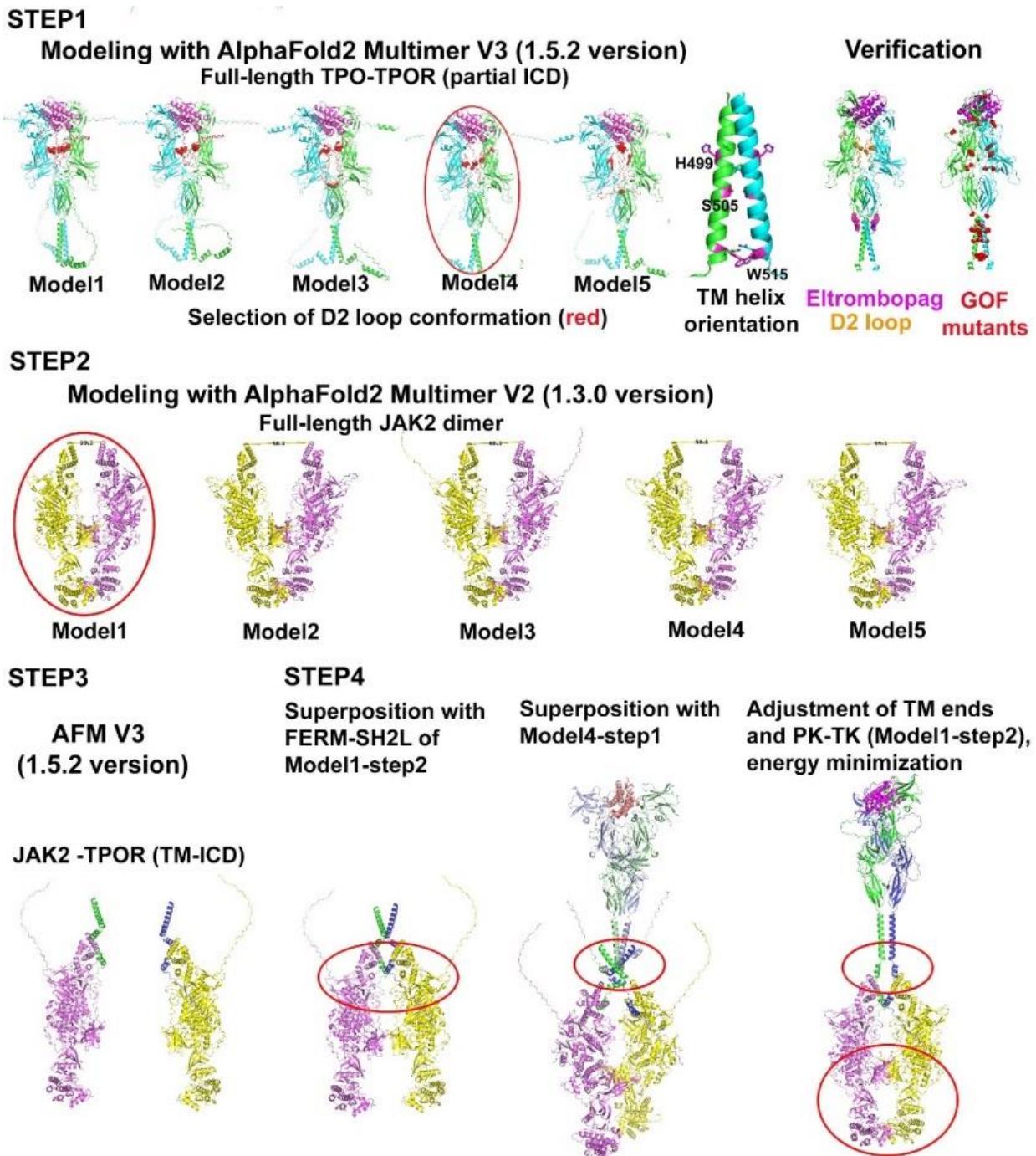
Supporting Information

Structural modeling of cytokine-receptor-JAK2 signaling complexes using AlphaFold Multimer

Irina D. Pogozheva¹, Stanislav Cherepanov², Sang-Jun Park³, Malini Raghavan⁴, Wonpil Im³, Andrei L. Lomize^{1#}


¹Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States;

² Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States;


³ Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA 18015, United States;

⁴ Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.

#Corresponding Author: Andrei L. Lomize; Email: almz@umich.edu

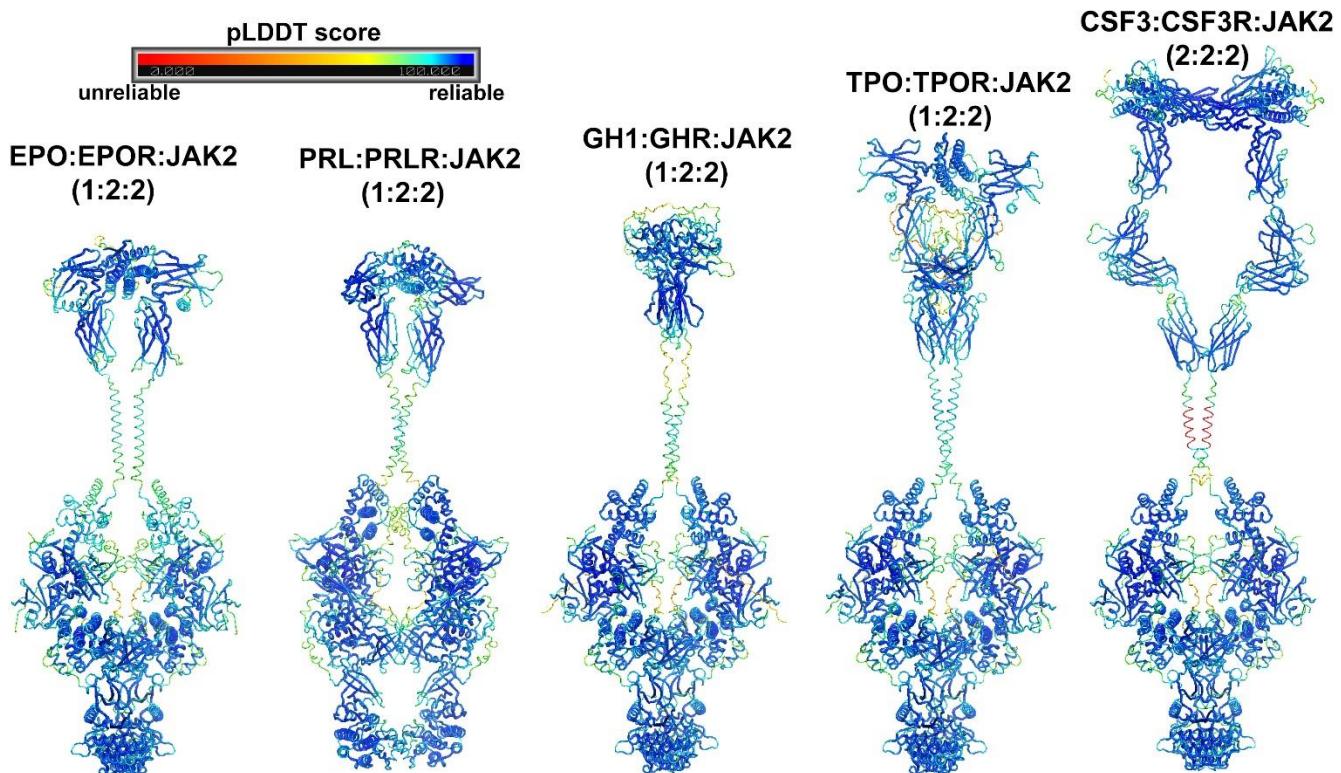


Figure S1. Structures of class 1 cytokines modeled by AlphaFold Multimer (AFM) in complex with their cognate receptors. The depicted cytokines are four-helical α -bundles with up-up-down-down topology and 2-3 disulfides that stabilize loop conformations. Models are shown as cartoons colored by secondary structure: red for α -helix, yellow for β -strand, green for unstructured loops. Cysteine residues and disulfides are shown by orange spheres. Residue numbers are for mature proteins (except CSF3).

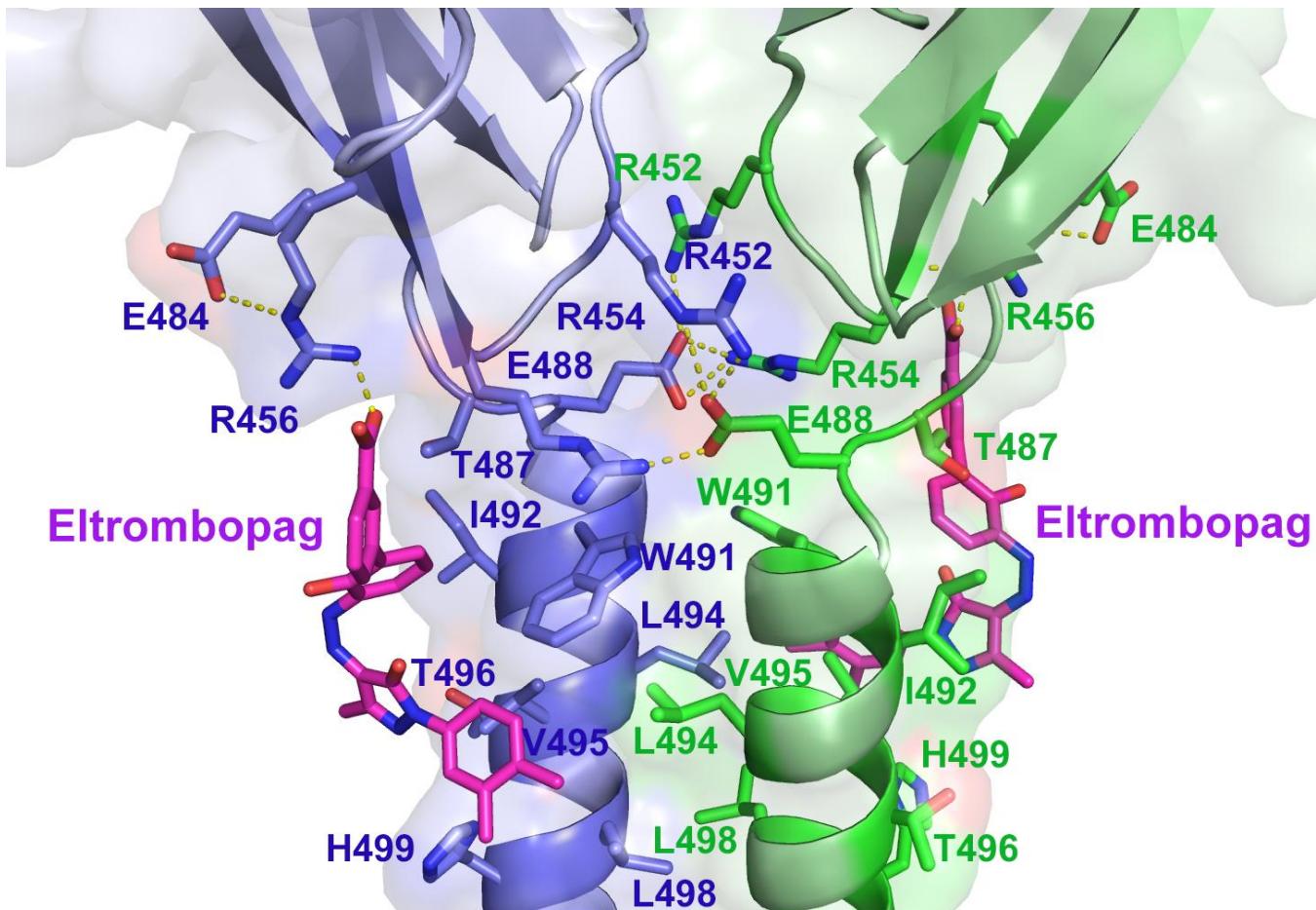
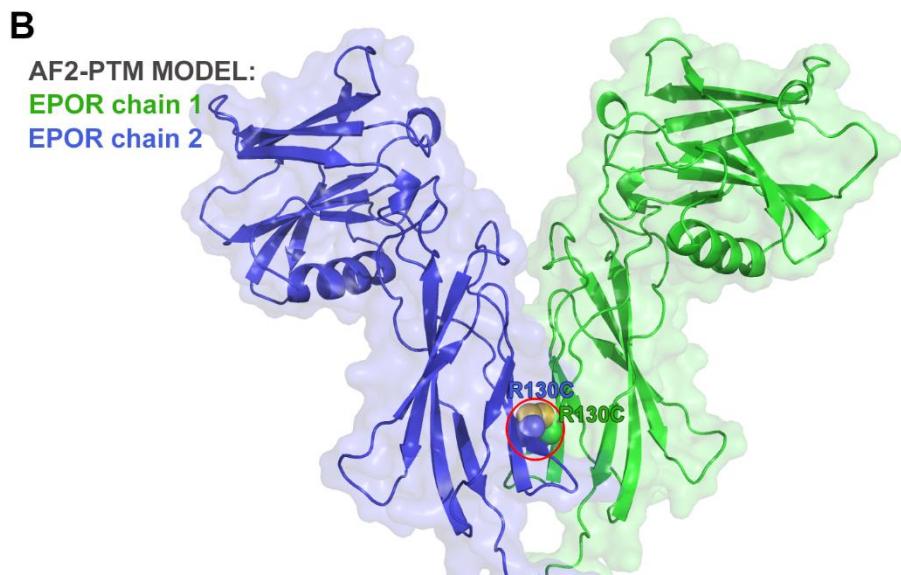
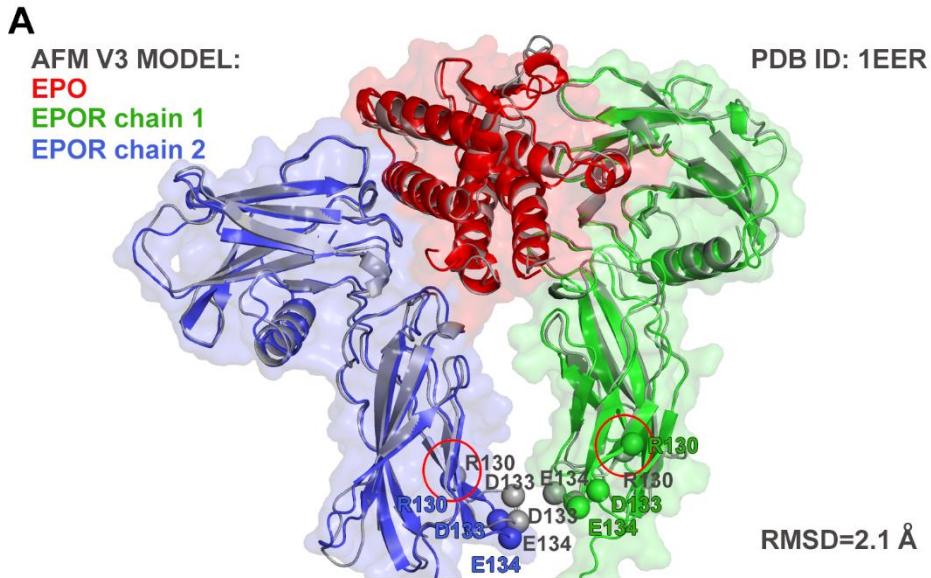


Figure S2. Four-step AMF-modeling of cytokine receptor signaling complexes (exemplified by hTPOR). **Step1:** Modeling with AFM V3 of TPO-TPOR active (1:2) complex. TPOR subunits are colored green and blue, TPO is colored purple. Five calculated models demonstrate similar conformations of ECDs except for the flexible D2 loop (residues 187-238 colored red) forming different intramolecular disulfides (shown as red spheres). The more frequent are the C193-C323, C194-C241, and C211-C322 disulfides. Four of five models demonstrate left-handed TM helical dimers with S505 at the dimerization interface (*a*-position of the heptad repeat motif) and H499 facing the lipid bilayer (*b*-position). Model 4 containing the most frequent disulfides and TMD helix arrangement was selected for the further calculations. Data supporting model 4 include: (1) the consistency of the TM α -helix arrangement with the cc-TPOR-I fusion construct



between the dimeric coiled-coil of *Put3* and TMD of mTPOR that displays constitutive activity³⁴; (2) the docking of two eltrombopag molecules (shown by purple spheres) to the TMD; and (3) the localization of the majority of GOF mutations (shown by red spheres) at flexible structural elements (D2 loop and TMDs) participating in dimerization interfaces. Step2: modeling of JAK2 dimers. JAK2 subunits are colored pink and yellow. AFM V2 and V3 models produce similar structures of JAK2 dimers with the PK-PK dimerization interface but different distances between FERM domains (Ca-Ca distances between two L244 varies between 30 and 60 Å). The model 1 with the minimal distance between FERM domains was selected for the further calculations. Step3. Modeling of the JAK2 monomer (colored pink or yellow) with TPOR TM α -helix and the ICD domain (colored blue and green). AFM V2 and V3 produced rather similar models. Step4. Structural superposition of two monomer models (from step 3) with FERM-SH2L domains of JAK2 dimer (model 1 from step2) followed by docking of the ligand-bound dimer (model 4 from step 1), adjustment of TM helix ends, substitution of PK and TK domains by those from JAK2 dimer (model 1 from step 2), and model refinement by energy minimization.

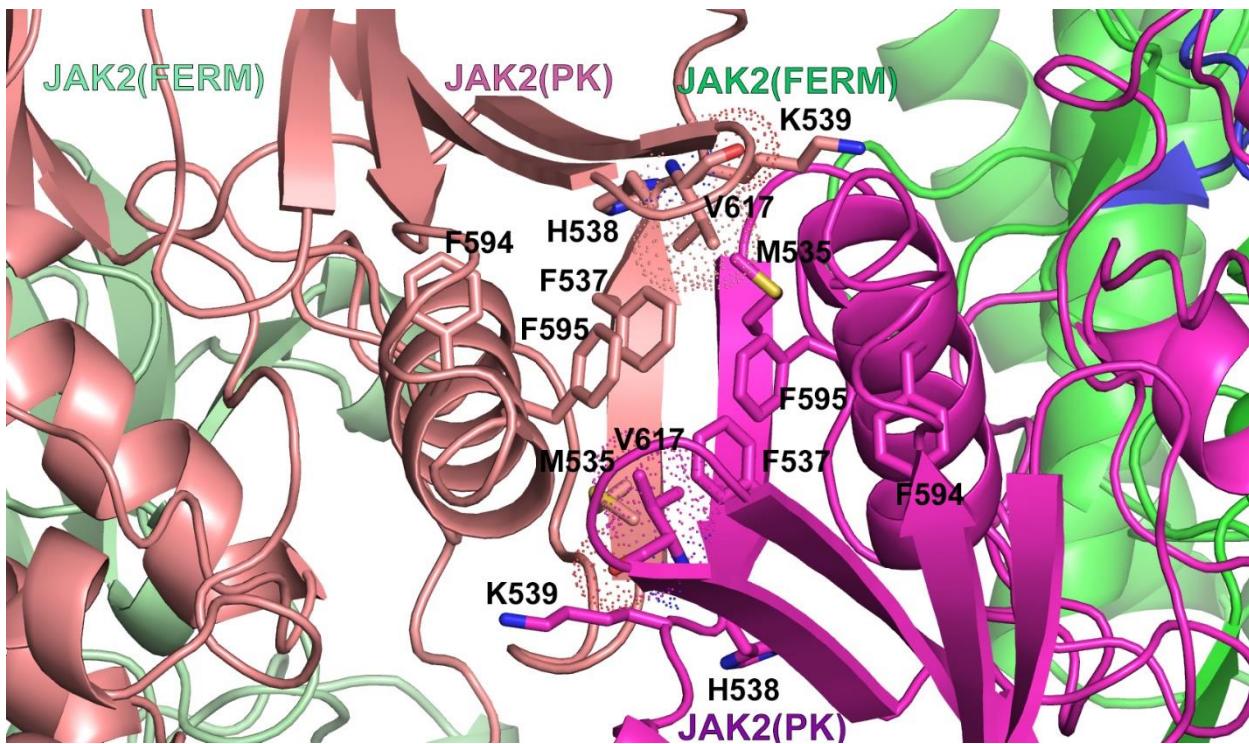
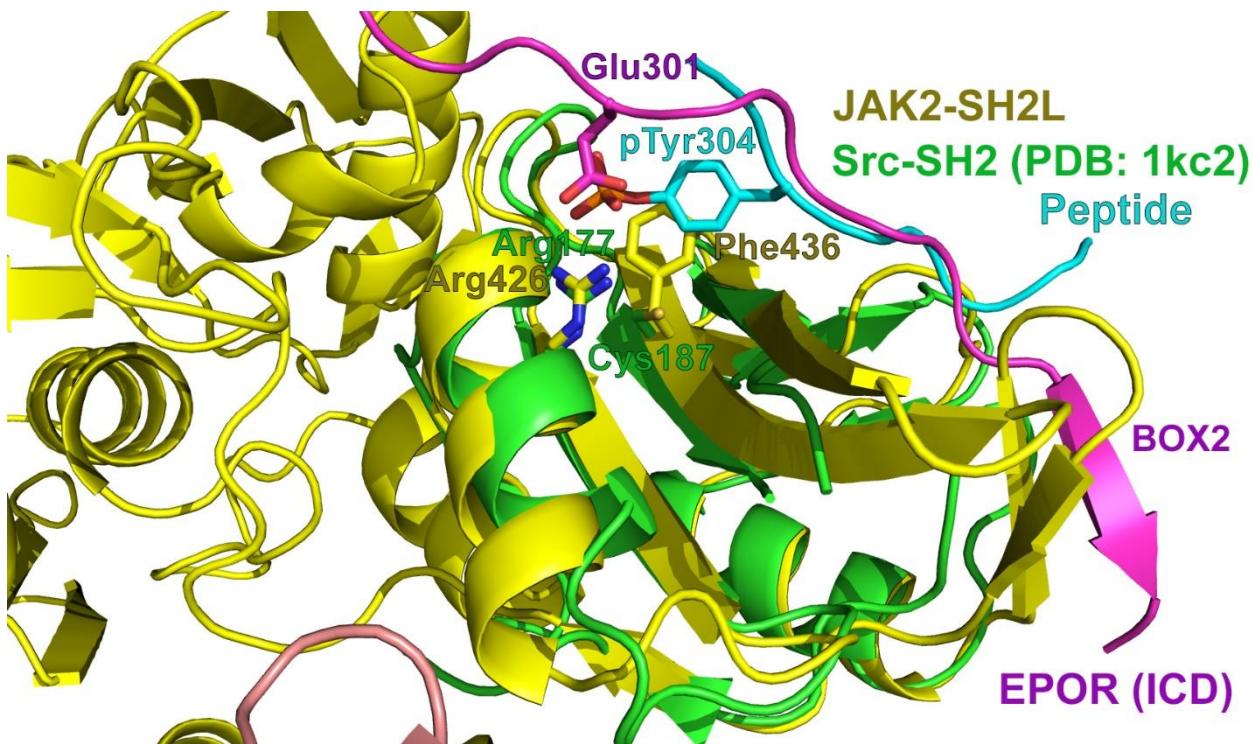
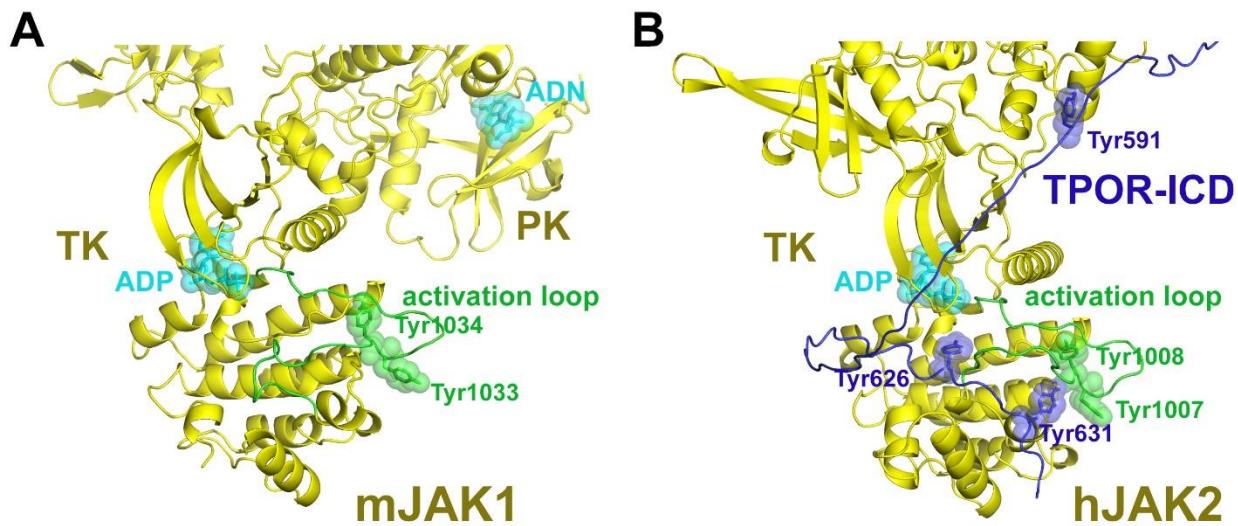
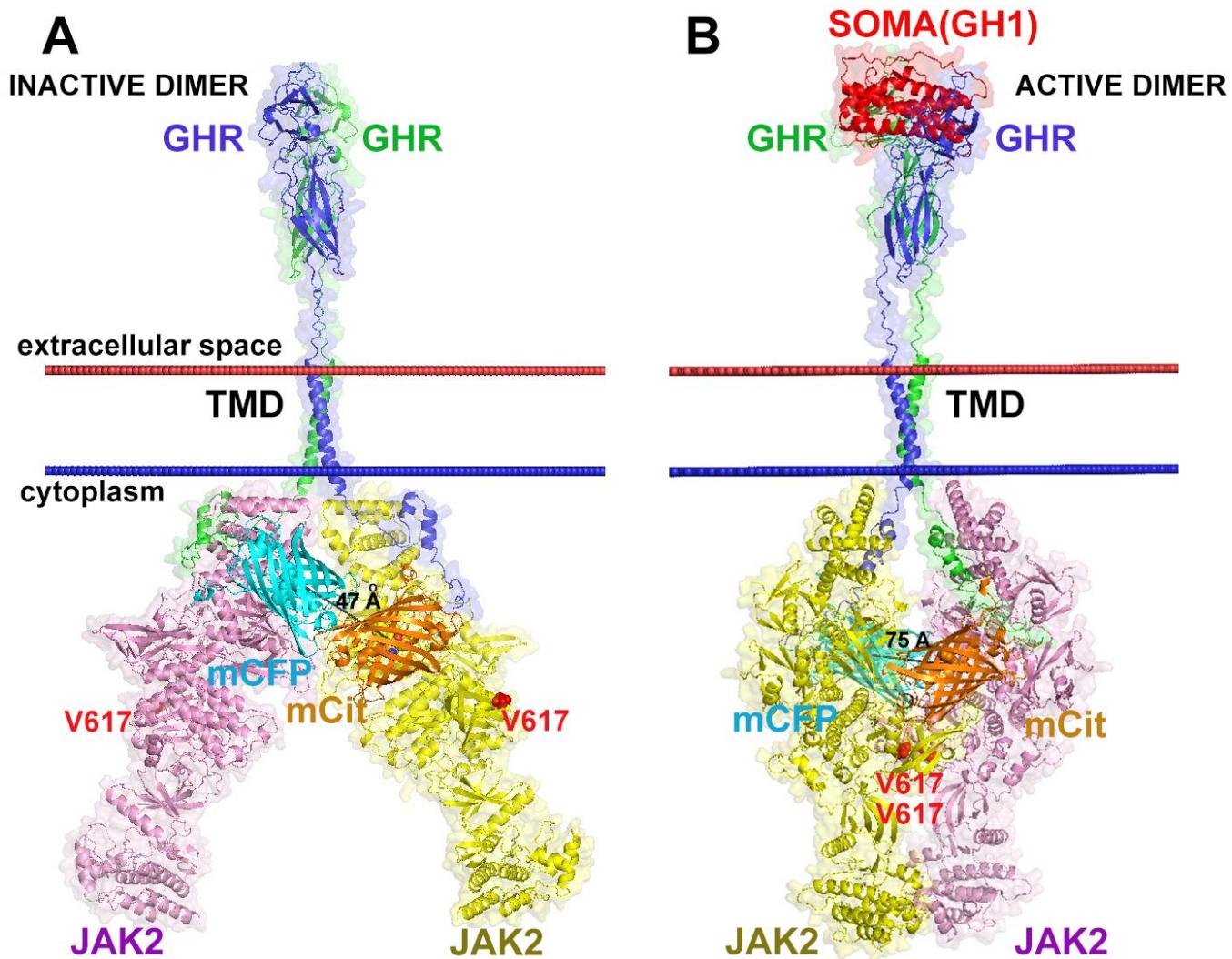
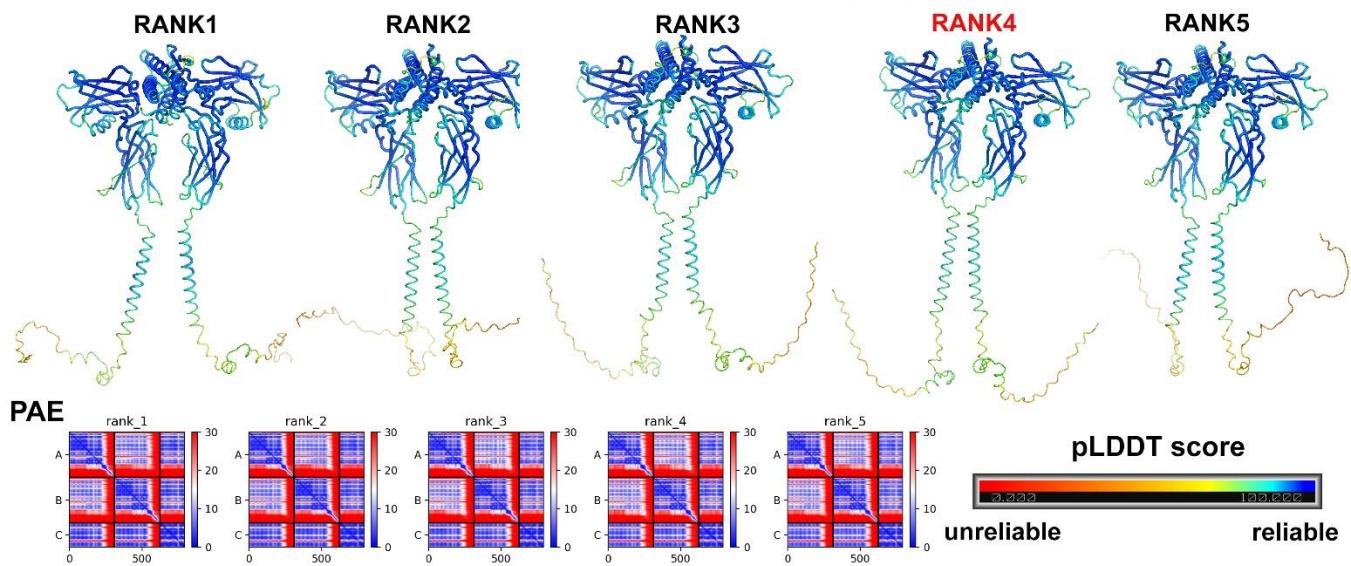
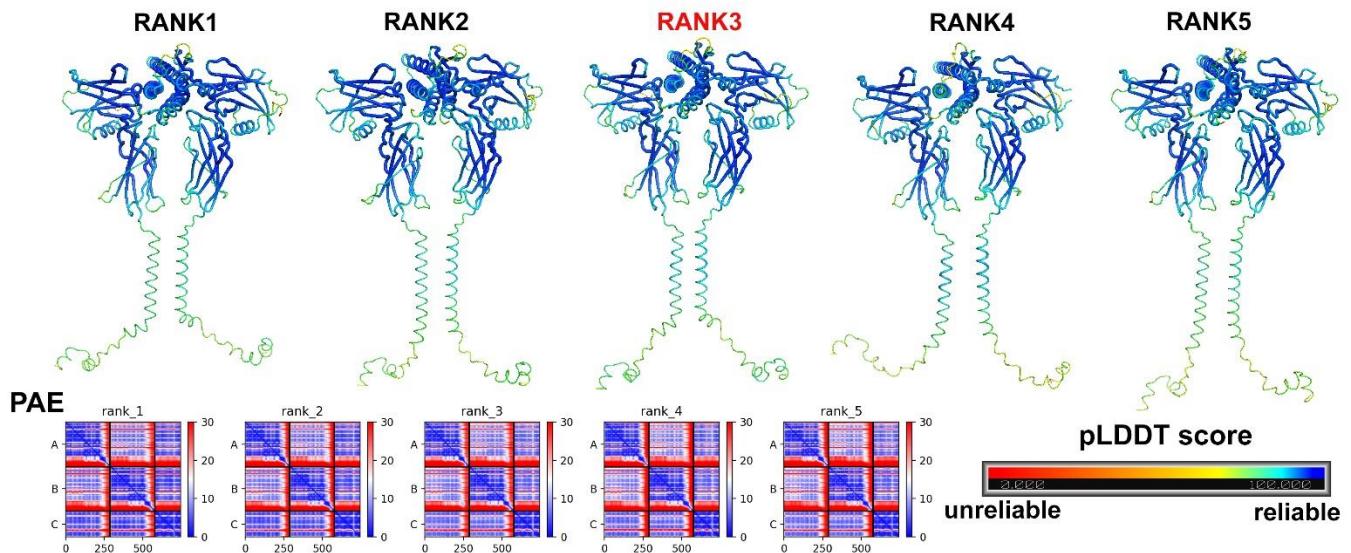

Figure S3. AFM-predicted models of five cytokine receptor signaling complexes colored by per residue pLDDT score.

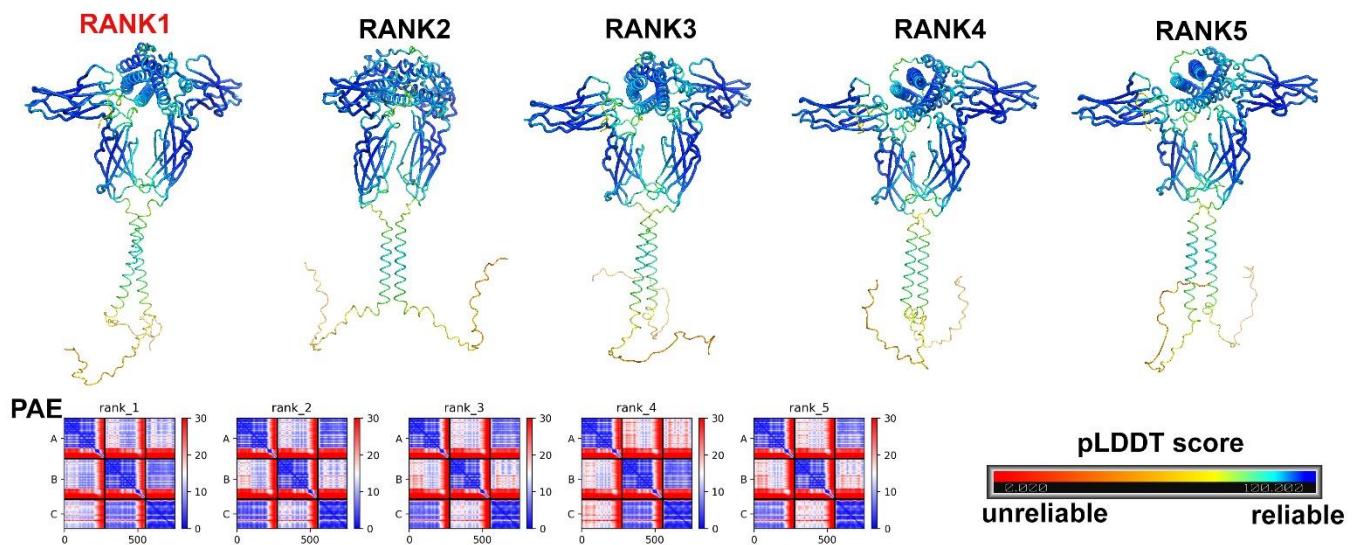
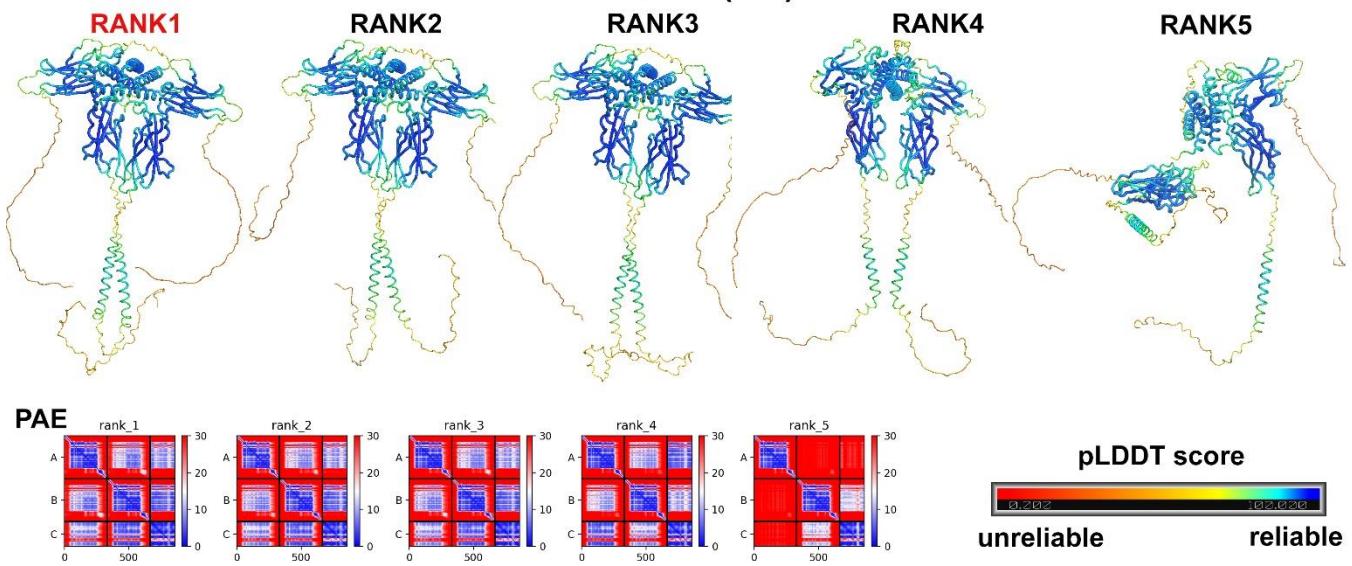
Figure S4. Suggested binding mode and interactions of the small molecule agonist eltrombopag with TM α -helices of the active human TPO-TPOR-JAK2 (1:2:2) signaling complex. Two eltrombopag molecules interact with the N-terminal part of the TM α -helical dimer (residues W491, I492, L494, V495, T496, L498, and H499) and R456 from the D4 domain. Neighboring residues (E488, R452, and R454) form a hydrogen bond network between D4 domains of TPOR (shown by yellow dashes). Molecules are shown by cartoon and semi-transparent surface representations colored blue and green for receptor subunits. Eltrombopag (colored magenta for Ca-atoms) and neighboring residues (colored blue and green for Ca-atoms) are shown as sticks.

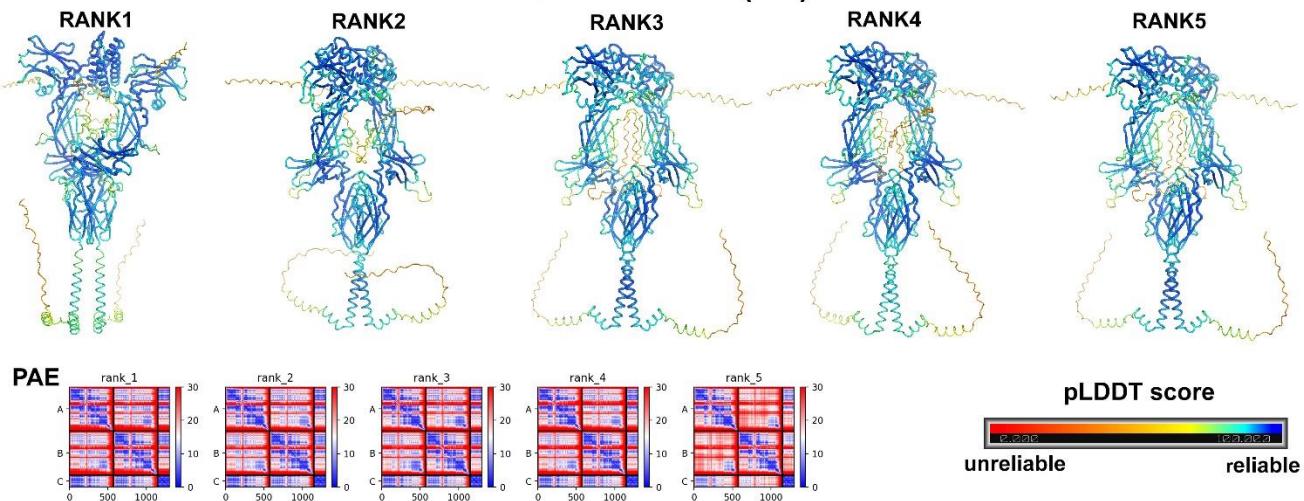
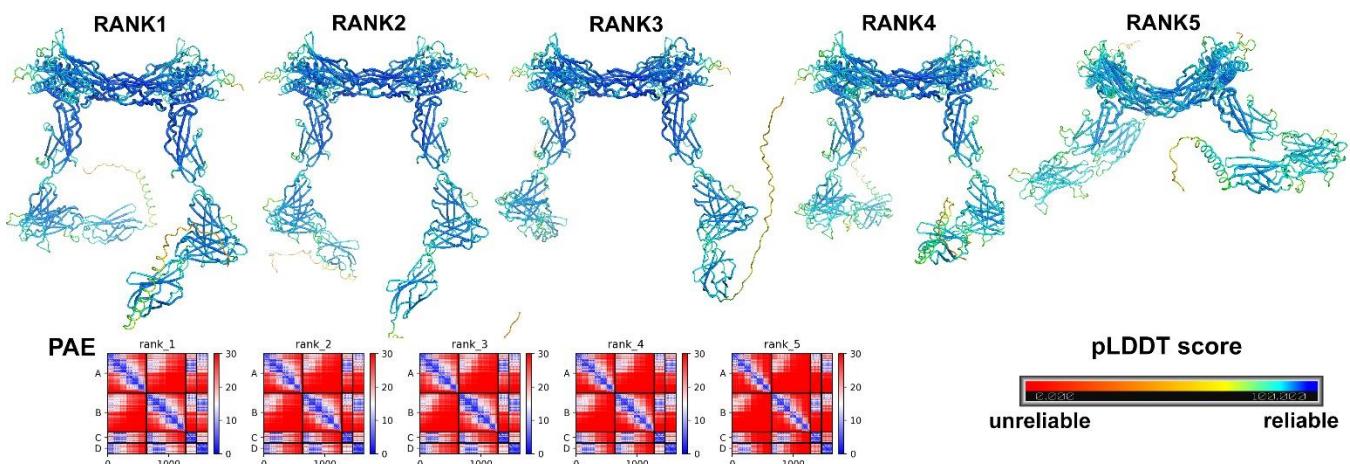

Figure S5. Spatial arrangement of R130, D133, and E134 residues of hEPOR corresponding to residues involved in formation of constitutively active disulfide-linked dimers of mEPOR upon substitution by cysteine. **(A)** Mapping of mutated residues in the crystal structure (PDB ID: 1EER) and the AFM model of the ligand-bound hEPOR dimer. The ligand-bound AFM model and crystal structure are very similar (RMSD of 2.1 Å) and provide proximity of D133 and E134, but not of R130 residues from both chains. **(B)** Mapping of C130-C130 intermolecular disulfide in the AFM2-ptm model of the ligand-free R130C hEPOR mutant. C130-C130 disulfide bond produces significant structural changes in the model of the ligand-free R130C homodimer (RMSD with 1EER is 9.7 Å). Proteins are shown by cartoon and semitransparent surface representations colored by chain (green and blue) for the AFM and AF2-ptm models and by gray for the X-ray structure; EPO ligand in the AFM model is colored red. Ca-atoms of residues forming intermolecular disulfides, R130, D133, and E134, are shown by spheres. The red circles enclose R130 in **(A)** and C130-C130 disulfide in **(B)**.


Figure S6. Close-up of the PK dimerization interface in the active human JAK2 dimer generated by AFM. The interface is formed by two antiparallel β -strands from PK N-lobe (cartoon representation colored pink and purple) and contains the hydrophobic cluster with V617 surrounded by aromatic residues, F537 and F595, as well as by PK residues involved in oncogenic mutations, M535, H538, K539 (shown by sticks). The oncogenic mutations (V617F, M535L, H538L, and K539L) stabilize the PK dimer by enhancing hydrophobic contacts and shape complementarity at the dimerization interface.


Figure S7. AFM modeling of interactions between TK domain of JAK2 and C-terminal tyrosine residues of TPOR that undergo phosphorylation by JAK2; Y626 (A) and Y591 (B). Due to the high flexibility of the unstructured ICD, different tyrosine residues can bind to the ligand binding pocket of the TK domain of JAK2. Protein molecules are shown using semi-transparent surfaces and cartoon representations and are colored yellow for JAK2, blue for TPOR. The ADP ligand is shown in cyan and TPOR tyrosine residues (Y591, Y626, and Y631) are colored red.



Figure S8. Close up of the SH2-like (SH2L) domain of human JAK2 (colored yellow) with a bound fragment of the human EPOR ICD (colored purple) from the AFM model superposed with the crystal structure of the Src-SH2 domain (colored green) with bound peptide (colored cyan) containing a phosphorylated tyrosine, pTyr304 (PDB ID: **1KC2**). SH2L domain of JAK2 has an aberrant binding site for phosphorylated tyrosine. This aberrant site carries Arg426 for binding negatively charged groups (i.e. phosphates), but lacks space for the tyrosine aromatic ring because the conserved cysteine is substituted by a bulky Phe436 residue. Therefore, the SH2L domain can specifically bind the negatively charged Glu301 from hEPOR Box 2 motif by forming ionic interactions with Arg426. Similar interactions were observed in the crystal structure of the JAK2 FERM-SH2L domain with the EPOR ICD peptide (PDB ID: **6E2Q**). It was suggested that these interactions contribute to the specificity of receptor binding [1, 2].



Figure S9. Activation loops in the TK domains of JAKs. **(A)** TK and partial PK domains from the cryo-EM-based model of mJAK1 (PDB ID: **7T6F**). **(B)** The TK domain from the AFM-generated model of hJAK2 with the fragment of TPOR ICD interacting with PK. The flexible activation loop may partially occlude the ligand binding pocket of the TK domain. Protein molecules are shown in cartoon representations colored blue for TPOR ICD, yellow for JAK2 with the activation loop of the TK domain colored green; ligands (ADP and ADN) are shown as sticks and semi-transparent cyan spheres. Tyrosine residues of TPOR, including Y626, occupying the ligand binding pocket of TK, are shown as blue sticks and semi-transparent spheres **(B)**.



Figure S10. Suggested ligand-induced activation process of the GHR-JAK2 complex. AFM-generated models of ligand-free GHR-JAK2 dimer (**A**), and GHR-JAK2 dimer in the presence of GH1 ligand (**B**). Comparison with the results of FRET between GHR molecules labeled by FRET reporters (mCit and mCFP) positioned at C-terminus, 37 residues below the Box1 motif [3]. In the inactive receptor state, FRET reporters are located at the same side of the JAK2 dimer (distance between chromophores is 47 Å). However, in the active state, FRET reporters are located at the opposite sides of the JAK2 dimer (distance between chromophores is 75 Å). Protein molecules are shown as semi-transparent surfaces and cartoon representations, colored red for GH1, blue and green for GHR subunits, yellow and pink for JAK2 subunits. FRET reporters mCit and mCFP (shown as orange and cyan β -barrels, respectively) were modeled using the available CFP structure (PDB ID: 3ZFT). V617 residue located at the dimerization interface of the PK domain is shown as red spheres.

A**AFM V3 EPO:EPOR (1:2)****B****AFM V2 EPO:EPOR (1:2)**

Figure S11. Quality metrics of AFM predicted models. **(A)** Five models predicted for EPO-EPOR (1:2) complex by AFM V3 (A) and AFM V2 (B). Models are colored by per residue pLDDT scores. Selected model ranks are marked by red.

A**AFM V2 PRL-PRLR (1:2)****B****AFM V2 GH1-GHR (1:2)**

Figure S12. Quality metrics of AFM V2 predicted models. **(A)** Five models generated for PRL-PRLR (1:2) complex. **(B)** Five models generated for GH1-GHR (1:2) complex. Models are colored by per residue pLDDT scores. Selected model ranks are marked by red.

A**AFM V3 TPO:TPOR (1:2)****B****AFM V3 CSF3:CSF3R (2:2)**

Figure S13. Quality metrics of AFM predicted models. **(A)** Five models predicted for TPO-TPOR (1:2) complex by AFM V3. **(B)** Five models predicted for CSF3-CSF3R (2:2) complex by AFM V3. Models are colored by per residue pLDDT scores.

Table S1. Structural features and interacting partners of class 1 homodimeric cytokine receptors from the JAK-STAT signaling pathway [4-6].

Receptor	Sequence length (signal peptide)	Disulfides	N-glycosylation sites	WSXWS motifs	Natural ligands	JAKs	STATs	SOCSs
EPOR*	508 (24)	28-38, 67-83	52	²⁰⁹ WSAWS	EPO	JAK2 LYN	STAT5A STAT3, STAT1	SOCS3
PRLR*	622 (24)	12-22, 51-62	35, 80, 108	¹⁹¹ WSAWS	PRL, CSH1, CSH2, GH1	JAK2	STAT5A, STAT5B STAT3, STAT1	SOCS2
GHR	638 (18)	56-66, 101-112, 126-140, 259-259†	115, 156, 200	²⁴⁰ YGEFS	GH1 (SOMA)	JAK2, LYN	STAT5B STAT3, STAT1	SOCS2
TPOR	635 (25)	40-50, 77-93, 291-301, 334-352, 193-323#, 194-241#, 211-322#	117, 178, 298, 358	²⁶⁹ WGSWS ⁴⁷⁴ WSSWS	TPO, CRTmut**	JAK2, TYK2	STAT5A, STAT3, STAT1	SOCS3
CSF3R	780 (24)	26-52, 46-101, 131-142, 167-218, 177-186, 248-295, 266-309, 388-395	51, 93, 128, 134, 389, 474, 571, 610	³¹⁸ WSDWS	CSF3	JAK1, JAK2, JAK3	STAT3, STAT5 STAT1	SOCS3

* Residue numbers are for mature proteins (lacking signal peptide).

† Intermolecular disulfide

Disulfides possibly formed between loops inside D2 and D3 domains

** CRTmut, calreticulin mutants related to MPNs

Bold characters indicate the main interacting protein.

Table S2. Parameters of AFM-generated models of homodimers of ligand-bound receptors, dimers of TM segments for constitutively active mutants, JAK2 dimers, and monomeric JAK2-receptor complexes. These were used as structural blocks for building complete models of active ligand-receptor-kinase signaling complexes.

Name	Residues	pLDDT	pTM	ipTM	TM helix packing	PDB code or model	C α -RMSD, Å
Ligand-bound receptor homodimers							
hEPO*-hEPOR* (1:2)	1-166* (lig), 1-288*	81.7	0.737	0.680	L+, L²³⁹ e	1EER	1.6 (560/592)
mEPO*-mEPOR (1:2)	1-166* (lig) 1-314	78.5	0.687	0.645	L+, S²³⁸ e	1EER	1.06 (462/592)
hGH1*-hGHR (1:2)	1-191* (lig) 1-332	70.3	0.648	0.639	L+, F²⁷³ d-	3HHR 50EK	1.2 (549/573) 3.1 (48/48)
hPRL*-hPRLR* (1:2)	1-199* (lig) 1-276*	80.2	0.680	0.635	R-, AxxxA²²²xxxL	3NPZ	1.8 (536/587)
hCSH1*-hPRLR* (1:2)	1-191* (lig) 1-276*	80.8	0.665	0.584	R-, LxxxW²³⁰xxxL	1F6F	1.9 (403/593)
hGH1*-hPRLR* (1:2)	1-191* (lig) 1-276*	82.2	0.713	0.641	R-, CxxxV²²⁹xxxA	1BP3	1.1 (322/383)
hTPO*-hTPOR (1:2) #	1-153* (lig) 1-635	75.1	0.67	0.639	L+, S⁵⁰⁵ a, H⁴⁹⁹ b	None	
hCSF3-hCSF2R (1:1)	30-207 (lig) 1-667	83.1	0.664	0.788	N/A	2D9Q	0.9 (411/466)
hCSF3-hCSF2R (2:2)	30-207 (lig) 1-667	86.9	0.684	0.643	N/A	2D9Q	3.2 (567/933)
JAK2 homodimer							
hJAK2 dimer	1-1132	79.5	0.743	0.672	224-224 distance 29.3 Å	7T6F 8EWY	2.5 (1898/2164) 3.0 (2052/2172)
JAK2-receptor complexes (1:1)							
hJAK2-hEPOR* (D2-TM-ICD)	1-1132, 120-372*	82.9	0.769	0.631	L+	7T6F (FERM-SH2L-PK)	2.48 (618/762)
hJAK2-hGHR (D2-TM-ICD)	1-1132, 148-390	82.5	0.754	0.634	L+	7T6F (FERM-SH2L-PK)	2.47 (620/762)
hJAK2-hPRLR* (TM-ICD)	1-1132, 205-295*	85.6	0.838	0.727	R-	7T6F (FERM-SH2L-PK)	2.45 (620/762)
hJAK2-hTPOR (TM-ICD)	1-1132, 488-635	82.8	0.808	0.552	L+	7T6F (FERM-SH2L-PK)	2.63 (636/762)
hJAK2-hCSF3R (TM-ICD)	1-1132, 606-708	84.6	0.826	0.612	L+	7T6F (FERM-SH2L-PK)	2.58 (621/762)

* Residue number are for mature proteins. # calculated by AFM V3. Other models were calculated by AFM V2.

The AFM parameters (pLDDT, pTM, ipTM) are provided for a single model selected for further modeling and analysis out of 5 models generated by AFM. Type of helix arrangement in dimers (L+ or R-) as defined by the sign of the crossing angle: L+, left-handed (coiled coil) dimer with a positive crossing angle and heptad repeat, or R-, right-handed dimer with a negative crossing angle and the tetrad (i.e. GxxxG) repeat motif. Letters for left-handed dimers indicate the position of a reference residue in the (abcdefg)_n heptad repeat motif (a and d positions are located at the helix-helix interface). RMSD column includes the number of overlapped residues in the structural superposition divided by total number of residues in the structure (in parentheses). RMSD values were calculated by the align method of PyMOL.

Bold characters indicate a TM helix packing consistent with the final structure of the active receptor dimer.

Table S3. Fraction of natural contacts (F_{nat}), LRMS, iRMS, and DockQ values for extracellular domains of cytokine-receptor complexes.

Protein	PDB ID	Subunits	F_{nat}	LRMS	iRMS	DockQ
Site 1						
EPOR	1EER	A-C	0.96	2.6	1.3	0.81
GHR	3HHR	A-B	0.84	2.9	1.1	0.80
PRLR	3NPZ	A-B	0.79	2.9	0.8	0.82
CSF3R	2D9Q	A-B	0.95	2.1	0.9	0.88
CSF3R	2D9Q	C-D	0.95	2.1	0.9	0.88
Site 2						
EPOR	1EER	A-B	0.79	3.5	1.2	0.75
GHR	3HHR	A-C	0.81	3.5	1.4	0.73
PRLR	3NPZ	A-C	0.59	6.6	2.0	0.52
CSF3R	2D9Q	A-D	0.58	2.1	1.8	0.64
CSF3R	2D9Q	B-C	0.58	2.1	1.8	0.64

DockQ, a protein-protein docking model quality, is derived by combining F_{nat} , LRMS, and iRMS; medium quality models on the CAPRI-set have ($0.51 \leq \text{DockQ} < 0.81$), high quality model have $\text{DockQ} > 0.81$ [13]. AFM models of cytokine-receptor complexes shows high quality for site1 of ligand and medium quality for site 2 of ligand.

Table S4. Parameters of AFM-generated models of ligand-free receptor dimers and dimers of TM α -helical segments.

Name	Residues	pLDDT	pTM	ipTM	TM helix packing	PDB entry or another model	$\text{Ca-RMSD, } \text{\AA}^*$
Ligand-free receptor homodimers							
hEPOR* #	1-269*	76.8	0.456	0.154	L+, L ²³⁹ b	1EER	8.94 (412/592)
hEPOR(R130C)* ##	1-264*	81.6	0.690	0.592	Parallel, V ²³⁷	1EER	9.74 (416/592)
hEPOR(R130C)* ##	1-295*	78.5	0.642	0.551	Parallel, V ²³⁷	1EER	9.65 (425/592)
hEPOR(D133C)* ##	1-295*	78.9	0.469	0.238	Parallel, V ²³⁷	1EER	5.24 (370/592)
hEPOR(E134C)* ##	1-295*	74.9	0.417	0.176	Parallel, V ²³⁷	1EER	5.26 (411/592)
mEPOR*	1-190*	75.7	0.496	0.258	L+, S ²³⁸ a	1EER	5.6 (408/592)
hGHR	1-310	70.8	0.503	0.352	L+, F ²⁷³ e	3HHR	7.5 (384/573)
hPRLR*	2-279*	82.4	0.474	0.163	L+, A ²²² a	3NPZ	8.6 (391/587)
hTPOR#	26-550 1-552	72.4	0.526	0.444	R- H ⁴⁹⁹ out	Final model	4.8 (952/1104)
hCSF3R (D5-D6-TM segment)	421-660	79.2	0.389	0.120	R-, T ⁶⁴⁰ out	Final model	8.1 (434/480)
Homodimers of TM α-helices*							
hEPOR*	209-288*	54.6	0.393	0.337	L+, L ²³⁹ a	Final model TMDOCK	2.9 (57/58) 1.7 (53/58)
mEPOR*	208-287*	52.8	0.364	0.306	L+, S ²³⁸ a	Final model TMDOCK	3.1 (56/58) 2.0 (56/58)
hGHR	240-325	52.0	0.394	0.356	L+, F ²⁷³ a	5OEK Final model	3.6 (53/54) 1.6 (51/54)
hPRLR*	191-249*	62.7	0.516	0.467	R-, AxxxxA ²²² xxxL	Final model TMDOCK	2.7 (68/68) 2.2 (48/50)
hPRLR* CAM (Δ 10-186)	1-9+187-276	49.7	0.384	0.360	R-, AxxxxA ²²² xxxL	Final model TMDOCK	1.9(67/68) 3.3(49/50)
hPRLR* CAM (Δ 1-210)	211-276	62.0	0.492	0.461	R-, AxxxxA ²²² xxxL	Final model TMDOCK	1.7 (60/68) 3.6 (50/50)
hTPOR CAM H499L/W515K	488-549	71.9	0.463	0.373	L+, S ⁵⁰⁵ d, H ⁴⁹⁹ e	Final model TMDOCK	1.2 (52/54) 1.4 (48/58)
hTPOR CAM (L498W/H499Y)	488-549	73.5	0.49	0.404	L+, S ⁵⁰⁵ d, H ⁴⁹⁹ e	Final model TMDOCK	1.2 (52/54) 1.4 (48/58)
mTPOR	456-533	63.6	0.47	0.397	L+, S ⁴⁹⁸ d, L ⁴⁹² e	Final model TMDOCK	2.8 (54/54) 1.9 (56/58)
hCSF3R	606-669	60.1	0.483	0.442	L+, T ⁶⁴⁰ a	Final model TMDOCK	0.8 (49/54) 0.8 (41/50)
hCSF3R CAM (T640N)	606-669	58.8	0.439	0.389	L+, T ⁶⁴⁰ a	Final model TMDOCK	0.7 (48/54) 0.9 (44/50)

See legend for Table S2. Bold characters indicate TM helix arrangement similar to that in the models of final ligand-receptor-kinase signaling complexes. CAM, constitutively active mutants.

calculated by AFM V3.

calculated by AF2-ptm

Other models were calculated by AFM V2.

Table S5. Interactions of hTPO with hTPOR in the AFM-generated model of the ligand-bound hTPOR dimer.*

Site 1		Site2	
TPO*	TPOR	TPO*	TPOR
L16	I263	R10	E261
D45	R102	V11	F104
F46	L103, F104	K14	E160
L48	F45, L103, L265	R17	D163
K52	E46	R98	E99
H133	F126	L99	L103, F104
K136	D128	L101	F105
R140	D261		
F141	F104, F164, L265		
L144	F164		

* Residue numbers are for mature protein (TPO).

Bold characters indicate hTPOR residues (F45, L103, F104, D261, and L265) that are involved in hTPO binding, in accordance with mutagenesis studies [7, 8] and hTPO residues (R10, K14, R17, K52, R98, H133, K136, F141, L144) that are essential for binding to hTPOR [9, 10].

Table S6. TM helix arrangement in final models of complete ligand-receptor-kinase complexes, in models of ligand-bound and ligand-free receptor dimers, and in dimers of isolated TM segments calculated by AFM [11] and TMDOCK [12].

Name	Complete complex	Ligand-bound receptor dimer	Ligand-free receptor dimer	TM helix dimer (AFM)	TM helix dimer (TMDOCK)
hEPOR*	L+, L ²³⁹ e	L+, L ²³⁹ e	R-	L+, L ²³⁹ a	no association
mEPOR*	L+, S ²³⁸ e	L+, S ²³⁸ e	L+, S ²³⁸ a	L+, S ²³⁸ a	L+, S ²³⁸ a
hGHR	L+, F ²⁷³ d	L+, F ²⁷³ d	L+, F ²⁷³ e	L+, F ²⁷³ a	L+, F ²⁷³ c
hPRLR*	R-, AxxxA ²²² xxxL	R-, AxxxA ²²² xxxL	L+ A ²²² a	R-, AxxxA ²²² xxxL (WT,CAM**)	R-, SxxxC ²²⁵ xxxV
hCSF3R	L+, T ⁶⁴⁰ a	N/A	N/A	L+, T ⁶⁴⁰ a (WT,CAM**)	L+, T ⁶⁴⁰ a
hTPOR	L+, S ⁵⁰⁵ a, H ⁴⁹⁹ b	L+, S ⁵⁰⁵ a, H ⁴⁹⁹ b	R-	L+, S ⁵⁰⁵ d, H ⁴⁹⁹ e (CAM)**	L+, S ⁵⁰⁵ d, H ⁴⁹⁹ e

Cells marked by gray indicate helix arrangements similar to that in the final ligand-receptor-kinase complexes.

Type of helix arrangement in dimers (L+ or R-) is defined by the sign of the crossing angle: L+, left handed dimer (coiled coil) with positive crossing angle and the $(abcdefg)_n$ heptad repeat motif, and R-, right-handed dimer with a negative crossing angle and the tetrad (i.e. GxxxG) repeat motif. Letters for left-handed dimers (bold character) indicate the position of a reference residue in the heptad repeat motif, where a and d positions form the dimerization interface.

* Residue numbers are for mature proteins.

** Calculated for TMDs of constitutively active mutants (CAM): hPRLR ($\Delta 10-186$, $\Delta 1-210$), hCSF3R (T640N), and TPOR (H499L/W515K and L498W/H499Y).

Table S7: Lipid composition of the mammalian plasma membrane (number of specified lipid molecules in each leaflet).

Lipid name	Lipid Head / Tail	GHR		CSF3R, EPOR, PRLR, TPOR	
		Outer	Inner	Outer	Inner
POPC	PC(16:0/18:1(9Z))	64	28	48	21
PLPC	PC(16:0/18:2(9Z,12Z))	88	44	66	33
PAPE	PE(16:0/20:4(5Z,8Z,11Z,14Z))	12	48	9	36
POPE	PE(16:0/18:1(9Z))	12	56	9	42
POPI	PI(16:0/18:1(9Z))	0	20	0	15
PAPS	PS(16:0/20:4(5Z,8Z,11Z,14Z))	0	44	0	33
POPA	PA(16:0/18:1(9Z))	0	4	0	3
SSM	SM(d18:1/18:0)	44	20	33	15
NSM	SM(d18:1/24:1)	44	20	33	15
CMH	GlcCer(d18:1/16:0)	16	0	12	0
CHOL	Cholesterol	148	116	111	87
Total		428	400	321	300

Lipids head groups: PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; SM, sphingomyelin; GlcCer, glucosylceramide.

REFERENCES

1. Ferrao, R., Lupardus, P.J. (2017). The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions. *Front. Endocrinol.* **8**, 71.
2. Ferrao, R.D., Wallweber, H.J., Lupardus, P.J. (2018). Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation. *eLife* **7**, e38089.
3. Brooks, A.J., Dai, W., O'Mara, M.L., Abankwa, D., Chhabra, Y., Pelekanos, R.A., et al. (2014). Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. *Science* **344**, 1249783.
4. Dehkhoda, F., Lee, C.M.M., Medina, J., Brooks, A.J. (2018). The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. *Front. Endocrinol.* **9**, 35.
5. Liongue, C., Sertori, R., Ward, A.C. (2016). Evolution of Cytokine Receptor Signaling. *J. Immunol.* **197**, 11-18.
6. Morris, R., Kershaw, N.J., Babon, J.J. (2018). The molecular details of cytokine signaling via the JAK/STAT pathway. *Protein Sci.* **27**, 1984-2009.
7. Varghese, L.N., Zhang, J.-G., Young, S.N., Willson, T.A., Alexander, W.S., Nicola, N.A., et al. (2014). Functional characterization of c-Mpl ectodomain mutations that underlie congenital amegakaryocytic thrombocytopenia. *Growth Factors* **32**, 18-26.
8. Chen, W.M., Yu, B., Zhang, Q., Xu, P. (2010). Identification of the residues in the extracellular domain of thrombopoietin receptor involved in the binding of thrombopoietin and a nuclear distribution protein (human NUDC). *J. Biol. Chem.* **285**, 26697-26709.
9. Pearce, K.H., Jr., Potts, B.J., Presta, L.G., Bald, L.N., Fendly, B.M., Wells, J.A. (1997). Mutational analysis of thrombopoietin for identification of receptor and neutralizing antibody sites. *J. Biol. Chem.* **272**, 20595-20602.
10. Hitchcock, I.S., Kaushansky, K. (2014). Thrombopoietin from beginning to end. *Br. J. Haematol.* **165**, 259-268.
11. Evans, R., O'Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., et al. (2021). Protein complex prediction with AlphaFold-Multimer. *bioRxiv* 2021.2010.2004.463034 [Preprint], doi: <https://doi.org/10.1101/2021.10.04.463034>
12. Lomize, A.L., Pogozheva, I.D. (2017). TMDOCK: an energy-based method for modeling alpha-helical dimers in membranes. *J. Mol. Biol.* **429**, 390-398.
13. Basu, S., Wallner, B. DockQ: A Quality Measure for Protein-Protein Docking Models. *PLoS One* **2016**, 11 (8), e0161879. DOI: 10.1371/journal.pone.0161879.