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Abstract—This paper considers a friendly interferer allocating
jamming power to eavesdropping channels to increase the level of
secrecy of a wireless network. The friendly interferer has access to
limited power, while the eavesdropper may not have the ability
to attack all channels simultaneously. When all channels used
for secret communication are under the threat of eavesdropping
attacks, the optimal power allocation policy results from solving
a convex optimization problem. In this case, the optimal policy
is unique and can be obtained via a water-filling scheme. When
the eavesdropper can not attack all channels, the eavesdropper
should behave strategically and may select the targets probabilis-
tically. We propose a non-zero-sum game that helps the friendly
interferer predict and concentrate on the targets selected by
the eavesdropper. Under certain conditions, we prove that there
exists a unique Nash equilibrium (NE) strategy pair, which has
a threshold type structure. We provide conditions under which
the eavesdropper’s equilibrium strategy is deterministic. We
devise a strategy iteration algorithm to compute an equilibrium
power allocation strategy. We present examples showing that the
game-theoretic power allocation strategy performs better than
the conservative power allocation strategy that assumes every
channel to be under attack.

Index Terms—Physical layer security, cooperative jamming,
non-zero sum game, power control.

I. INTRODUCTION

EAVESDROPPING attacks are major threats to wireless
communication networks due to their multi-cast nature.

The pioneering work of Shannon [1], Wyner [2], Csiszar
and Korner [3], Leung-Yan-Cheong and Hellman [4] show
that secrecy of wireless communication can be guaranteed
through proper coding techniques if the legitimate commu-
nication channel’s capacity is greater than the eavesdropper
channel’s capacity. The difference between the communication
and eavesdropping channel capacities is then defined as the
Secrecy Capacity, which is the primary metric to evaluate a
wireless channel’s secrecy level.

Instead of relying only on encryption and randomness in
coding schemes, Physical Layer Security [5]–[7] has emerged
as a viable, information theoretic approach to counter eaves-
dropping attacks by finding the optimal transmission signal
configurations at the physical layer. A major physical layer
security approach for a network of parallel channels is opti-
mizing transmission power allocation to increase the network’s
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secrecy capacity. This technology can achieve security even
without the need for encryption/decryption [8].

Realizing that intentional interference or jamming may
decrease the eavesdroppers’ capabilities [9]–[12], the use of
friendly jammers has been introduced as a promising ap-
proach for improving the secrecy capacity in physical layer
security [13]–[16]. Tekin and Yener [15], [16] coin the term
cooperative jamming for the proposed approach.

In this paper, we consider the problem of allocating friendly
jamming power to a network of parallel channels in order to
increase the total secrecy capacity of the network. Existing
literature usually adopts the conservative assumption that all
channels are attacked simultaneously by the eavesdropper [17].
However, the eavesdropper may have limited capability to
attack a number of channels that must be chosen strategically,
thus necessitating the inclusion of the eavesdropper as a
strategic participant in a game-theoretic setting. We present
conditions under which the best cooperative jamming power
allocation strategy is unique and develop algorithms that
converge to the best strategy.

A. Related Research

The effect of interference on eavesdroppers has inspired
investigations into using intentionally generated interference
signals to decrease the capacity of eavesdropping channels
(see [13], [14]). Tekin and Yener [15], [16] study a Gaus-
sian wireless wire-tap network consisting of multiple sender-
receiver links and an eavesdropper. The authors show that
the network’s secrecy capacity could be increased if some
senders choose to interfere the eavesdropper. Tang et al. [18],
[19] analyze the maximum achievable secrecy rate when an
independent friendly interferer is employed to jam passive
eavesdroppers. Zhang et al. [20] consider the joint problem of
subcarrier pairing and power allocation also with cooperative
jamming. The authors assume the proportion of power used for
cooperative jamming is fixed, moreover the eavesdropper is not
strategic. A more comprehensive survey of the development
of cooperative jamming can be found in [21].

Physical layer security, including cooperative jamming, re-
lies on efficient power control allocation due to battery and
power technology limitations in their current state, especially
for networks of parallel channels. Wang et al. [8] investigate
transmission power control and sub-carrier assignment under
a power constraint over an OFDMA network between a
single base station and two types of receivers maintaining
the long term secret transmission rate for secure users, while
maximizing the expected overall achievable information rate
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for normal users. Karachontzitis et al. [22] study the secrecy
performance of such an OFDMA network under the attack of
a passive eavesdropper, while focusing on max-min fairness
criteria over users secrecy rate as the objective. They formulate
a mixed integer nonlinear program to find the base station’s
best action. A brief review of resource allocation over parallel
channels can be found in chapter 8 of [6].

Resource allocation, especially power allocation under con-
straints, is also a key problem for operations of cooperative
jamming over complex wireless networks. Dong et al. [23]
investigate the power allocation problem between a trans-
mitter and a friendly interferer, who has multiple antennas.
Rabbachin et al. [24] consider a wireless network assisted
by multiple friendly interferers. Hu et al. [25] discuss a
situation in which a transmitter embeds artificial noise in the
transmission signal while aided by a friendly interferer at the
same time. The authors solve for the transmitter’s optimal
power level to generate artificial noise in order to maximize
the secrecy rate under a bounded secrecy outage probability.
Zhang et al. [17] consider an orthogonal frequency-division
multiplexing (OFDM) network with N mutually independent
sub-carriers, where a friendly interferer first harvests wireless
charging power from the transmitter and then jams a passive
eavesdropper. Instead of assuming that a central controller
manages transmitters and friendly interferers, game-theoretic
models have been adopted to study the interaction between
transmitters and friendly interferers. Han et al [26] investigate
a Stackelberg pricing game in which multiple friendly interfer-
ers bargain with the users of a single wireless communication
network. Wang et al. [27] propose another Stackelberg pricing
game for a multi-user OFDM network in which the users bid
for cooperative jamming power for their own sub-channels.

Game theory has been widely adopted for solving power
control problems against intelligent adversaries over wireless
networks. Altman et al. [28] obtain a base station’s optimal
power allocation strategy against an intelligent jammer. Yang
et al. [29] construct an optimal transmission power allocation
plan for a multi-channel wireless network using a Stackelberg
game, in which a smart jammer can adjust the jamming
strategy based on observed transmission configuration. Game-
theoretic power control and resource allocation algorithms
are also crucial for anti-eavesdropping physical layer security
methods to maximize the secrecy capacity of wireless net-
works. Gabalou and Maham [30] propose a zero-sum game
for a secure OFDMA system under the attack of a hostile
jammer, in which the base station needs to guarantee no
user can overhear transmissions on sub-carriers used by other
users. Yüksel et al. [31] investigate a rate allocation game
between a sender and a hostile jammer who cooperates with
a passive eavesdropper. Recently, Garnaev and Trappe [32]
study a power control game with a transmitter facing a
strategic jammer and a passive eavesdropper simultaneously.
Game theoretic approaches have been used to find optimal
transmission power against other type of adversaries. Garnaev
and Trappe [33] introduce a zero-sum power allocation game
for a transmitter working against nature. The authors present
another power control game against a strategic eavesdropper
that can eavesdrop only on one of multiple parallel channels in

[34]. It is shown that Nash Equilibria of such games exhibit
the water-filling principle [35], [36].

Few researchers have considered the eavesdropper as a
strategic participant in the literature of cooperative jamming
until recently. Garnaev et al. [37] describe the interaction
between a friendly interferer and an eavesdropper on a multi-
channel wireless network using a zero-sum game, in which
both players can only select one channel as target. Xu and
Baykal-Gürsoy [38] is the first to study the power control
problem for a friendly interferer on a multi-channel network
against a strategic eavesdropper who can only attack a single
channel. This paper completes the discussion in [38] by in-
cluding the full representation of the Nash equilibrium against
a more capable eavesdropper who can attack multiple channels
simultaneously. We also relax our previous assumptions on
the value of channel state information, and still take into
consideration the detrimental effect of cooperative jamming
on legitimate communication.

B. Contributions

The contributions of this paper can be summarized as
follows:

1) We present a game-theoretic model for a friendly inter-
ferer to decide on allocating cooperative jamming power
over a network of parallel channels. In contrast to the
most prior work, the strategic behavior of eavesdroppers
is taken into consideration.

2) As opposed to the prior research that assumes a strategic
eavesdropper who can attack only one channel, we extend
the analysis to multi-channel attack situations.

3) We show that there always exists a unique Nash Equilib-
rium, and the friendly interferer can find the equilibrium
strategy pair through a numerical search algorithm.

4) We demonstrate that the detrimental effect of cooperative
jamming plays an important role in the problem formu-
lation.

The organization of the paper is as follows: Section II
sets up the background of the problem. Section III is the
main part of the paper, which reveals the Nash Equilibrium’s
water-filling structure in a cooperative jamming game with
an eavesdropper that can attack n of N channels. Different
methods to find the Nash Equilibrium are presented depending
on the value of n. Section IV demonstrates numerical exam-
ples. Section V summarizes our results and discusses future
research.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a wireless communication network consisting of
N parallel legitimate source-receiver channels. This paper
adopts a block-based quasi-static channel model [8], [17] by
assuming the channel state information (CSI) remain constant
over a transmission block of length B, and may change from
one block to another. A friendly interferer (Ian) can assign Ji
out of J amount of power to interfere a potential eavesdropper
who tries to attack channel i. An eavesdropper (Eve) can
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Fig. 1: Cooperative jamming (CJ) over parallel channels

attack n out of N channels simultaneously. Such a network of
parallel channels can be an OFDM system of N orthogonal
sub-carriers, where each sub-carrier is a Gaussian fading
channel under potential attack of a wireless eavesdropping
channel [17].

For each legitimate source-receiver channel i ∈ {1, ..., N},
the communication capacity that can be used to transmit
confidential messages under cooperative jamming is

CLi(Ji) = ln
(
1 +

gLi Ti
σ2 + hLi Ji

)
,

where Ti is a fixed transmission power applied to channel
i. Note that perfect interference cancellation at the legitimate
channel i, i.e., hLi = 0, is a special case. Ideally, every channel
i should have hLi = 0, which might be achieved if Ian can
share the jamming signals generators and random seed chosen
at the beginning of each transmission block with Bob [39]. In
general, cooperative jamming signals may not be canceled out
at evert channel [17], [18]. This paper studies the general case
where hLi ≥ 0, so legitimate source-receiver channels may
be degraded by cooperative jamming. It will be shown that
the value of hLi s significantly affect the friendly interferer’s
decisions.

Following the Gaussian wire-tap model [4], the eavesdrop-
per can intercept the information transmitted over channel i
through an eavesdropping channel with capacity

CEi(Ji) = ln
(
1 +

gEi Ti
σ2 + hEi Ji

)
.

Without the threat of an eavesdropping attack, Alice and Bob
can utilize channel i’s full communication capacity CLi(Ji) to
transmit messages securely. Meanwhile, under an eavesdrop-
ping attack, channel i’s capacity that can be used to transmit
secret messages is defined as its secrecy capacity CSi(Ji) (see
[2], [4], [24], [26]), which is

CSi(Ji) = [CLi(Ji)− CEi(Ji)]
+
,

where [x]
+ := max {x, 0} .

Each quasi-static transmission block consists of the follow-
ing 4 stages.

1. CSI estimation and exchanging. Alice, Bob and Ian will
first observe the instantaneous CSI gLi s and hLi s. This pa-
per considers the scenario in which the instantaneous CSI
of intended receiver, gLi s and hLi s, are perfectly known

(see, e.g., [17], [23], [40], [41]). Because the eavesdrop-
per is typically in passive listening mode, only statistical
CSIs of the eavesdropping channels are available [42]–
[45]. Deep-learning based methods are currently being
developed for various scenarios to achieve more accuracy
in CSI estimation [46]–[48]. Here gEi s and hEi s may
denote gain estimates or may correspond to worst case
values. For the sake of simplicity, we assume gLi 6= gEi
and hLi 6= hEi .

2. Start of communication. Alice decides on transmission
power Ti for every channel i. In this paper, Alice adopt an
on-off transmission scheme [49] such that channel i with
gLi < gEi will not be used to exchange secret messages in
this block since the default secrecy capacity CSi(0) = 0.
Transmission power Tis will then be observed by Ian and
Eve.

3. Anti-eavesdropping cooperative jamming. Ian and the
Eve will make their decisions simultaneously. Ian needs
to decide the level of Ji for cooperative jamming to
enhance the secret communication over channel i. Hence,
a power allocation policy for the friendly interferer is
a vector J = (J1, ..., JN ) such that

∑N
i=1 Ji ≤ J .

Meanwhile, Eve decides on which channels to attack.
4. End of communication. Alice, Ian and Eve stop their

actions at the end of the transmission block.
The whole transmission block involves two-level decision-

making. In the first level, Alice acts as a leader, deciding on Tis
while anticipating the actions of Ian and Eve. In the second
level, Ian and Eve need to decide on power allocation and
attack actions, respectively. This paper focuses on the second
level problem, that is, to find the optimal cooperative jamming
power allocation strategies for the friendly interferer at stage
3, which lays the foundation for the source to decide how to
cooperate with the friendly interferer back in the first level
problem.

Remark. For channel i with gLi < gEi , although CSi(0) = 0, it
may still be possible to achieve positive secrecy capacity under
friendly jamming if also hLi < hEi and gLi

gEi
>

hLi
hEi

. However,

positive secrecy capacity is possible only if Ji > Ĵi for
some lower bound Ĵi. Besides, the friendly interferer may not
have enough power to satisfy these lower bound constraints.
Deciding which channels to jam among such channels against
an eavesdropper who can simultaneously attack every channel
leads to mixed integer non-linear programming (MINLP)
problems that are nonconvex. Solving such MINLP is beyond
the scope of this paper. Thus, we impose the above on-off
transmission scheme for senders.

B. Problem Formulation

Our objective is to help the friendly interferer find a power
allocation strategy J at stage 3 to maximize the expected
transmission rate that can be used for secret communication
over the whole network, assuming the eavesdropper will attack
strategically. Let I = {i|gLi > gEi , Ti > 0, i = 1, ..., N}
be the set of channels used for sending secret messages in a
transmission block. Clearly, Ji = 0, ∀i /∈ I.
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If the number of channels in I, that is the cardinality of
I, denoted as |I|, satisfies |I| ≤ n, then the eavesdropper
can simply listen on all ongoing secret communications si-
multaneously. Thus, the friendly interferer needs to solve the
following optimization problem,

max
J

uS(J) =
∑
i∈I

CSi(Ji) =
∑
i∈I

[CLi(Ji)− CEi(Ji)]
+

s.t.
∑
i∈I

Ji ≤ J,

Ji ≥ 0, ∀i ∈ I,
Ji = 0, ∀i /∈ I,

(1)

where uS(J) is the total secrecy capacity of the network. Note
that CSi(Ji) may not be a concave function even though both
CLi(Ji) and CEi(Ji) are decreasing and concave, especially if
cooperative jamming decreases CLi(Ji) faster than CEi(Ji).

On the other hand, if |I| > n, then the eavesdropper needs
to pick the targets to attack intelligently. This paper considers
a scenario in which the eavesdropper probabilistically selects
targets in order to maximize the expected total achievable
rate for eavesdropping over all channels being used for secret
communication. Let pi represent the probability that channel i
is targeted by the eavesdropper. Note that, the eavesdropper
will only target channel i if it is being used for secret
communication in the current block, i.e., i ∈ I. Hence, an
attack policy for the eavesdropper is a vector p = (p1, ..., pN )
such that: 1) pi = 0, ∀i /∈ I; 2) 0 ≤ pi ≤ 1, ∀i ∈ I; and 3)∑
i∈I pi = n. Let REi be the random variable representing

the achievable rate for eavesdropping over channel i such that

REi =

{
CEi(Ji), with probability pi,
0, with probability 1− pi.

Let RSi be the random variable representing the achievable
rate for secret transmissions over channel i such that

RSi =

{
CSi(Ji), with probability pi,
CLi(Ji), with probability 1− pi.

Therefore, given a pair of power allocation policy J and attack
policy p, the eavesdropper’s payoff is,

uE(J ,p) = E

[∑
i∈I

REi

]
=
∑
i∈I

piCEi(Ji), (2)

and the friendly interferer’s payoff is the expected total achiev-
able rate for secret communication, that is,

uS(J ,p) = E

[∑
i∈I

RSi

]
=
∑
i∈I

[(1− pi)CLi(Ji) + piCSi(Ji)] .

(3)

From another point of view, uS(J ,p) quantifies the average
portion of transmission rate that is secured if Alice simply uses
CLi(Ji) as the default transmission rate for channel i ∈ I.

Since it is difficult for the friendly interferer and the eaves-
dropper to know each other’s decision ahead of time, this paper
considers that the friendly interferer and the eavesdropper are

playing a Nash game. That is, they aim to find the best power
allocation policy J∗ and best attack policy p∗ such that

uS(J∗,p∗) ≥ uS(J ,p∗), ∀J ∈ J , (4)

uE(J∗,p∗) ≥ uE(J∗,p), ∀p ∈ P , (5)

where J and P are the space of all possible policies of the
friendly interferer and the eavesdropper, respectively.

III. SOLUTIONS OF THE POWER ALLOCATION POLICY

This section discusses the optimal power allocation policy
J∗ for cooperative jamming at stage 3 of a transmission block.
The friendly interferer first comes up with the set of channels I
to be enhanced, and then solves one of the following problems
depending on the value of |I|.

A. When |I| ≤ n
In this case, J∗ is the solution to optimization problem (1).

Whether it is beneficial to enhance channel i ∈ I is related
to how serious the communication signals sent to Bob over
channel i will suffer from cooperative jamming, that is, the
instantaneous value of hLi .

If hLi > hEi , Bob suffers more from the cooperative
jamming signal than Eve over channel i. The following lemma
provides a formal proof for the intuitive conclusion that not
interfering channel i is the best defense policy in this situation.

Lemma 1. For i ∈ I , if hLi > hEi , then CSi(0) > 0 and
CSi(0) > CSi(Ji), ∀Ji > 0.

Proof. Notice gLi > gEi for i ∈ I, it follows that CSi(0) =
CLi(0)− CEi(0) > 0 by definition.

Given hLi > hEi , assume there exists Ji > 0 such that
CSi(0) ≤ CSi(Ji). It follows that CSi(Ji) > 0. Therefore,

exp
(
CSi(Ji)

)
≥ exp

(
CSi(0)

)
,

⇒
(

1+
gLi Ti

σ2+hL
i
Ji

)
/
(

1+
gEi Ti

σ2+hE
i
Ji

)
≥

(
1+

gLi Ti

σ2

)
/
(

1+
gEi Ti

σ2

)
,

⇒
(

1+
gEi Ti

σ2

)
/
(

1+
gEi Ti

σ2+hE
i
Ji

)
≥

(
1+

gLi Ti

σ2

)
/
(

1+
gLi Ti

σ2+hL
i
Ji

)
,

⇒
1 +

gEi Ti
σ2

1 +
gEi Ti

σ2+hLi Ji

>
1 +

gLi Ti
σ2

1 +
gLi Ti

σ2+hLi Ji

, given hLi > hEi ,

⇒ σ2 + gEi Ti
σ2 + hLi Ji + gEi Ti

>
σ2 + gLi Ti

σ2 + hLi Ji + gLi Ti
,

which is impossible when gLi > gEi . So the assumption can
not be true.

Hence, J∗i = 0 if hLi > hEi , ∀i ∈ I. The friendly
interferer should then consider only enhancing channels with
hLi < hEi . The next lemma shows that the objective function of
optimization problem (1) can now be simplified by dropping
[ ]+ in CSi(Ji), that is CSi(Ji) = CLi(Ji) − CEi(Ji) if
hLi < hEi , ∀i ∈ I.

Lemma 2. For i ∈ I, if hLi < hEi , then CSi(Ji) > 0, ∀Ji > 0.
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Proof. It must be true that gLi Ti
σ2+hLi Ji

>
gEi Ti

σ2+hEi Ji
, ∀Ji > 0,

given gLi > gEi and hLi < hEi . It follows that CLi(Ji) >
CEi(Ji), ∀Ji > 0.

Let I+ = {i|hLi < hEi , i ∈ I} be the subset of channels
to be protected by friendly interferer, and let I− = I \ I+.
Then the objective function of optimization problem (1) can
be reduced to

uS(J) =
∑
i∈I+

CSi(Ji) +
∑
i∈I−

CSi(0)

=
∑
i∈I+

[CLi(Ji)− CEi(Ji)] +
∑
i∈I−

CSi(0).

Let

ci(Ji) :=
d

dJi
CSi(Ji) =

d

dJi
CLi(Ji)−

d

dJi
CEi(Ji),

where

d

dJi
CLi(Ji) =

−gLi hLi Ti
(gLi Ti + σ2 + hLi Ji)(σ

2 + hLi Ji)
,

d

dJi
CEi(Ji) =

−gEi hEi Ti
(gEi Ti + σ2 + hEi Ji)(σ

2 + hEi Ji)
.

Clearly, if hLi = 0, then i ∈ I+, moreover ci(Ji) > 0 and
decreasing w.r.t. Ji ≥ 0. Thus CSi(Ji) is increasing and
concave w.r.t. Ji ≥ 0.

If 0 < hLi < hEi , then CSi(Ji) has the following proper-
ties [38]:
• CSi(Ji) is unimodal w.r.t. Ji ∈ [0,+∞), and there exists

a unique J̄i ≥ 0 such that ci(J̄i) = 0,
• CSi(Ji) is increasing and concave w.r.t. Ji ∈ [0, J̄i],

Define

J̄i =

+∞, if hLi = 0,

arg max
Ji≥0

CSi(Ji), if 0 < hLi < hEi ,
(6)

then CSi(Ji) = CLi(Ji) − CEi(Ji) is a positive, increasing
and concave function w.r.t. 0 ≤ Ji ≤ J̄i for every channel
i ∈ I+.
Remark. If hLi 6= 0, it is possible to have J̄i = 0 for i ∈ I+.
Note that, if ci(0) ≤ 0 for i ∈ I+, that is,

gLi h
L
i

gEi h
E
i

· g
E
i Ti + σ2

gLi Ti + σ2
≥ 1,

then CSi(Ji) is non-increasing w.r.t. Ji ≥ 0 and J̄i = 0
follows.

Therefore, optimization problem (1) can be reduced to

max
J

uS(J) =
∑
i∈I+

[CLi(Ji)− CEi(Ji)] +
∑
i∈I−

CSi(0)

s.t.
∑
i∈I+

Ji ≤ J,

0 ≤ Ji ≤ J̄i, ∀i ∈ I+,
Ji = 0, ∀i /∈ I+,

(7)

which is a convex optimization problem that can be solved
using existing convex optimization software [50]–[52]. More-
over, J∗ is subject to a water-filling structure. For the sake of

Algorithm 1 Finding J∗ when |I| ≤ n
Input: CSi(Ji) and ci(Ji) functions for all i ∈ I+; total

power: J ; and tolerance: ε ≤ 0.01.
Output: Optimal power allocation strategy J∗.

Initialization: Find M̄ . Define cM̄+1(0) = 0.
1: Compute J̄i as the solution of ci(Ji) = 0, ∀i = 1, ..., M̄ .
2: if (

∑M̄
i=1 J̄i < J) then

3: Let J∗i ← J̄i, ∀i = 1, ...,M.
4: else
5: for (m = 1 to M̄ ) do
6: w ← cm+1(0).
7: Compute J∗ as solution of (8).
8: if (

∑m
i=1 J

∗
i ≥ J − ε) then

9: break.
10: end if
11: end for
12: wUBA ← cm(0) and wLBA ← w.
13: while (|

∑m
i=1 J

∗
i − J | > ε) do

14: w ← 1
2 (wUBA + wLBA ).

15: Compute J∗ as solution of (8).
16: if (

∑m
i=1 J

∗
i − J < −ε) then

17: wUBA ← w.
18: else if (

∑m
i=1 J

∗
i − J > ε) then

19: wLBA ← w.
20: end if
21: end while
22: end if
23: return J∗.

simplicity, we adopt a common assumption that all wireless
channels are sorted (see, e.g., [37], [53]). For the case |I| ≤ n,
we assume the channels are sorted in the following way.

Assumption 1. Assume I+ = {1, ...,M} where M ≤ N , and
c1(0) > ... > cM (0).

This assumption can be satisfied by re-labeling all channels
in I+. Then, as shown in Theorem 1 of [38], there exists an
index m ≥ 0 and a real value w ≥ 0 such that{

c1(J∗1 ) = ... = cm(J∗m) = w,

J∗i = 0, ∀i > m.
(8)

Let M̄ be the largest positive integer such that M̄ ≤ M and
cM̄ (0) > 0. Clearly, m ≤ M̄ . Hence, we propose Algorithm
1 to find J∗ by performing bisection search on the value of
w.

B. When |I| > n

In this case, J∗ is a part of the Nash equilibrium (NE)
strategy pair (J∗,p∗) that satisfies NE conditions (4) and
(5), which are equivalent to optimization problems given
the adversary’s decision for the friendly interferer and the
eavesdropper, respectively.

Firstly, consider the NE condition (5) that describes the
eavesdropper’s strategic behaviors. Given a power allocation
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policy J∗, the eavesdropper’s best response p∗ is the solution
to the following optimization problem

max
p

uE(J∗,p) =
∑
i∈I

piCEi(J
∗
i )

s.t.
∑
i∈I

pi = n,

0 ≤ pi ≤ 1, ∀i ∈ I,
pi = 0, ∀i /∈ I,

(9)

which is a linear optimization problem, since uE(J∗,p) is
linear in p ∈ P and feasible region P is convex and compact.

Secondly, consider the NE condition (4) that describes the
optimal power allocation policy. Given an attack policy p∗,
the friendly interferer’s best response J∗ is the solution to the
following optimization problem

max
J

uS(J ,p∗) =
∑
i∈I

[(1− p∗i )CLi(Ji) + p∗iCSi(Ji)]

s.t.
∑
i∈I

Ji ≤ J,

Ji ≥ 0, ∀i ∈ I,
Ji = 0, ∀i /∈ I.

(10)

Still, we may have either hLi > hEi or hLi < hEi for i ∈ I.
Now define Gi(Ji|p∗i ) := (1 − p∗i )CLi(Ji) + p∗iCSi(Ji) as a
function of Ji. The next lemma shows that, if hLi > hEi for
a channel i ∈ I, then any power allocation strategy J with
Ji > 0 is dominated.

Lemma 3. ∀i ∈ I, if hLi > hEi , then Gi(0|p∗i ) > 0 and
Gi(0|p∗i ) > Gi(Ji|p∗i ), ∀Ji > 0.

Proof. Note that gLi > gEi , ∀i ∈ I , then CSi(0) > 0 follows.
Since CLi(0) > 0 by definition, so Gi(0|p∗i ) > 0.

Given gLi > gEi and hLi > hEi , CSi(0) > CSi(Ji), ∀Ji > 0
by lemma 1. Also, CLi(Ji) is strictly decreasing w.r.t. Ji ≥ 0,
so Gi(0|p∗i ) > Gi(Ji|p∗i ), ∀Ji > 0 follows.

Hence, the friendly defender should only consider to allo-
cate cooperative jamming power to channel i with hLi < hEi .
Still let I+ = {i|hLi < hEi , i ∈ I}, then CSi(Ji) > 0, ∀i ∈
I+, by lemma 2. It follows that,

Gi(Ji|p∗i ) = CLi(Ji)− p∗iCEi(Ji), ∀i ∈ I+.

Intuitively, when p∗i = 0, then Gi(Ji|p∗i ) is non-increasing
w.r.t. Ji ≥ 0, so the friendly interferer should not work on
that channel i ∈ I+. When p∗i > 0 and hLi = 0, similar to
CSi(Ji), Gi(Ji|p∗i ) has the following properties for a channel
i ∈ I+:
• Gi(Ji|p∗i ) > 0 w.r.t. Ji ∈ [0,+∞),
• Gi(Ji|p∗i ) is concave and increasing w.r.t. Ji ∈ [0,+∞).

When p∗i > 0 and 0 < hLi < hEi , Gi(Ji|p∗i ) has the following
properties ∀i ∈ I+:
• Gi(Ji|p∗i ) > 0 w.r.t. Ji ∈ [0,+∞),
• Gi(Ji|p∗i ) is a unimodal function w.r.t. Ji > 0, and there

exists a unique J̄i|p∗i ≥ 0 such that Gi(Ji|p∗i ) reaches its
maximum at Ji = J̄i|p∗i .

• Gi(Ji|p∗i ) is concave and increasing w.r.t. Ji ∈ [0, J̄i|p∗i ].

In summary, define

J̄i|p∗i =


0, if p∗i = 0,

+∞, if p∗i > 0 and hLi = 0,

arg max
Ji≥0

Gi(Ji|p∗i ), if p∗i > 0 and 0 < hLi < hEi ,

(11)

then Gi(Ji|p∗i ) is a positive, increasing and concave function
w.r.t. 0 ≤ Ji ≤ J̄i for every channel i ∈ I+.

Remark. When hLi > 0, it is possible that J̄i|p∗i = 0 for i ∈ I+

even though p∗i > 0, as long as p∗i is small enough. To see
this, let

ci(Ji|p∗i ) :=
∂Gi(Ji|p∗i )

∂Ji
=

d

dJi
CLi(Ji)− p∗i

d

dJi
CEi(Ji).

If ci(Ji|p∗i ) ≤ 0, that is,

p∗i ≤
gLi h

L
i

gEi h
E
i

· g
E
i Ti + σ2

gLi Ti + σ2
,

then ci(Ji|p∗i ) ≤ 0, ∀Ji ≥ 0. It follows that Gi(Ji|p∗i ) is non-
increasing w.r.t. Ji ≥ 0 and reaches its maximal at J̄i|p∗i = 0.

Clearly, J∗i = 0, ∀i ∈ I−, and CSi(0) > 0, ∀i ∈ I−, since
gLi > gEi . It follows that

Gi(0|p∗i ) = CLi(0)− p∗iCEi(0), ∀i ∈ I−.

Therefore, optimization problem (10) can be reduced to

max
J

uS(J ,p∗) =
∑
i∈I+

Gi(Ji|p∗i ) +
∑
i∈I−

Gi(0|p∗i )

=
∑
i∈I+

[CLi(Ji)− p∗iCEi(Ji)]

+
∑
i∈I−

[CLi(0)− p∗iCEi(0)]

s.t.
∑
i∈I+

Ji ≤ J,

0 ≤ Ji ≤ J̄i|p∗i , ∀i ∈ I+,
Ji = 0, ∀i /∈ I+,

(12)

which has a concave objective function as well as a convex
and compact feasible region. And optimization problem (9)
can be reduced to

max
p

uE(J∗,p) =
∑
i∈I+

piCEi(J
∗
i ) +

∑
i∈I−

piCEi(0)

s.t.
∑
i∈I

pi = n,

0 ≤ pi ≤ 1, ∀i ∈ I,
pi = 0, ∀i /∈ I,

(13)

which is still a linear optimization problem.
The NE strategy pair (J∗,p∗) are solutions to optimization

problems (12) and (13), respectively. Since uS(J ,p∗) is
concave in J , while uE(J∗,p) is linear in p in their respective
compact and convex feasible regions, the existence a unique
NE strategy pair (J∗,p∗) is guaranteed [54]. However, this
strategy pair cannot be obtained in closed form. Thus, in the
next subsections, we will state some properties of the NE in
order to design an algorithm that converges to the equilibrium.
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1) Structure of the NE: For a pair of NE strategies (J∗,p∗),
the KKT optimality conditions should hold. From the de-
fender’s perspective, optimal power allocation strategy J∗

should subject to KKT conditions for optimization problem
(12), i.e., there exists a Lagrange multiplier wD ≥ 0 such
that, for all i ∈ I+,

∂uS(J∗,p∗)

∂Ji
:=

d

dJi
CLi(J

∗
i )− p∗i

d

dJi
CEi(J

∗
i ){

= wD, if J∗i > 0,

≤ wD, if J∗i = 0,

(14)

and also wD(
∑
i∈I+ J

∗
i −J) = 0. Notice that, for all i ∈ I+,

d
dJi
CLi(Ji) < 0 and d

dJi
CEi(Ji) < 0, ∀Ji ≥ 0.

Similarly, the eavesdropper’s optimal attack strategy p∗

should subject to KKT conditions for optimization problem
(13), i.e., there exists a Lagrange multiplier wA ≥ 0 such
that, for all i ∈ I,

∂uE(J∗,p∗)

∂pi
= CEi(J

∗
i )


≥ wA, if p∗i = 1,

= wA, if 0 < p∗i < 1,

≤ wA, if p∗i = 0,

(15)

where CEi(J
∗
i ) = CEi(0), ∀i ∈ I−. Equations (15) shows

that the Lagrange multiplier wA works as a threshold value
such that the eavesdropper will only attack channels whose
eavesdropping capacity is greater than wA in an NE. For the
sake of simplicity, we adopt the following assumption for the
case |I| > n.

Assumption 2. Assume I = {1, ...,H} where H ≤ N and
CE1(0) > ... > CEH (0).

This assumption can be satisfied by re-labeling all channels
in I. Then, the eavesdropper will attack the first few channels
within set I in a NE, as shown by the next two lemmas. We
will refer to such a NE as threshold type strategy.

Lemma 4. For NE strategies (J∗,p∗), if there exists an index
j ∈ I such that p∗j = 0, then p∗i = 0, ∀i > j, i ∈ I.

Proof. Let j ∈ I such that p∗j = 0. If j ∈ I−, then J∗j = 0. If
j ∈ I+, then ∂uS(J∗,p∗)

∂Ji
= d

dJi
CLi(J

∗
i ) < 0 ≤ wD, so J∗j =

0 still hold by KKT condition (14). Therefore, CEj (J
∗
j ) =

CEj (0) always hold for such j ∈ I.
Since p∗j = 0, then CEj (J

∗
j ) ≤ wA by KKT condition

(15). It follows that wA ≥ CEj (J
∗
j ) = CEj (0) > CEi(0) >

CEi(J
∗
i ), ∀i > j, i ∈ I, since CEi(J

∗
i ) is decreasing w.r.t.

Ji ≥ 0. Hence, p∗i = 0, ∀i ≥ j, i ∈ I by equations (15).

Lemma 5. For NE strategies (J∗,p∗), if there exists an index
j ∈ I such that p∗j > 0, then p∗i > 0, ∀i < j, i ∈ I.

Proof. Let j ∈ I such that p∗j > 0. Assume there exists
another index i ∈ I such that i < j and p∗i = 0. Then by
lemma 4, it must be true that p∗j = 0, which is impossible.

Also notice that J∗i = 0 if p∗i = 0 since it is not necessary
to interfere a channel that is not attacked. Thus, by lemmas 4
and 5, there exists an index h such that n ≤ h ≤ H and{

p∗i > 0, ∀i = 1, ..., h,

p∗i = 0, J∗i = 0, ∀i > h,
(16)

which reveals the threshold structure of NE strategies (J∗,p∗).
2) Optimality gap: Note that, even though a threshold

type strategy pair satisfies equations (16), it may not satisfy
KKT conditions (14) and (15). This section proposes the
criteria, called the optimality gap, to measure how far a given
threshold type strategy pair is away from the NE. Hence, the
friendly interferer can verify the eavesdropper’s action in the
NE and find the best response. Furthermore, we proposed an
optimization model to find NE using the optimality gap.

As a starting point, a simple threshold type attack policy for
the eavesdropper is to attack channels 1 to n deterministically.
That is, let po = {po1, ..., poH} where poi = 1, ∀i ≤ n and
poi = 0, ∀i > n. We call po a pure threshold type attack
policy. Let Jo = {Jo1 , ..., JoH} be the best response of the
defender given p∗ = po by solving optimization problem (12).
The following theorem presents the condition under which the
pure threshold type attack policy po is an NE strategy.

Theorem 1. Given (Jo,po), let woA = min{CEi(Joi ), i =
1, ..., n}, then (Jo,po) is the unique NE strategy pair if woA ≥
CEn+1

(0).

Proof. Firstly, Jo satisfies defender’s KKT condition (14)
since it is the optimal solution to (12). Secondly, CEi(J

o
i ) ≥

woA, ∀poi = 1, i ∈ I by definition. If woA ≥ CEn+1
(0), then

woA ≥ CEi(0) = CEi(J
o
i ), ∀poi = 0, i ∈ I under Assumption

2. Thus, the attacker’s KKT condition (15) is also satisfied.

When the pure threshold type attack policy can not be a NE
strategy, then h > n, giving a mixed NE attack strategy p∗.
That is, ∃ i ≤ h such that p∗i < 1. Let pI = (pI

1, ..., p
I
N ) be

a mixed attack policy with threshold index h > n where 0 <
pI
i ≤ 1, ∀i ≤ h and pI

i = 0, ∀i > h. Let J I = {J I
1, ..., J

I
N}

be the best response of the defender given p∗ = pI by solving
optimization problem (12). The following theorem presents the
conditions for (J I,pI) to be a NE strategy pair.

Theorem 2. Given (J I,pI), let wI
A = min{CEi(J I

i ), i =
1, ..., h}, then (J I,pI) is the unique NE strategy pair if

A) CEi(J
I
i ) = wI

A when pI
i < 1, or CEi(J

I
i ) ≥ wI

A when
pI
i = 1, ∀i = 1, ..., h; and

B) wI
A ≥ CEh+1

(0) if h < H .

Proof. Firstly, J I satisfies defender’s KKT condition (14)
since it is the optimal solution to (12).

When Theorem 2’s condition (A) is satisfied by pI, then
the first two inequalities of attacker’s KKT condition (15) are
satisfied. For the last inequality of (15), if h = H , then @i ∈
I such that pI

i = 0; if h < H and wI
A ≥ CEh+1

(0), then
wI
A ≥ CEi(0) = CEi(J

I
i ), ∀pI

i = 0, i ∈ I under Assumption
2, hence the last inequality of (15) is also satisfied.

When an attack policy pI with threshold index h ≥ n does
not satisfy conditions (A) and (B) listed in Theorem 2, then
it is not a NE strategy, and there are two possible reasons:
R1) ∃ k ≤ h such that pI

k < 1 but CEk(J I
k) > wI

A, or
R2) h < H , but CEh+1

(0) > wI
A.

Note that (R1) and (R2) happen because the value of wI
A is

too small and some channels’ eavesdropping capacities under
J I are still too large, such as channel k in (R1), or channel
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h+1 in (R2). It implies that, those channels are actually better
targets for the eavesdropper under J I. Define

vI
A := max{CEi(J I

i ), i = 1, ...,H |pI
i < 1}

which is the largest marginal increase on the attacker’s payoff
if she has more attack resources. Let ε be a small positive real
number standing for computational tolerance, then (J I,pI)
are NE strategies when vI

A − wI
A ≤ ε since the eavesdropper

has no motivation to deviate from attack policy pI anymore.
We define ∆I = vI

A − wI
A as pI’s optimality gap to the NE.

Therefore, we can find a pair of NE strategies by solving
the following optimization problem,

min
pI

∆I = vIA − wI
A

s.t. pI is a threshold type attack policy,

JI is the solution to (12) given pI,

(17)

where vI
A and wI

A are decided by pI and J I as defined
before. By Theorem 2, ∆I = 0 is the optimal solution of
problem (17) when the NE is found. Notice that problem (17)
is a bi-level optimization problem since it contains an inner
level optimization problem (12) to solve for J I. Also, we do
not have an analytical form for the objective function w.r.t.
decision variable pI. Such a problem may be solved using
black-box optimization methods such as Genetic Algorithms
or Bayesian Optimization.

3) Strategy iteration algorithm to find NE: Unfortunately,
most black-box optimization methods do not guarantee con-
vergence to the global optimal solution, while it is critical
for the friendly interferer to have ∆I = 0 to make sure the
power allocation strategy J I founded is in NE. Remainder of
this section discusses the algorithm we propose to iterate on
the value of threshold type attack policies to reach NE, using
(Jo,po) as the initial solution.

Given pI, wI
A, vI

A and vI
A > wI

A, a rational eavesdropper
should attack the channel with eavesdropping capacity vI

A

more frequently, while paying less attention to channels with
eavesdropping capacity wI

A. The next theorem shows that, it
is possible to decrease the gap when a threshold type attack
policy changes by moving some attack resource from channel
j with CEj (J

I
j) = wI

A to a more vulnerable channel k with
CEk(J I

k) = vI
A.

Theorem 3. Given (J I,pI), wI
A, and vI

A where vI
A > wI

A,
then (J I,yI) is not a NE strategy pair consequently. Let j ≤ h
be an integer such that CEj (J

I
j) = wI

A, and k ≤ h + 1 be
another integer such that CEk(J I

k) = vI
A and pI

k < 1.
Let δ > 0 be a small real number, pII = (pII

1 , ..., p
II
N ) be a

new attack policy such that
pII
j = pI

j − δ,
pII
k = pI

k + δ,

pII
i = pI

i, ∀i 6= j, i 6= k,

and J II be a solution to optimization problem (7) given p∗ =
pII, then:
A) if J I

j > 0 and J I
k > 0,

∆II = CEk(J II
k )− CEj (J II

j ) < CEk(J I
k)− CEj (J I

j) = ∆I;

B) if J I
j = 0 or J I

k = 0,

∆II = CEk(J II
k )− CEj (J II

j ) ≤ CEk(J I
k)− CEj (J I

j) = ∆I.Proof. We provide a proof in the appendix.

Based on theorem 1 to 3, the basic idea of the proposed
strategy iteration algorithm is shown below:
• Step 1: Initialize attack strategy pI as po, and check po

via Theorem 1.
• Step 2: If pI is not in the NE, find updated attack policy
pII via Theorem 3. Let pI ← pII.

• Step 3: Check updated pI via Theorem 2. If it is not on
the NE, that is, vI

A − wI
A > ε, go to step 2.

Notice that δ works as the search step size in Theorem 3.
When δ is too large, the algorithm may run into cycling, such
as CEk(J II

k ) becoming too small while CEj (J
II
j ) becoming

too large after the update. On the other hand, if δ is too small,
the algorithm may take a long time to terminate. To speed
up the search process, we design an adaptive search step size
mechanism working in the following way:
• Step 1: Start with a given value of δ. Initialize an empty

set S to track every channel whose attack probability has
been increased by δ.

• Step 2: Run the algorithm. At each iteration, identify
channel indices j and k defined in Theorem 3. Check if
the selected channel j is in set S.

• Step 3: If j /∈ S, let S ← S ∪ {k}; if j ∈ S, let δ ← δ
2

and reset S ← ∅. Continue.
Once channel j ∈ S is selected for decreasing pI

j , it implies
that pI

j had been increased too much in the previous steps.
Thus, reducing δ by 50% will avoid cycling. Since the number
of channels is finite, it is expected that δ will gradually
decrease.

The detailed description of the strategy iteration algorithm
with adaptive search step size is summarized in Algorithm 2.
Remark. Algorithm 1 can be used to solve the optimization
problem given in eq. (12) with ci(Ji|p∗i ) replacing ci(Ji).

IV. NUMERICAL ILLUSTRATIONS

This section compares the following cooperative jamming
power control strategies for a network of parallel channels:
• Without CJ: Not sending cooperative jamming signals

to any channel.
• EP Algorithm: Assign cooperative jamming power

equally to every channel i ∈ I.
• OP Algorithm: Always assume n ≥ |I| and assign

cooperative jamming power by solving an optimization
problem with Algorithm 1.

• GT Algorithm: Follow the game-theoretic model and
assign cooperative jamming power with Algorithm 2.

Consider an OFDM wireless communication network consist-
ing of 25 sub-channels, that is, N = 25, with gLi = rL · pi−1

for i ∈ [1, 25] where rL ∈ (0, 1) and p ∈ (0, 1) corre-
spond to Rayleigh fading. Similarly, for the eavesdropper, let
gEi = rE ·qi−1 for i ∈ [1, 25] where rE ∈ (0, 1) and q ∈ (0, 1).
Let n = 10, i.e., the eavesdropper can attack 10 sub-channels
at the same time. Furthermore, set J = 1, σ2 = 0.1 and
Ti = 1, hEi = 0.5, ∀i = 1, ..., 25.
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Algorithm 2 Strategy iteration algorithm to find NE

Input: CLi(Ji) and CEi(Ji) functions for all i ∈ I; total
power: J ; attack capability: n; initial search step size: δ;
and tolerance: ε ≤ 0.01.

Output: NE power allocation strategy J∗.
Initialization: Define CEH+1

(0) = 0. Get po. Let S ← ∅.
1: Find Jo by solving problem (12) with p∗ = po.
2: woA ← min{CEi(Joi ), i = 1, ..., n}.
3: if (woA ≥ CEn+1

(0)) then
4: J∗ ← Jo.
5: else
6: Let wI

A ← woA, pI ← po, J I ← Jo.
7: Let h← n+ 1.
8: vI

A ← max{CEi(J I
i ), i = 1, ..., h|pI

i < 1}.
9: while (vI

A − wI
A > ε) do

10: Let j ← min{i = 1, ..., h|CEi(J I
i ) = wI

A, p
I
i > 0}.

11: Let k ← min{i = 1, ..., h|CEi(J I
i ) = vI

A, p
I
i < 1}.

12: if j ∈ S then
13: δ ← δ

2 and S ← ∅.
14: end if
15: S ← S ∪ {k}.
16: Let pII ← pI.
17: pII

k ← min{pII
k + δ, 1}.

18: pII
j ← pI

j − (pII
k − pI

k).
19: Let J II be solution of problem (12) with p∗ = pII.
20: wII

A ← min{CEi(J II
i ), i = 1, ..., h}.

21: vII
A ← max{CEi(J II

i ), i = 1, ..., h|pII
i < 1}.

22: if vII
A < CEh+1

(0) then
23: Let vI

A ← CEh+1
(0), wI

A ← wII
A.

24: Let J I ← J II, pI ← pII.
25: Let h← h+ 1.
26: else
27: Let vI

A ← vII
A , wI

A ← wII
A.

28: Let J I ← J II, pI ← pII.
29: end if
30: end while
31: J∗ ← J I.
32: end if
33: return J∗.

Next two subsections present numerical examples for both
scenarios when |I| ≤ n and when |I| > n. In both scenarios, it
is shown that the value of hLi ’s, which represent the detrimen-
tal effect of cooperative jamming, plays a key role in deciding
the optimal cooperative jamming power allocation strategy. To
help us observe this effect, let hLi = hL, ∀i = 1, ..., 25 where
hL is a single real number that increases from 0.2.

A. When |I| ≤ n
For the case with rL = 0.45, p = 0.95, rE = 0.97 and

q = 0.9, gLi < gEi , ∀i = 1, ..., 15, while gLi > gEi , ∀i =
16, ..., 25, It follows that I = {16, ..., 25} and |I| = n = 10.

Fig. 2(a) presents the optimal power allocation strategy
following Algorithm 1 (OP Algorithm), as hL increases from
0.2 to 0.495. As shown in Fig. 2(a), hL = 0.422 is the
boundary where it is not beneficial for the friendly interferer

to protect all channels anymore. When hL ≤ 0.422, the sum
of the ideal cooperative jamming power level for each channel
exceeds the available power, i.e.,

∑
i∈I J̄i > J . Algorithm 1

provides the optimal power J∗i < J̄i, ∀i ∈ I. Note that all
jamming power is allocated to counter eavesdropping attacks
and J∗i > 0, ∀i ∈ I . In this situation, additional jamming
power can be utilized to further increase the wireless network’s
secrecy capacity. On the other hand, for hLi > 0.422, the
power constraint is not binding, i.e.,

∑
i∈I J̄i < J , then

J∗i = J̄i, ∀i ∈ I using the bisection algorithm. The total
power used for cooperative jamming keeps decreasing as
hL’s increase. This situation confirms the intuition that the
cooperative jamming signal should be tuned carefully to avoid
interference with communication signals sent to the intended
receiver.

Fig. 2(b) illustrates the average total secrecy capacity when
the friendly interferer optimizes his power allocation plan with
the OP Algorithm, uses the EP Algorithm, and do nothing
(Without CJ), respectively. As hL increases, the OP Algorithm
always outperform the others. Moreover, EP Algorithm is
even worth than Without CJ starting from hL = 0.422 since
the detrimental effect of cooperative jamming on some sub-
channels starts to be larger than the benefit of cooperative
jamming.

B. When |I| > n

For the case with rL = 0.86, p = 0.99, rE = 0.95 and
q = 0.98, gLi < gEi , ∀i = 1, ..., 10, while gLi > gEi , ∀i =
11, ..., 25. Thus, I = {11, ..., 25} and |I| = 15 > n, that is the
eavesdropper cannot attack all active channels simultaneously.

Fig. 3(a) and Fig. 3(b) present the NE power allocation
strategy and the NE attack strategy following the game the-
oretic model, as hL increases from 0.2 to 0.4. As shown in
Fig. 3(a), when hL ≤ 0.292, all cooperative jamming power
is utilized for defense. When hL > 0.292, it is not beneficial
to use up all jamming power anymore. The jamming power
allocated to each channel starts decreasing and the number of
channels under protection decreases as well. Fig. 3(b) depicts
the eavesdropper’s policy as she concentrates on a fewer
channels as hL increases beyond 0.336.

It is assumed that the eavesdropper will always take the best
response facing different cooperative power control strategies.
When facing GT Algorithm based strategy, the eavesdropper
will also adopt a NE attack strategy coming from the game
theoretic model. When facing other cooperative jamming
power control strategies, the eavesdropper will pick the n = 10
channels with the largest eavesdropping capacity to attack.

Fig. 3(c) depicts the average total secrecy capacity when the
friendly interferer uses the game theoretic model backed GT
Algorithm, uses the OP Algorithm that assumes all channels
are under attack, uses the EP Algorithm, and adopts Without
CJ, respectively. As hLi increases, the GT Algorithm still
outperform the others. More importantly, the performance of
both the OP Algorithm and EP Algorithm drops towards the
baseline of Without CJ as hLi increases, and are even worse
than not sending cooperative jamming signals at all when
hLi is large, since some channels that will not be attacked
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(a) Optimal power allocation plan J∗ (OP Algo-
rithm)

(b) Average total secrecy capacity

Fig. 2: When all channels in I can be attacked simultaneously (n = 10, |I| = 10).

(a) Optimal power allocation plan J∗ (GT
Algorithm)

(b) Eavesdropper’s best response p∗ (GT Al-
gorithm)

(c) Average system total secrecy capacity

Fig. 3: When the eavesdropper can not attack all channels in I simultaneously (n = 10, |I| = 15).

by the eavesdropper are affected by the detrimental effect of
cooperative jamming.

V. CONCLUSIONS

This paper studies the optimal power allocation strategy for
cooperative jamming on a network of parallel channels against
an eavesdropper who can strategically select the channels to
attack. The eavesdropper can attack multiple channels simul-
taneously but may not cover the whole network. A convex
optimization model is proposed when the eavesdropper can
cover all channels being used for secret communication. A
game-theoretic model represents the case when the number of
channels that transmit secret messages is more than the number
of channels the attacker can attack simultaneously. For the later
case, we prove the existence of the optimal power allocation
strategy of the friendly interferer as part of a pair of Nash
Equilibrium strategies in a nonzero-sum game. It turns out
that the optimal power allocation strategy will be subject to a
water-filling scheme such that both the friendly interferer and
the eavesdropper will focus on the top few channels that have
the highest eavesdropping capacities. We present a bisection
search algorithm to solve the convex optimization problem,
and a strategy iteration algorithm to approximate the NE power
allocation strategy of the game-theoretic model to within a
given tolerance.

Also taking into account the effect of interference on
communication signals sent to the intended receiver, we show
that the fading gains of interference signals at the legitimate

receivers’ side are key parameters that affect the performance
of cooperative jamming. Large fading gains of interference
signals at the legitimate receivers’ side will prevent the friendly
interferer from utilizing all cooperative jamming power. Thus,
the interference signals should be carefully tuned such that no
cooperative jamming power will be wasted.

Future research interests include the extensions to the cur-
rent model that were discussed in section II-A. We plan to
explore how the transmitter could cooperate with the friendly
interferer to improve the total secrecy capacity by setting
proper Tis, possibly under a total power constraint. This
situation may be modeled as a leader-follower game in which
the transmitter source optimizes Tis in stage 2 based on the
anticipated followers’ actions in stage 3. Another extension
focuses on the case with gLi < gEi . As was discussed in
the remark at the end of section II-A, such a model requires
solving mixed integer programs for the friendly interferer.
We plan to explore developing heuristic algorithms to obtain
Stackelberg and Nash equilibrium power allocation and attack
strategies for the extended models.

A model in which the capability of the eavesdropper is not
known with certainty is also of interest. As shown in section
IV, the GT Algorithm outperforms the OP algorithm (that
is, when n = N ) since it utilizes the accurate knowledge
of the eavesdropper’s attack capability. However, such knowl-
edge may not be completely available to the helper. Various
approaches may be used to tackle this challenge. For instance,
one can consider a Bayesian game in which eavesdroppers
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with different attack capabilities appear according to a proba-
bility distribution.

APPENDIX

PROOF of THEOREM 3
Let wI

D be the friendly interferer’s Lagrange multiplier asso-
ciated with J I and wII

D be the Lagrange multiplier associated
with J II. Define

ci(Ji|p) := ci(Ji|pi) =
∂Gi(Ji|pi)

∂Ji

=
d

dJi
CLi(Ji)− pi

d

dJi
CEi(Ji)

= pi
gEi h

E
i Ti

(gEi Ti + σ2 + hEi Ji)(σ
2 + hEi Ji)

− gLi h
L
i Ti

(gLi Ti + σ2 + hLi Ji)(σ
2 + hLi Ji)

is the slope of the interferer’s payoff as a function w.r.t. Ji ≥ 0
given p = (p1, ..., pN ). Let J̄i(p) ≥ 0 be such that Gi(Ji|pi)
reaches its maximum at Ji = J̄i(p). Notice that, if J̄i(p) > 0,
then ci(Ji|p) is strictly decrease w.r.t. 0 ≤ Ji ≤ J̄i(p) for all
i ∈ I+ and ci(J̄i(p)|p) = 0.

A) If J I
j > 0 and J I

k > 0, we will show that J II
j < J I

j and
J II
k > J I

k.
Since J I

j > 0, then j ∈ I+ and wI
D = cj(J

I
j |pI) holds. In

addition, J I
k > 0 implies that k ∈ I+, wI

D = ck(J I
k|pI) and

pI
k > 0, so k ≤ h.
Assume J II

j ≥ J I
j , then J II

j > 0 and wII
D = cj(J

II
j |pII)

follow. Given pII
j < pI

j and j ∈ I+, then

wII
D = cj(J

II
j |pII) ≤ cj(J I

j |pII) < cj(J
I
j |pI) = wI

D

must hold, which requires wI
D > 0 and

∑
i∈I+ J

I
i = J .

Now consider the relationship between J II
i and J I

i , ∀i =
1, ..., h, i 6= j. Since pII

k > pI
k, then

ck(J I
k|pII) > ck(J I

k|pI) = wI
D > wII

D,

which implies that J II
k > J I

k must hold. For any i = 1, ..., h
but i 6= j and i 6= k, if J I

i = 0, then J II
i ≥ J I

i by definition;
if J I

i > 0, then i ∈ I+, and it follows that

ci(J
I
i |pII) = ci(J

I
i |pI) = wI

D > wII
D,

since pII
i = pI

i, ∀i 6= j, i 6= k, which leads to J II
i > J I

i . Hence,

h∑
i=1

J II
i >

h∑
i=1

J I
i =

∑
i∈I+

J I
i = J,

which is infeasible. So the assumption J II
j ≥ J I

j can not be
true. Therefore, J II

j < J I
j must hold and CEj (J

II
j ) > CEj (J

I
j)

follows.
Now assume J II

k ≤ J I
k. Since k ∈ I+ and pII

k > pI
k, then

wII
D ≥ ck(J II

k |pII) > ck(J II
k |pI) > ck(J I

k|pI) = wI
D,

must hold. Now consider the relationship between J II
i and J I

i ,
∀i = 1, ..., h, i 6= k. Since pII

j < pI
j , then

cj(J
I
j |pII) < cj(J

I
j |pI) = wI

D < wII
D,

which implies J II
j < J I

j given j ∈ I+. For any i = 1, ..., h,
but i 6= k and i 6= j, if i ∈ I−, then J II

i = J I
i = 0; if i ∈ I+,

since pII
i = pI

i, then

ci(J
I
i |pII) = ci(J

I
i |pI) ≤ wI

D < wII
D,

always hold, which leads to J II
i < J I

i if J I
i > 0 and J II

i = J I
i

if J I
i = 0. Hence,∑

i∈I+
J II
i =

h∑
i=1

J II
i <

h∑
i=1

J I
i =

∑
i∈I+

J I
i ≤ J,

and wII
D = 0 follows, which contradicts with wII

D > wI
D ≥ 0.

So the assumption J II
k ≤ J I

k can not be true. Therefore, J II
k >

J I
k must hold, which implies CEk(J II

k ) < CEk(J I
k).

The proof for situation (A) of Theorem (3) is complete.
B) If J I

j = 0 or J I
k = 0, we will show that J II

j ≤ J I
j and

J II
k ≥ J I

k.
First, we prove that, if J I

j = 0, then J II
j = 0. When J I

j = 0,
one of the following three situations must be true: a) j ∈ I−;
b) j ∈ I+ and cj(0|pI) ≤ 0; c) j ∈ I+ and cj(0|pI) > 0. If
case (a) is true, then J II

j = 0. If case (b) is true, since pII
j ≤ pI

j ,
then cj(0|pII) < 0 and J II

j = 0 follows. If case (c) is true,
then wI

D ≥ cj(0|pI) > 0, thus
∑
i∈I+ J

I
i = J follows. Now

assume J II
j > 0 in case (c), then

wII
D = cj(J

II
j |pII) < cj(0|yII) < cj(0|yI) ≤ wI

D,

must hold, which leads to J II
i ≥ J I

i , ∀i = 1, ..., h, i 6= j,
following similar steps discussed in situation (A). It follows
that

h∑
i=1

J II
i >

h∑
i=1

J I
i =

∑
i∈I+

J I
i = J,

which is infeasible. So the assumption can not be true in case
(c). In summary, J II

j = 0 always hold if J I
j = 0.

Next, we consider three different possibilities of situation
(B) separately. That is,
B1) J I

j = 0 and J I
k = 0;

B2) J I
j = 0 and J I

k > 0;
B3) J I

j > 0 and J I
k = 0.

For situation B1, J II
j = J I

j = 0 holds as it is just proved,
and J II

k ≥ J I
k by definition.

For situation B2, J II
j = J I

j = 0 holds. Also, k ∈ I+.
Assume J II

k < J I
k, then

wII
D > wI

D ≥ 0, and
∑
i∈I+

J II
i < J,

following similar steps shown in situation (A), which con-
tradict each other. Thus, J II

k ≥ J I
k must be true. Note that

it is possible to have J II
k = J I

k in this situation as opposed
to situation (A). Since, under the assumption that J II

k ≤ J I
k,∑

i∈I J
II
i =

∑
i∈I J

I
i = J may hold without requiring

J I
j > 0, and thus, there will not be any contradiction.
For situation B3, J II

k ≥ J I
k holds by definition. Assume

J II
j > J I

j , then

wII
D < wI

D, and
h∑
i=1

J II
i > J,
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following similar steps shown in situation (A), which is
infeasible. Thus, J II

j ≤ J I
j must be true. Again notice that

it is possible to have J II
j = J I

j in this situation as opposed
to situation (A). Since, if we assume J II

j ≥ J I
j , we may have∑h

i=1 J
II
i =

∑h
i=1 J

I
i = J without J I

k > 0, which is feasible.
In summary, it is always true that J II

j ≤ J I
j and J II

k ≥
J I
k, which implies CEj (J

II
j ) ≥ CEj (J

I
j) and CEk(J II

k ) ≤
CEk(J I

k). The proof for situation (B) is complete.
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