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Abstract—In this paper, we present an efficient strategy to enu-
merate the number of k-cycles, g ≤ k < 2g, in the Tanner graph
of a quasi-cyclic low-density parity-check (QC-LDPC) code with
girth g using its polynomial parity-check matrix H . This strategy
works for both (nc, nv)-regular and irregular QC-LDPC codes.
In this approach, we note that the mth power of the polynomial
adjacency matrix can be used to describe walks of length m in
the protograph and can therefore be sufficiently described by the
matrices Bm(H) ,

(
HHT

)bm/2c
H(m mod 2), where m ≥ 0. For

example, in the case of QC-LDPC codes based on the 3 × nv

fully-connected protograph, the complexity of determining the
number of k-cycles, Nk, for k = 4, 6 and 8, is O(n2

v log(N)),
O(n2

v log(nv) log(N)) and O(n4
v log

4(nv) log(N)), respectively.
The complexity, depending logarithmically on the lifting factor
N , gives our approach, to the best of our knowledge, a significant
advantage over previous works on the cycle distribution of QC-
LDPC codes.

I. INTRODUCTION

Low-density parity-check (LDPC) codes form a class of
error-correcting codes that were discovered by Gallager [1]
in the early 1960s and that have been shown to be capacity-
approaching. Because of this, members of this class are now
part of many industry standards, including those developed by
the Consultative Committee for Space Data System (CCSDS)
[2]. The subclass of quasi-cyclic LDPC (QC-LDPC) codes is
attractive for both implementation and analysis purposes since
its members can be described in a compact and simple way
[3], [4].

The simple structure of QC-LDPC codes, and the graph
representation of an LDPC code in general, plays a funda-
mental role in determining the performance of the code under
iterative decoding algorithms. In fact, the girth [5], together
with the number of short cycles [6], and other graphical
structures composed of short cycles, such as trapping sets [7],
are important parameters to measure the iterative decoding
performance of the code. As a consequence, and for a long
time, researchers have been actively trying to find ways to not
only reduce but eliminate, when possible, all the short cycles
in a graph in an attempt to improve the performance of the
corresponding code.

It is well-known that enumerating the k-cycles in a general
graph is hard [8], [9]. Consequently, a lot of effort has been
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dedicated to reduce the complexity of solving these problems.
Several algorithms have been designed for cycle enumeration,
but their complexities are, unfortunately, dependent on the
number of vertices, the number of edges, and even the number
of cycles, which may itself increase exponentially with the
number of vertices.

Let G = (V,E) be a bipartite graph with girth g. In [10],
a message-passing algorithm for counting short cycles in a
graph is presented. This algorithm is capable of counting
k-cycles, with g ≤ k ≤ 2g − 2, in the case of bipartite
graphs, with complexity growing as O(g|E|2). In [11], a
matrix of size 2|E| × 2|E|, called the directed edge matrix,
is constructed and used to count the number of short cycles.
This strategy requires to calculate the trace of the kth power of
this matrix or, equivalently, the eigenvalues of the kth power
of the adjacency matrix. Such an approach has complexity
O(|E|3) and becomes prohibitively high with an increase in
the size of the Tanner graph. This approach is also analyzed
in [12] in the case of QC-LDPC codes. The complexity of this
approach is reduced from O(N3|Eb|3) to O(N |Eb|3), where
N is the lifting factor and |Eb| is the number of edges in the
protograph, by exploiting the circulant structure to compute
the eigenvalues as in [13].

II. DEFINITIONS, NOTATION AND BACKGROUND

Let C be a QC-LDPC code, either (nc, nv)-regular or irreg-
ular, with block length nvN based on the nc×nv protograph
[14] described by the matrix B = (bij)nc×nv

, where bij is
a nonnegative integer for i ∈ [nc] and j ∈ [nv], and where
[l] , {0, 1, . . . , l − 1}. Then C can be described by a (scalar)
parity-check matrix H = (Hij)nc×nv

, where each Hij , for
i ∈ [nc] and j ∈ [nv], is a summation of bij N ×N circulant
permutation matrices if bij is nonzero, and the N×N all-zero
matrix if bij = 0. Graphically, this operation is equivalent to
taking an N -fold graph cover, or lifting, of the protograph.
Here, N is called the lifting factor (alternatively, lifting degree,
or degree of the graph cover). We use the terms image and
inverse image to refer to the projection from the graph cover
to the protograph and the mapping from the protograph to the
graph cover, respectively.

Let xr denote the N ×N circulant permutation matrix ob-
tained by circularly shifting to the left, by r positions modulo
N , the entries of the N ×N identity matrix I . For simplicity
in the notation, let pij(x) be the polynomial representation
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of Hij , where pij(x) =
∑N−1
l=0 alx

l and al ∈ {0, 1} for
all l ∈ [N ]. Each polynomial pij(x) has bij nonzero terms.
Then we can rewrite the parity-check matrix H , using the
polynomial representation, as H = (pij)nc×nv

.
From the parity-check matrix H , we construct a bipartite

graph G = (V,E), called a Tanner graph [15], by considering
H as its biadjacency matrix. The set V is the set of vertices
(or nodes) and E is the set of edges, and their cardinalities are
denoted by |V | and |E|, respectively. Denote the vertices of G
by va, for a = 0, 1, 2, . . . , |V |−1, and the edges by eb, for b =
0, 1, 2, . . . , |E| − 1. Each edge eb has the form eb = (va, vc),
for some va, vc ∈ V , and the vertices va and vc are called the
endpoints of e. A (directed) walk W of length m in the graph
G is an alternating sequence W = v0e1v1e2 · · · vm−1emvm of
vertices and edges such that el = (vl−1, vl) ∈ E for all 1 ≤
l ≤ m. The first vertex appearing in the alternating sequence,
v0, is called the base point of W . A walk W is said to be
closed if the two endpoints are the same, this is, when v0 =
vm. A closed walk W is backtrackless if el 6= el+1 for all
1 ≤ l ≤ m − 1. A backtrackless closed walk W is tailless
if em 6= e1, and W is called, in this case, a TBC walk. A
cycle is a closed walk W having distinct vertices, except for
the endpoints, and if its alternating sequence has k edges in
it, then we call W a k-cycle.

The adjacency matrix A = (Aij) is the symmetric binary
matrix with Aij = 1 if (vi, vj) ∈ E, and Aij = 0 otherwise.
After some reordering of the vertices, if necessary, we can
write A, for either the scalar or polynomial representation of
H , in the compact expression

A =

[
0 H
HT 0

]
, (1)

where HT denotes the transpose of H . The powers of A, and
in particular the matrices

Bt(H) ,
(
HHT

)bt/2c
H(t mod 2), t ≥ 0, (2)

give information about the walks [16]. It is not difficult to see
that, for any nonnegative integer t, we have

A2t =

[
B2t(H) 0

0 B2t(H
T)

]
, (3)

and
A2t+1 =

[
0 B2t+1(H)

B2t+1(H
T) 0

]
. (4)

Theorem 1 ([17]). If Am = ((Am)ij) is the mth power of
the adjacency matrix A, then the entry (Am)ij is equal to the
number of walks of length m between the vertices vi and vj .

Consider the triangle operator4 introduced in [16]. For two
nonnegative integers e and f , define d = e4f , 1 if e ≥ 2
and f = 0, and d = e4f , 0 otherwise. This definition can
be extended to matrices component-wise.

Theorem 2 ([16], [17]). A Tanner graph of an LDPC code
with parity-check matrix H has girth(H) > 2l if and only if

Bm(H)4Bm−2(H) = 0 for 2 ≤ m ≤ l. (5)

The kth power of the scalar adjacency matrix A of the
Tanner graph can be used to determine the number of k-walks
between any two vertices, as we have seen in Theorem 1. The
kth power of the polynomial version of the adjacency matrix,
however, does not help us to count the number of k-walks
between any two vertices of the Tanner graph, but, as we will
see, can be used to describe the edges traversed in a k-walk
between any two vertices in the protograph. For example, if
A is the polynomial version of the adjacency matrix (1), then

(A2)ij(x) =

nc+nv−1∑
l=0

Ail(x)Alj(x), (6)

and every term of the polynomial (A2)ij(x) is a product of
the form xcilxclj = xcil+clj , where xcil and xclj come from
the polynomials Ail(x) and Alj(x), respectively. Each one of
the two circulants xcil and xclj corresponds to a unique edge
in the protograph, and the order in which they appear in the
product is the order used to traverse the walk in the protograph.
The exponent cil + clj , in consequence, corresponds to the
two edges traversed from vertex vi to vertex vl to vertex vj
in the protograph. In the same way, every term of (A3)ij(x)
is a product of the form xcilxclkxckj = xcil+clk+ckj , and the
exponent cil+clk+ckj corresponds to the three edges traversed
in the protograph from vertex vi to vertex vl to vertex vk
to vertex vj . In general, every term of (Am)ij(x) is of the
form xcil1xcl1l2 · · ·xclmj = xcil1+cl1l2

+···+clmj , and each one
of them corresponds to a walk of length m and the specific
order in which it is traversed, which is nicely described by
the way the matrix multiplication in (3) and (4) is performed.
This allows us to state a polynomial version of Theorem 1.

Theorem 3. If Am = ((Am)ij(x)) is the mth power of
the polynomial adjacency matrix A, then every term of the
polynomial (Am)ij(x) is of the form xcil1xcl1l2 · · ·xclmj and
corresponds to a walk of length m between the vertices vi and
vj in the protograph.

Definition 4. The exponent cil1 + cl1l2 + · · · + clmj corre-
sponding to the product xcil1xcl1l2 · · ·xclmj in Theorem 3 is
called a permutation shift. �

If xcil1xcl1l2 · · ·xclmj and xc
′
il1xc

′
l1l2 · · ·xc

′
lmj are two

terms of the polynomial (Am)ij(x) describing two m-walks
between vertices vi and vj in the protograph, then the combi-
nation

xcil1xcl1l2 · · ·xclmjx−c
′
lmj · · ·x−c

′
l1l2x−c

′
il1

of the first walk and the reversal of the second one describes
a closed (2m)-walk that starts and ends at the vertex vi, and
that has the vertex vj midway. Hence, the entries (Am)ij(x)
of the power Am describe all the m-walks in the protograph
and can be used to count certain cycles in the Tanner graph.
The strategy of counting cycles in the Tanner graph presented
in this paper requires to keep track of TBC walks in the
protograph.
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Lemmas 5 and 6, based on some results from [18], are
useful to study both the images of cycles in the Tanner graph
and the inverse images of TBC walks in the protograph.

Lemma 5 ([19], [20]). Let G̃ be an N -fold graph cover
of the protograph G. Let W be a k-walk in G starting at
vertex v and ending at vertex v′, and having edge sequence
e1, e2, . . . , ek with associated circulant permutation matrices
xs1 , xs2 , . . . , xsk . Then the permutation shift s that maps ṽ,
the inverse image of v in G̃, to ṽ′, the inverse image of v′ in
G̃, through the walk W̃ is given by

s =
k−1∑
i=0

(−1)isi+1 mod N. (7)

We denote by ZN the additive group of integers modulo N .
For any element a ∈ ZN , the order of a is the smallest integer
m such that am = m · a = 0.

Lemma 6 ([19]). Let G̃ be an N -fold graph cover of the
protograph G and let W ′ be a k-cycle in G̃. Then W ′ is
projected onto a TBC walk W of length k/m, where m ≥ 1
is the order of the permutation shift of W in ZN .

We combine the following lemma with our analysis of TBC
walk to count cycles in the Tanner graph.

Lemma 7 ([21]). Let G̃ be an N -fold graph cover of the
protograph G and let W be a closed k-walk in G. Then the
inverse image of W in G̃ is the union of N/m closed (km)-
walks, where m ≥ 1 is the order of the permutation shift of
W in ZN .

We extend the result in Lemma 7, stated for closed k-walks,
to TBC walks of length k.

Theorem 8. Let G̃ be an N -fold graph cover of the proto-
graph G and let W be a TBC walk of length k in G. Then
the inverse image of W in G̃ is the union of N/m TBC walks
of length km, where m ≥ 1 is the order of the permutation
shift of W in ZN .

The following lemma explains why we restrict our analysis
to k-cycles with k < 2g, where g is the girth of the Tanner
graph.

Lemma 9 ([10]). Let G be a graph with girth g. Then the set
of TBC walks of length k coincides with the set of k-cycles if
k < 2g.

III. COUNTING CYCLES: A GENERAL PROTOGRAPH

The equivalence of closed walks is an important notion in
this work.

Definition 10. Two closed walks W1 and W2 are said to be
equivalent if one can be obtained from the other by a change
of base point, a change in direction, or both. �

In the following definition, we introduce a set whose cardi-
nality is used in the formulas for the number of k-cycles, Nk,
in the Tanner graph.

Definition 11. Let H be a polynomial parity-check matrix and
let N be the lifting factor. For integers d ≥ 0 and f ≥ 1, we
denote by W (d, f) the set of all nonequivalent TBC walks of
length d in the protograph having permutation shift of order
f in ZN . �

Remark 12. Notice that the construction of the set W (d, f)
in Definition 11 depends on both the protograph and the lifting
factor N . In algebra, the additive group ZN has order N and
the order of every element is a divisor of N . Hence, if s is
not a divisor of N , the set W (d, f) is empty independently
of the selection of the length d. For example, if N = 4, no
element in Z4 has order 3 because 3 does not divide 4, so the
set W (d, 3) is empty for any value of d. However, even if f
does divide N , there are instances where the set W (d, f) is
automatically empty. If the protograph is the nc × nv fully-
connected (all-ones), it is not possible to obtain a TBC walk
of length 4 from the double traversal of a walk of length 2,
forcing W (2, f) to be empty. If the protograph is a multiedge
graph, then it is possible to have a nonempty set W (2, f). �

The following theorem gives the number of k-cycles in the
Tanner graph using the walks described by the entries of the
polynomial parity-check matrix H . Its proof, and the proof of
other results in the paper, are omitted for space constraints.

Theorem 13. Let H be the polynomial parity-check matrix of
a protograph-based QC-LDPC code having girth g and let k
be an even integer with 2 ≤ k < 2g. Let

D(k) = {d | d divides k, d ≥ 2, d even}

and, for any d ∈ D(k), let W (d, k/d) denote the set of
nonequivalent TBC walks of length d having permutation shift
of order k/d in ZN . Then the number Nk of k-cycles, k < 2g,
in the corresponding Tanner graph G with parity-check matrix
H is given by

Nk =
∑

d∈D(k)

|W (d, k/d)| −
∑

d′∈D(k)
d′|d, d′<d

|W (d′, k/d′)|

 · Nk/d,
(8)

where N is the lifting factor.

IV. COUNTING CYCLES: ALL-ONES PROTOGRAPH

The equation (8) in Theorem 13 gives the number of k-
cycles in the Tanner graph of an arbitrary QC-LDPC code.
Since the Tanner graph is a graph cover of the protograph,
and N ≥ 1, the former has, at least, the same number of
vertices and edges as the latter. In practice, we restrict N > 1,
so counting TBC walks in the protograph, instead of directly
counting cycles in the Tanner graph, represents a reduction
in the number of computations required to determine Nk.
In this section, we focus on the fully-connected (all-ones)
protograph and discuss how to determine Nk with a strategy
that has complexity logarithmic on the lifting factor N . This
section provides an efficient way to find the cardinality of
the sets W (d, f), for integers d ≥ 0 and f ≥ 1. For space
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requirements, we show how to calculate Nk, with k = 4, 6, 8,
using our strategy, but the approach works for any k < 2g.

First, consider the following definition.

Definition 14. A multiset (shortened to mset) is a general-
ization of a set in which elements are allowed to repeat. The
number of times an element occurs in a multiset is called its
multiplicity. A repetition in a multiset S = {s1, s2, . . . , sσ} is
an equality si0 = si1 with i0 < i1. If T = {t1, t2, . . . , tτ} is
another multiset, a repetition between the multisets S and T
is an equality s = t for some s ∈ S and t ∈ T . �

Let C be a QC-LDPC code with parity check matrix H
given by

H =

xh0 xh1 · · · xhnv−1

xi0 xi1 · · · xinv−1

xj0 xj1 · · · xjnv−1

 . (9)

By Theorem 2, as discussed in [22], girth(H) > 4 if and
only if all the elements in each one of the three msets {hl−il |
l ∈ [nv]}, {hl − jl | l ∈ [nv]} and {il − jl | l ∈ [nv]} are
distinct. If one of these msets has a repetition, some 4-cycles
appear in the Tanner graph and the exact amount of them is
calculated in the following theorem.

Theorem 15. Let H be as in (9). A repetition in any of the
following three msets A1 = {hl−il | l ∈ [nv]}, A2 = {hl−jl |
l ∈ [nv]} and A3 = {il − jl | l ∈ [nv]} lifts to exactly N 4-
cycles in the Tanner graph. The total number of 4-cycles in
the Tanner graph, N4, is given by

N4 = |W (4, 1)| ·N, (10)

and

|W (4, 1)| =
3∑

m=1

RAm , (11)

where RAm
is the number of repetitions αl = αl′ in Am.

Example 16. Let H be the polynomial parity-check matrix
given by

H =

1 1 1 1 1
1 x x2 x3 x4

1 x2 x x5 x7

 .
This matrix H has girth 4 for lifting factor N = 5. Calculating
the three msets in Theorem 15 over Z5, we obtain the
msets {0, 4, 3, 2, 1}, {0, 3, 4, 0, 3} and {0, 4, 1, 3, 2}, Notice
that there are two repetitions in the second mset, so there are
two elements in W (4, 1), specifically W (4, 1) = {h0 − j0 +
j3 − h3, h1 − j1 + j4 − h4}. Hence, the number of 4-cycles
N4 in the Tanner graph is N4 = 2 · 5 = 10.

If we take N = 10, then the parity-check matrix H has girth
6. To confirm that there is no 4-cycle in H , we calculate the
three msets in Theorem 15 over Z10 and we obtain the msets
{0, 9, 8, 7, 6}, {0, 8, 9, 5, 3} and {0, 9, 1, 8, 7}. Since there is
no repetition in these msets, N4 = 0. �

Remark 17. Theorem 15 was used to calculate the number of
elements in W (4, 1), but the strategy can be simply modified
to count the number of elements in W (4, 2). In this case, we

are not targeting repetitions in the three msets {hl − il | l ∈
[nv]}, {hl − jl | l ∈ [nv]} and {il − jl | l ∈ [nv]}; instead,
we are looking for two elements αl and αl′ with αl 6= αl′ ,
coming from the same mset, such that 2 · (αl − αl′) = 0 in
ZN . For example, for l 6= l′, let αl, αl′ ∈ {hl − il | l ∈ [nv]}
be such that αl = hl − il, αl′ = hl′ − il′ and αl 6= αl′ . Then
αl−αl′ = hl− il+ il′−hl′ describes a TBC walk of length 4.
The double traversal of this TBC walk has permutation shift
given by hl−il+il′−hl′+hl−il+il′−hl′ and is an element
of W (4, 2) if it is 0 in ZN . The same strategy is applied to the
other two msets. This approach is used to compute W (4, f),
for any f , by requiring f · (αl − αl′) = 0 in ZN . �

By Theorem 2, as discussed in [22], girth(H) > 6 if and
only if, for m ∈ [nv], all the elements in each one of the msets

{hl − il + im, hl − jl + jm | l ∈ [nv], l 6= m},
{il − hl + hm, il − jl + jm | l ∈ [nv], l 6= m},
{jl − hl + hm, jl − il + im | l ∈ [nv], l 6= m},

are distinct. In the following theorem, we rewrite these condi-
tions in a way that is helpful to count 6-cycles in the Tanner
graph.

Theorem 18. Let H be as in (9) and, for m ∈ [nv] and
l ∈ [nv]\{m}, consider the following msets

A1,m = {(l, hl − il + im)},
A2,m = {(l, hl − jl + jm)},
B1,m = {(l, il − hl + hm)},

B2,m = {(l, il − jl + jm)},
C1,m = {(l, jl − hl + hm)},
C2,m = {(l, jl − il + im)}.

For l, l′ ∈ [nv], let (l, αl) ∈ A1,m and (l′, αl′) ∈ A2,m be such
that αl = αl′ . Then the repetition αl = αl′ lifts to exactly N
6-cycles in the Tanner graph if l 6= l′. The same result follows
for the pairs B1,m, B2,m and C1,m, C2,m. Moreover, one of
these pairs, running over all m ∈ [nv], is sufficient to describe
all 6-cycles in H . Hence, the total number of 6-cycles in the
Tanner graph, N6, is given by

N6 = |W (6, 1)| ·N, (12)

and
|W (6, 1)| =

∑
m∈[nv ]

RA1,m,A2,m
, (13)

where RA1,m,A2,m is the number of repetitions αl = αl′

between the msets A1,m and A2,m.

Example 19. Let H be as in Example 16 and take N = 5.
Since H has girth 4, we can also use our strategy to cal-
culate 6-cycles in the Tanner graph. Following Theorem 18,
|W (6, 1)| = 16 and we conclude that the number of 6-cycles,
N6, in the Tanner graph is given by N6 = 16 · 5 = 80. �

Definition 20. Let W be a walk in the nc × nv fully-
connected protograph. If W has length k = 2m and its
permutation shift is given by hα1β1

− hα2β1
+ hα3β2

−
hα4β2

+ · · · + hαk−1βm
− hαkβm

, then we use the shorthand
[hα1

, hα2
, . . . , hαk

]β1,β2,...,βm
. If W has length k = 2m + 1
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and its permutation shift is given by hα1β1
−hα2β1

+hα3β2
−

hα4β2
+ · · · + hαk−1βm

− hαkβm
+ hαk+1βm+1

, then we use
the shorthand [hα1 , hα2 , . . . , hαk

|hαk+1
]β1,β2,...,βm|βm+1

. �

By Theorem 2, girth(H) > 8 if and only if the permutation
shifts

[h, i, i, h, h, i, i, h]u,v,v′,u′ ,

[h, i, i, h, h, j, j, h]u,v,v′,u′ ,

[h, j, j, h, h, j, j, h]u,v,v′,u′ ,

[h, j, j, i, i, j, j, h]u,v,v′,u′ ,

[h, i, i, j, j, i, i, h]u,v,v′,u′ ,

[i, j, j, i, i, j, j, i]u,v,v′,u′ ,

with u 6= v, v 6= v′, v′ 6= u′ and u′ 6= u, are all nonzero. In
the following theorem, we rewrite these conditions in a way
that is helpful to count 8-cycles in the Tanner graph.

Theorem 21. Let H be as in (9) and, for u, v ∈ [nv], u 6= v,
consider the following msets

A1 = {(u, v, [h, i, i, h]u,v)},
A2 = {(u, v, [h, i, i, h]u,v)},
B1 = {(u, v, [h, i, i, h]u,v)},
B2 = {(u, v, [h, j, j, h]u,v)},
C1 = {(u, v, [h, j, j, h]u,v)},
C2 = {(u, v, [h, j, j, h]u,v)},

D1 = {(u, v, [h, j, j, i]u,v)},
D2 = {(u, v, [h, j, j, i]u,v)},
E1 = {(u, v, [h, i, i, j]u,v)},
E2 = {(u, v, [h, i, i, j]u,v)},
F1 = {(u, v, [i, j, j, i]u,v)},
F2 = {(u, v, [i, j, j, i]u,v)}.

For u, v, u′, v′ ∈ [nv], let (u, v, αu,v) ∈ A1 and
(u′, v′, αu′,v′) ∈ A2 be such that αu,v = αu′,v′ . Then this
repetition αu,v = αu′,v′ lifts to a set of 8-cycles in the Tanner
graph if u 6= u′ and v 6= v′. The same result follows for
the other five pairs. Moreover, these six pairs are sufficient
to describe all 8-cycles. The total number of 8-cycles in the
Tanner graph, N8, is given by

N8 = |W (4, 2)| ·N/2 + (|W (8, 1)| − |W (4, 2)|) ·N, (14)

and

|W (8, 1)| = R∗A1,A2
+

1

2
RB1,B2

+R∗C1,C2

+
1

2
RD1,D2 +

1

2
RE1,E2 +R∗F1,F2

,

(15)

where R∗X1,X2
is given by

R∗X1,X2
=

1

2

(
number of repetitions from X1, X2

with u′ = v and v′ = u

)
+

1

4

(
number of repetitions from X1, X2

otherwise

)
,

(16)
RX1,X2

is the number of repetitions αu,v = αu′,v′ between
the msets X1 and X2, and the coefficient of each RX1,X2

is
equal to the reciprocal of the number of equivalent walks for
the corresponding TBC walk pattern.

Example 22. Let H be the parity-check matrix of the
[155, 64, 20] Tanner code given by

H =

 x x2 x4 x8 x16

x5 x10 x20 x9 x18

x25 x19 x7 x14 x28

 . (17)

TABLE I
TIME TAKEN TO COUNT THE NUMBER OF k-CYCLES, Nk , FOR H IN

EXAMPLE 22 FOR LIFTING FACTOR N USING OUR APPROACH.

N
k

4 6 8 10 12
5 84.4 µs 252 µs − − −
10 83.4 µs 244 µs − − −
15 86.6 µs 246 µs − − −
20 86.0 µs 247 µs 2.85 ms 5.01 ms −
25 86.8 µs 246 µs 2.78 ms 4.96 ms −
31 85.5 µs 246 µs 2.77 ms 5.18 ms 63.1 ms
50 85.8 µs 244 µs 2.97 ms 5.06 ms 64.2 ms
75 85.1 µs 247 µs 2.57 ms 5.08 ms 64.4 ms

100 84.6 µs 252 µs 2.82 ms 5.02 ms 65.0 ms
125 85.7 µs 246 µs 2.77 ms 4.97 ms 64.3 ms
150 86.7 µs 244 µs 2.97 ms 5.02 ms 64.6 ms
175 83.1 µs 244 µs 2.88 ms 5.03 ms 63.9 ms
200 87.7 µs 247 µs 2.93 ms 5.06 ms 64.1 ms
500 88.0 µs 254 µs 3.03 ms 5.25 ms 65.5 ms
1000 87.5 µs 257 µs 3.04 ms 5.16 ms 65.0 ms

Then H has girth 8 for N = 31. Following Theorem 21,
we should construct the six pair of msets. Some computations
show that |W (8, 1)| = 15 and we conclude that the number of
8-cycles, N8, in the Tanner graph is given by N8 = |W (8, 1)|·
N = 15 · 31 = 465. �

V. COMPLEXITY

In Theorem 15, to count the number of 4-cycles in the
Tanner graph, we need to construct the three msets {hl − il |
l ∈ [nv]}, {hl−jl | l ∈ [nv]} and {il−jl | l ∈ [nv]}, and check
for repetitions in each one of them. Since each mset has nv
elements, it is sufficient to do (nv−1)nv

2 comparisons in each
one of them. This implies that the complexity of determining
N4 is O(n2

v log(N)). Following a similar argument, the com-
plexity of determining N6 is O(n2

v log(nv) log(N)) and the
complexity of determining N8 is O(n4

v log
4(nv) log(N)).

To show how fast we can calculate the number of k-cycles,
Nk, in the Tanner graph of a QC-LDPC code, we include
Table I. There, we provide the time taken to count the number
of k-cycles using our algorithms. The computations were done
using SageMath [23] in a MacBook Pro (13-inch, 2018, Four
Thunderbolt 3 Ports) with a 2.3 GHz Quad-Core Intel Core i5
processor and 16 GB 2133 MHz LPDDR3 of memory.

VI. CONCLUDING REMARKS

This paper discusses an efficient strategy to count cycles in
the Tanner graph of arbitrary QC-LDPC codes. We use some
results on graph covers involving the images of cycles in the
Tanner graph and the inverse images of tailless backtrackless
closed walks in the protograph to provide closed formulas for
the number of k-cycles, Nk, by just taking into account repe-
titions in some msets constructed from the matrices Bm(H).
Our strategy has been shown to reduce the complexity of
determining Nk, giving our approach a significant advantage
over previous works on the cycle distribution of QC-LDPC
codes.
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