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ABSTRACT
The iCloud Private Relay (PR) is a new feature introduced by Apple
in June 2021 that aims to enhance online privacy by protecting a
subset of web traffic from both local eavesdroppers and websites
that use IP-based tracking. The service is integrated into Apple’s
latest operating systems and uses a two-hop architecture where a
user’s web traffic is relayed through two proxies run by disjoint
entities.

PR’s multi-hop architecture resembles traditional anonymity
systems such as Tor and mix networks. Such systems, however,
are known to be susceptible to a vulnerability known as traffic
analysis: an intercepting adversary (e.g., a malicious router) can
attempt to compromise the privacy promises of such systems by
analyzing characteristics (e.g., packet timings and sizes) of their net-
work traffic. In particular, previous works have widely studied the
susceptibility of Tor to website fingerprinting and flow correlation,
two major forms of traffic analysis.

In this work, we are the first to investigate the threat of traffic
analysis against the recently introduced PR. First, we explore PR’s
current architecture to establish a comprehensive threat model
of traffic analysis attacks against PR. Second, we quantify the po-
tential likelihood of these attacks against PR by evaluating the
risks imposed by real-world AS-level adversaries through empir-
ical measurement of Internet routes. Our evaluations show that
some autonomous systems are in a particularly strong position to
perform traffic analysis on a large fraction of PR traffic. Finally,
having demonstrated the potential for these attacks to occur, we
evaluate the performance of several flow correlation and website
fingerprinting attacks over PR traffic. Our evaluations show that PR
is highly vulnerable to state-of-the-art website fingerprinting and
flow correlation attacks, with both attacks achieving high success
rates. We hope that our study will shed light on the significance of
traffic analysis to the current PR deployment, convincing Apple to
perform design adjustments to alleviate the risks.

CCS CONCEPTS
• Security and privacy → Network security.
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1 INTRODUCTION
Apple announced iCloud Private Relay (PR) as a new feature for iOS
15, iPadOS 15, and macOS Monterey at WWDC 2021 [1]. Private
Relay is part of Apple’s privacy-focused recent software releases
that allows users with an iCloud+ subscription to browse the In-
ternet through Safari without revealing information about their
web traffic, such as IP addresses and DNS queries. The service is
available at a moderate base price of $0.99 per month. Apple claims
that PR protects users from unwanted tracking by both network
providers and website owners, who can use traffic metadata for
targeted market campaigns or profile aggregation. It achieves this
by ensuring that HTTP traffic leaving an Apple device is encrypted
and by routing traffic through exactly two relays controlled by
different companies. This guarantees that destination IPs and DNS
queries are hidden from the Internet service provider (ISP) and that
a user’s true IP is hidden from website operators. Apple claims: that
“no single entity can combine IP address, location, and browsing
activity into detailed profile information” [8].

At first glance, Private Relay comes off as a VPN-like service built
with architectural inspiration from The Onion Router (Tor) [22]
as well as mix networks; it promises web privacy to the user, is
directly integrated into the operating system, and is available at
a price less than an average VPN. With Apple’s growing global
smartphone/laptop market share [44], PR is expected to be used by
millions of users. In fact, it has already gained significant traction
amongst Internet users [3, 45]. However, partly because of its recent
release, there is a lack of in-depth analysis of PR’s privacy goals,
architecture, and security.

In this paper, we focus on evaluating PR’s susceptibility to traf-
fic analysis [19, 37, 46]. Traffic analysis is a powerful technique
used against anonymity systems that enables an attacker to infer
the contents of encrypted traffic (fingerprinting) or deanonymize
users of the network (flow correlation). Tor’s susceptibility to such
attacks has received a great degree of study from the research com-
munity, and it is generally accepted that traffic analysis attacks
pose a threat to the goals of anonymity systems. For instance, in a
flow correlation attack [47, 50, 63], an adversary with the ability to
passively monitor the ingress and egress traffic of an anonymity
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system uses side-channel information such as packet timings, sizes,
etc. to correlate traffic and de-anonymize users. Alternatively, web-
site fingerprinting attacks can enable attackers to identify a user’s
browsing activity [10, 51, 59, 60, 66]. PR’s vulnerability to any such
attacks would weaken Apple’s privacy claims and objectives.

Considering the architectural resemblance of PR to systems like
Tor, it is reasonable to expect that it may encounter similar problems
and be similarly susceptible to traffic analysis attacks. However,
because of (1) the different privacy goals of PR and (2) the different
architecture of PR, an understanding of the threat model is neces-
sary; this is our first goal in this work. In Section 4, we present a
comprehensive threat model for traffic analysis adversaries on PR.
We list possible scenarios in which an attacker would be enabled
to perform flow-correlation and website fingerprinting attacks. We
argue that the threat of flow correlation on PR is exacerbated by the
design of the system —a two-hop architecture wherein a handful
of entities control the full network of relays. We show that au-
tonomous systems (AS) owned by Apple’s partners are in a unique
position to perform traffic analysis (Section 3.3).

Next, to measure the threat of an AS-level adversary performing
traffic analysis on PR, we use algorithmic simulations [26] over
the latest Internet Topology graph [27] to predict potentially vul-
nerable Internet paths. Our analysis in Section 5 finds that 36.8%
of connections through the PR are potentially vulnerable against
AS-level adversaries, i.e., the presence of an AS on both ingress and
egress paths enabling her to perform flow correlation. For instance,
PR connections passing through Akamai-controlled AS36183 and
AS20940, which contain a large number of PR relays, make up the
majority of vulnerable connections. Additionally, we find that PR
connections from India, Mexico, and Spain are most susceptible
to potential flow correlation attacks, where more than 50% of the
possible connections are found to be vulnerable.

Finally, in Section 6 we demonstrate the susceptibility of PR
to traffic analysis by performing flow correlation and website fin-
gerprinting (WF) attacks using recent techniques. We use Deep-
Corr [47] to perform a flow-correlation attack on PR traffic. More-
over, we perform WF attacks on PR using two models: Deep Fin-
gerprinting [59] and Var-CNN [10]. Our results show that PR is
susceptible to traffic analysis attacks with both attacks achieving
high success rates in different settings.

We believe that our study demonstrates a serious design flaw
in PR, rooted in the architectural design and trust assumptions of
the system. Although the susceptibility of PR to traffic analysis
attacks is not surprising, given that widely-used privacy systems
such as Tor are also known to be vulnerable to these attacks, what
warrants attention is Apple’s architectural choices that exacerbate
these threats. We highlight the notion of trust that users place in
using PR and advocate for more transparency from Apple about the
risks and limitations of such systems. We hope that our work can
lead to design adjustments by Apple to alleviate the risks of traffic
analysis, such as implementing traffic obfuscation techniques and
improving the selection of proxies.

2 BACKGROUND
Anonymous communication and sharing platforms have been
around for decades. In 1981, Chaum [16] was the first to introduce

the concept of an anonymous email service aimed at concealing
the identities involved in an email exchange setting. Since then,
there has been a significant development in the domain with appli-
cations in problems such as anonymous voting, Private Information
Retrieval (PIR), censorship resistance, anonymous web browsing,
hidden web services, etc. Tor [22], I2P [73], and Freenet [18] are
some of the most well-known and readily available anonymity sys-
tems, and works such as MixNets [16], Loopix [53] and Crowds [55]
offer alternative perspectives. Approaches to anonymity networks
generally involve concepts from peer-to-peer systems, mix net-
works, onion routing, and private mailbox systems.
Onion Routing is designed to anonymize communication in appli-
cations that have low-latency requirements such as web browsing.
A typical onion routing network consists of a set of nodes, called
Onion Routers (ORs). Users choose a set of ORs to establish a bidi-
rectional channel, popularly known as circuit to relay their data
through this onion network. As the name suggests, communication
in an onion network is encrypted in a layered fashion and each in-
termediary OR can only decrypt its corresponding layer to forward
the data to the next OR. Therefore, only the first OR, or entry node,
in the circuit is aware of the IP address of the user who initiated the
circuit, and only the last OR, or exit node, is aware of the traffic’s
destination. In traffic analysis literature, Tor is often targeted be-
cause of its privacy guarantees. Additionally, Tor’s fixed-sized cells
provide some measure of obfuscaion from traffic analysis attacks.
Website Fingerprinting is a traffic analysis technique that al-
lows an attacker to infer the destination of browsing traffic from
the metadata available in tunneled or encrypted browsing traffic.
Herrmann et al. [33] were first to evaluate Tor against website fin-
gerprinting. Later on, researchers developed techniques that utilized
traditional machine learning classifiers that required manual fea-
ture engineering to develop a set of best-representative features for
a website. Works that build on these techniques include k-NN [66],
k-FP [30], and CUMUL [51] and were shown to achieve greater
than 90% classification accuracy on closed-world datasets. Other
similar works focused on advanced feature analyses to increase the
classifier performance [42, 54, 71].

Recent works in website fingerprinting, however, have taken
advantage of deep learning mechanisms [56] to strengthen WF
attacks and have achieved identification accuracies above 95% in
closed-world settings. In 2018, Sirinam et al. proposed Deep Fin-
gerprinting [59], a CNN-based attack that achieved 98.3% accuracy
in the closed-world scenario. With Var-CNN [10] and Triplet Fin-
gerprinting [60], researchers introduced sophisticated attacks that
were proven to perform better in low-data settings. Smith et al. [61]
recently studied the impact of the QUIC protocol on WF attacks,
which is also the transport PR uses, though PR uses a different
protocol than the standard HTTP-over-QUIC measured by Smith et
al. In our work, we perform WF attacks using Deep Fingerprinting
and Var-CNN on PR.
Flow Correlation is a method to deanonymize encrypted traffic
by correlating ingress and egress traffic to and from an anonymity
network, respectively. Similar to WF, Flow Correlation uses side
channel characteristics of network traffic such as packet timings,
sizes, and directions to correlate ingress and egress traffic. There
are two types of flow correlation attacks - Active Correlation (Wa-
termarking) and Passive Correlation. In passive correlation attacks,
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the adversary is assumed to just wiretap both ends of a connection.
In active flow correlation, however, an adversary manipulates the
features of intercepted traffic to identify the two sides of a flow.
Many active flow correlation systems [35, 36, 72] perturb the packet
timings of intercepted flows to add delays to the transmission which
enables the attacker to generate an artificial pattern for the connec-
tion, also known as a watermark. In this paper, we focus on passive
flow correlation attacks.

Flow correlation has particularly been studied as an attack on
Tor [31, 43, 47, 63]. Traditional methods use statistical metrics such
as Pearson Correlation Coefficient, Cosine Similarity, Spearman
Correlation rank, etc. to correlate vectors of flow timings and sizes
but were found to be inefficient when applied to noisy networks
such as Tor. Recent methods use deep learning models to link net-
work flows and have demonstrated high performance. Nasr et al.’s
DeepCorr [47] was the first work that used a CNN-based approach
to classify network flows on the Tor network with higher accuracy
and lower false positive rate. In DeepCoFFEA[50], researchers have
used metric learning and amplification to further improve the per-
formance of flow correlation attacks. In this work, however, we
have used DeepCorr to perform a flow correlation on PR traffic.

3 UNDERSTANDING HOW PRIVATE RELAY
WORKS

PR is built into the networking framework of the Apple operating
systems and is available as an add-on feature with an iCloud+
subscription. Users can enable PR from iCloud settings on any
Apple device running iOS 15, iPadOS 15, or macOS Monterey or
later. Once activated, users can choose one of two strategies that
send their location information to PR: 1) “Maintain general location”
implies that the egress relay assigned to the user will roughly map
to the city the user is actually connecting from. 2) “Use country and
time zone” means that an egress relay will be chosen from a broader
regional set of IP addresses consistent with the user’s country and
timezone.

3.1 Architecture
According to Apple, the Private Relay uses an “innovative multi-hop
architecture in which users’ requests are sent through two separate
Internet relays operated by different entities. This way, no single
party — including Apple — can view or collect the details of users’
browsing activity” [8]. Figure 1 lays out the overall architecture of
PR. The following details are based on documentation provided by
Apple and our experimental observations.

When PR is enabled, all Safari browsing activity and any HTTP
traffic are routed through two relays - an ingress and an egress
relay. Apple states that the ingress relays are operated by Apple
itself while the egress relays are operated by a third-party partner.
Though Apple has not explicitly named these trusted partners, a
recent study [57] has shown that Akamai, Fastly, and Cloudflare
are the operational entities.
Ingress Relays: are the first hop in the two-hop architecture of
the PR. Upon visiting a website in Safari, clients first connect to
an ingress relay by resolving mask.icloud.com via type A/AAAA
queries using the device’s default DNS resolver. An ingress IP is
chosen randomly from the response to the DNS query. According to

Apple’s documentation [8], the first relay “uses a traditional geo-IP
lookup” to determine which area is most representative of a user’s
location. It sends back this information to the client device in the
form of a truncated geohash. The client uses this information to
initiate a proxy connection to the egress relay via the ingress.
Egress Relays: IP addresses of the egress relays are associated
with particular regions or cities and the combination of the ingress
and egress proxies is randomly chosen, based on the user’s loca-
tion [9]. Apple provides a public listing of all the active egress IP
addresses [4]. The egress IP address corresponds to the actual re-
gion or country the user is connecting from. For instance, a request
made from San Jose, CA may connect to an egress relay with an IP
address corresponding to San Francisco, CA. Egress relays proxy a
client’s visit to the actual target host.
Onion Encryption: To ensure the separation of information be-
tween the proxies, PR uses layered encryption similar to the onion
encryption mechanism used in Tor. In a PR connection, proxies
decrypt a layer of encryption and pass the data onward to the next
hop in the link. In this way, the egress proxy only sees the website
accessed and not the user accessing the website while the ingress
proxy only sees the client IP and not the website being visited.
Connection Protocols: PR uses proxying technology devel-
oped by the Multiplexed Application Substrate over QUIC En-
cryption (MASQUE) Working Group at the Internet Engineering
Task Force (IETF) [8]. Most traffic to ingress relays uses QUIC
but the service may fall back to HTTP/2 and TLS in networks
where QUIC is blocked or fails. In such cases, instead of resolv-
ing mask.icloud.com to obtain the ingress relay address, clients
resolve mask-h2.icloud.com to acquire an ingress IP. The con-
nection to the egress proxy uses HTTP/3 and MASQUE [52, 58].
MASQUE enables the use of QUIC with the ability to combine mul-
tiple connections within a single proxy connection. If HTTP/3 is
not supported, the connection to the egress proxy falls back to the
HTTP CONNECT over TLS method.

To authenticate the proxies, clients validate raw public keys
sent [70] in the TLS handshake instead of the usual certificate
authentication. Key pinning prevents the use of TLS proxies to
intercept and perform man-in-the-middle (MITM) attacks on PR
connections, which increases the difficulty of analyzing the under-
lying protocol.
DNS Resolution: To improve the privacy of DNS requests made
while connected to PR, Apple uses Oblivious DNS-over-HTTPS
(ODoH) [8, 40]. DNS queries sent through PR are padded and en-
crypted using Hybrid Public Key Encryption (HPKE) to ensure the
first relay cannot look up the domain name the user is visiting. The
query is then routed to a DNS-over-HTTPS (DoH) [34] server. The
client is able to learn its public IP address subnet from the first
relay and includes that information via the query’s EDNS0 Client
Subnet option [8] to receive optimized responses for its egress IP ad-
dress. It is important to note, that the initial query made to resolve
mask.icloud.com is sent unencrypted to the system’s default DNS
resolver. Subsequent DNS resolutions are, however, resolved via
ODoH over PR.
Client Device Authentication: Apple uses a custom authoriza-
tion protocol to ensure only legitimate iCloud+ subscribers can
connect to PR. According to Apple [8], PR manages network access
in a way that does not require identity or account information. This
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Ingress Relay Egress RelayClientPrivate Relay

Access Token Server

DNS Resolver

Website

Ingress Relay Network 
Apple-controlled CDN-controlled

Egress Relay Network

Figure 1: An overview of the Private Relay architecture. ingress nodes are controlled by Apple whereas egress relays are
operated by multiple entities.

is done using RSA blind signatures to generate anonymous tokens
to redeem network access. PR can validate a token using a public
key from the access token server. Before, making a connection, the
PR access token server provides several tokens to the client device
in order to enable it to connect to any proxy operator. These tokens
and keys are generated on a daily basis and are rate-limited.

3.2 Comparison with VPNs and Tor
PR provides users with features similar to VPNs and borrows de-
sign features from systems such as Tor which makes a case for a
comparison between these technologies. It is important to com-
pare these, as traffic analysis attacks that we present in Section 6
have been shown to work against conventional privacy-enhancing
technologies such as Tor and certain VPNs. VPNs allow clients to
bypass geographic restrictions by routing a user’s traffic through
a different location and are often used to access content locked in
particular regions. PR, however, is designed to comply with geo-
blocking and does not hide a user’s general location. Additionally,
VPN applications usually provide device-wide encryption i.e. all
outgoing traffic from the device is encrypted but in the case of PR,
only traffic from Safari and HTTP traffic from other applications are
sent through PR. Some VPNs offer optional traffic obfuscation [64]
to prevent censorship and traffic fingerprinting, a feature notably
missing from PR. Other VPNs [2, 7] implement multi-hop support.
One key distinction between PR and existing multi-hop VPNs is
that existing VPN providers are capable of centrally collecting user
data such as browsing history, while PR operators are not inde-
pendently capable of doing so, due to the promise of separation
between Apple and its partners.

In terms of design similarities, the layered encryptionmechanism
used by PR is very close to that of Tor. As explained previously in
Section 3.1, a website request from the client’s Safari browser is
encrypted in layers with each proxy decrypting its corresponding
layer during transmission. While Tor is more strict in terms of
privacy, PR shares a geohash of the client’s location to the egress
relay whereas in Tor’s model, the exit relay is only aware of the
traffic to and from the destination, and not any information about
the client. Unlike Tor, PR does not use any fixed-sized packets
and does not employ any obfuscation mechanism. Another major
difference between Tor and PR is the number of hops.

Table 1: Comparison between PR, VPNs and Tor

Private Relay VPNs Tor

Hides real IP address
Traffic feature obfuscation
Bypass geo-blocking
Decentralized proxies

Number of hops 2 ≥ 1 ≥ 3

Tor uses a minimum of 3 hops by default and relays traffic
through public relays run by a network of volunteers. On the other
hand, PR uses a 2 hop system where the relays are run by major
tech companies, with Apple guaranteed to be one of them. While
the use of privately controlled relays and two hops gives PR better
performance in terms of latency, it is a centralized service, based on
trust. This is completely in contrast with the level of trust between
Tor users and the relays comprising the Tor network. Table 1 shows
a comparison between the three services.

3.3 Current State of the PR Network
In a recent study, Sattler et al. [57] measured the current state of the
PR network. They performed a spatial and temporal measurement
of the active ingress and egress relays. In their work, they performed
DNS queries for mask.icloud.com and mask-h2.icloud.com over
a period of four months to discover 1586 IPv4 addresses and 1575
IPv6 addresses associated with active ingress relays. Based on this
discovery, they analyzed ASes that advertise these IP addresses
and found that all ingress relay IPs fall under 2 ASes (AS714 and
AS36183) which are owned by Apple and Akamai respectively,
whereas all egress relay IPs are advertised by 4 ASes (AS36183,
AS20940, AS13335, AS54113) which are owned by Akamai, Cloud-
flare, and Fastly. The presence of Akamai-controlled ASes (AS36183
and AS20940) suggests the possibility of a user’s connection go-
ing through ASes owned by the same entity, and the researchers
reported instances of this in their experiments, although they did
not provide information on how often this occurred. To build on
these findings, we conduct an experiment to determine how often
ingress and egress relays are located in ASes owned by the same
organization and if the selection of ingress relays can be forced via
DNS manipulation to affect the subsequent connection routes.
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Figure 2: Ingress and Egress IPs mapped to their respective
ASes for a two-day measurement where a custom DNS re-
solver is used to resolve PR domains in a specific AS

As mentioned previously in Section 3.1, path selection in PR is
based on a user’s location. Clients typically connect to an ingress
relay based on the DNS response they receive from a DNS resolver
for mask.icloud.com or mask-h2.icloud.com. These responses
differ based on the user’s location, owing to the subnet-based (geo-
location-based) response feature in nameservers. Accordingly, set-
ting up a custom DNS resolver should allow a client to connect to a
different ingress relay, thereby changing the route of the connection
that a user may originally take. Therefore, we use a custom DNS
resolver to allow our client to connect to a different but valid ingress
IP. Using a local resolver, we set the aforementioned domains to
resolve to static ingress IPs that were advertised by AS36183 (i.e.
Akamai-owned-AS) and intended for a location that is different
from ours. Then, with a laptop running the latest version of macOS
and an active iCloud+ account, we use Safari to send HTTP requests
to a web server we control. The requests are made every 30 seconds,
for a two-day period. To log the ingress IP, we isolate and capture
Safari traffic using tcpdump. For the corresponding egress IP, we
log the source IP of the request on the server. After collecting the
ingress and egress IPs, we map IPs to their corresponding ASes and
locations.

In our experiment, we make two important observations. First,
as shown in Figure 2, for a fixed ingress relay IP in an Akamai AS,
Cloudflare was the primary egress AS for the majority of the time.
However, there is a 3-hour period where both the ingress and egress
relays fell under an Akamai-owned-AS. This not only highlights
Akamai’s unique position in the PR system but also contradicts
Apple’s assertion that the ingress and egress relay providers cannot
observe both sides of a PR connection. We show that this is not
true at the AS level confirming Sattler et al. [57]’s report.

Second, we observe that our client could connect to the fixed
ingress relay IP in a different country than ours. This shows that
changing the DNS response for PR domains to an ingress IP in
another location can actually change the route of the connection
that a user may originally take in a normal setting, thereby enabling
an adversary to perform a routing attack. Consider a scenario where
an AS-level adversary controls or collaborates with an entity that
controls any point between the user and the user’s DNS server,
and wants to place itself on the path between the user and the
PR ingress relay. Because the choice of the ingress proxy can be
manipulated by DNS hijacking, this attacker could modify the DNS
response to return a specific ingress relay such that the client is
routed through the adversary. A successful routing attack would

Correlator

Fi

FjMalicious 

ISP

Clients

Destination
Servers

Malicious

Ingress Relay




Malicious 

ISP

Malicious

Egress Relay

Figure 3: Possible settings for an adversary to perform a flow
correlation attack on PR. The adversary can be malicious
relays or wiretapping ISPs and/or ASes

enable an adversary to intercept web traffic of a user which in turn
would enable her to perform traffic analysis attacks. We further
explore such attacks in the next section.

4 TRAFFIC ANALYSIS ATTACK MODELS FOR
PRIVATE RELAY

According to the developer documentation provided by Apple [5]:

Private Relay protects users’ web browsing in Safari,
DNS resolution queries, and insecure HTTP app traf-
fic. Internet connections set up through Private Relay
use anonymous IP addresses that map to the re-
gion a user is in, without divulging the user’s exact
location or identity.

Apple’s privacy claims primarily involve hiding traffic from local
networks and preventing IP-based tracking from websites. How-
ever, there are a number of attacks designed to undermine these
protections in systems with even stronger privacy models such as
Tor. In this section of the paper, we introduce threat models that
could potentially be used to de-anonymize PR users or infer a PR
user’s browsing traffic.

4.1 Flow Correlation
Flow correlation involves associating ingress flows to an anonymity
network with egress flows from the network. Figure 3 shows the
possible scenarios where an adversary could perform a flow cor-
relation attack on PR. The goal of an adversary here is to identify
the associated flow pairs (𝐹𝑖 , 𝐹 𝑗 ) by comparing the traffic charac-
teristics e.g. packet timings and sizes of all ingress and egress flows.
In the case of PR, there are multiple scenarios where an adversary
could intercept traffic at various locations to perform a flow corre-
lation attack. Collusion between proxy providers and/or local ISPs
and/or website owners can easily enable adversarial attacks to link
the ingress and egress flows. Another scenario could involve a local
ISP colluding with Apple’s partners (who run the egress proxies)
to wiretap both sides of the connection and perform a flow correla-
tion attack to de-anonymize PR traffic. Despite Apple’s claims that
the ingress and egress proxies are run by different entities, which
provides privacy, they could collude to de-anonymize a client for
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Websites

Egress Proxy

Ingress Proxy
Client

Private Relay Network

ISP AS

Possible Attackers

Router Proxy Admin

Figure 4: Possible local and passive adversaries for website
fingerprinting attacks on Private Relay

the purposes of mitigating abuse or cooperating with law enforce-
ment. It is important to note, that in a setting like this, where relay
providers are known entities with shared business interests, the
notion of privacy is based on trust, which makes a stronger case
for a possible flow correlation attack compared to a system like Tor,
where trust is not assumed.

In a broader view of a flow-correlation attack, an adversary can
increase their chances of performing flow-correlation by controlling
or wiretapping autonomous systems (ASes) or Internet Exchange
Points (IXPs) and recording transiting traffic. ASes that lie on the
path between the source and the ingress and between the egress
and the destination are capable of correlating traffic. This case is
particularly interesting for PR as all the relays are controlled by
a handful of ASes that are capable of monitoring either side of a
client’s connection. Specifically, the presence of Akamai ASes in
both ingress and egress relay paths enhances the possibility of such
an attack. In Section 3.3, we show that the case of Akamai ASes
controlling both ingress and egress IPs is not uncommon. Addition-
ally, the presence of large ASes on both sides of a PR connection is
also possible where the adversarial AS is considered a passive and
global eavesdropper. In the case of a successful correlation attack,
Apple’s claim that no entity would be able to have a full view of a
client’s connection would be weakened. In Section 5 of this paper,
we measure the prevalence of such adversaries and in Section 6 we
demonstrate the attack on the active PR network.

4.2 Website Fingerprinting
Website fingerprinting is the practice of identifying a user’s web
browsing traffic, typically despite some form of obfuscation such as
encryption or the traffic shaping applied by an anonymity network.
It can be done by network administrators interested in profiling a
user for advertisement purposes, censoring access to certain web-
sites, criminal investigations, spying, and any other scenario in
which a network-level attacker wants information about a user’s
browsing traffic. For a website fingerprinting attack, we assume
that the adversary seeking to identify the traffic’s final destination
has access to behavioral metadata such as packet sizes, timings,
and directions, but not identifying metadata such as IP addresses or
hostnames. Website fingerprinting attacks undermine PR’s claim

that it protects users from having their traffic monitored by net-
work operators looking to profile their users. Figure 4 shows the
possible scenarios and locations where an adversary could intercept
PR traffic and perform a website fingerprinting attack. In the case
of a local adversary, the attacker is located somewhere between the
client and the ingress relay and is assumed to know the identity
of a client. They could be an eavesdropper on a client’s wireless
network, a hacker with access to a user’s compromised router, an
Internet Service Provider, an AS, or a malicious employee of the
ingress proxy provider. In all of these cases, the adversary is as-
sumed to be passive implying they only observe traffic flowing
through the network and do not manipulate any packets. If PR is
vulnerable to website fingerprinting attacks, this casts doubt on
Apple’s claim that no entity can “connect a user’s IP address or
account information with their browsing activity.” In fact, because
Apple happens to be an ingress proxy operator, performing WF on
a client allows them to learn the browsing activity of a client.

In Section 6 of this paper, we build on this threat model and
perform a website fingerprinting attack on PR.

5 MEASURING AS-LEVEL ADVERSARY
PRESENCE

In this section of the paper, we measure the potential presence
of the AS-level adversary described in Section 4.1. First, we detail
how AS paths between source and destination are determined and
explain how potentially adversarial ASes are predicted. Then we
explain our experimental methodology and present our results.

5.1 AS-level Path Inference
Identifying paths between arbitrary sources and destinations is
necessary to discover the presence of potentially adversarial ASes.
Traceroute is a reliable method to discover paths between two
ASes, however, finding traceroutes between PR clients, relays, and
destinations is unworkable in the case of PR, as only its operators
have that level of access. Hence, we rely on inference techniques
to predict AS-level paths.
AS-level Topology and Routing: We perform path prediction
using an empirically derived AS-level Internet Topology. In this
model, the Internet can be viewed as a connected graph. ASes
form the nodes and the edges are the links between them. These
links are derived from business relationships between ASes. A
model introduced by Gao [24] categorizes these relationships into
three sorts: customer-to-provider, provider-to-customer and peer-
to-peer. A customer gives monetary compensation to a provider
for providing bandwidth whereas in peer-to-peer, ASes agree to
transit traffic free of cost. The CAIDA [27] team provides the data
for the inferred business relationships between ASes that we use to
model the AS-graph. The AS-graph can be used to find likely paths
between a source and destination AS.

For routing on the AS-graph, we use the popular Gao-Rexford
model (GR Routing) [25]. In this model AS paths are based on three
order constraints: Local Preference (LP), Shortest Paths (SP), and
Tie Break (TB); For LP, paths are ranked based on the next hop
where a customer is preferred over a peer and a peer is preferred
over a provider; SP accounts for the shortest paths in locally pre-
ferred paths; TB implies the case wherein one of the multiple paths
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satisfying LP and SP is chosen based on the lowest hash. This model
is not without error. In practice, network operators may choose to
violate the rules of the model and many other factors may come into
play such as the geographic presence of an AS. However, similar to
previous work [48], we use GR routing to model AS paths for our
objective is to broadly analyze the threat of AS-level attackers. An
efficient implementation of GR routing was introduced by Gill et
al. in BGPSim [26]. We use a modified implementation of BGPSim,
named BGP-SAS [41], that takes as input a set of AS relationships
and generates routing trees represented as directed-acyclic-graphs
(DAGs). Each tree is a union of all paths found using a modified
Breadth First Search (BFS) based on the routing model. For any two
ASes, BGP-SAS returns all paths satisfying LP and SP in order.
Identifying Vulnerable Connections: Due to the asymmetric
nature of routing on the Internet, AS paths from the client to the
server (the forward path), may differ from the return path from the
server back to the client. In the standard view of flow correlation
attacks, an adversary should either see forward traffic from the
client to the ingress together with forward traffic from egress to the
server or should see the reverse traffic from the ingress to the client
together with the reverse traffic from the destination to the egress.
In [63], Sun et al. highlighted the case for an asymmetric attack on
Tor traffic, where an adversary that can observe any directional
traffic can infer the data flow using TCP Acknowledgement num-
bers and perform flow correlation. Although most PR connections
are made over QUIC, where acknowledgments are encrypted, it
falls back to HTTP/2 in the case of a failed QUIC connection. Ad-
ditionally, an adversary can correlate packet sizes and timings for
QUIC connections. Thus we consider the asymmetric case as well.

To formalize the model we consider the following criteria for
a PR connection to be vulnerable to a correlation attack: Let
𝑃𝑐𝑙𝑖𝑒𝑛𝑡→𝑖𝑛𝑔𝑟𝑒𝑠𝑠 be the set of ASes on the forward path between
a client and an ingress proxy including the ingress proxy AS
and 𝑃𝑖𝑛𝑔𝑟𝑒𝑠𝑠→𝑐𝑙𝑖𝑒𝑛𝑡 be the set of ASes on the reverse path be-
tween the ingress and the client. We similarly define the for-
ward and reverse path AS sets between the egress and the des-
tinations as 𝑃𝑒𝑔𝑟𝑒𝑠𝑠→𝑑𝑒𝑠𝑡 , 𝑃𝑑𝑒𝑠𝑡→𝑒𝑔𝑟𝑒𝑠𝑠 . We then say a PR con-
nection is vulnerable on the forward path if 𝑃𝑐𝑙𝑖𝑒𝑛𝑡→𝑖𝑛𝑔𝑟𝑒𝑠𝑠 ∩
𝑃𝑒𝑔𝑟𝑒𝑠𝑠→𝑑𝑒𝑠𝑡 ≠ ∅. And a PR connection is vulnerable on the
reverse path if 𝑃𝑖𝑛𝑔𝑟𝑒𝑠𝑠→𝑐𝑙𝑖𝑒𝑛𝑡 ∩ 𝑃𝑑𝑒𝑠𝑡→𝑒𝑔𝑟𝑒𝑠𝑠 ≠ ∅. The com-
bined asymmetric path from client to ingress is then denoted as
𝑃𝑖𝑛𝑔𝑟𝑒𝑠𝑠↔𝑐𝑙𝑖𝑒𝑛𝑡 = 𝑃𝑐𝑙𝑖𝑒𝑛𝑡→𝑖𝑛𝑔𝑟𝑒𝑠𝑠 ∪ 𝑃𝑖𝑛𝑔𝑟𝑒𝑠𝑠→𝑐𝑙𝑖𝑒𝑛𝑡 . And the com-
bined asymmetric path from egress to destination is denoted as
𝑃𝑒𝑔𝑟𝑒𝑠𝑠↔𝑑𝑒𝑠𝑡 = 𝑃𝑒𝑔𝑟𝑒𝑠𝑠→𝑑𝑒𝑠𝑡 ∪ 𝑃𝑑𝑒𝑠𝑡→𝑒𝑔𝑟𝑒𝑠𝑠 and the asymmetric
path from the client to a destination is vulnerable if

𝑃𝑐𝑙𝑖𝑒𝑛𝑡↔𝑖𝑛𝑔𝑟𝑒𝑠𝑠 ∩ 𝑃𝑒𝑔𝑟𝑒𝑠𝑠↔𝑑𝑒𝑠𝑡 ≠ ∅

Experimental Setup: To assess the potential threat of AS-level
adversaries capable of performing flow correlation, we filtered a list
of the top 20 countries with the highest number of active ingress
relays. This selection was based on the findings of Sattler et al. [57],
who reported a significant geographic concentration of relays in
North American and European countries. While this analysis could
be expanded to all countries, we consider the top 20 countries
to be representative of the majority of PR users. To identify these
countries, we utilized the most recent ingress relay IP data provided
by Sattler et al. and geolocated the IP addresses using the MaxMind
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Figure 5: CDF of Client with a Private Relay connection being
vulnerable for each Egress AS.

Geolite database. The set of 20 countries includes United States (US),
Japan (JP), Germany (DE), United Kingdom (UK), Italy (IT), Hong
Kong (HK), France (FR), Sweden (SE), Canada (CA), Singapore (SG),
Brazil (BR), Spain (ES), Netherlands (NL), Australia (AU), Turkey
(TK), India (IN), Mexico (MX), Switzerland (CH), Denmark (DK)
and Poland (PL). Next, we select 10 random ASes in each country
and send A-type DNS requests to the authoritative nameserver for
mask.icloud.comwith the ECS option carrying a subnet prefix for
the selected AS. From the responses, we pick a random IP, and note
the corresponding ingress AS via WHOIS information. This is to
mimic the ingress selection of a PR client. For the 200 client ASes,
we get ingress IPs of which 54% fall in AS36183 and 46% belong
to AS714. To find paths between the ASes, we rely on AS-path
inference.

We use AS-path inference using BGP-SAS to obtain all paths
satisfying LP and SP between client and ingress ASes. We then filter
the top 2 paths (based on the preference order) for each forward and
reverse direction. Similarly, we obtain paths between the 3 egress
ASes outlined in Section 3.3 (we combine Akamai’s sibling ASes
as one) and the ASes that advertise the IPs for the top 200 Alexa
websites [6]. For each of the client-to-ingress paths, we combine all
egress-to-destination paths for each of the egress ASes by taking a
cross-product. This gives us a set of all possible paths for a client
to a destination via PR. We flag paths as vulnerable based on the
adversary model described earlier. This provides an estimate of
the threat of network-level attackers on PR. It is important to note
that, although Apple claims that PR connections traverse through
2 disjoint operators, we considered all cases, including overlapping
ingress and egress AS owners. This is because our observation in
Section 3.3 showed the possibility of such an occurrence at the AS
level, i.e., the same entity owning ingress and egress proxy ASes.
Results: Of all the routing paths we generate between clients to
destinations via PR ASes, 21.4% were found to be vulnerable to at
least one network-level attacker on the forward paths while 22.1%
were vulnerable to adversaries on the reverse paths. For asymmetric
paths, 36.8% of paths were found to be vulnerable.

To better understand the distribution of vulnerable routing paths,
Figure 5 shows the estimated distribution of a PR client building a
vulnerable path categorized by the egress AS. We have classified
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Figure 6: Percentage of vulnerable connections for client
ASes per country for each Egress AS.

paths by the 3 egress ASes for they are all owned byApple’s partners
in comparison to Apple owning one of the two ingress ASes. From
our results, it is intuitive to conclude that Akamai’s presence in
both the sets of ingress and egress ASes puts it in a better position
to observe either side of a connection. 42% of the clients making a
PR connection via an Akamai egress AS had 80% vulnerable routing
paths.

For each of the 20 client countries, we found India (IN), Spain
(ES), and Mexico (TK) to be the most vulnerable overall. More than
50% of routing paths originating from each of the 10 ASes in these
countries were found to be vulnerable. This can be simply explained
by the fact that because clients select the ingress relay by resolving
mask.icloud.com, regions/subnets where Akamai serves as the
only ingress AS, the probability of a vulnerable connection is more
as an Akamai AS may also contain the egress relay. Figure 6 shows
the percentage of vulnerable paths per country for each egress AS
where clients making connections via Akamai egress ASes become
more vulnerable. It can be seen that for all the countries, Akamai
as an egress AS poses the greatest threat.

In our experiment, we found a total of 68 ASes, with varying
percentage presences that were well-positioned to observe both
sides of a PR connection as a global passive eavesdropper. Table 2
shows the top 10 ASes found to be intersecting on PR connections.
AS20940 and AS36183 exist on 53.2% and 48.9% of the routing paths
that were marked vulnerable in our experiment. Both of these
ASes are owned by Akamai. Other possible adversaries that are
also capable of observing either side of a connection include ASes
controlled by large telecom providers such as Vodafone and Sprint.
Our main observation in this experiment is that Akamai has a
significant presence at the network-level that could enable it to
perform a flow correlation attack. The matter most concerning is
that this issue is built into the design of PR. Our result confirms
and extends the finding of Sattler et al. [57] that traffic can traverse
through ASes that are owned by a single entity i.e Akamai. This
enhances the threat of traffic analysis on PR.

6 EXPERIMENTAL EVALUATION OF TRAFFIC
ANALYSIS ATTACKS

In this section, we elaborate on the various threat models proposed
in Section 4, and perform these attacks on PR traffic. First, we

Table 2: Top 10 ASes and their percentage presence on all
vulnerable connections observed in our experiment

ASN % Presence AS Name Country

20940 53.2 Akamai-ASN1 NL
36183 48.9 Akamai-AS US
4455 14.0 BSO UK
1273 9.4 Vodafone UK
1239 9.3 Sprint US
6939 8.3 Hurricane US
701 3.4 Verizon/UUnet US
2516 2.2 KDDI JP
714 1.8 Apple-Engineering US
9304 1.7 HGC Global HK

explain our experimental and data collection methodology. Then,
show our results for the two traffic analysis attacks on PR.1

6.1 General Experimental Setup
We design an experimental setup to perform website fingerprinting
and flow correlation attacks based on the threat models described
in Sections 4.2 and 4.1. For both of these experiments, we used two
Macbook M1 machines running macOS Monterey (version 12.2)
with 8 Gb of RAM. We used Apple’s Open Scripting Architecture
(osascript) to simulate browsing events, (e.g. full page scrolling)
via bash scripts. For each of our experiments, we used Safari ver-
sion 15.3 and enabled the in-browser option for PR and Cross-site
Tracking Prevention. We used a single iCloud+ account and sub-
scription to enable PR on our Macs. We used tcpdump to collect the
traces and isolate Safari traffic based on process ID. All traces were
collected using single browser instances in single-tab sessions.

For our flow correlation experiment, we set up Ubuntu Virtual
Machines (VMs), deployed as VPS instances on the Digital Ocean
platform. These VMs were set up in different regions and had
Apache web servers configured to serve web traffic over HTTP.
We collected traffic from two sides for this experiment: one, on our
local machines and the second on the servers. Further details about
data collection are explained with each attack experiment later in
Sections 6.2 and 6.3.

Taking into account ethical considerations, we performed these
attacks using only traffic that we generated, and no private data
from other PR users was collected or used anywhere in our experi-
ments.

6.2 Flow Correlation attack on PR
As introduced in Section 4.1, Flow correlation is another potentially
dangerous attack on anonymity networks. Sometimes referred to as
confirmation attacks, flow correlation attacks can be used to break
anonymity in systems like Tor by correlating traffic features of
ingress and egress segments of an encrypted connection [12, 37, 38,
48, 63]. In other use cases, flow correlation can be used to identify
malicious users who leverage proxies to hide their identities over
the Internet i.e stepping stone attacks. [11, 31, 68]

1Our dataset is available at https://traces.cs.umass.edu/index.php/Network/Network
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DeepCorr Classifier: Introduced by Nasr et al [47], DeepCorr is a
deep-learning-based classifier that learns a correlation function to
associate matching flows on Tor. It was shown to outperform tra-
ditional statistical techniques in flow correlation. Although newer
models such as DeepCoFFEA [50] have advanced the success of
flow-correlation attacks, our aim is not to demonstrate the state-
of-the-art of flow correlation, but that these attacks are feasible
against PR. We utilized the original implementation of DeepCorr
and trained the model on PR traffic collected at two different ends
of a connection. Specifically, we trained DeepCorr using 4000 asso-
ciated flow pairs and used a 1:49 ratio for non-associated flow pairs
as that gave the best results for PR data. For comparison between
Tor and PR traffic, we used the dataset collected by Nasr et al. [47]
for Tor and trained two models, one with PR data and one with
Tor flows. Equal-sized training sets were used for both models with
the same non-associated flow pairs ratio. We tested each on 500
additional associated and 500x49 non-associated flows.
Data Collection and Features: Using our experimental setup, we
set up 5 Linux Virtual Machines on the Digital Ocean cloud service
in various locations including the United States, Netherlands, and
India. We then manually selected and cloned 100 web pages from a
variety of content-heavy websites and modified them to embed a
random number of gif images on every page. This was to ensure
variance in the traces and that each flow contains at least 300
packets. We uploaded each of these 100 modified webpages to
our 5 servers. We then navigated to each of these websites and
collected traces on both ends of the connection. In total, we collected
4500 flows over a two-week period. In order to train DeepCorr, we
extracted inter-packet delays and packet sizes from the collected
traces. We chose flow lengths of 100 and 350 packets to show two
data settings and the impact of increasing packets per flow.
Limitations: Collecting real-world data for flow correlation be-
comes non-trivial without having control over the destination web-
sites/servers. In prior works, researchers have used other techniques
such as tunneling exit traffic through a controlled proxy to capture
traffic [47]. This, however, is infeasible in the case of PR due to the
closed-source nature of the service and the fact that PR prevents
the use of nested proxies. Hence, we deploy our own web servers
to enable us to collect traffic at both ends of a PR connection. While
we acknowledge the setup of our own web servers and websites
may not fully represent a real-world setting, similar techniques
have been used in previous works [63] to generate traffic via a live
anonymity network.
Evaluation Metrics and Results: Similar to previous work [47],
we use true positive (TP) and false positive (FP) error rates as the
main metrics to evaluate the performance of flow correlation on
PR. TPR measures the fraction of associated pairs of traces that
are correctly classified to be correlated whereas the FPR measures
the number of non-associated flows incorrectly classified as corre-
lated by DeepCorr. Since the detection threshold makes a trade-off
between the TP and FP, we also use the ROC curve to show the
performance of the classifier.

Figure 7 shows the ROC curves of DeepCorr trained on Tor and
PR traffic with flow sizes of 100 and 350 packets. We can observe
that DeepCorr performs much better on PR flows compared to
Tor flows. Intuitively, this follows in line with the fact that PR is a
newer network while Tor is overloaded, and has fixed-sized cells,
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Figure 7: Comparison of DeepCorr on Tor and Private Relay
Flows for different flow sizes: 100 and 350 packets

which makes Tor traffic much noisier than PR traffic. At a false
positive rate of 10−3, DeepCorr achieves a TPR of 0.8 on Tor traffic
with a flow size of 350 whereas, on PR, it achieves a perfect TPR of
1.0. For a flow size of 100 packets, DeepCorr achieves a 0.97 TPR
on PR data as compared to the 0.6 TPR on Tor data. Our results
also match the observations of Nasr et al. [47] for their stepping
stone experiments on CAIDA traces [15] as those traces have a
similar low-noise setting to our PR data. Although unsurprising,
our results show that PR is susceptible to a flow-correlation attack
where an adversary recording traffic metadata from two sides of a
PR connection can effectively perform correlation to de-anonymize
a PR user.

6.3 Website Fingerprinting Attack on PR
Website fingerprinting is a widely-studied attack on anonymity
systems. As introduced in Section 4, in a WF attack, an attacker
attempts to identify the website visited by a user by comparing it
to previously collected traces of known websites. Because the en-
capsulating protocol is encrypted, the attacker utilizes side-channel
information from the packets such as timestamps and payload sizes
to train a classifier.

WF most often uses two settings to evaluate WF models - closed-
world and open-world. In the closed-world setting, all traces are
known to be from a monitored set of 𝑁 web pages. The classifier,
having been trained on sample traffic from pages in that set deter-
mines which of the 𝑁 web pages the trace corresponds to. In the
open-world setting, the feature vector presented can either belong
to the set of 𝑁 monitored or unmonitored web pages. The objective,
in this case, is to identify if the trace belongs to a monitored web
page and if so, which, or whether it is of some unmonitored web
page. ManyWF techniques [10, 49, 56] in the literature use a variety
of assumptions about web browsing that simplify and enhance the
performance of the classifiers. These assumptions are largely based
on synthetic traffic generation [17] and include the adversaries’
ability to detect the beginning and end of a web page load, the ab-
sence of background traffic in a visit, and classification only based
on the index page of the website. We note that PR relays are solely
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operated by Apple/partners, so one can not collect PR traffic of
actual users. We, therefore, resort to using our own synthetic traffic
for the purpose of experiments and inherit the aforementioned
assumptions in our experiments.

We consider both the closed and open-world settings for our
experiments. While sizes of the open-world datasets have increased
dramatically in recent times, researchers still rely on datasets of
4k-20k [49, 60, 65] traces to train and evaluate their classifiers. We
have used a similar-sized dataset in this work.
Collecting Traces: For the closed world setting, we sampled
100 websites of the Alexa Top 1M websites [6], accounting for
failures such as IP blocking or timeouts. We also ignored duplicate
entries of top-level domains which could result in bias due to the
shared infrastructure. For example, only one of google.com and
google.co.jpwas included in the monitored list. Then, for each of
these 100 monitored websites, we browsed the homepages 250 times
each to ensure a final quota of 200 instances per website (monitored
set). For the open-world setting, we collected one instance each of
an additional 20000 websites randomly sampled from the top 1M
Alexa websites [6] (unmonitored set), excluding the sites used for
the closed-world set.

We collected the traces using our experimental setup described
in Section 6.1 through our campus network. For half of the traces,
the “Use General Location” option in the PR settings was selected
and for the other half “Country and Time zone” option was en-
abled. We followed data collection methodologies derived from
prior work [59] and visited websites in chunks of 25 visits per
website. All websites were visited sequentially for 20 seconds each
with PR and cross-website tracking protection option enabled in
the browser. We introduced a delay of 15 seconds after opening
Safari before navigating to each website in order to avoid browser
bootstrap traffic.
Website Fingerprinting Classifiers: Previous works in the WF
domain have proposed numerous models based on various tech-
niques. We, however, use two of these models to represent effective
WF techniques. The following are the classifiers used:
Deep Fingerprinting Model: Based on convolutional neural
networks (CNN), Deep Fingerprinting (DF) is the deep-learning
classifier proposed by Sirinam et al [59]. DF uses techniques from
computer vision to extract features from sequences of packets for
classification. DF was shown to perform well against popular WF
defenses such as WTF-PAD [39] and Walkie-Talkie [67].
Var-CNN: The Var-CNN classifier introduced by Bhat et al. [10] is
another deep-learning classifier we evaluate in this work. It uses
automatic and manual feature detection to train two Residual Net-
works (ResNets) on packet directions and timings and was shown
to perform much better than other classifiers on smaller datasets.

Borrowing ideas from Smith et al. [61], we included the packet
sizes along with the packet direction to train the Deep Fingerprint-
ing [59] and Var-CNN [10] models. Unlike the Tor setting used in
most of the previous works, where packets are padded to be of fixed
length and are shown to not contribute to classifier performance,
packet sizes are available in the PR setting and hence we provide
the two classifiers with signed packet sizes instead of just packet
directions. Similar to the original Var-CNN’s packet count features,
we also provided Var-CNN with additional aggregate packet size
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Figure 8: Closed-World Accuracy as a function of the num-
ber of monitored traces per website for VarCNN and Deep
Fingerprinting Models on PR and Tor traffic

features including incoming, outgoing, total bytes, and the ratio of
incoming and outgoing bytes.
Evaluation: In the closed-world setting, a finite set of monitored
web pages is used and the attacker is assumed to know this set and
therefore train the classifier on it. Similar to previous works, we
have used accuracy as the metric of evaluation in this scenario.
Accuracy is defined as the ratio of the number of correctly classified
traces to the total number of traces in the closed-world dataset.
In the closed-world setting consisting of 100 websites with 200
instances of each, DF gave an accuracy of 96.5% whereas Var-CNN
was able to achieve an accuracy of 99.2%. For comparison, we used
the Tor dataset from Rimmer et al. [56] and trained both models
over both datasets in similar settings. Figure 8 compares the closed-
world accuracies of both models trained on different datasets for
Tor and PR. We observe that both classifiers perform better on PR
traffic than on Tor traffic.

In the open-world scenario, the user is assumed to visit any
website in the world. For this setting, we train a classifier with 100
instances of 100 monitored set websites along with one instance
of another 9000 unmonitored set websites. Our test set consists
of 20000 instances containing an equal number of traces from our
monitored and unmonitored sets. Similar to previous works [59],
we evaluate the performance of the classifier in this scenario using
True Positive Rate (TPR), False Positive Rate (FPR), Precision, and
Recall. Our attack with the DF model achieves a True Positive Rate
of 0.995 and False Positive Rate of 0.007 when optimizing for high
TPR and achieves a TPR of 0.88 and FPR of 0.0002 when optimizing
for low FPR. Figure 9 shows the ROC and Precision/Recall curve
for our experiment with the DF model in the open-world setting.

Our results are in line with our intuitive understanding of PR:
because PR does not employ an obfuscation mechanism to hide its
traffic characteristics, it is susceptible to traffic analysis attacks. Ob-
fuscation and other countermeasures that are deployed for systems
like Tor hamper the performance of WF classifiers. The absence of
any significant defense against traffic analysis attacks makes PR
susceptible to website fingerprinting.

7 DISCUSSIONS
Traffic analysis techniques are known to work against conventional
privacy-enhancing technologies such as Tor. Because PR has signif-
icant architectural similarities with Tor except that has no features
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Figure 9: ROC and Precision/Recall curve for Open-World
Evaluation using Deep Fingerprinting model on PR Traffic

that would obfuscate traffic characteristics, it is not surprising that
PR is also vulnerable to traffic analysis. In fact, Section 8 of the
MASQUE [52] draft notes the susceptibility of the protocol to flow
correlation.

Given that Apple was directly involved in the development of
MASQUE, it is reasonable to argue that Apple is aware of the threat
of traffic analysis but has made architectural choices based on a
tradeoff between trust, performance and privacy. PR’s design pro-
vides significant benefits in terms of both performance and usability.
Additionally, given that all PR traffic is processed a relatively small
number of high-bandwidth servers, the sheer volume of PR traffic
could increase the difficulty of a flow correlation attack, if collu-
sion were to occur. Despite the benefits, the privacy guarantees in
PR are reliant on the assumption of non-collusion. This warrants
attention from its users and transparency its providers. We argue
that compared to a decentralized trust model where performing a
flow correlation attack requires acquiring control of a large portion
of the network, compromising user privacy in PR is far more feasi-
ble in the first place, as it only requires collusion between the few
operational entities.

This raises the question of what possible improvements can
be made to PR to minimize the threat of traffic analysis, which
could enhance the privacy of millions of users. Traffic analysis
attacks generally introduce a performance overhead, but Apple
could compromise by adopting an opt-in approach for users with
stronger threat models. This has some precedent: Apple offers a
“High Security Mode” [69] for users at risk of targeted zero-day
exploits.

As a first step against flow correlation threats, Apple should
ensure that PR never uses the same provider for both the ingress
and egress portion of a PR connection, as shown by our experi-
ments in Section 3.3. Next, AS-aware path selection algorithms
can be designed to prevent flow correlation attacks from entities
outside of Apple and their partners. Similar systems proposed for
Tor include Counter-RAPTOR [62] and DPSelect [29]. Given that
PR is also used in Apple’s mobile devices with multiple potential
internet connections, multihoming [32] has been shown to pro-
vide benefits against traffic analysis attacks, though it requires a
specific network environment and may incur charges. To mitigate
the effect of a single ingress or path on the potential to perform
flow correlation against PR users, TrafficSliver [21] or MPTCP [20]
could be applied. A number of defenses have been proposed against
WF attacks [13, 14, 23, 28, 66, 67]. Works such as BuFLO [23], CS-
BuFLo [13] and Tamaraw [14] use rate fixing and padding to con-
ceal traffic features but incur significant overhead. To tackle the

issue of high overhead, lightweight countermeasures such Walkie-
Talkie [67] and WTF-PAD [39] were proposed for deployment in
Tor. While we acknowledge the performance/safety trade-off PR
makes, making any of these mitigations available as an optional
feature would enhance overall user privacy.

8 CONCLUSION
In this work, we analyzed the threat of traffic analysis against Ap-
ple’s new privacy tool — iCloud Private Relay. We presented a
comprehensive threat model for PR that outlines how PR users
could become vulnerable to traffic analysis attacks. We showed a
scenario where a client’s traffic can traverse through relay ASes
that are controlled by the same entity which contradicts Apple’s
claims and amplifies the possibility of traffic analysis. We measured
the risk imposed by AS-level adversaries through empirical mea-
surement of Internet routes. To demonstrate the susceptibility of PR
against traffic analysis attacks, we performed website fingerprint-
ing and flow correlation attacks on PR traffic and showed that PR is
susceptible to these attacks. We hope our work will aid discussion
and create awareness about the traffic analysis threats on PR and
encourage Apple to deploy countermeasures against these attacks
as optional features.
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