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Abstract—Instant Messaging (IM) applications such as Signal, Telegram, and WhatsApp have become tremendously popular in recent
years. Unfortunately, such IM services have been targets of governmental surveillance and censorship, as these services are home to
public and private communications on socially and politically sensitive topics. To protect their clients, popular IM services deploy state-
of-the-art encryption. Despite the use of advanced encryption, we show that popular IM applications leak sensitive information about
their clients to adversaries merely monitoring their encrypted IM traffic, with no need for leveraging any software vulnerabilities of IM
applications. Specifically, we devise traffic analysis attacks enabling an adversary to identify participants of target IM communications

(e.g., forums) with high accuracies. We believe that our study demonstrates a significant, real-world threat to the users of such
services. We demonstrate the practicality of our attacks through extensive experiments on real-world IM communications. We show
that standard countermeasure techniques can degrade the effectiveness of these attacks. We hope our study will encourage IM
providers to integrate effective traffic obfuscation into their software. In the meantime, we have designed a countermeasure system,
called IMProxy that can be used by IM clients with no need for any support from IM providers. We demonstrate the effectiveness of

IMP roxy through simulation and experiments.

Index Terms—Traffic analysis, secure messaging applications, flow correlation

1 INTRODUCTION

INSTANT Messaging (IM) applications such as Signal [86],
Telegram [95], and WhatsApp [107] have become enor-
mously popular in recent years. Recent studies estimate that
over 3 billion people use mobile IM applications across the
world [43]. IM services enable users to form private and
public social groups and exchange messages of various
types, including text messages, images, videos, and audio
files. In particular, IM applications are used extensively to
exchange politically and socially sensitive content. As a
result, governments and corporations increasingly monitor
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the communications made through popular IM services [2],
131, [79], [971.

A notable example of oppressed IM services is Telegram
with over 500 million users globally [67], where a large frac-
tion of its users come from countries with strict media regu-
lations like Iran and Russia. In particular, Telegram is so
popular in Iran that it has been estimated to consume more
than 60 percent of Iran’s Internet bandwidth [11]. Conse-
quently, Iranian officials have taken various measures to
monitor and block Telegram: from requesting Telegram to
host some of its servers inside Iran to enable surveil-
lance [97], to requesting Telegram to remove controversial
political and non-political channels [97]. Eventually, Iran
blocked Telegram entirely in April 2018 due to Telegram’s
non-compliance. Despite this, statistics suggest only a small
decrease in Telegram’s Iranian users who connect to it
through various kinds of VPNs [44]. Telegram has also been
blocked in Russia as Telegram operators refrained from
handing over their encryption keys to Russian officials for
surveillance [79]. Finally, in the light of Telegram’s crucial
role in recent Hong Kong protests, there are unconfirmed
reports [24], [81] that mainland Chinese and Hong Kong
authorities may have attempted to discover Hong Kong
protesters by misusing a Telegram feature that enabled
them to map phone numbers to Telegram IDs.

Signal is another example of IM applications with over 40
million monthly active users. Known for its privacy and
security considerations, Signal has been the communication
method of choice for activists, people in the hacker
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community, and others concerned about privacy. [87] In
January 2021, due the concerns over a notification of
updated terms of service from WhatsApp application
(which is the most popular IM in the world), Signal started
to gain popularity as people are increasingly concerned
with safeguarding their private information [89]. What
makes Signal one of the leading IMs is its efforts to mini-
mize the amount of metadata each message leaves behind
in addition to hiding the content of the messages. In this
regard, Signal recently has deployed a feature called Sealed
Sender [90] that conceals the identity of the sender of mes-
sages. In January 2021, the Iranian govermnment started
blocking all Signal traffic. In response, Signal added support
for a simple TLS proxy in its Android version in order to let
user bypass the network block. [45]

A Fundamental Vulnerability. Popular IM applications
such as Signal, Telegram, and WhatsApp, deploy encryp-
tion (either end-to-end or end-to-middle) to secure user
communications. We refer to such services as secure IM
(SIM) applications. In this paper, we demonstrate that
despite their use of advanced encryption, popular IM applications
leak sensitive information about their clients” activities to surveil-
lance parties. Specifically, we demonstrate that surveillance
parties are capable of identifying participants of target IM
communications (e.g., politically sensitive IM channels)
with very high accuracies, and by only using low-cost traffic
analysis techniques. Note that our attacks are not due to
security flaws or buggy software implementations such as
those discovered previously [33], [51], [80], [113]; while
important, such security flaws are scarce, and are immedi-
ately fixed by IM providers once discovered. Instead, our
attacks enable surveillance by merely watching encrypted IM
traffic of IM users, and assuming that the underlying IM
software is entirely secure. The key enabler of our attacks is
the fact that major IM operators do not deploy effective
mechanisms to obfuscate traffic characteristics (e.g., packet
timing and sizes), due to the impact of obfuscation on the
usability and performance of such services. We therefore
argue that our attacks demonstrate a fundamental vulnerability
in major in-the-wild IM services, and, as we will demonstrate,
they work against all major IM services.

We believe that our attacks present significant real-world
threats to the users of believed-to-be-secure IM services, spe-
cially given escalating attempts by oppressive regimes to
crack down on such services, e.g., the recent attempts [2],
[3], [24], [81] to identify and seize the participants of contro-
versial IM communications.

Our Contributions. We design traffic analysis attack algo-
rithms for SIM communications; the objective of our attack
is to identify the participants of target SIM communications.
What enables our attack is that, widely-used SIM services do
not employ enough mechanisms to obfuscate statistical character-
istics of their communications.

We start by establishing a statistical model for IM traffic
characteristics. Such a model is essential in our search for
effective traffic analysis attacks on SIM services. To model
IM communications, we join over 1,000 public Telegram
channels and record their communications, based on which
we derive a statistical model for IM traffic features.

Based on our statistical model for IM communications,
we use hypothesis testing [74] to systematically desi
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effective traffic analysis attack algorithms. Specifically, we
design two traffic analysis attack algorithms; our first algo-
rithm, which we call the event-based algorithm, relies on the
statistical model that we derive for SIM communications to
offer an optimal matching of users to communications. Qur
second algorithm, which we call the shape-based algorithm,
correlates the shapes of SIM ftraffic flows in order to match
users to target communications. Our shape-based algorithm
is slower but offers more accurate detection performance
than the event-based algorithm for smaller values of false
positive rates. In practice, the adversary can cascade the
two algorithms to optimize computation cost (and scalabil-
ity) versus detection performance. Note that, as demon-
strated through experiments, our statistical detectors
outperform deep learning based detectors trained on IM
traffic when the IM service has not deployed effective obfus-
cation. This is because, as also demonstrated in recent
work [63], deep learning traffic classifiers outperform statis-
tical classifiers only in network applications with non-sta-
tionary noise conditions (e.g., Tor), where statistical models
becomes unreliable. These attacks are closest in nature to
flow correlation attacks.

We perform extensive experiments on live traffic of 5
popular SIMs to evaluate the performance of our attacks.
Signal, Telegram, WhatsApp, Wickr [108], and Wire [110]
are our target SIMs. We demonstrate that our algorithms
offer extremely high accuracies in disclosing the participants
of target SIM communications. In particular, we show that
only 15 minutes of Telegram traffic suffices for our shape-
based detector to identify the participant of a target SIM
communication with a 94% true positive (TP) and a 1073
false positive (FP) rate—the adversary can reduce the FP
rate to 5 x 10~° by observing an hour of traffic (the adver-
sary can do this hierarchically, e.g., by monitoring the users
flagged when using 15 minutes of traffic for longer traffic
intervals). Using our event-based detector on 15 minutes of
captured Signal traffic, we reach a 93% TP rate and a 6 x
10~* FP rate. Similarly, we reach a 94% TP rate and a 6 x
10~3 FP rate on 15 minutes of captured Wire traffic.

We also study the use of standard traffic analysis coun-
termeasures against our attacks. In particular, we investi-
gate tunneling SIM traffic through VPNs, mixing it with
background traffic, adding cover IM ftraffic, and delaying
IM packets. As expected, our experiments show that such
countermeasures reduce the effectiveness of the attacks at
the cost of additional communication overhead as well as
increased latency for SIM communications. For instance, we
find that tunneling Telegram traffic through VPN and mix-
ing it with background web-browsing traffic reduces the
accuracy of our attack from 93% to 70%, and adding cover
traffic with a 17% overhead drops the accuracy to 62%. We
argue that since many SIM users do not deploy such third-
party countermeasures due to usability reasons, SIM pro-
viders should integrate standard traffic obfuscation techni-
ques into their software to protect their users against the
introduced traffic analysis attacks. In the meantime, we have
designed and deployed an open-source, publicly available counter-
measure system, called IMProxy, that can be used by IM clients
with no need to any support from IM providers. We have dem-
onstrated the effectiveness of IMProxy through simulations
and experiments
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TABLE 1
Popular IM Services [91]
IM Service Monthly Users Based in Owned by End-to-End Encryption ~ Centralized
WhatsApp 2000 M United States Facebook v v
Facebook Messenger 1300 M United States Facebook v (Secret Communications) v
WeChat 1251 M China Tencent X v
Telegram 550 M UAE Telegram Messenger LLP v'(Secret Chats) v
Snapchat 538 M United States Snap Inc X v
Signal 40M United States Open Whisper Systems v v
Wickr < 1M United States Amazon v v
Wire < 1M European Union Wire Swiss GmbH v v

In summary, we make the following contributions:

e We introduce traffic analysis attacks that reliably
identify users involved in sensitive communications
through secure IM services. To launch our attacks,
the adversary does not need to cooperate with IM
providers, nor does she need to leverage any security
flaws of the target IM services.

e We establish a statistical model for regular IM com-
munications by analyzing IM traffic from a large
number of real-world IM channels.

e We perform extensive experiments on the popular
SIM services of Signal, Telegram, WhatsApp, Wickr,
and Wire to demonstrate the in-the-wild effective-
ness of our attacks.

e We study potential countermeasures against our
attacks. In particular, we design and evaluate
IMProxy, which is a proxy-based countermeasure
system. IMProxy works for all major IM services,
with no need for support from IM providers.

e Our code and other artifacts are available online.!

2 BACKGROUND: SECURE INSTANT MESSAGING
(SIM) APPLICATIONS

We define a secure IM (SIM) service to be an instant messag-
ing service that satisfies two properties: (1) it deploys strong
encryption on its user communications (either end-to-end
or end-to-middle), and (2) it is not controlled or operated by
an adversary, e.g., a government. While our attacks also
apply to non-secure IM applications, an adversary can use
other trivial techniques to compromise privacy of non-
secure IM services. For instance, if the operator of an IM ser-
vice fully cooperates with a surveillant government, e.g., the
WeChat IM service in China, the IM provider can let the
adversary identify target users with no need for traffic anal-
ysis mechanisms. Similarly, an IM service with weak
encryption can be trivially eavesdropped with no need for
sophisticated traffic analysis attacks. Table 1 overviews
some of the most popular SIM services.

2.1 How SIM Services Operate

Architecture. All major IM services are centralized, as shown
in Table 1. Therefore, all user communications in such serv-
ices are exchanged through servers hosted by the IM pro-
vider companies, e.g., Telegram Messenger LLP (note that

1. https: / / github.com /SPIN-UMass /IMProxy

some less popular services use a peer-to-peer architecture,
e.g., FireChat [92], Ring [78], and Briar [17]). Each IM service
has a server for authentication and key exchange. A data-
base server stores message contents and other user informa-
tion (possibly encrypted with client keys). Some IMs use
Content Delivery Networks (CDNs) to run their databases
to improve quality of service and resist attacks. Existing IM
services use various messaging protocols for user communi-
cations, including Signal [32], Matrix [10], MTProto [60],
and Off-the-Record [16].

Popular IM services intermediate all user communica-
tions by having user traffic go through their servers. Such a
centralized architecture allows IM providers to offer high
quality of services and solves critical issues like reaching to
offline clients and clients behind NAT/firewalls. However,
this presents different privacy threats to the users, as IM
servers are involved in all user communications. Some IM
services deploy end-to-end encryption to alleviate this, as
presented below.

Security Features. IM services use standard authentication
mechanisms like authorization keys and public key certifi-
cates to authenticate IM servers and peers [13], [14]. Also, they
use standard techniques to ensure the integrity of messages.
Allmajor IM services encrypt user communications to protect
confidentiality [35]. Some IM providers additionally deploy
end-to-end encryption on user communications. This prevents
IM operators from seeing the content of communications;
however, they can still see communication metadata, e.g.,
who is talking to whom and when. WhatsApp, Skype, Line,
as well as Telegram and Facebook Messenger offer end-to-
end encryption, while WeChat, Snapchat, and the BlackBerry
Messenger do not. Please refer to Johansen et al. [46] for fur-
ther discussion of other IM security features.

2.2 Prior Security Studies of IM Services

Metadata Leakage. Coull and Dyer [25] are the first to apply
traffic analysis on messaging applications. They demon-
strate traffic analysis attacks that can infer various meta-
data of a target Apple iMessage user, spedifically, the oper-
ating system version, type of the IM action, and, to some
degree, the language of conversations. More recently, Park
and Kim [73] perform traffic analysis on the Korean Kakao-
Talk IM service, to identify users’ online activities using
basic classification algorithms. Afzal et al. [4] identify the
activities associated with the Signal app such as receiving or
initiating calls, typing patterns, and media messages by ana-
lyzing a user’s traffic patterns. Our work differs from these
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works in that the design of our detectors rely on theoretical
foundations and meticulous modeling of IM communica-
tions. Also, we believe that our attacks are able to reveal IM
meta-data that is more sensitive than what was identified
by prior works. We demonstrate the applicability of our
attacks on several IM services, and design and evaluate tai-
lored countermeasures.

Security Vulnerabilities. Johansen et al. [46] surveyed differ-
ent implementations of SIM protocols such as Signal, What-
sApp, and Threema, and evaluated their security and
usability; they conclude that none of the studied applications
are infallible. Unger et al. [100] performed a comprehensive
study of instant messaging protocols focused on their security
properties around trust establishment, conversation security,
and transport privacy. Also, Aggarwal et al. [5] study the
implementation of encryption in widely-used messaging
applications.

Furthermore, there have been various identity enumera-
tion attacks on messaging applications. In particular, as
some IM services use SMS text message to activate new
devices, an adversarial phone company can initiate and
intercept such authorization codes to either identify users
or access their accounts. Alternatively, unconfirmed
reports [24] suggest that mainland Chinese and Hong Kong
authorities may have attempted to discover Hong Kong
protesters by misusing a Telegram feature that allowed one
to discover the Telegram IDs of phone contacts (therefore,
mapping phone numbers to their Telegram IDs); Telegram
has promised to fix this issue through an update that will
allow users to cloak their phone numbers [81].

Alternatively, Schliep et al. [82] evaluate the security of
the Signal protocol against Signal servers. They identify vul-
nerabilities that allow the Signal server to learn the contents
of attachments, re-order and drop messages, and add/drop
participants from group conversations. Note that their
study targets an entirely different adversary than ours, i.e.,
their adversary is a compromised /malicious Signal server,
whereas in our case the adversary is any third-party who is
able to wiretap encrypted IM traffic. Also, their attacks only
work against Signal, whereas our attacks apply to all major
IM services as they rely on fundamental communication
behavior of IM services.

Communication Privacy. The centralized nature of popular
SIM services makes them susceptible to various privacy
issues. First, all user communications, including group com-
munications and one-on-one communications, are estab-
lished with the help of the servers run by the SIM
providers; therefore, SIM providers have access to the meta-
data of all communications, i.e., who is talking to whom,
and channel ownership and membership relationships.
Recent works suggest using various cryptographic techni-
ques, such as private set intersection, to protect privacy
against the central operators, e.g., for contact discovery [49],
[58]. Second, even if an IM service provider is not malicious,
its servers may be compromised by malicious adversar-
ies [31] or subpoenaed by governments, therefore putting
client communication metadata at risk.

In traditional SIM services, user communications are
encrypted end-to-middle, i.e., between clients and SIM serv-
ers. In such services, the SIM providers can see not only the
users’ communication metadata but also their communication
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contents. Recently, major SIM providers such as WhatsApp
have started to support end-to-end encryption, therefore pro-
tecting communication content from SIM providers [1]. Poor/
buggy implementations of some SIM services have resulted
in various security flaws and meta-data leakage threats
despite their use of end-to-end encryption [33], [51], [65], [80],
[113], e.g., through on/off notifications in Telegram [33] and
the recent WhatsApp vulnerability giving remote access to
the hackers [113].

Censorship. The centralized architecture of popular SIM
services makes their censorship trivial: censors can easily
blacklist a handful of IP addresses or DNS records to block
all communications to a target SIM service. A straightfor-
ward countermeasure to unblock censored SIM services is
to use standard circumvention systems like VPNs [101],
Tor [28], and information-centric networks [59]. Alterna-
tively, major SIM services allow the use of circumvention
proxies to evade blocking, e.g., as built into the recent ver-
sions of the Telegram software after censorship attempts by
Iranian and Russian authorities.

3 ATTACK AND THREAT MODEL

In this work, we demonstrate a fundamental attack on IM
services: our attacks are applicable to all major IM services, and
are not due to buggy software implementations that can be fixed
through software updates, as overviewed in Section 2.2.

Our attacks are performed by an adversary who merely
performs traffic analysis. In this setting, the attacker does not
need to compromise or coerce the SIM provider, nor does
she need to block the target IM service entirely. Instead, the
adversary performs traffic analysis to identify the partici-
pants of target IM communications in order to either punish
the identified IM participants or selectively block the target
communications. In particular, the adversary can use traffic
analysis to identify the administrators of controversial polit-
ical or social IM channels and force them to shut down their
channels (as seen in recent incidents [2], [3]). Alternatively,
the adversary can use our traffic analysis attacks to identify
the members of controversial IM channels, and thereby
selectively disrupt the access to the target channels.

3.1 Introducing the Players

The adversary is a surveillance organization, e.g., an intelli-
gence agency run by a government. The goal of the adversary
is to identify (the IP addresses of) the members or administrators
(owners) of target IM communications.

A target IM communication can be a public IM channel
(e.g., a chat room) on politically or socially sensitive topics,
or a private IM communication between target users, e.g.,
dissidents and journalists.

For the adversary to be able to conduct the attack, she
needs to be intercepting the (encrypted) network traffic of
the monitored IM users, e.g., by wiretapping the ISPs of the
monitored users. Therefore, considering the Great Firewall
of China as the adversary, it can only perform the attack on
the IM users residing inside China.

3.2 Threat Model
We assume that the hosting IM service is a secure IM (SIM)
service, as defined in Section 2. Therefore, the adversa
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Fig. 1. Alternative attack scenario.

does not leverage any security vulnerabilities of the target
SIM service in performing the attack. For instance, the SIM
system does not leak the IP addresses (or other sensitive
meta-data) of its clients to the adversary. Also, we assume
all traffic between IM clients and the IM servers to be
encrypted with strong encryption. Finally, the operators of
the SIM service do not cooperate with the adversary in identify-
ing target members.

3.3 How the Attack is Performed

Fig. 1 illustrates the setup of the attack. Suppose that the
adversary aims at identifying the participants of a specific
IM communication, C.

Adversary’s Ground Truth. For any target communication
C, the attacker needs to obtain some ground truth about the
content of the communication. This can be done in three
ways:

1) If C'is an open (public) communication e.g., a public
group or channel, the adversary joins C (as a mem-
ber) and records the messages sent on ' along with
their metadata (e.g., time and size of the messages).

2) Theadversary has joined C and is capable of posting
messages to C. This can happen if C a closed group
that gives every member the ability to post messages,
or this could be because the adversary has gained an
admin role for C (e.g., the surveillance adversary has
created a channel on a politically sensitive topic to
identify target journalists, or the adversary has
arrested the admin of a sensitive channel and is mis-
using her account). In this setting, not only the
adversary can record the messages posted to C, but
also she can post her own messages to C' with her
desired (distinct) traffic patterns.

3) The adversary is messaging the target user (e.g., an
anonymous political account) in the one-on-one chat
C, in which she can send her desired distinct traffic
patterns.

Adversary’s  Wiretap. The adversary monitors the
(encrypted) network traffic of IM users to identify (the IP
addresses of) the members/admins of the target IM com-
muncation C. This can be performed by the adversary wire-
Lﬁﬁpi_ng the network traffic of the ISPs or IXPs he is

0
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controlling, e.g., by the Great Firewall of China. Alterna-
tively, the adversary can wiretap the network traffic of spe-
cific individuals (e.g., suspected activists), perhaps after
obtaining a wiretapping warrant.

Adversary Makes Decisions. The adversary uses a detection
algorithm (as introduced in Section 5) to match the traffic
patterns of the wiretapped users to the ground truth traffic
patterns of the target communication C.

3.4 Related Traffic Analysis Attacks
Prior work has studied various kinds of traffic analysis
attacks in different contexts.

Flow Correlation. In this setting, the adversary tries to link
obfuscated network flows by correlating their traffic charac-
teristics, ie., packet timings and sizes [26], [29], [38], [53],
[641, [85], [106], [117]. Flow correlation has particularly been
studied as an attack on anonymity systems like Tor [9], [62],
[76], [104], [118]: the adversary can link the ingress and
egress segments of a Tor connection (say, observed by mali-
cious Tor guard and exit relays) by correlating the traffic
characteristics of the ingress and egress segments. Recently,
Nasr et al. [63] introduce a deep learning based technique
called DeepCorr which leams a correlation function to
match Tor flows, and outperforms the previous statistical
techniques in flow correlation.

Flow Watermarking. This is the active version of flow cor-
relation attacks described above. In flow watermarking, the
adversary encodes an imperceptible signal into traffic pat-
terns by applying slight perturbations to traffic features,
e.g., by delaying packets [40], [41], [75], [105], [116]. Com-
pared to regular (passive) flow correlation techniques, flow
watermarks offer higher resistance to noise, but require
real-time modification of network traffic, and are subject to
detection attacks.

Website Fingerprinting. In Website Fingerprinting (WF),
the adversary intercepts network connections of some mon-
itored users and tries to match the patterns of the inter-
cepted connections to a set of target webpages. WF has
particularly been studied as an attack on Tor. Existing WF
techniques leverage various machine learning algorithms,
such as k-NN, SVM, and deep neural networks to design
classifiers that match monitored connections to target web
pages [201, [36], [371, [39], [47], [55], [70], [71], [77], [102].

Intersection Attacks. These attacks [6], [27], [29], [50] try to
compromise anonymous communications by matching
users’ activity/inactivity time periods. For instance, Kesdo-
gan et al. [50] model an anonymity system as an abstract
threshold mix and propose the disclosure attack whose goal
is to learn the potential recipients for any target sender.

Side Channel Attacks. Another class of traffic analysis
attacks aims at leaking sensitive information from
encrypted network traffic of Internet services [8], [12], [15],
[21], [34], [83], [94], [114]. For instance, Chang et al. [21] infer
speech activity from encrypted Skype traffic, Chen et al. [22]
demonstrate how online services leak sensitive client activi-
ties, and Schuster et al. [83] identify encrypted video
streams.

Our Traffic Analysis Direction. Our attacks presented in
this paper are closest in nature to the scenario of flow correlation
techniques. Similar to the flow correlation setting, our
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adversary intercepts a live target flow (e.g., by joining a con-
troversial IM channel), and tries to match it to the traffic pat-
terns of flows monitored in other parts of the network (to be
able to identify the IP addresses of the members or admins
of the target channel). However, we can not trivially apply
existing flow correlation techniques to the IM scenario, since
the traffic models and communication noise are entirely dif-
ferent in the IM scenario. We, therefore, design flow correla-
tion algorithms tailored to the specific scenario of IM
applications. To do so, we first model traffic and noise
behavior in IM services, based on which we design tailored
flow correlation algorithms for our specific scenario.

Note that one could alternatively use techniques from the
intersection attacks literature to design traffic analysis
attacks for IM services. However, flow correlation is signifi-
cantly more powerful than intersection attacks, as flow cor-
relation leverages not just the online/offline behavior of the
users, but also the patterns of their communications when
they are online. Also, typical IM clients tend to remain
online for very long time intervals. Therefore, we expect
attacks based on intersection to be significantly less reliable
(or require very long observations to achieve comparable
reliability) when compared to our flow correlation-based
attacks.

4 CHARACTERIZING IM COMMUNICATIONS

We start by characterizing IM traffic and deriving a statisti-
cal model for it. We will use our model to design attack
algorithms that are able to identify the participants of SIM
communications.

41 Main IM Messages

IM services allow their users to send different types of mes-
sages; most commonly, text, image, video, file, and audio
messages. IM messages are communicated between users
through one of the following major communication forms:

e Direct messages are one-on-one communications
between IM users. As mentioned earlier, popular IM
services are centralized, therefore all direct messages
are relayed through the servers of the IM providers,
and unless end-to-end encryption is deployed, the
servers can see communication contents.

e Private (Closed) Group Communications are communi-
cations that happen between multiple users. In
groups, every member can post messages and read
the messages posted by others. Each group has an
administrator member who created the group and
has the ability to manage the users and messages.
An invitation is needed for a user to join a closed
group.

e Public (Open) Group Communications which are also
called channels, are a broadcast form of communica-
tion in which one or multiple administrators can
post messages, and the members can only read or
make limited reactions to these posts. Users can join
public channels with no need for an invitation.

Note that some IM services offer other forms of commu-

nications, like status messages, that are not relevant to the
attacks discussed in our work.
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4.2 Data Collection

Since among the services studied, Telegram is the only one
with publicly available communications in the form of pub-
lic channels, we used it to collect the content of real-world
public channels.

We use Telegram’s API to collect the communications of
1,000 random channels with different message rates, each
for a 24-hour span. For every collected Telegram message,
we extract the channel ID it was sent over, its timestamp,
the type of message (text, photo, video, audio or file), and
the message size. Telegram has a limit of 50 on the number
of new channels a user can join every day. Therefore, we
use multiple Telegram accounts over several days to per-
form our data collection (also note that each Telegram
account needs to be tied to an actual mobile phone number,
limiting the number of accounts one can create). In Sec-
tion 6.1, we describe how we use the communication pat-
terns we collected for Telegram to generate traffic flows for
the other SIMs.

4.3 Modeling IM Communications

We use Telegram’s data to derive a model for IM traffic
for two reasons; first, Telegram hosts a very large number
of public channels that we can join to collect actual IM
traffic. This is unlike other popular IM services where
most group communications are closed/private. The sec-
ond reason for choosing Telegram for data collection is
that Telegram has been at the center of recent censorship
and governmental surveillance attempts [2], [3], [96], [97],
as it is home to a multitude of politically and socially sen-
sitive channels.

Although we choose Telegram to obtain a statistical
model for IM traffic, we show that our techniques perform
similarly on other SIMs like WhatsApp and Signal. This is
because these services implement limited traffic obfusca-
tion, and therefore the shape of the traffic is similar across
different IMs. We have illustrated this in Fig. 2, where the
same stream of messages are sent over two different SIM
services, resulting in similar traffic patterns.

We model two key features of IM traffic: inter-message
delays (IMDs) and message sizes. We also model the com-
munication latency of IM traffic. We use Maximum Likelihood
Estimation (MLE) [69] to fit the best probability distribution
for each of these features.

Inter-Message Delays (IMDs). The IMD feature is the time
delay between consecutive IM messages in an IM communica-
tion. In our model, we merge sent messages separated by less
than a threshold, . seconds. We do this because extremely
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Fig. 3. The PDF of inter-message delays and its fitted exponential
distribution.

TABLE 2
Distribution of Various Message Types
Type Count Volume (MB) Size range Avg. size
Text 12539 (29.4%)  3.85(0.016%) 1B-4095B 306.61B

Photo 20471 (48%) 1869.57 (0.765%) 2.40KB-378.68KB 91.33KB
Video 6564 (15.4%) 23295519 (95.3%) 10.16KB-1.56GB 35.49MB
File 903 (2.1%) 47.46(0.019%)  2.54KB-1.88MB 52.56KB
Audio 2161 (5.1%)  9587.36 (3.92%) 2.83KB-98.07MB 4.44MB

107 —8— CCDF of text message sizes VY
CCDF of photo message sizes \ I

—h— CCOF of video message sizes

104 - CCDF of file message sizes

—¥— CCDF of audio message sizes

[1XY] 0.2 0.4 0.6 0.8 1.0
Normalized message sizes to their maximum

Fig. 4. Complementary CDF (CCDF) of IM Size distributions for different
types of messages.

close messages create a combined traffic burst in the encrypted
IM ftraffic that cannot be separated by the traffic analysis adver-
sary. Such close messages can appear (infrequently) when an
administrator forwards a batch of IM messages from another
group. We also filter out the very long IMDs that can corre-
spond to long late-night inactivity periods.

We show that the probability density function of IMDs
can be closely fitted to an exponential distribution using our
MLE algorithm; Fig. 3 shows the probability density func-
tion of IMDs for 200 IM channels with a message rate of 130
messages per day. We interpret the exponential behavior of
the IMDs to be due to the fact that messages (or message
batches) are sent independently in the channels (note that
this will be different for interactive one-on-one chats which
will be discussed in Section 6.1).

Also, we consider IMDs to be independent of the type
and size of messages, since in practice there is no correlation
between the time a message is sent and its type or size.

Messages Sizes. Table 2 shows the size statistics and fre-
quencies of the five main message types in our collected M
messages. We use these empirical statistics to create a five-
state Markov chain, shown in Fig. 6, to model the sizes of
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Fig. 6. Markov chain of IM message sizes.

the messages sent in an IM communication stream. We
obtain the empirical transition probability matrix of this
Markov model for the aggregation of all channels, as well as
for groups of channels with similar rates.

Finally, Fig. 4 shows the Complementary Cumulative
Density Function (CCDF) of the normalized message sizes
for different message types (the sizes are normalized by the
maximum message size of each category). We observe that
different message types are characterized by different mes-
sage size distributions.

Communication Latency. IM messages are delayed in transit
due to two reasons: network latency and the IM servers’ proc-
essing latency. To measure such latencies, we collect IM traffic
from 500 channels, each for one hour (therefore, 500 hours
worth of IM traffic) using Telegram’s APL. We then set up two
IM clients, and send the collected IM traffic between the two
clients to measure the incurred communication latencies.
Using MLE, we find that transition latencies fit best to a Lapla-
cian distribution f, ;(z), where p is the average and 2b? is the
variance of the delay. Since network delay cannot be negative,
we consider only the positive parts of the Laplace distribu-
tion. Fig. 5 shows a Quantile-Quantile (Q-Q) plot of the packet
latencies against the best Laplace distribution.

5 DETAILS OF ATTACK ALGORITHMS

We design two algorithms for performing our attack (i.e., to
map monitored IM users to their communication). As dis-
cussed in Section 3.4, our attack scenario is closest in nature
to the scenario of flow correlation attacks. Therefore, the
design of our attacks is inspired by existing work on flow
correlation. Prior flow correlation techniques use standard
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statistical metrics, such as mutual information [23], [119],
Pearson correlation [52], [85], Cosine Similarity [42], [64],
and the Spearman Correlation [93], to link network flows by
correlating their vectors of packet timing and sizes. We use
hypothesis testing [74],” similar to state-of-the-art flow corre-
lation works [41], [42], we design optimal traffic analysis
algorithms for the particular setting of IM communications.
In contrast to flow correlation studies which use the features
of network packets, we use the features (timing and sizes) of
IM messages for detection.

Note that the recent work of DeepCorr [63] uses a deep
learning classifier to perform flow correlation attacks on
Tor. They demonstrate that their deep leaming classifier
outperforms statistical correlation techniques in linking Tor
connections. In Section 6.5, we compare our statistical classi-
fiers with a DeepCorr-based classifier tailored to IM traffic.
As we will show, when a SIM service has not deployed
strong traffic obfuscation, our statistical classifiers outper-
form such deep leaming based classifiers, especially for
shorter flow observations. Intuitively, this is due to the spar-
sity of events in typical IM communications, as well as the
stationary nature of noise in IM communications in contrast
to the scenario of Tor. Note that this fully complies with
Nasr et al. [63]’s observation that DeepCorr only outper-
forms statistical classifiers in non-stationary noisy condi-
tions, where statistical traffic models become inaccurate.

Our Hypothesis Testing. Consider C' to be a target SIM
communication (e.g., a public group on a politically sensi-
tive topic). For each IM user, U, the attacker aims at decid-
ing which of the following hypotheses is true:

e Hy: User U is not associated with the target commu-
nication C), i.e., she is participant of communication
C.

e Hy:UserU is associated with the target communication
C, i.e, she is posting messages to that communication
as an admin, or is a member of that communica-
tion and therefore receives the communication’s
messages.

As described in our threat model (Section 3), the adver-
sary can only observe encrypted SIM communications
between users and SIM servers. Therefore, we design detec-
tors that use traffic features, i.e., IMDs and message sizes. In
the following, we describe two detector algorithms.

5.1 Event-Based Detector

Our first detector, the Event-Based Detector, aims at matching
SIM events in a target user’s traffic to those of the target
communication C. An event e = (t, s) is a single SIM mes-
sage or a batch of SIM messages sent with IMDs less than a
threshold ¢, (as introduced in Section 4.3). Each single SIM
message can be one of the five types of image, video, file,
text, or audio. ¢ is the time that e appeared on the SIM com-
munication (e.g., sent to the public channel), and s is the
size of e. Note that an SIM communication can include SIM
protocol messages as well (handshakes, notifications,

2. Our approach is “threshold testing” by some of the more strict
definitions, however, we will use the term “hypothesis testing” in this
paper as threshold testing falls into the general class of statistical
h esis tests [74].
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Fig. 7. Event extraction: IM Messages sent/received by a target user cre-
ate bursts of (encrypted) packets; the adversary can extract events from
packet bursts.

updates, etc.); however, such messages are comparatively
very small as shown in Fig. 7, and thus the detector ignores
them in the correlation process. It also ignores messages
with type text since they usually only generate not more
than a couple of MTU-sized packets making them hard to
detect. Recall that the adversary is not able to see plaintext
events in the user’s traffic due to encryption. Therefore, the
first stage of our event-based detector is to extract events
based on the user’s encrypted SIM traffic shape. Fig. 8
depicts the components of our event-based detector.

Event Extraction. Each SIM event, e.g., a sent image, produ-
ces a burst of MTU-sized packets in the encrypted traffic, i.e.,
packets with very small inter-packet delays. This is illustrated
in Fig. 7: SIM events such as images appear as traffic bursts,
and scattered packets of small size are SIM protocol messages
like notifications, handshakes, updates, etc. Therefore, the
adversary can extract SIM events by looking for bursts of
MTU-sized packets, even though she cannot see packet con-
tents due to encryption. We use the IMD threshold . to iden-
tify bursts. Any two packets with distance less than ¢, are
considered to be part of the same burst. Note that ¢, is a
hyper-parameter of our model and we discuss its choice in
Section 4.3. For each burst, the adversary extracts a SIM event,
where the arrival time of the last packet in the burst gives the
arrival time of the event, and the sum of all packet sizes in the
burst gives the size of the event. Two SIM messages sent with
an IMD less than ¢, are extracted as one event. Similarly, the
adversary combines events closer than t. when capturing
them from the target communication.

Forming Hypotheses. We call a one-sided SIM commumication
an SIM flow. Therefore, a flow either consists of the packets sent
by a user to an SIM server, or the packets received by the user
from the SIM server. We represent a flow with n eventsas f =
{e1,e2,...,e,}, wheree; = (t;, s;) is the ith event.

Consider a user U and a target communication C. Sup-
pose that the adversary has extracted flow fV)=
(e, el .., e} for user U (through wiretapping), and
flow FO = {9 9 . .. e} for the target communica-
tion C (using her ground truth). The detector aims at decid-
ing whether user U is participant of C. We can re-state the
adversary’s hypotheses presented earlier in this section as
follows:

e Hy: User U is not a participant of the target commu-
nication; hence, f©) and fV) are independent.
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an%:m’ Torgot Users’ Corr;tllio:l TABLE 3
Flows Metric The Empirical Value of p, Measured for Different Client
Eusnt orrelatio toa e HolHy Bandwidths
| Target Client Bandwidth (Mbps) P
Target Channel's Channel's
Tratfle Flow 0.1 0.824
Fig. 8. Event-based detector. 0.5 0.502
1 0.921
He: ) . . ¢ th ) 10 0.974
L] 1:User Uisa participant of the target communica- 100 0.983

tion C; therefore, the user flow f ) isa noisy version
of the communication flow f(©)
Therefore, we have

H, : tic) = ti*) +d:*),sic) = si*),l <i<n
N N i C R
where f*) = {e{l*),e{;),. ..,e} is the flow of a user U’ #U

who is not a participant of communication C. Also, d\” is the
latency applied to the timing of the ith event. Note that ™M
message sizes do not change drastically in transit, and the
order of messages remains the same after transmission.
Detection Algorithm. The adversary counts the number of
event matches between the user flow f() and the communi-
cation flow f(©). We say that the zth communication event

e{c) matches some event e )in FO
. eic) and e;.U have close timing;: |t:C) - t;U)| < A;and
o ¢9and e;U) have close sizes: [s\“) — S;-U)| < T xs9.

where A and I" are thresholds values for the timing and sizes
of events. Note that even though the sizes of SIM messages do
not change in transmission, the event extraction algorithm
introduced earlier may impose size modifications, as network
jitter is able to divide/merge event bursts (i.e., a burst can be
divided into two bursts due to network jitter or two bursts
can be combined due to the small bandwidth of the user). It
should also be noted that defining closeness of event sizes as a
ratio of the size of the event rather than using a fixed-size
threshold improves the performance of the detector.

Finally, the adversary calculates the ratio of the matched
events within a flow as r = k/n, where k is number of
matched events and n is the total number of events in the
flow of target communication. The detector Hdecides the

hypothesis by comparing to a threshold: r = £ 21 n where 7
is the detection threshold. Hy
Analytical Bounds. We first derive an upper-bound on the

probability of false positive (Pgp), i.e., the probability that
H, is detected when Hj is true (Type I error). Let py be the
probability that a message with size s\ and time ¢
matches an event in fU) when Hj is true, i.e., there exists
Dnly one message whose time tf? ") satisfies t(c) < t( Y <

( + A and has the same size label as S{C) Frem our ebser-
vatlons, = 0.002. This Type I error occurs if more than 7 -
n events in f(©) match fU), when H, is true. This is equiva-
lent to the case that less than n — 5 - n events in f(©) do not
match f) when H is true. Consequently

Pep =P(k>nn| Hy) = P(n — k< n—nn|H),
=F(”_7m§n:1_Pﬂ):

1— —n+nngn —T
< —H) 1 (1

1-m !

where F(r;m, p) = P(X < r) is the cumulative density func-
tion of a Binomial distribution with parameters m, p, and
the last step follows from the following inequality which is
tight when p is close to zero [7]

F(r;m,p) < ( /p) (ﬂ)k_m. @)

1-p

Next, we upper-bound the probability of false negatives
(Ppy), ie., the probability that Hj is detected when H, is
true, which occurs when less than k messages of f(©) match
fU. Let p be the probability of the case that an event of
f©) matches f(¥) when H; is true (Type I error).

Even though we mentioned earlier in this section that
when H; is true, a delayed version of each event of f(V)
appears in f(©), the bandwidth of the target user can affect
the burst extraction process. As explained earlier in this sec-
tion, we merge bursts of packets for messages whose IMD is
less than .. Hence, suppose that the time it takes for the
user to send a message is large enough to make the IMD
between the current message and the next one less than ..
Therefore, these two consecutive messages are combined in
one burst. Table 3 shows the value of p; observed from our
data for different bandwidths. Since the bandwidth of our
experiments is IMbps, p1 = 0.921.

Note that Type II error occurs when less than » - n mes-
sages of f(©) match f() when H, is true. Therefore

Pen = P(k < nn|H1) = F(nn;n, p1)
—nn 1— nn—n
NONE
1 L—p
where the last step follows from (2).

5.2 Shape-Based Detector

We design a second detector called the shape-based detector.
This detector links users to SIM communications by corre-
lating the shape of their network traffic, where traffic shape
refers to the vector of packet lengths over time. Fig. 9 illus-
trates the four stages of the shape-based detector.

Event Extraction. The first stage of the shape-based detec-
tor is to extract SIM events from network traffic, which is
performed similar to what was described earlier for the
event-based detector. As described in the following, we do
this in a way that accounts for the different bandwidths of
the users being correlated.

Normalizing Traffic Shapes. The shape-based detector con-
verts the extracted events into normalized traffic shapes by

lacing each event with a traffic bar. The reason for doing
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Fig. 9. Shape-based detector.

so is that the shape of an IM event (e.g., the corresponding
packet burst) is a function of user network bandwidths; our
traffic normalization removes the impact of user band-
width, and therefore the adversary can correlate traffic
shapes with no knowledge of the underlying users’
bandwidths.

To perform this normalization, we replace each event
(i.e., each burst) with a traffic bar whose width is 2 x ¢,,
where t. is the threshold used during event extraction as
discussed in section 5.1. We choose this value to reduce the
chances of overlaps between consecutive bars. To capture
the sizes of events in traffic normalization, the height of
each bar is chosen such that the area under the bar is equal
to the size of the event. Our shape normalization also
reduces correlation noise by removing small traffic packets
that are not part of any SIM events.

To form the new normalized shape of traffic, we divide
each bar into smaller bins of width ¢, the value of which is
discussed in Section 6.1, and with a height equal to the
height of the corresponding bar. Therefore each bar consists
of a number of bins of equal width and height. Furthermore,
we put bins with the same width ¢, and height 0 between
these bars. By doing so, after the traffic normalization, the
new shape of traffic will be a vector of heights of bins over
time.

Correlating Normalized Traffic Shapes. Our shape-based
detector correlates the normalized shapes of two traffic
streams of target communication C and user U to decide if
they are associated. Suppose that b©) = {b) 57, ... NSy
and b = {b{lm,b{f),...,bg)} are the respective vectors of
heights of bins associated with the target communication
and user being tested, where n¢ and ny are the number of
events in target communication and user flows, respec-
tively. We use the following normalized correlation metric

n OB
1=. T T (4)
T () + X 6

corr = 2 x

where n =min(ne,ny). Note that corr returns a value
between 0 and 1, which shows the similarity of the two traf-
fic shapes (1 shows the highest similarity). Finally, the
detector makes its decision by comparing corr to a thresh-

1
old, corr 2 n, where nis the detection threshold.
Hy

6 ATTACK EXPERIMENTS

6.1 General Setup

We design our experimental setup to perform our attacks in
the setting of Fig. 1, and based on the threat model of Sec-
tion 3. We use two SIM dlients using different SIM accounts
(e.g., Telegram accounts) that are running IM software on
two separate machines. One of these IM clients is run by the

adversary, and the other one represents the target client.
Authorized licensed use limited to: University of Massachusetts
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For Telegram, due to the large number of public channels
available, we use the first type of ground truth in Fig. 1
(adversary joins the target channel as a reading-only mem-
ber). The adversary client joins target channel C, (e.g., a
public political Telegram channel) and records the metadata
of all the SIM communications of C, i.e., the timing and sizes
of all messages sent on that channel. The target client may or
may not be a member/admin of the target channel C.

Other than Telegram, the other SIM services do not have
public communications (group chats or channels). For those
SIM services, we focus on one-on-one communication and
use the third type of ground truth in Fig. 1 where adversary
sends messages to the target in a one-on-one chat. In this
scenario, the adversary chooses the content of the messages
she sends to the target client, including the timing and sizes.
She can also record the timing and sizes of the messages she
receives from the target client.

Unlike public communications (e.g., channels in Tele-
gram), one-on-one communications in these SIM services
are private. Therefore, we had to generate the content of
communications, and have the adversary’s client send them
to her target. To generate the content of the messages, we
generate random content that matches the size and fre-
quency statistics of the five main message types collected
from Telegram, shown in Table 2. As stated in [54], to gener-
ate the IMDs, we used the Pareto Type I distribution with
scale and shape parameters of 5000 millisecond and 0.93
respectively. The result was a total of 267 hours of one-on-
one communication traces which included a total of 25367
messages, 17948 of which are media (non-text) messages.
When sending the messages, we record the timestamp and
at the same time, we capture the network traffic of the
target’s machine using tcpdump. It is not necessary to send
messages in the other direction (from target’s client to the
adversary) since as a result of symmetry, we could assume
that message was sent from the adversary to the target and
it would have the same timestamp, size, and network traffic
pattern.

Generating Traffic. With all of the studied SIM services,
the adversary is not able to see the contents of the target cli-
ent's communications by intercepting her traffic (due to
encryption), however she can capture the encrypted traffic
of the target client. The adversary then uses the detection
algorithms introduced in Section 5 to decide if the target
user is associated with the target communication C. In a
real-world setting, the adversary will possibly have multi-
ple target communications, and will monitor a large num-
ber of suspected clients.

WhatsApp. The two clients were running on separate vir-
tual machines running Ubuntu 18.04. We use Selenium [84]
to connect to WhatsApp’s web application and send 100
hours of generated one-on-one traces. This results in a more
realistic packet capture as the target’s client would have to
click to download media messages upon arrival while sub-
sequent messages are arriving,.

Signal. The two clients run on separate virtual machines
running Ubuntu 20.04. We use temporary phone numbers
to create Signal accounts. Then on both machines, we use
version 0.8.4.1 of signal-cli [88], an open source command
line and dbus interface for the Signal messenger to write a

thon program for the adversary’s machine to send all of
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Fig. 10. Comparing the analytical upper bounds of the event-based
detector with empirical results (for 15 minutes of Telegram traffic).

the generated one-on-one traces and a separate Python pro-
gram on the target’s machine to receive those messages.
Our target's client starts downloading media messages
while subsequent messages are arriving.

Wire. Wire provides the following messaging solutions:
Wire Personal, Wire for Free, Wire for Enterprise, and Wire
for Governments. In this work we use Wire for Free to per-
form our experiments. In the rest of the paper we refer to
Wire Personal as Wire. Wire offers two types of messaging:
one-on-one and group communications. We use different e-
mail addresses to create Wire accounts for these experiments.
We use Selenium to connect to Wire's web application [111]
to automate sending all of the generated one-on-one traces.
When sending photos on Wire’s web application, instead of
using Wire's option to send compressed photos, we send
them as files. Because otherwise, the order by which the
media is downloaded on the target’s client would be different
from the order of the arrived messages, which would be as a
result of Wire automatically downloading photos (not files) as
they arrive. At the time of the experiments, there was no
option to turn off this function.

Wickr. Based on different customer needs, Wickr has devel-
oped several secure messaging apps: Wickr Me, Wickr Pro,
and Wickr Enterprise. In this work we use Wickr Pro to per-
form the experiments. Note that in the rest of the paper we
refer to Wickr Pro as just Wickr. Wickr offers two types of
group communications: regular group communication and
secure room communication. A room is a private group. The
main difference between group communication and a room is
that in a room there is a subset of participants called the
administrators who can add new participants to the room or
remove any participants from the room. In a group communi-
cation, only participants may remove themselves. We use the
Wickr IO Integration Gateway to automate the process of the
experiments. We use the Wickr I0 Docker Container [109] to
set up the Web Interface REST API integration enabling the
communication with Wickr client using Python.

Parameter Selection. We choose burst detection thresh-
old as te=0.5s based on the empirical distribution of
network jitter. Also, we set t, of the shape-based detector
to 0.01s, as it leaves enough separation between two con-
secutive IM messages. Note that the optimum values of
A and T in the event-based algorithm are different for
each SIM experiment.

Ethics. We performed our inference attacks only over

ublic IM channels or one-to-one communications between
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Fig. 11. The performance of the event-based detector on Signal traffic
for different traffic lengths.
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Fig. 12. Performance of the event-based detector on different SIMs (15
mins of observed traffic).

our own accounts; therefore, we did not capture any private
IM communications. Also, we performed our attacks only
on our own IM clients, but no real-world IM clients. There-
fore, our experiments did not compromise the privacy of
any real-world IM members or admins.

Synchronization. As the adversary’s clock may be skewed
across her vantage points, our adversary uses a simple slid-
ing window to mitigate this: for the first 10 seconds of traf-
fic, the adversary slides the two flows being compared with
0.5 second steps, and uses the maximum correlation value.

6.2 Experiments in Normal Network Conditions
We experiment our attacks for each SIM (fully complying
with the ethical considerations of Section 6.1).

Event-Based Detector. Fig. 11 shows the ROC curve of the
event-based algorithm using Signal traffic data for 4 differ-
ent observation lengths. We can see that, as expected, longer
traffic observations improve the accuracy of the detector. For
instance, the event-based detector offers a TP = (.58 and
FP = 5.4 x 10~® with 3 min observation, while 30 mins of
observation increases the TP to close to TP = 0.98. To calcu-
late FP, we pair each flow of messages with traces of every
other flow and feed it to the algorithm to see if it detects any
matches. In practice, an adversary can deploy the attack with
hierarchical observation intervals to optimize accuracy and com-
putation. For instance, the adversary can monitor a mass of
IM users for 15 mins of observation; then the adversary will
monitor only the clients detected with 3 mins observations
for longer time periods, e.g., 30 mins, to improve the overall
FP performance while keeping computations low.

Furthermore, Fig. 12 compares the performance of the
event-based detector on our target SIMs. As can be seen,
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Fig. 13. Comparing event-based and shape-based detectors on Signal
traffic.

with Signal and Wire, the detector has a worse performance
compared to other SIMs. It appears that they apply obfusca-
tion algorithms on their traffic flows. However, we could
not find any official documentation about their obfuscation
techniques.

Shape-Based Detector. We also experiment our shape-
based detector on each SIM. Fig. 13 compares the perfor-
mance of the event-based and shape-based detectors on
Wickr traffic for 3 mins and 15 mins of observed traffic.

As can be seen, the shape-based detector outperforms the
event-based detector for smaller values of false positive rates. For
instance, for a target true positive rate of 0.8, the shape-
based detector offers a false positive of 1.5 x 10~* compared
to 4 x 10% of the event-based detector (with 15 mins of
observation). The reason for this performance gap is the
impact of event extraction noise on the event-based detec-
tor. Such noise has smaller impact on the shape-based detec-
tor as it correlates the shape of traffic flows. For higher false
positive rates, the performance is opposite and the event-
based detector has more true positive rate than the shape-
based detector.

Note that for our event-based detector in Fig. 13, for short
traffic observations (e.g., 3 mins) we cannot observe small
FPs in our ROC curve. This is because the event-based cor-
relation uses the number of matched events, which is very
coarse-grained due to the limited number of events in short
(e.g., 3 minutes) intervals. We use our analytical upper-
bounds (derived in (1) and (3)) to estimate the performance
trend for smaller false positive values for Telegram traffic in
Fig. 10.

In terms of the performance time, our event-based detector
is two orders of magnitude faster than the shape-based detector.
Table 4 compares the number of CPU cycles each of the two
detectors take to calculate the correlation of a pair of 900 sec-
ond Signal flows, as well as the correlation times of the two
detectors. The main reason for this difference is that the
event-based correlator uses the discrete time-series of event
metadata for its correlation, while the shape-based detector
uses traffic histograms over time.

6.3 Experiments in Poor Network Conditions

To evaluate the effect of the bandwidth of the target’s device
on the performance of the event-based detector, we col-
lected traffic for each SIM with the target device’s band-
width limited to 1Mbps, 5Mbps, and in some cases 10Mbps.
We used Wondershaper [112] to limit the bandwidth on
target’'s VM. We then tuned the parameters of the event-
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TABLE 4
The Attack Performances for One Correlation
Method # of CPU cycles One correlation time
Shape-based 34 431709 34431.70 ms
Event-based 123962 123.96 ms
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Fig. 14. Performance of the event-based detector on Signal and Wire
SIMs with different bandwidth limits (15 mins of observed traffic).

based detector to better detect events of the traffic of the cli-
ent with limited bandwidth.

Fig. 14 shows the performance of the event-based detec-
tor on Signal and Wire when the bandwidth of the target
user is limited to 10 Mbps and 5 Mbps compared to when
there is no imposed limits. As expected, lower bandwidth
corresponds with lower performance of the detector on
both SIMs. With smaller bandwidths, there are more over-
laps between events which causes more errors in the event
extraction process. A similar pattern existed in our experi-
ments for Wickr, Telegram, and WhatsApp. When we limit
the bandwidth to 1Mbps, the performance drops signifi-
cantly making the detector ineffective. This is expected as
the the SIMs become almost unusable with a IMbps band-
width when sending media messages.

6.4 Experiments to Evaluate the Effect of
Adversary’s Location

We also evaluate the performance of our event-based algo-
rithm while tunneling adversary’s traffic through VPNs in
different locations. This is to evaluate the effect of
adversary’s location with respect to its target. We tunnel the
traffic through VPNs in three locations: Japan, South Africa,
and Turkey. In setups where VPN is used, either a Tor-
Gurad VPN client [99] or a NordVPN client [66] is installed
on the sender (adversary) virtual machine and the VPN has
been connected prior to sending messages. Fig. 15 shows
the performance of the event-based detector while observ-
ing 15 minutes of Signal’s traffic as adversary’s traffic is tun-
neled through a VPN server in different locations. We
believe the poor performance of the event-based detector
when traffic was tunneled through the VPN server in South
Africa is due to the very low bandwidth of the connection
through that VPN server (close to IMbps). As can be seen,
tunneling the traffic through VPN affects the performance
of the detector to some degree but does not make it ineffec-
tive as VPNs do not obfuscate the traffic patterns of SIMs.
VPNs however, add a delay to adversary’s traffic. This indi-

cates that when directly sending messages to its target, the
plore. Restrictions apply.
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location of the adversary has some effect on the perfor-
mance of the event-based detector. Fig. 16 shows the perfor-
mance of the event-based detector while observing the
traffic of different SIM applications for 15 minutes as
adversary’s traffic is tunneled through a VPN server located
in Japan. Comparing this figure with Fig. 12 shows how the
location of the adversary has some effect on the perfor-
mance of the event-based algorithm while the algorithm still
has its lowest performance on Signal.

6.5 Comparison With Deep Learning Techniques
As mentioned earlier in Section 3.4, the recent work of
DeepCorr [63] uses deep learning classifiers to perform flow
correlation attacks on Tor. They demonstrate that deep
learning classifiers outperform statistical correlation techni-
ques, like the ones we used in our work, in correlating Tor
connections. In this section, we compare our IM classifiers
with deep learning classifiers. As we show in the following,
when the SIM service has not deployed effective obfusca-
tion, our statistical classifiers outperform deep-learning-based
classifiers, especially for shorter flow observations. Intui-
tively, this is due to the sparsity of events in typical IM com-
munications, as well as the stationary nature of noise in
unobfuscated IM communications in contrast to the sce-
nario of Tor. Note that this fully complies with Nasr et al.
[63]'s observation that DeepCorr only outperforms statisti-
cal classifiers in non-stationary noisy conditions, where sta-
tistical traffic models become inaccurate.

For fair comparisons, we obtain the original code of
DeepCorr [63], and adjust it to the specific setting of IM traf-

fic. Specifically, we divide the timing of each flow to equal
Authonzed licensed use limited to: University of
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Fig. 17. Comparing our event-based detector with a DeepCorr-based
classifier, for 3 and 15 mins of observed Wickr traffic.
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Fig. 18. Comparing our event-based detector with a DeepCorr-based
classifier, for 3 and 15 mins of observed Signal traffic.

periods of length 1 second, and in each period we assign
values of {0, 1} to that period. We set the value of a period 1
if there is a burst of packets in that period, and 0 if there is
no burst of packets. As an example, if we use 15 minutes of
traffic flows for correlation, our feature dimension is a 900-
length vector with values of 0, 1.

We design a DeepCorr model for each SIM using its col-
lected data. Figs. 17 and 18 show the ROC curves of our
event-based detector compared with our deep-learning-
based detector, using 3 and 15 minutes of Wickr and Signal
traffic, respectively. As we can see, in case of Wickr, our
event-based technique outperforms the deep-learning-
based classifier for smaller false positive rates. For instance,
for a false positive rate of 10~ when using 15 minutes of
traffic, our event-based detector achieves a 98% accuracy
compared to 95% of the DeepCorr-based technique. We see
that the performance advantage of our event-based detector
significantly increases for shorter flow observations, e.g.,
when 3 minutes of traffic is used for detection, our classifier
provides 93% accuracy compared to 62% of the DeepCorr-
based classifier (for the a false positive rate of 107%).

On the other hand, for Signal, when 3 minutes of trafficis
used for detection, DeepCorr provides a FP rate of 1.9 x
10~* compared to 5.4 x 107% of our classifier (for the TP
rates of 60% and 58% respectively). With 15 minutes of Sig-
nal traffic, DeepCorr provides a TP rate of 99% compared to
95% of our classifier (for a FP rate of 1.4 x 1072). In contrast
with Wickr, on Signal, the deep-learning-based technique is
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Fig. 19. The impact of various countermeasures on the performance of
the event-based detector using different circumvention systems (15
minutes of observed Telegram traffic).

performing better than the event-based detector. We believe
this is because it can capture the noise in the traffic caused
by the Signal obfuscation mechanisms as mentioned in
Section 6.2.

Furthermore, we train a DeepCorr model on the aggre-
gated data of all SIMs. We then test this aggregated model
on the test data of each SIM. Fig. 22 compares the perfor-
mance of the aggregated model with individual models
trained on Wickr, Wire, and Signal traffics. We see that the
aggregated model has a similar performance compared to
the models trained on each dataset separately.

Temporal Constraints. According to [63], DeepCorr learns
the generic features of noise in Tor, regardless of the specific
circuits and end-hosts during the training process. There-
fore, there could be a need to re-train the DeepCorr model
trained on SIM traffic if the generic features of noise of a
SIM application change. Examples of such a change can be
if a SIM starts to use a new encoding or a new compression
algorithm for their text or media message. We believe this
type of change to be infrequent.

7 COUNTERMEASURES

We deploy and evaluate possible countermeasures against
our presented attacks. Intuitively, our attacks work because
in-the-wild SIM services do not obfuscate traffic patterns
enough. Therefore, we investigate various traffic obfusca-
tion mechanisms as countermeasures against our traffic
analysis-based attacks.

Note that obfuscation-based countermeasures have been
studied against other kinds of traffic analysis attacks over-
viewed in Section 3.4. There are several key ideas used in
existing countermeasures: (1) tunneling traffic through an
overlay system that perturbs its patterns [57], [68], e.g., Tor,
(2) adding background traffic (also called decoy) that is
mixed with the target traffic [30], [56], [72], [103], [115], (3)
padding traffic events (e.g., packets) [18], [19], [30], [48],
[102], and (4) delaying traffic events [18], [19], [30], [102],
[103]. In the following, we investigate various countermea-
sure techniques inspired by these standard approaches.

7.1 Tunneling Through Circumvention Systems
With/Without Background Traffic

As the first countermeasure, we tunnel SIM traffic through

standard circumvention systems, in particular VPN and Tor

Eluggable transports [98]. We use the same exgeerimental
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Fig. 20. Randomly delaying events by an SIM server acts as an effective
countermeasure to our attacks. 1 is the mean of the added delay in
seconds (15 minutes of observed Wire traffic).

setup as before and connect to 300 Telegram channels. For
each circumvention system, we perform the experiments
with and without any background traffic. In the experi-
ments with background traffic, the VM running the SIM
software also makes HTTP connections using Selenium.
The background HTTP webpages are picked randomly
from the top 50,000 Alexa websites. To amplify the impact
of the background traffic, the time between every two con-
secutive HTTP GETs is taken from the empirical distribu-
tion of Telegram IMDs, therefore producing a noise pattern
similar to actual SIM channels.

We observe that our event-based attack performs stronger
against our countermeasures. Therefore, we only present the
countermeasure results against the event-based detector.
Fig. 19 shows the ROC curve of the event-based detector
using various circumvention systems and in different set-
tings. Our Tor experiments are done once with regular Tor,
and once using the obfs4 [68] transport with the IAT mode
of 1, which obfuscates traffic patterns.

We see that using regular Tor (with no additional obfusca-
tion) as well as using VPN does not significantly counter our
attacks, e.g., we get a TP of 85% and a FP of 5 x 107 when
tunneling through these services (using 15 mins of traffic).
However, adding background traffic when tunneled through
Tor and VPN reduces the accuracy of the attack, but we get
the best countermeasure performance using Tor's obfs4
obfuscator.

Note that tunneling through a generic circumvention sys-
tem like Tor is not the most attractive countermeasure to the
users due to the poor connection performance of such
systems.

7.2 IMProxy: An Obfuscation Proxy Designed for IM

Services

Wedesign a proxy-based obfuscation system, called IMProxy,
built specifically for IM communications. IMProxy com-
bines two obfuscation techniques: changing the timing of
events (by adding delays), and changing the sizes of events
through adding dummy traffic. An IM client has the ability
to enable each of these countermeasures, and specify the
amplitude of obfuscation to make her desired tradeoff
between performance and resilience. IMProxy does not
require any cooperation from IM providers, and can be used to
obfuscate any IM service.

Components of IMProxy. Fig. 23 shows the design of

IMProxy. For a client to use IMProxy, she needs to install a
E Xplore. Restrictions apply.
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Fig. 21. Padding IM events by the SIM server (or client) can act as an
effective countermeasure against our attacks. (15 minutes of observed
Telegram traffic).

local proxy software. local proxy runs a SOCKS5 proxy lis-
tening on a local port. The client will need to change the set-
ting of her IM software (e.g., Telegram software) to use this
local port for proxying or use a proxy that can filter out IM
software packets.

A second component of IMProxy is remote proxy, which
is a SOCKSS5 proxy residing outside of the surveillance area.
The client needs to enter the (IP, port) information of this
remote proxy in the settings of her local proxy software.
Note that, in practice, remote proxy can be either run by the
client herself (e.g., as an AWS instance), or can be run by the
IM provider or trusted entities (similar to the MTProto prox-
ies run for Telegram users [61]).

How IMProxy Works. Once an IM client sets up her sys-
tem to use IMProxy as above, her IM traffic to/from the IM
servers will go through proxy servers of IMProxy, as shown
in Fig. 23. The IM traffic of the client will be handled by local
proxy and remote proxy, which obfuscate traffic through
padding and delaying.

As shown in the figure, IMProxy acts differently on
upstream and downstream IM traffic. For upstream SIM
communications (e.g., messages sent by an admin), local
proxy adds padding to the traffic by injecting dummy pack-
ets and events at certain times. First, some dummy packets
are injected close to the events in order to change their sizes.
The size of padding for each event is chosen randomly, fol-
lowing a uniform distribution in [0, r'paddingl, Where rpadding is
a parameter adjusted by each user. Second, some dummy
events (burst of packets) are injected during the silence
intervals; this is done randomly: during each 1 second
silence interval, an event is injected with a probability
Ppadding: Where Ppdding 18 also adjusted by each individual
user. The size of dummy events is drawn from the empirical
distribution of the sizes of image messages, as presented
earlier. Finally, the dummy packets are removed by remote
proxy before getting forwarded to the IM server. Note that
all traffic between local proxy and remote proxy is
encrypted so the adversary can not identify the dummy
packets.

For downstream SIM communications (e.g., messages
received by a member), remote proxy adds dummy packets,
as above, which are then dropped by local proxy before
being released to the client's IM software. In addition to
padding, remote proxy delays the packets in the down-
stream traffic. In our implementation, remote proxy uses an
Exponential Distribution with rate A to generate random
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Fig. 23. Design of our IMProxy countermeasure.

delays (which is based on our delay model in Fig. 5). Note
that no delay is applied on upstream traffic, as the delay
will transit to the corresponding downstream traffic. Also,
note that each client can control the intensity of padding by
adjusting the ppoqding and rpadaing parameters, and control the
amplitude of delays by adjusting A.

To implement the delaying of packets, we used the Net-
FilterQueue and scapy modules in Python. To evaluate the
effects of addition and removal of dummy packets and pad-
ding, we run a simulation using traffic collected without the
use of IMProxy.

Evaluation Against Oblivious Adversary. We first evaluate
our IMProxy implementation against an adversary who is
not aware of how IMProxy works (or its existence). To do
so, we evaluate IMProxy against our event-based detector.

Fig. 20 shows the ROC curve of the event-based detector
for different values of \. Note that ; defines the average
amount of delay added to the packets. As we can see,
increasing the added delay (by reducing M) reduces the perfor-
mance of our attack, as it causes to missalign events across the
monitored flows. For instance, a ;= 0.05s reduces the
adversary’s TP from 90% to 2% (for a constant 18 x 10~*
false positive).

Fig. 21 shows the ROC curves for the simulation of the
event-based detector with different rp.44ing and ppidding =
10~%. Note that a ppedding = 107 causes a 7% average traffic
overhead. As expected, increasing 1 pdging reduces the perfor-
mance of our attack; even a rpqddimg as small of 10% and 7%
of dummy events can have a noticeable impact on counter-
ing the traffic analysis attacks, i.e., for a 1073 false positive
rate, the detection accuracy is reduced from 93% to 62%.
Increasing rpadding to 50% will further reduce detection
accuracy to 56%.
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Fig. 24. Evaluating IMProxy against an IMProxy-aware classifier (trained
using DeepCorr).

Evaluation Against IMProxy-Aware Adversary. Next, we
evaluate IMProxy against an adversary who is aware that
target users are deploying IMProxy and also knows the
details of IMProxy. Our adversary trains a DeepCorr-based
classifier on IM traffic obfuscated using IMProxy (note that
our statistical detectors will suffer for such an adversary
due to the randomness of IMProxy’s obfuscation).

Fig. 24 shows the performance of this DeepCorr-based
classifier against IMProxy-obfuscated connections on Tele-
gram (each flow is 15 mins). We use 7pg4ging = 0.1 and evalu-
ate the performance for different values of pydging. As can
be seen, IMProxy is highly effective even against an IMProxy-
aware classifier, demonstrating IMProxy’s efficiency in
manipulating IM traffic patterns. For instance, for a false
positive rate of 10~?, the IMProxy-aware classifier provides
true positive rates of 25% and 15% (for average obfuscation
delays of 0.5 and 1), which is significantly weaker compared
to 93% of the event-based detector when IMProxy is not
deployed. As we can see, delaying provides better protec-
tion than padding; however, we expect that most users will
prefer padding over delays due to the latency-sensitive
nature of IM communications.

Note that each user tradeoffs between privacy protection
and overhead by adjusting the countermeasure parameters.
Ideally, the countermeasure software can ask the user her
tolerable padding/delay overhead (or her target FP/FN for
the adversary), and then will choose the best countermea-
sure parameters for the user. For instance, based on Fig. 24,
assuming that a real-world adversary can tolerate a FP of
1073, if the user states that she intends to keep the
adversary’s TP below 0.3, the countermeasure software
delays packets with an average of 1s.

8 CONCLUSION

In this paper, we showed how popular IM applications leak
sensitive information about their clients to adversaries who
merely monitor encrypted traffic. Specifically, we devised
traffic analysis attacks that enable an adversary to identify
the administrators and members of target IM channels
with practically high accuracies. We demonstrated the
practicality of our attacks through extensive experiments
on 5 real-world IM systems. We believe that our study

resents a significant, real-world threat to the users of such
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services given the escalating attempts by oppressive gov-
ernments in cracking down on social media.

We also investigated the use of standard countermeasures
against our attacks and demonstrated their practical feasibility
at the cost of communication overhead and increased M
latency. We designed and implemented an open-source, pub-
licly available countermeasure system, IMProxy, which works
for major IM services with no need to support from the IM pro-
viders. While IMProxy may be used as an ad hoc, short-term
countermeasure by IM users, we believe that to achieve the
best usability and user adoption, effective countermeasures
should be deployed by IM providers (i.e., through integrating
traffic obfuscation techniques into their software). We hope
that our study will urge IM providers to take action.
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