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Sounds of a changing sea:
Temperature drives acoustic
output by dominant biological
sound-producers in shallow
water habitats

Ashlee Lillis*** and T. Aran Mooney™*

* Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States,
2Sound Ocean Science, Calgary, AB, Canada

The ocean’s soundscape is fundamental to marine ecosystems, not only as a
source of sensory information critical to many ecological processes but also as
an indicator of biodiversity and habitat health. Yet, little is known about how
ecoacoustic activity in marine habitats is altered by environmental changes
such as temperature. The sounds produced by dense colonies of snapping
shrimp dominate temperate and tropical coastal soundscapes worldwide and
are a major driver broadband sound pressure level (SPL) patterns. Field
recordings of soundscape patterns from the range limit of a snapping shrimp
distribution showed that rates of snap production and associated SPL were
closely positively correlated to water temperature. Snap rates changed by 15-
60% per °C change in regional temperature, accompanied by fluctuations in
SPL between 1-2 dB per °C. To test if this relationship was due to a direct effect
of temperature, we measured snap rates in controlled experiments using two
snapping shrimp species dominant in the Western Atlantic Ocean and Gulf of
Mexico (Alpheus heterochaelis and A. angulosus). Snap rates were measured
for shrimp held at different temperatures (across 10-30 °C range, with upper
limit 2°C above current summer mean temperatures) and under different social
groupings. Temperature had a significant effect on shrimp snap rates for all
social contexts tested (individuals, pairs, and groups). For individuals and shrimp
groups, snap production more than doubled between mid-range (20°C) and
high (30°C) temperature treatments. Given that snapping shrimp sounds
dominate the soundscapes of diverse habitats, including coral reefs, rocky
bottoms, seagrass, and oyster beds, the strong influence of temperature on
their activity will potentially alter soundscape patterns broadly. Increases in
ambient sound levels driven by elevated water temperatures has ecological
implications for signal detection, communication, and navigation in key coastal
ecosystems for a wide range of organisms, including humans.
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Introduction

The underwater acoustic environment, known as the
soundscape, is fundamental to the survival and reproduction of a
wide variety of marine taxa, from microscopic invertebrate larvae to
the largest mammals on Earth (Au and Hastings, 2008; Cotter,
2008; Duarte et al,, 2021). Soundscapes reflect and influence a range
of key life history processes including communication,
reproduction, navigation, and predation (Hildebrand, 2009;
Pijanowski et al., 2011). The mosaic of acoustic signals that create
a soundscape reflects the biological, geophysical, and anthropogenic
features of a given location, and thus transmits rich sensory
information to organisms about the composition and distribution
of the local habitat, community, and resources. As in terrestrial
ecosystems, these acoustic cues and signals are critical to myriad
ecological processes in the marine environment and changes to that
acoustic environment threatens many vital activities.

Substantial changes in natural soundscapes have occurred
due to increases in human use (Slabbekoorn et al., 2010; Butler
et al., 2016; Buxton et al.,, 2017; Duarte et al., 2021), and a recent
body of research has focused on anthropogenic noise and its
detrimental impacts on organism physiology and behavior (e.g.,
Luczkovich and Sprague, 2008; de Soto et al., 2013; Hawkins and
Popper, 2017; Jones et al, 2020). Increasing attention is also
being given to soundscape measurement and analysis as an
approach to monitor the impacts of human disturbance and
climate change on biodiversity (Gage and Axel, 2014; Krause and
Farina, 2016; Lamont et al., 2022). Far less is known about
climate-driven changes to the soundscape and the biological
drivers of those potential alterations, particularly for
acoustically-rich ocean habitats. Both human-produced noise
pollution and environmentally-dependent animal acoustic
output shifts could induce cascading impacts on ecosystems by
altering the navigation, reproduction, and trophic dynamics of
species and communities (Sueur et al., 2019; Duarte et al., 2021).

Changes in climate-driven environmental variables in
marine systems (e.g., temperature, pH, dissolved oxygen) are
likely to affect ambient soundscape patterns by altering the
output of dominant sound producers, however, these
relationships and their broader impacts on ocean soundscapes
are largely unknown. Climate has been observed to drive the
sound production of terrestrial and marine animals by
regulating their physiology, biochemistry, and phenology
(Sueur et al., 2019). Many studies have shown positive
relationships between temperature and call rates in terrestrial
ectotherms, such as insects and frogs [reviewed in (Gerhardt and
Huber 2002)]. In marine environments, the influence of
temperature on acoustic communication has been examined
for a number of vocalizing fish (Connaughton et al. 2000), but
these studies have focused on thermal dependency of call
characteristics and acoustic ecology of the species [e.g.,
toadfish fundamental frequency varies with temperature (Bass
and McKibben 2003)], and not within the context of
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soundscapes or population-level sound production. Future
climate change scenarios are also expected to impact physical
sound propagation properties, with implications for endangered
marine mammal communication (Affatati et al., 2022).

Snapping shrimp, also referred to as pistol shrimp, produce
one of the most pervasive of all biological underwater sounds
(Johnson et al. 1947). Individually, these small crustaceans (mm
to cm in length) generate a unique high intensity acoustic signal
via the collapse of a cavitation bubble during rapid closure of a
specialized claw (Versluis et al., 2000). Snapping shrimp
typically live in dense aggregations hidden within the substrate
of many coastal ecosystems (e.g., coral reef, sponges, rubble,
oyster beds, rocky shores), together producing a continuous
audible crackling sound (Johnson et al. 1947; Mathews, 2007).
Snapping shrimp acoustic activity is often the major
determinant of ambient sound levels in coastal seas (Everest
et al, 1948; Johnson et al, 1947; Lillis et al, 2014; Kaplan et al,
2015), and variation in snapping shrimp acoustic output has
been found to account for much spatiotemporal soundscape
variation, both in sound levels and frequency content, within
temperate and tropical benthic marine ecosystems (Radford
et al. 2008; Radford et al. 2010; Lillis et al. 2014; Staaterman
et al. 2014; Butler et al. 2017; Lee et al., 2021). This
spatiotemporal variability of snapping shrimp sound
production likely influence a range of acoustically-mediated
animal activities, including navigation and habitat selection by
settlement-stage fish and invertebrate larvae (Simpson et al,
2008; Lillis et al, 2018; Lillis et al, 2013), and perhaps even
functions as an auditory cue for migrating cetaceans to avoid
rocky shorelines (Allen, 2013). Snapping shrimp sound is also
known to interfere with other important acoustic signals, an
underwater communication problem for humans and marine
organisms alike (Au and Banks, 1998; Chitre et al. 2006;
Hildebrand, 2009). Indeed, early descriptions of snapping
shrimp sounds stemmed from investigation by the US Navy as
their persistent sounds can impair sonars and signal detection,
but also may be leveraged for target imaging (Buckingham et al.
1996; Au and Penner 1981). Despite these examples of their
importance to marine ecosystems and human endeavor in the
sea, snapping shrimp acoustic ecology and environmental
variables underlying their sound production patterns are not
well studied.

Recent improvements in underwater sound recording ability
and increased efforts to sample habitat soundscapes at high
spatiotemporal resolution have generated datasets that reveal
complex dynamics in snapping shrimp sound production
(Lammers et al, 2008; Staaterman et al., 2014; Lillis and
Mooney, 2016), and provide evidence that snapping-
dominated soundscape patterns are related to temperature, as
well as light, pH, currents, and dissolved oxygen (Bohnenstiehl
etal, 2016; Lillis and Mooney, 2018; Rossi et al., 2016; Lee et al,,
2021). Seasonal effects of temperature on snapping patterns in
field recordings had previously been reported in temperate
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regions (Johnson, 1947), and more recent datasets from tropical
regions similarly demonstrate correlations between water
temperature and snapping over smaller time scales (days) and
temperature changes (1-2°C) (Lillis and Mooney, 2016).
However, the fundamental relationship between temperature
and snapping shrimp acoustic activity has not been directly
examined, nor have the effects of temperature on Alpheid
shrimp acoustic behavior been tested.

Here, we investigated the relationship between snapping
shrimp-dominated marine soundscapes and seawater temperature
to better understand how warming trends and temperature
anomalies may influence acoustic properties of coastal
ecosystems. The aim of this study was to test the dependence of
snapping shrimp-dominated marine soundscapes on water
temperature to better understand how warming may influence
acoustic properties in coastal habitats. First, we analyzed previous
soundscape recordings collected at high temporal-resolution to
closely examine in sifu relationships between snap rates, sound
pressure levels, and water temperature. Based on these observations,
we tested the effects of water temperature on snapping patterns in a
controlled laboratory setting for the dominant Alpheid species
widespread in coastal and estuarine reef habitats of the Southeast
United States and Gulf of Mexico (Alpheus heterochaelis and
Alpheus angulosus) (Spence and Knowlton, 2008; Hughes et al,
2014). We compared the sound emission rates of shrimp under
temperature treatments within their natural range (10-30°C) across
different social conditions (ie., isolated, in the presence of opposite
sex shrimp, and for multiple shrimp groups) and different times of
day, to gain insight into the interaction between temperature and
snap context as a potential explanation for temporal variation in
sound production by these animals.

Materials and methods
Soundscape field recordings and analysis

To investigate the relationship between observed snapping
shrimp soundscape content and water temperature, we examined
the snapping activity in three sets of ~8-week-long field recordings
previously collected for an oyster reef soundscape study in West
Bay Marine Reserve, Pamlico Sound, North Carolina, USA (34°
58.8517° N 76° 21.3632'W) during 2012. The audio files, available
in the BCO-DMO online data repository (Eggleston and
Bohnenstiehl, 2015 Bohnenstiehl et al, 2016), were collected
using a DSG acoustic recorder (Loggerhead Instruments)
sampling for 1 minute every 15 minutes at 50 kHz, deployed at
3 m depth on the seafloor adjacent to oyster reef habitat.
Deployments for analysis were selected from periods where
Pamlico Bay water temperatures fluctuated by 5-15°C (Spring:
06 March-30 April; Early Summer: 12 May—6 July; Autumn: 21
September-27 November), and together included the full range of
temperatures experienced at the site (~10-29°C). To quantify
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snapping activity, an automatic snap detection algorithm was
applied (1.5-20 kHz band, 120 dB threshold), generating a snap
rate (in detections per minute) for each file (Bohnenstiehl et al,
2016). This snap detection method, fully described in
Bohnenstiehl et al. (2016) and further applied in Lillis &
Mooney (2018), combines an amplitude threshold and
correlation detector to enumerate signals that match the shape
of snaps manually detected. The root-mean-square sound
pressure level (SPL; 1.5-20 kHz band) was also calculated for
each 1-minute sample. Water temperature data for the
deployment periods were not available for the specific recording
site in West Bay reserve, however, temperature records were
obtained from the NOAA monitoring buoy in Hatteras, NC, the
regional water quality monitoring station within Pamlico Sound
closest to the recording site, where measurements are collected
every 6 minutes (https://tidesandcurrents.noaa.gov/methtml?id=
8654467). To enable comparisons between water temperature and
snapping activity, hourly averages of acoustic data and
temperatures were generated (n=4156). The strength of the
relationships between the snap rate and water temperature was
tested using a linear correlation function in Matlab (v.9.1,
Mathworks, Cambridge, MA, USA), and regressions
parameterized via a least-squares approximation.

Laboratory shapping shrimp experiments

A series of experiments using wild-caught snapping shrimp
were conducted at the Woods Hole Oceanographic Institution
(WHOI) Environmental Systems Laboratory (Woods Hole MA,
USA) facility in September 2015, between June and November
2016, and in March 2017, to examine the effect of temperature
on snapping shrimp sound production rates and to identify
patterns under different social contexts (solitary, pairs, groups)
in simulated natural conditions (summarized in Table 1). In the
first experiment, using 24 shrimp (all A. heterochaelis), the effect
of water temperature treatments of 10°C, 15°C, 20°C, and 25°C
(n=6 per treatment) on individual spontaneous snap rates was
tested. A second larger experiment was conducted with 60
individual shrimp (42 A. heterochaelis, 18 A. angulosus) and
54 pairs of shrimp (36 pairs of A. heterochaelis, 18 pairs of A.
angulosus) testing the effect of water temperatures of 10°C, 20°C,
and 30°C. Finally, an experiment was carried out to compare
snap rates for three mesocosm groups of 10 shrimp each (5 male
and 5 female A. heterochaelis each) exposed to 10°C, 20°C, and
30°C temperature treatments in different sequences (repeated
measures design).

Snapping shrimp were collected by hand in coastal North
Carolina, USA, during low tides at oyster bed areas in two
locations close to Duke Marine Laboratory in Beaufort, within
the North River Estuary and the shoreline of Pivers Island. In
2015, collections consisted of A. heterochaelis only, while 2016
collections included a small number of A. angulosus individuals.
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TABLE1 Summary of laboratory experiments.

10.3389/fmars.2022.960881

Experiment Date Social groupings Temperature treatments (°C) Trial length (h) Sample size
1 Sep 2015 Solitary 10, 15,20, 25 48 N =24 (n=6)
2 Jul - Nov 2016 Solitary 10, 20, 30 24 N =60 (n=20)

Pairs 10, 20, 30 48 N =54 (n=18)
3 Mar 2017 Groups of 10 10, 20, 30 48 N=9(n=3)

At WHOI seawater facilities, shrimp were housed individually in
an endosed outdoor laboratory (ambient light-cycle), where
they each were provided a 1-L mesh-sided container with
shells and gravel as shelter within a larger shaded flow-
through seawater table maintained at 20°C outside of
experimental periods and fed rations of dried shrimp pellets
every third day.

Every trial measuring snap rates of individuals or pairs
consisted of six or twelve replicate experimental units arranged
within a 20 m x 1.0 m seawater table, randomly assigned to a
temperature treatment at the onset of each trial (Figure 1). The 2-L
monitoring chambers were placed on individual closed-cell
neoprene foam mats and separated by sound-absorbing open-cell
convoluted acoustic foam panels to avoid sound transfer between
experimental units. Chambers contained gravel and shells as
substrate, consistent with the containers in which shrimp were
held prior to trials. Tank configuration changed slightly between
Experiments 1 and 2 - where the initial experiment used flow-
through seawater at each temperature, the latter experiment
required the use of recirculating water baths to achieve stability
for the desired highest water temperature treatment.

Acoustic measurements were made continuously during trials
in all experimental tanks using HTI-96-min hydrophones (High-
Tech Inc., Gulfport, MS, USA; sensitivity: -165 dB re:1V/pPa, flat
frequency response: ~0.1-30 kHz) recording continuously ata 10
kHz sampling rate, acquiring data in 5-minute samples via a data
acquisition device (16-bit, NI USB-6343, National Instruments,
Austin, TX, USA) connected to a laptop running purpose-written
Matlab acquisition code. Experimental tanks were also monitored
with a HOBO pendant light and temperature sensor (Onset
Computer Corporation, Bourne, MA, USA) logging at 1-
minute intervals.

In each trial of Experiments 1 and 2, an individual or
opposite-sex pair of shrimp was randomly selected and assigned
to a single experimental chamber (Table 1; Figure 1). All chambers
were initially held at 20°C, and a low flow of seawater at each
temperature adjusted the tanks to 10°C and 30°C treatment levels
over ~1 hour following introduction (20°C treatments were
realized without manipulation). Trial start times occurred once
all temperature treatment levels had been attained. The recording
system was initiated after acclimation of shrimp and continued
undisturbed for the length of the trial. While the 1-hour
temperature change in Experiments 1 and 2 represents a more
rapid rate of fluctuation than shrimp would experience in field
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conditions, preliminary observations of shrimp during
temperature manipulation showed no acute thermal stress (e.g.,
movement from water input flow or mortality following
temperature manipulation) and changes to snap rates were
consistent throughout the trial period (ie., snaps did not occur
immediately in response to sudden temperature change).

In Experiment 3, three groups of 10 A. heterochaelis
snapping shrimp (five female and five male) were randomly
selected and placed in 75-L shallow mesocosm tanks (115 x 48 x
15 cm). Each tank contained sand and gravel substrate covered
with larger cobble and oyster shells to provide plentiful
sheltering material for shrimp and was supplied with flow-
through seawater. Three sequential trials were carried out to
expose each colony of shrimp to three temperature treatments
(10, 20, 30°C). Each replicate tank was exposed to the three
temperatures in a different sequence so that each temperature

Shrimp monitoring Temp/Light
chamber FSW Sensor
¥ A
il ¥
W
12 f Y, /
cm = A 7 =
J_ @ : &L 32 cm
[ 19jcm —— \/

7 N ;
O

\ / acquisition Hydrophone
EEEEEHH| system

FIGURE 1

Experimental chamber set-up for acoustic monitoring of
snapping shrimp under different temperature treatments.
Schematic shows example of tank used in Experiments 1, which
was slightly modified for Experiment 2 to use a recirculating
water bath rather than flow-through to achieve desired

temperatures. Experiment 3 was conducted with the same data
acquisition and overall set-up but in larger seawater tables to
accommodate 10 shrimp and sheltering habitat. Sample sizes,
treatments, and groupings for each experiment appear in
Table 1.
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was represented in every trial. Prior to the first trial, each tank
was randomly assigned one of the three temperature treatment
orders, and a low flowing water input was started to slowly adjust
the tank to the desired temperature treatment and to stabilize
over 24 hours. Once treatment levels were reached, recording
commenced for 48-hour trials, followed by 24-hour periods in
which water temperature was slowly adjusted to the next
temperature treatment and the shrimp group was provided
ample dried shrimp pellets as food.

Data analysis

Following the completion of each snapping shrimp recording
trial, files were digitized, and a threshold detector was applied
using Matlab to detect and count snaps in all five-minute samples
for each tank Due to their specialized production mechanism
(Versluis et al., 2000), shrimp snaps are highly stereotyped and
typically saturate the signal in small tanks, making them easily
distinguishable from other sounds. Other equivalently high
amplitude impulsive sounds were rarely observed in any tank
recordings. Following automatic detection, the waveforms of all
snaps detected were visually examined and any false detections
(e.g, caused by mechanical interference of shrimp or rare
transient external noise) were removed from the datasets. The
total number of snaps and time of snaps was then determined for
each individual shrimp or shrimp pair for the duration of the trial,
from which a total snap count was calculated. Because previous
work observed strong diel cycles in snapping in field recordings
that changed seasonally (Bohnenstiehl et al., 2016; Lillis and
Mooney, 2016), experimental snap rates (snaps per hour) within
different periods of the day (dawn, day, dusk, night) were also
assessed for individual, pairs, and groups. For this analysis, dawn
was defined as the period between the beginning of astronomical
twilight and sunrise, day was the hours between sunrise and
sunset, dusk between sunset and the end of astronomical twilight,
and night between the end of dusk and beginning of dawn. All
local twilight, sunrise, and sunset times were obtained from the
U.S. Naval Observatory’s Astronomical Applications Department
data services (http://aa.usno.navy.mil/data/docs).

The effect of temperature on individual and pair snap rates
was compared with the fixed factors of pair type and time of day,
using trial as a random effect (Sokal and Rohlf, 1995). Experiment
2 included the factor of species. Where significant interactions
were detected, the effects of fixed factors were tested separately. All
snap rate data that did not meet assumptions of normality were
examined using a non-parametric Kruskal-Wallis test; when data
showed heteroscedasticity, a Welch’s ANOVA was applied to test
for differences (McDonald, 2014). To non-parametrically test the
effect of time-of-day on individual and pair snap rates, repeated
measures Friedman’s tests were used (McDonald, 2014). If
significant effects of a given factor were found, differences
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between treatments/levels were determined using pairwise post-
hoc tests with the Holm-Bonferroni method.

For Experiment 3 (mesocosm groups of 10 shrimp), a linear
mixed effects model was used to test for the effect of temperature
on snap rate, with trial (blocking factor) and group (repeated
measure) as random effects (Sokal and Rohlf, 1995). Samples
were further divided into the dawn, day, dusk, and night periods
according to the methods described above for individual and
pair trials, and snap rates (in snaps per hour) were calculated for
each sample day.

Results
Field soundscape observations

There was a strong positive correlation between water
temperature and snap rate for all three deployments (Figure 2;
r=0.71-0.88), with variation in snap rates generally tracking
closely with water temperature changes throughout the three
deployments. Correspondingly, the recorded sound pressure
levels were elevated at higher water temperatures (Figure 2,
right panel). Examination of the time-series showed that snap
rate fluctuations closely followed short-term (multi-day) water
temperature variation of 1-2 degrees, with instances of two- to
three-fold fluctuations in snap rates occurring when temperature
increased and decreased within a 5-7 day period. Daily rhythms
in snap rates did not follow trends of within-day temperature
variation, however, as snapping activity is most closely related to
crepuscular light cycles at the daily scale (Bohnenstiehl et al,
2016; Lillis and Mooney, 2018). Patterns in snap rates were most
decoupled from water temperature in early Spring (Figure 2A,
March) and late Fall (Figure 2C, November), when spikes in
snap rates occurred without temperature increases.

Laboratory experiments

Water temperature had a significant effect on snap rates for
shrimp across all experiments (Figures 3, 4), for shrimp maintained
in solitary, pair, and group configurations (Figure 4). Shrimp snap
rates were consistently higher at higher temperatures (Figures 3, 4),
but the strength of this pattern varied by social condition and diel
period (Figures 4, 5).

Experiment 1 showed that single shrimps maintained solitarily
generated, on average, over three times more snaps per day at 25°C
than at 10°C (Figure 3). Variability in snap emission rates among
replicate shrimp was also highest within the elevated temperature
treatments (Figure 3). In Experiment 2, in which the range of
temperature was expanded to 30 °C and shrimp responses tested
under different behavioral conditions, water temperature
continued to show a substantial influence on snap rate for
shrimp maintained both individually and in pairs (Figures 4A, B).
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Species was not found to be a significant factor for snap rate, in
concordance with previous studies using these dosely related
species (Lillis et al, 2017), and therefore these data are presented
as pooled results for the two species. Non-parametric Welch’s
ANOVAs indicated a significant effect of temperature treatment
on snap rates (solitary: F1 55 - 30.5, p<0.0001, n=20 per treatment;
pairs: Fao6 - 23.4, p<.0001, n=18 per treatment). For shrimp held
solitarily, snap rates were significantly lower at 10°C, with only one
solitary shrimp producing a single snap detection compared to a
median of 31 snaps da]f1 for shrimp at 30°C (Figure 4A). While all
pairs of shrimp did exhibit non-zero snap rates, at the 10 °C
temperature treatment median snap rates were more than 7-fold
lower than for pairs at 30°C (Figure 4B). Pair snap rate also showed
high variability at both mid-range and high temperatures. In
Experiment 3, where mixed-sex groups of 10 shrimp were held in
mesocosms, median snap detections were 21, 140, and 510 snaps/

10.3389/fmars.2022.960881

day in the 10, 20, and 30°C treatments, respectively (Figure 4C).
Log-transformed data for the groups of shrimp met the
assumptions for an ANOVA, therefore, a linear mixed model
(repeated measures) was applied to control for random effects of
group and trial number (repeated measure and randomized block
respectively). This test found that there was a statistically significant
effect of temperature on group snap count (F,; = 96.8, p<0001).
Examining snap production throughout the diel cycle
revealed that shrimp acoustic output varied by time of day,
but this pattern was modulated by temperature and behavioral
context (Figure 5). Dawn and dusk periods are the time of day
when snapping shrimp populations are observed to be most
acoustically active in soundscape recordings (Radford et al,
2008; Radford et al.,2010; Lillis et al., 2017; Lillis and Mooney
2018). For all laboratory trials, within all treatments, snap rate
was highest during dusk periods (Figure 5), except for individual
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Time series and correlations of snap rates and water temperatures for 2012 deployment periods (A) 1, (B) 2, and (C) 3. Correlation plots show
snap rate vs. water temperature with color indicating the measured root-mean-square sound pressure levels for each sample. Red lines are
least squares fits to the data, and the correlation coefficients and slopes are displayed on each panel.
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Effect of ternperature on sound production by individual
snapping shrimp Alpheus heterochaelis (n = 6 per treatment) in
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lines), 50'" percentile values (box outline), and 90' percentile
values (whiskers) of snap rate (per day). Fitting a linear regression
model of these data showed a significant effect of temperature
(P = 0.32, Fy 3 = 9.28, p<0.01).

shrimp, which did not snap under low temperatures (Figure 5A).
It is evident that crepuscular snapping primarily drives the
overall influence of temperature on snap rate, particularly
when shrimp are held together as male-female pairs or mixed

sex groups.

Discussion

The results of controlled laboratory experiments show that
changes in water temperature strongly drive the sound production
by snapping shrimp across different behavioral contexts.
Combined with close examination of field measurements of snap
rates, these investigations of shrimp snapping behavior in relation
to water temperature indicate that warmer temperatures increase
snap rates of snapping shrimp, most markedly in a mesocosm
group setting that most closely approximate natural conditions.
These findings support the hypothesis that correlations between
snap rates and water temperature apparent in field data are
primarily related to the effect of temperature on shrimp
physiology and behavior, rather than a result of seasonality or
changes in shrimp population size. Further, the field-based
observations confirm that elevated snapping activity in response
to warming results in substantial increases in environmental sound
pressure levels (e.g., up to 15 dB, or 6-fold, increase over a three-
week time scale).

Crustaceans are known to have sensitive thermoreception
capabilities, with a thermosensitivity range of 0.2-2°C, and
demonstrate behavioral modification in response to local
temperature changes (Lagerspetz and Vainio, 2006). Many
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shallow water crustaceans have a broad temperature survival
tolerance; however, being ectothermic animals their activities are
strongly driven by water temperature (Withers, 1992). Warming
can increase agitation and antagonistic encounters (Hoffman
etal., 1975; Van Der Meeren, 1993; Souza et al,, 2019), as well as
feeding rate and bioturbative activity, up to thermal optima
(Pearson et al, 2018; Pillay, 2019). Given that Alpheid snaps are
primarily used in territorial or agonistic displays, as well as in
feeding and colony communication (Duffy et al, 2002; Lillis
etal, 2017), the increased snap rates at the highest temperatures
observed in our experiments likely resulted from an increase in a
combination of these behaviors dependent on the social context.
In isolation, shrimp rarely snapped when held at the lowest
temperature (10°C), whereas in paired and group settings
snapping was observed at higher relative rates compared to the
mid- and high-temperature treatments, suggesting that even at
low temperatures that may metabolically restrict most activity,
the intraspecific social function of snapping is important. This
elevation in snapping, regardless of temperature, is seen
especially at dusk, when snapping shrimp are known to peak
in their sound production. Interestingly, when shrimp were held
in opposite-sex pairs there was no difference between the snap
rates under the mid- and high-temperature treatments, possibly
a result of the cdose quarters they experienced relative to the
mesocosm tanks, in which shrimp had more space to avoid
interaction or confrontation. This implies that population
density, social context, and resource availability could
influence the relationship between temperature and snapping
shrimp sound production and should be considered in future
predictions of climate-mediated shifts in shrimp-
dominated soundscapes.

The experiments described here were relatively short-term
(days to weeks), and the long-term effects of elevated
temperatures on shrimp acoustic activity, and consequently to
the overall soundscape, need to be measured. It is worthy to note
that shrimp in Experiments 1 and 2 were exposed to temperature
changes more rapidly than are likely to occur in nature and trials
to measure snap rates were short (24-48 h); experiments using
mesocosm groups better represent naturalistic effects of
temperature changes over days. Yet, it is possible that these
animals may not be able to maintain higher snapping rates
during longer heatwaves, or may adjust to longer-term climate
patterns, and how seawater temperature increases may influence
Alpheid population dynamics, and associated soundscape
patterns introduces complexity to these predictions. In
addition, other physical variables must be included in a
predictive framework, since snap rates are known to be
affected by pH (Rossi et al., 2016), as well as patterns in wind
speed, light, dissolved oxygen (Jung et al, 2012; Bohnenstiehl
et al, 2016) and current speed (Lee et al, 2021). Indeed, the
drivers of snapping shrimp sound production patterns are likely
to vary dependent on local ecological (e.g., species composition,
life history) and physical (e.g., depth, temperature variation,
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Effect of temperature on sound production by snapping shrimp in different social environments: (A) solitary, (B) pairs, and (C) groups of ten. Box
plots show median values (solid horizontal lines), 50'" percentile values (box outline), and 90" percentile values (whiskers) of snap rate (per day)

light) conditions. Most investigations of snapping patterns in
relation to physical variables are relatively short-term (e.g., Lee
et al, 2021 examined snapping over 5 days in a 100-m deep,
temperature-stable habitat) and do not enable predictions of
how temperature may alter the sound production. Thus, further
investigation is needed to understand the relative importance of
physical drivers on soundscape variation in snapping-shrimp
dominated seas. Interacting direct and indirect effects of climate
changes and snapping shrimp habitat degradation (e.g., coral
bleaching, sponge host die-off) on soundscape variation should
also be considered (Butler et al, 2016; Butler et al., 2017),
particularly since snapping sounds strongly influence
commonly used passive acoustic monitoring metrics of habitat
health (Bohnenstiehl et al., 2018; Elise et al., 2019) and have been
suggested as indicators of “healthy” soundscapes or habitat
restoration success (Butler et al., 2021; Lamont et al.,, 2022).
Snapping shrimp signals are biological sounds of particularly
high intensity and broadband nature, extending from a few Hz
to well beyond 250 kHz (Au and Banks, 1998), perhaps the
broadest frequency range of any biological sound. Therefore,
changes in the snap rate are particularly impactful on the
baseline sound levels and frequency content of a habitat’s
soundscape. It follows that climate change could have a
profound impact on coastal marine soundscapes via snapping
shrimp responses to warming, particularly in temperate and sub-
tropical hotspots for climate-driven change in biological systems
(Rius etal, 2014; Verges et al., 2014; Garcia Molinos et al., 2016).
Coastal and estuarine benthic communities from tropical to
temperate seas, across which established snapping shrimp
populations are common, are predicted to experience further
changes in temperature regime and extreme temperature events
(Ummenhofer and Meehl, 2017). Lower temperatures have long
been considered one of the limits to snapping shrimp geographic
distributions (Knowlton, 1980), with a lower threshold at 10-11°C,
though populations are known to occur in areas that drop below
this, possibly due to favorable local conditions during critical life
history phases (e.g., larval development, spawning) (Mathews, 2007).
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Based on the experimental evidence presented herein, not only is
there the potential for substantially increased snap rates and
corresponding broadband noise levels across the current
geographical distribution of snapping shrimp, but also for
introducing shrimp sound to higher latitude regions where it does
not currently exist.

How temperature-induced alterations in soundscape
biophony might affect other taxa or the communities which
share habitats with snapping shrimp is an open question, but itis
well-established that increasing human-produced noise can
reduce communication space, mask biologically important
signals, increase stress, and cause injuries, auditory and
otherwise (e.g., Branstetter et al, 2013; de Soto et al, 2013;
Jones et al., 2020; Mooney et al., 2020; Jones 2021). It remains to
be explored whether the dominating contribution of snapping
shrimp to soundscapes could induce similar deleterious effects
when the sound intensity is increased; however, given that their
broadband sounds form the background noise floor, patterns of
snapping shrimp acoustic activity are relevant to all sound-
receptive and sound-producing organisms living in these
habitats. Indeed, at least in reef environments, snapping
shrimp signals, typically centered between 2-7 kHz, may have
played in role in the evolution of fish calls being confined to a
relatively narrow range of low frequencies. Moreover, they
contribute across all frequencies to create overall noisy
conditions, known to influence fish call amplitude and rate,
with fishes compensating to overcome background noise (Holt
and Johnston, 2014). This suggests that a temperature-mediated
change in snapping shrimp sound production will affect the
acoustic communication space of organisms in their
communities. While few studies have investigated community-
scale acoustic interactions, current evidence underscores the
broad ecoacoustic influence of snapping signals. For example,
these sounds can impede fish acoustic communication (Thorson
and Fine, 2002), influence larval settlement (Simpson et al,
2008), a key component to reef resiliency, and may play a role in
coastal orientation and navigation of nearshore cetacean
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migrations (Allen, 2013). Certainly, given that snapping shrimp

sounds are more pervasive than any other acoustic signal in any

A Individual shrimp other ecosystem, and the potential for substantial soundscape

3 alteration via climate change effects on snapping shrimp activity

is now clear, there is a need to better understand their
community-level impacts in coastal marine systems.

Researchers have recently been sounding the alarm regarding
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increasing anthropogenic noise in the sea and calling for it to be
included in assessments of human impacts on marine ecosystems
(Duarte et al, 2021), however, dimate change is likely to have
equally important not-so-silent impacts on soundscapes in the
anthropocene through the modification of the behavior and
"o d physiology of dominant sound producers like snapping shrimp.
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be strongly thermally regulated, yet has been relatively
understudied with respect to its influence on its ecological
community. More broadly, there is a growing understanding of
the importance of soundscape cues in facilitating ecosystem-level
processes and patterns in the sea; our findings highlight the need
to consider the complex biotic and abiotic dependencies
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underpinning soundscape variation, especially from a global
change perspective.
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