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Abstract

Differentially private (DP) machine learning tech-

niques are notorious for their degradation of

model utility (e.g., they degrade classification

accuracy). A recent line of work has demon-

strated that leveraging public data can improve

the trade-off between privacy and utility when

training models with DP guarantee. In this work,

we further explore the potential of using public

data in DP models, showing that utility gains can

in fact be significantly higher than what shown

in prior works. Specifically, we introduce DOPE-

SGD, a modified DP-SGD algorithm that lever-

ages public data during its training. DOPE-SGD

uses public data in two complementary ways:

(1) it uses advance augmentation techniques that

leverages public data to generate synthetic data

that is effectively embedded in multiple steps of

the training pipeline; (2) it uses a modified gra-

dient clipping mechanism in DP-SGD to change

the origin of gradient vectors using the informa-

tion inferred from available public data, therefore

boosting utility. We also introduce a technique

to ensemble intermediate DP models by leverag-

ing the post processing property of differential

privacy to further improve the accuracy of the pre-

dictions. Our experimental results demonstrate

the effectiveness of our approach in improving

the state-of-the-art in DP machine learning across

multiple datasets, network architectures, and ap-

plication domains. For instance, assuming access

to 2, 000 public images, and for a privacy bud-

get of ε = 2, δ = 10−5, our technique achieves

an accuracy of 75.1% on CIFAR10, significantly

higher than 68.1% achieved by the state of the art.
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1. Introduction

Machine learning is becoming an essential part of many

technological advancements in various fields. One major

concern with using machine learning is the privacy of indi-

viduals whose data is used to develop the machine learning

models. To tackle this concern, recent works (De et al.,

2022; Kurakin et al., 2022; Abadi et al., 2016; Yu et al.,

2021; Amid et al., 2022; Li et al., 2022a) suggest to train

ML models with differential privacy (DP) ((Dwork et al.,

2014)) guarantees. However, existing DP techniques for

ML impose large degradation to the utility of the trained

models in comparison to non-private models. Recent works

have used various techniques to improve the utility-privacy

trade-off of such private ML techniques (e.g., by scaling the

hyper-parameters ((De et al., 2022))); however, there still

exists a huge gap between the accuracy of DP-guaranteeing

ML mechanisms and their non-private alternatives, e.g., the

SOTA technique of (De et al., 2022) achieves an accuracy

of 65% on CIFAR10 (for ε = 2.0 and δ = 10−5) compared

to the > 90% accuracy of non-private models.

In this work, we explore an emerging approach to close the

utility gap between private and non-private models. Specifi-

cally, recent works ((De et al., 2022; Kurakin et al., 2022;

Abadi et al., 2016; Yu et al., 2021; Li et al., 2022b)) show

that leveraging publicly available (therefore, non-private)

data can enhance the utility of DP-trained models with-

out impacting their privacy guarantees. In such works, the

public data is used to pre-train the model, and then the

pre-trained model is fine-tuned with the private data while

applying DP protections.

In this work, we show that public data can be leveraged

significantly more effectively in boosting the utility of DP

models. Specifically, we design a generic method to utilize

public data in differentially private machine learning, an

approach we call Differentially Private Origin Estimation

Stochastic Gradient Descent (DOPE-SGD). DOPE-SGD

uses two complementary techniques to enhance the utility

of differentially private models using public data. First,

DOPE-SGD uses advanced data augmentation techniques

to enhance the quality of the data used for training, there-

fore reducing overfitting to the public data and improving

generalization. Second, it improves the quality of the noisy

gradients by taking advantage of the available (augmented)

1



Effectively Using Public Data in Privacy Preserving Machine Learning

public (non-private) data to modify the clipping approach

used in DP-SGD. This helps by reducing the variance of

the noise added to the gradients in the DP model, therefore

better preserving the information in the original gradient

vector (Section 3).

In this work, we also take advantage of intermediate models

in the DP training as an ensemble to improve the accuracy of

the final model. Ensemble of intermediate models leverages

the post-processing property of differential privacy which

does not impact the privacy guarantees of the trained models.

Specifically, we introduce two ensemble approaches (1)

taking the average of the model parameters (2) aggregation

of the prediction vectors by majority voting.

Through extensive experiments we show that DOPE-SGD’s

use of public data along with data augmentation improves

the privacy-utility trade-off of private models by large mar-

gins. For instance, we show improvements up to 12.3%
accuracy over DP-SGD models on the CIFAR10 test dataset,

pre-trained with the same public data. We also show im-

provements on language models both on training from

scratch (from 221 to 198 in perplexity on a small BERT

model) and fine-tuning (from 21.23 to 19.09 perplexity us-

ing GPT-2) with ε = 1.0 and δ = 10−5.

2. Background

Differential privacy ((Dwork, 2011; Dwork et al., 2014)) is

the gold standard for data privacy. It is formally defined as

below:

Definition 1 (Differential Privacy). A randomized mech-

anism M with domain D and range R preserves

(ε, δ)−differential privacy iff for any two neighboring

datasets D,D′ ∈ D and for any subset S ⊆ R we have:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ (1)

where ε is the privacy budget and δ is the failure probability.

Several works have used differential privacy in traditional

machine learning algorithms to protect the privacy of the

training data ((Li et al., 2014; Chaudhuri et al., 2011; Feld-

man et al., 2018; Zhang et al., 2016; Bassily et al., 2014)).

Many of these works ((Feldman et al., 2018; Bassily et al.,

2014; Chaudhuri et al., 2011)) use properties such as con-

vexity or smoothness for their privacy analysis, which is

not necessarily true in deep learning, and therefore, one

cannot use many of such methods in practice. (Abadi et al.,

2016) designed a deep learning training algorithm, DP-SGD,

where they used gradient clipping to limit the sensitivity of

the learning algorithm, and then add noise to a clipped

model gradient proportional to its sensitivity. As we know,

training a deep learning model is an iterative process. The

main approach to analyze the privacy cost of private deep

learning is to compute the privacy cost of the single step

of the learning algorithm and then use composition method

to calculate the overall privacy cost which is commonly

done in RDP ( (Mironov, 2017)) instead of (ε, δ)-DP. One

of the important features of differential privacy is the post-

processing ( (Mironov, 2017; Dwork et al., 2014)) which we

will utilize in this work. DP-SGD is now commonly used to

train differentially private deep learning models.

One common technique to improve the utility of the private

training is to use public datasets and pre-train the model on

the public data. Recent works (Amid et al., 2022; Ferrando

et al., 2021; Li et al., 2022a; Wang & Zhou, 2020; Alon et al.,

2019) showed it is possible to utilize public data more than

just using it for pre-training. With respect to private deep

learning, recent work (Amid et al., 2022; Li et al., 2022a)

and our work both use public data to estimate the geometry

of the gradient field. All of the recent work used a different

approach to approximate the geometry estimation using

the public data. Mirror gradient descent (Amid et al., 2022)

used the gradient of public data for first order approximation

of the gradient geometry. In the case of DP-SGD, they

modified its update step to:

θt+1 = θt − ηt(αt(
ˆgprt +N ) + (1− αt)(g

pub
t )) (2)

where θt is the model parameters at step t, ηt is the learning

rate, αt is the weighting between the public and private

gradients, ˆgprt is the gradients of the private data where gra-

dient of each data point is clipped (as required in DP-SGD

algorithm (Abadi et al., 2016)), N is the noise added by

the Gaussian mechanism and gpubt is the gradient of the

public data. Essentially this approach uses a weighted mean

between the privatized gradients on the private dataset and

the public gradient to update the model parameters. Li et

al. (2022a) uses public data to re-scale individual gradients

of private data before clipping. We compared our approach

to both techniques in Section 4.1. Additionally, there are

multiple studies (Andrew et al., 2021; Varshney et al., 2022)

that investigate adjusting the clipping threshold in DP-SGD.

These studies are orthogonal to our work and could poten-

tially be combined with our approach to further boost utility.

A previous study (Ye & Shokri, 2022) demonstrated that by

projecting the gradient into a smaller subspace and perturb-

ing the gradients, they could achieve improvements over the

baseline. This approach could also be applied to our work

to further enhance the results.

De et al.(De et al., 2022) demonstrated that by utilizing Ex-

ponential Moving Average (EMA), one can further improve

the performance of differentially private training. In our

work, we extend this approach to other averaging schemes

and demonstrate improvements compared to the existing

method. Concurrently, Shejwalkar et al. (2022) also exam-

ined the effects of employing averaging mechanisms on the

performance of private training.
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3. DOPE-SGD: Our Improved DPSGD

alternative

One can improve the utility-privacy trade-off for differen-

tially private ML algorithms in three phases: (1) use pre-

training to improve the initial point of private training, (2)

enhance the algorithms for differentially private training,

(3) do a post processing on the private models. Previous

works showed the effect of using pretraining ((Abadi et al.,

2016; Kurakin et al., 2022; De et al., 2022)), so in this work

we mainly focus on the two latter phases of private training.

3.1. DP-SGD with Adaptive Origin

Two of the main steps of DP-SGD are to clip the gradient

of each instance and add noise to the gradient of each batch.

The magnitude of noise is chosen based on the clipping

threshold. Clipping the gradient results in a bias in the opti-

mization process which can hurt the convergence. One way

to prevent this is to use larger clipping values to ensure the

bias is minimized. However, this will lead to a larger noise

in order to obtain the desired privacy. The main idea of

this work is to clip the gradients around an estimate of the

gradient instead of clipping the gradient around the origin,

as shown in Figure 1. As a result, we can potentially clip

aggressively (i.e., use small clipping values) around the care-

fully chosen centers, and enjoy less bias in the optimization,

compared to DP-SGD, and therefore obtain better accuracy

while maintaining privacy.

We first introduce a general algorithm called DP-SGDA

(Algorithm 1) that uses adaptive origin selection. We use

a function G that takes the history of the protocol and also

some auxiliary information as input, and outputs a point

ĝ that will be used as the origin for the clipping operation.

The following proposition states that any instantiation of

this algorithm will satisfy DP guarantee.

Proposition 2. For any function G, DP-SGDA (Algo-

rithm 1) obtains the same DP and RDP guarantees as DP-

SGD ((Abadi et al., 2016)), when the clipping threshold C,

sub-sampling rate q, and noise parameter σ are equal in

both mechanisms. See Appendix G for a proof.

Theoretical Justification for adaptive origin selection

To show the benefit of our Algorithm 1, we consider a setting

of the Lipschitz loss function with concentrated gradients.

Definition 3 (Lipschitz and gradient-concentrated loss func-

tion). A loss function ℓ defined on a model space Θ and

input space X is L-lipschitz if for all x ∈ X and θ ∈ Θ,

∥ ∂ℓ∂θ (θ, x)∥2 ≤ L. The loss function is r-concentrated if for

all θ ∈ Θ, there exists a point cθ in the gradient space such

that we have

∀x ∈ X; ∥ ∂ℓ
∂θ

(θ, x)− cθ∥2 ≤ r.

Algorithm 1 DP-SGD with Adaptive Origin (DP-SGDA)

Require: training dataset D, adaptive origin function G,

batch size n, learning rate η, noise scale σ, gradient

norm clip C, loss function l, auxiliary information aux,

T number of training iterations

1: Initiate θ randomly

2: for t ∈ {T} do

3: Bt ← sample n instances from dataset D
4: ∇G

θ [t]← 0⃗

5: ĝ ← G(∇̃G
θ [0], . . . ,

˜∇G
θ [t− 1], aux).

6: for all (x, y) ∈ Bt do

7: ∇(x,y)
θ ← gradient of l(x, y)

8: ∇(x,y)
θ ← ĝ +

(∇
(x,y)
θ

−ĝ)×C

max(C,∥∇
(x,y)
θ

−ĝ)∥2)

9: ∇G
θ [t]← ∇G

θ [t] +∇
(x,y)
θ

10: end for

11: ∇̃G
θ [t]← ∇G

θ [t] +N (0, σ2C2I)

12: θ ← θ − η∇̃G
θ [t].

13: end for

14: Return output θ

Note that any L-lipschitz loss function is L-concentrated.

We call cθ the concentration point for θ. We call an oracle

function C(·) a concentration point oracle if given a model

θ, it returns C(θ) = cθ.

Now we state the following proposition about the utility of

our algorithm in comparison with that of DP-SGD. Note

that our proposition below is based on the concentration

assumptions, which might not hold true in practice of deep

learning. Despite this, we believe it provides insight on

why adaptive origin selection can lead to less privacy cost,

while maintaining the same level of ªbiasº in optimization

(as shown in Section 4.1). Additionally, it is crucial to

emphasize that the assumption is only for utility analysis

and our privacy analysis outlined in Proposition 2 holds

regardless of the validity of the concentration assumptions.

Proposition 4. Let X and Θ be example and model spaces

and let ℓ be a L-lipschitz and r-concentrated loss func-

tion for X and Θ. Optimizing this loss function with

clipping threshold r in Algorithm 1 with concentration

point oracle used as the adaptive origin function, will

induce the same output (model) distribution as training

with DP-SGD with clipping threshold L, as long as all

examples in the training set are in X . Algorithm 1

achieves (c rqσ
√

T ln(1/δ) ln(T/δ)), δ)-DP, where as DP-

SGD achieves (cLq
σ

√

T ln(1/δ) ln(T/δ)), δ)-DP, for a con-

stant c, sampling rate q, and number of iterations T and

sufficiently large σ (See Appendix G for detailed proof).

Proposition 4 shows that our algorithm can reduce the sen-

sitivity of the gradient update at each iteration from L to r.
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Figure 1: Clipping the gradients around an estimation of the origin (purple vector) can increase the ratio of the clipped

gradient vector to the added noise. As a result the final privatized gradient vector is closer to original gradient vector

compared to clipping around zero.

Given that r < L, our algorithm would obtain better privacy

guarantees when the gradients are concentrated. Although

these bounds are stated based on the advanced composition

theorem for approximate differential privacy, the privacy

benefit of our algorithm holds for alternative notions of pri-

vacy, such as RDP, because of the reduced sensitivity in our

algorithm.

Instantiation with (augmented) public data. To obtain

the estimate of gradient vectors, we use the idea of (aug-

mented) public data. Public data has been used previously

in many traditional differentially private tasks. In this work,

we show using public data to estimate gradients can im-

prove deep learning with differential privacy significantly.

Algorithm 2 summarizes the design of our approach. It is

important to note that in Algorithm 2, gradient concentra-

tion is not a requirement for privacy guarantees. Even in the

worst-case scenario, where our estimation of the gradient

origin is significantly different from the actual gradient, our

approach still offers the same level of privacy protection.

Therefore, while gradient concentration can be useful for

optimizing the convergence rate of the algorithm, it is not

an essential component for ensuring privacy. We also take

advantage of advanced augmentation techniques (such as

diffusion models) to utilize the public data further. The

exact data augmentation mechanism heavily depends on the

specific task and type of the dataset. We can use several tech-

niques for data augmentation, which can range from using a

basic shifting of images to designing a synthesizer ((Mood,

1950)) using complex generative models ((Nichol & Dhari-

wal, 2021)).

3.2. Ensemble of Private Models

We analyze DP-SGD ( at the time of writing this paper) by

assuming every step of the iterative training is public and an

adversary can use all of the intermediate steps for an attack.

This approach facilitates the necessary DP analysis of the

Algorithm 2 Differentially Private Origin Estimation-SGD

(DOPE-SGD)

Require: private training dataset D, non-private data Ds,

non-private batch size ns, learning rate η, private batch

size n, noise scale σ, gradient norm clip C, loss function

l, T number of training iterations

1: Initiate θ randomly

2: for t ∈ {T} do

3: Bt ← sample n instances from dataset D
4: Bs ← sample ns instances from dataset Ds

5: ∇s
θ ← ∇L(Bs) ▷ Instantiate ĝ in Algorithm 1 with Bs

6: ∇G
θ [t]← 0⃗

7: for all (x, y) ∈ Bt do

8: ∇(x,y)
θ ← gradient of l(x, y)

9: ∇(x,y)
θ ← ∇s

θ +
((∇

(x,y)
θ

−∇s
θ)

max(C,∥∇
(x,y)
θ

−∇s
θ
∥2))
× C

10: ∇G
θ [t]← ∇G

θ [t] +∇
(x,y)
θ

11: end for

12: ∇̃G
θ [t]← ∇G

θ [t] +N (0, σ2C2I)

13: θ ← θ − η∇̃G
θ [t]

14: end for

15: Return output θ

overall mechanism. On the other hand, we often only use

the last model for making predictions, raising the question

whether we are overestimating the privacy cost ((Nasr et al.,

2021). Here, we ask the ªdualº of this question; can we

improve utility by leveraging all of the intermediate mod-

els?). One example of taking advantage of the intermediate

models is by using the ªExponential Momentum Averages

(EMA)º approach in differential private optimization ((De

et al., 2022)). Here, we propose an alternative ensemble ap-

proach that uses an ensemble of the intermediate models and

can further improve the accuracy of the predictions. We use

two approaches to ensemble the models. First, we use the
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idea of majority voting in which the ensemble model will

query all sub-models and receive a label for the given input

and output the majority. We use the last n models during

the path of optimization and use them in this majority based

ensemble architecture. In the case that we are interested in

the value of logits, such as language models, we take the

average of logits among the last n models . Second, we

show the effectiveness of taking the average of the last n
models, and evaluating the inputs on the average instead of

the final model.

In the main body of our work, we use both of these en-

semble techniques and only report the maximum accuracy.

However, as shown in Appendix F we see that both methods

have very similar performance and using majority voting

achieves slightly higher performance.

We also note that our ensemble techniques can also be

used in settings where we do not have access to any public

datasets. Since the main focus of our work is on public

dataset, we briefly explore this setting in Appendix F.

Why do ensemble methods work? Stochastic gradient

descent with averaging has been studied as a way to cope

with the excessive variance coming from stochasticity of

SGD (Bach, 2014). One would expect the reduction of

variance by averaging the resulting parameters of the last

few models, assuming that the variance is caused by inde-

pendent noise. Bach (2014) shows faster convergence on

convex models by doing the simple averaging operation.

In DP-SGD and its variants, a large portion of variance in

the model comes from the added noise, which is indepen-

dently sampled and added to the model after each iteration.

This makes DP-SGD suitable for averaging methods as the

variance is mostly the result of independent noise. It is im-

portant to note that in privacy analysis of DP-SGD and its

variants, we always ªpayº the privacy cost of all the interme-

diate models and using them as an ensemble will not violate

the privacy guarantees.

We also note that several recent studies have tried to under-

stand the privacy benefits of having hidden states during

the course of training and not leaking the intermediate mod-

els (Feldman et al., 2018; Ye & Shokri, 2022). They conjec-

ture that a portion of privacy cost spent for publishing the

intermediate models in DP-SGD might be wasted, leading

to sub-optimal trade-off between privacy and accuracy. The

success of our ensemble methods can be seen as a verifica-

tion of this conjecture and shows the possibility of better

ways to use the privacy budget.

4. Experiments

To evaluate the suggested techniques we consider two main

scenarios, where public data is coming from a similar dis-

tribution as the training dataset and also where the data is

from a slightly different distribution. In the main body of

this work, we focus on the CIFAR and WikiText datasets

as they represent a majority of the applications of the deep

learning models. In Appendix B, we show the effectiveness

of our approach for other architectures and tasks.

CIFAR10 dataset. (De et al., 2022) showed that using

a WideResNet architecture for the CIFAR10 dataset can

improve the state-of-the-art differentially private model sig-

nificantly. Therefore, we also use similar architecture for the

majority of our experiments. In Appendix B, we also evalu-

ate a smaller convolution neural network. Due to the com-

putation limitation we use WideResNet16-4 as explained

in (De et al., 2022) (Augmentation Multiplicity of 16) since

the gain of using the larger model is not very significant.1

We also use CIFAR100 as out-of-distribution public data.

WikiText-2 dataset. Our dataset setup mainly follows the

previous work ((Amid et al., 2022)). The texts are tokenized

by the top 8k most frequent words and a special token for

the remaining words. The dataset is then constructed as

length-35 sequences and we have 59,675 data points in the

training set. We use 4% of the training set as in-distribution

public data and WikiText-3 as imperfect out-of-distribution

public data (we removed the overlapping part of WikiText-2

from WikiText-3). We use a BERT-based (Devlin et al.,

2019) model with two blocks.

Settings: We show the results in several settings.

• Warm/Cold: in our experiments we use the term

ªwarmº to describe a setting where we first train a

model without any privacy on the non-private data (as

opposed to ªcoldº where we do not pre-train).

• Warm-Aug: given a non-private dataset, we can aug-

ment this dataset without incurring a privacy cost and

use the augmented non-private dataset to first pretrain

a model.

• Extended: in addition to using a non-private dataset

to pretrain a model, we can further improve the utility

of the private models by including the public data in

the training dataset. This way, with a fixed batch size,

we can use a smaller sub-sampling rate in our privacy

analysis. We use ªextendedº to note a case where

the training dataset includes the private dataset and

the (augmented) non-private dataset. Please note that

we also do pretraining on the public dataset in this

setting (therefore ªExtendedº is equal to ªwarm-ext.º).2

1Training WRN40-4 on eight A100 in our setting takes more
than 96 hours.

2We found that while many of the public instances have zero
loss after the pretraining, it is still useful to include the public
dataset in the training dataset. We explore this in our experiments
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ªcold-ext.º refers to the setting when we do not do

pretraining.

In our experiments, we first evaluated the effect of each

individual setting and then in cases where we did not spec-

ify the setting, the results represent the extended settings3.

Please note that we did hyper-parameter tuning for each

setting (as detailed in Appendix A). In the main body of

this paper we focus on in-distribution results for CIFAR10

and WikiText-2 datasets. We evaluate the other datasets and

out-of-distribution datasets in Appendices B and E.

4.1. Results

Using the in-distribution public dataset can improve the

utility of differentially private machine learning signifi-

cantly. However, one of the downsides of requiring an

in-distribution public dataset is the cost of acquiring such

data. As a result, requiring access to a large in-distribution

public data can be a strong assumption. Therefore, we only

assume that we have access to very limited in-distribution

public data in this section. In order to address the challenge

of small public dataset and prevent overfitting models on

the public dataset, we use various augmentation techniques

on the public dataset. In this section, we use a small portion

of the target’s training dataset as the public dataset.

Main in-distribution Results. In addition to traditional

augmentation techniques, we train a generative model on

the public dataset which can be seen as an ideal augmenta-

tion technique. This way, at each iteration, we can generate

fresh samples from the generative model and calculate the

average gradient over those samples. We used DDPM gener-

ative models (Nichol & Dhariwal, 2021) for image datasets

(a sample of the generated images are iluustrated in Ap-

pendix D). DDPM models are currently slow in generating

examples, therefore, in our implementation we generate a

large set of data points from the generative models and use

a random subsample of that for training the target model.

To understand the effect of each method described in this

work, first we do ablation study when using different meth-

ods and algorithms in Table 1 for CIFAR10 dataset. One of

the main approaches of leveraging public data is to pretrain

the target model first on the public data which does not have

any privacy cost and then do the private training. Since the

public data for the in-distribution dataset is limited (while

we are still using traditional augmentation methods) there

is only a 3.5% increase in the accuracy. However, we apply

our idea of using generative models to augment the public

data and we see further improvements. One important step

that to the best of our knowledge has not been used before

in detail.
3When compared to other methods, we also evaluate in the

above setting to make a fair comparison.

is to combine the public dataset (or the generated dataset

on public data) with the private data that is used during the

private training. As shown in Table 1 only by including

the public data in the training dataset we can increase the

accuracy (1.7%).

When we combine all of the methods ( use of generative

models, origin estimation, and ensemble) for CIFAR10 we

increase the accuracy of classification by 7.6 points when

using only 4% of the data compared to the case when we

pretrain on the training dataset which is the common prac-

tice. We also evaluated our results for different privacy

budgets as shown in Table 2. Our results suggest that the

common practice of just using the public dataset to pretrain

the models is an ineffective way of using the public data and

by properly using this additional information we can im-

prove the utility of the private training significantly and we

can achieve higher accuracies even at more private regions.

When we increase the privacy budget, the gap between our

approach and DP-SGD reduces. This behavior is expected

because in the higher privacy regimes we are adding less

noise, and the model has an easier time learning from the

private data and does not rely on the public data as much.

We show in Appendix B that our methods are also effective

in smaller models and different datasets. One of the major

downsides of our method is the increase in the computation

cost which we will discuss in Appendix C.

Comparison. To compare our approach to the most recent

works (Amid et al., 2022; Li et al., 2022a), we evaluate the

accuracy of different approaches on the CIFAR10 dataset.

Unfortunately, previous works all use different architectures

to evaluate their method and none of them used the current

state-of-the-art architecture, therefore, we can not directly

compare the accuracy numbers. However, we did our best

to train and do a hyper-parameter tuning of both of the

previous works for a fair comparison. We used the same

public dataset in all of the training runs.

Table 3 summarizes the results of our comparison. Origi-

nal Setting refers to a case where we use the method from

the previous works and replace the neural network with the

current state-of-the-art method and do hyper-parameter tun-

ing. As shown in Table 3 since the previous works do not

use our data augmentation techniques there is a huge gap

between our approach and previous works. Moreover, we

showed that our augmentation techniques can also be used

in any public data training approach and can improve the

accuracy of the existing mechanism as well. Finally, we see

that using all of the techniques our approach achieves higher

accuracy compared to the existing methods. In our compari-

son, using mirror gradient descent approaches achieves very

high accuracy as well when we add all of our techniques on

top. Surprisingly the Gradient Scaling approach does not

scale as well as Mirror Gradient Descent when we add our

6
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Table 1: An ablation study on the effect of different techniques using training data for models trained on CIFAR-10 under

(2, 10−5)-DP. We use WRN16-4 with all of the augmentation and optimization techniques as detailed in (De et al., 2022).

We use 2,000 images of the CIFAR10 training dataset (4% of the whole dataset) as the public data which is sampled

uniformly from each class. The public dataset is augmented to 40,000 instances.

Setting Test Acc (%)

Baseline (WRN16-4 (De et al., 2022)) (cold) 64.9
+ Pretraining on the public data (warm) 68.1
+ Pretraining on the generated data using public data (warm-aug) 72.0
+ Including the generated data in the training dataset (extended) 73.7
+ Using DOPE-SGD (Algorithm 2) 74.8
+ Using ensemble models 75.1

Table 2: Test accuracy/perplexity for models trained with differential privacy with δ = 10−5 and using 4% of training of

CIFAR10/WikiText-2 dataset as the public data. The accuracy of the model trained on only augmented public dataset (i.e,

ε = 0) is 69.4% on CIFAR10 and perplexity is 240 on Wikitext-2 dataset.

CIFAR10 (Test Acc) WikiText-2 (Test Ppl)

ε DPSGD (cold) DPSGD (warm) DPSGD (warm-aug) DOPE-SGD DPSGD (cold) DPSGD (warm) DOPE-SGD

1.0 56.8% 60.1% 70.0% 72.1% 240 221 198

2.0 64.9% 68.1% 72.0% 75.1% 220 206 184

4.0 71.9% 72.4% 76.0% 77.9% 210 183 177

6.0 77.0% 77.1% 78.7% 80.0% 190 167 156

techniques. One issue might be that the Gradient Scaling

approach is not optimized for the cases where the size of

public data is large.

Effect of Size of the Public Dataset. The size of the

public dataset can affect the utility of learning significantly.

We studied the effect of different amounts of public data in

Table 4. As expected by having a larger public dataset, the

model can achieve better utility.

Effect of Size of Generated Data. One of the interesting

trade-offs is to see how much the utility of a private model

changes by increasing the number of augmentation that we

generate for a given public dataset. Table 5 shows the results

of this study and as we can see adding more augmentations

of the public data in the training dataset increases the utility

of the training. However, one of the main limiting factors

of using more augmentations is the computation cost of the

augmentation. Specially, the current DDPM models are

costly in both training and generating different augmenta-

tions.

Pretrained Large Language Models. All of the state-of-

the-art models in language tasks currently use a pretrained

large language model and fine-tune them on their specific

tasks. While this means that they are using a much larger

training dataset, it is still very important to show we can see

the same improvements as in previous experiments in this

setting. To this aim, we used a pretrained GPT-2 (Radford

et al., 2019) model (which is not trained on WikiText) and

fine-tuned it using both DP-SGD and DOPE-SGD using 4%
public data and when we also first train it on the public data

without any privacy cost and then use private training. Ta-

ble 6 summarizes our results, as we can see DOPE-SGD also

outperforms DP-SGD in this setting even at small epsilons.

Extending to Federated Learning with User-Level Pri-

vacy. Another example of a setting where we can use

non-private data is federated learning. In many federated

applications, users can indicate that they do not require any

privacy protections. While only a small number of the users

fall in this category, the learning algorithms can benefit sig-

nificantly from such users. (Amid et al., 2022) suggested

using such users to first pretrain the model, however, this

is not a practical approach since the data of these users

will change during the training of a federated learning task.

Pretraining the model only on the non-private users will

slow down the federated learning process and it won’t be as

effective. Therefore, our evaluations of federated learning

settings focuses on the cases where we do not pretrain on

the data (cold setting).

For this setting, we used the EMNIST dataset which has

70,000 users and we uniformly divide the instances between

the users and we assume a fixed 2% of the users are non-

private. We use a WideResNet model for this task and
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Table 3: Test accuracy of models trained with differential privacy with δ = 10−5 and using 4% of training of CIFAR10

dataset as the public data for different training algorithms.

Original Ours

ε Method Setting Augmentation DOPE-SGD

ε = 2
Mirror Gradient Descent (Amid et al., 2022) 68.7% 70.5%

75.1%
Gradient Scaling (Li et al., 2022a) 68.7% 69.1%

ε = 4
Mirror Gradient Descent (Amid et al., 2022) 73.1% 74.5%

77.9%
Gradient Scaling (Li et al., 2022a) 73.5% 74.1%

ε = 6
Mirror Gradient Descent (Amid et al., 2022) 77.2% 78.2%

80.0%
Gradient Scaling (Li et al., 2022a) 77.9% 78.1%

Table 4: Test accuracy of models trained with differential

privacy using different amounts of public data that is aug-

mented to 40,000 instances on CIFAR10.

Public Data Size ε = 2 ε = 4 ε = 6

50(0.1%) 66.6% 72.0% 75.4%
100(0.2%) 67.3% 72.1% 76.4%
500 (1% ) 68.9% 72.1% 77.1%
1,000 (2%) 73.5% 74.9% 78.4%
2,000 (4%) 75.1% 77.9% 80.0%

Table 5: Test accuracy of models trained with differential

privacy using different amounts of augmented data from

2, 000(4%) public data on CIFAR10.

Augmented Data Size ε = 2 ε = 4 ε = 6

5K 69.5% 73.8% 78.4%
10K 70.1% 75.3% 79.3%
20K 70.9% 77.4% 79.9%
40K 75.1% 77.9% 80.0%

Table 6: Perplexity of finetuning WikiText-2 on pretrained

large language models using 4% of the training dataset as

public data.

WikiText-2

ε DPSGD (warm) Ours

0.25 21.30 19.16
0.5 21.29 19.14
1.0 21.23 19.09

∞ 15.40

Fed-SGD (McMahan et al., 2017) to train this model. In

each round of the training we select a subset of users to

update the model. We use the user-level central differential

privacy definition to analyze the privacy cost in this setting.

Table 7 summarizes the results and the comparison with

the existing approaches that can be applied in the federated

learning setting. We compare our approach to using DP-

SGD for this setting and show that by leveraging the public

data we can achieve better results. One alternative to DP-

SGD is to not apply differential privacy on the public user

and only apply it on the private users. We compared to this

baseline and showed superior performance. This result also

shows the benefit of the Algorithm 2 even when we do not

use the other techniques described in this work.

Table 7: Test accuracy models trained with user-level differ-

ential privacy with δ = 10−5 on EMNIST using 2% users

as public users.

ε DP-SGD (all) DP-SGD (only-private) DOPE-SGD

0.5 82.2% 83.1% 84.7%
1.0 83.4% 84.6% 85.2%
2.0 85.0% 85.5% 86.0%
4.0 86.2% 86.4% 87.1%

0 100 200 300 400 500
Iteration

10 4

10 3

10 2

10 1

100

DOPE-SGD
DP-SGD

Figure 2: Comparison of DOPE-SGD and non-private’s dot

product with DP-SGD and non-private’s dot product. Using

DOPE-SGD will reduce the effect of the noise added by the

Gaussian mechanism which can lead to a better performance

(all experiments are in warm-aug setting).
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Why DOPE-SGD Works? To answer this question we

compute the inner product of the gradients of each batch

when using DOPE-SGD with non-private gradients of the

same batch and compare it with inner product of the DP-

SGD and non-private gradients (average between 5 indepen-

dent runs and after pretraining on public dataset). Figure 2

shows this comparison, as we see the dot product of DOPE-

SGD is larger compared to DP-SGD especially in earlier

iterations. As a result, we can achieve better convergence

rates and privacy-utility trade-off.

Limitations In many real-world applications, in-

distribution public data is leveraged for improving machine

learning models. These applications often train models

on user data, such as next word prediction for keyboards,

embeddings and classifiers on user-captioned images, or

spam detection systems based on user ratings. Typically, the

public data is collected through explicit user permissions

aimed at improving the product. data. Our main work

is focused on cases where we have in-distribution public

data. However, it’s important to acknowledge situations

where acquiring such data, for example in the case of

medical datasets, might incur a high collection cost or be

impossible.

To understand the limitations of our work, in Appendix E,

we show that when the public data is not from the same

distribution, we see smaller improvements compared to in-

distribution data when directly applying our approaches. We

introduce new modifications in our approaches to improve

the privacy-utility trade-offs in this setting.

5. Conclusion

It is well recognized that deep learning models leak informa-

tion about their training datasets. New privacy regulations

will require the models to protect the privacy of the users

whose data is being used to train large deep learning mod-

els. In response, differentially-private machine learning has

emerged as the gold standard to train large models. How-

ever, the main limiting factor of using differentially-private

machine learning is the degradation of the utility in many

scenarios. To improve the utility-privacy trade-off, the re-

search community has started to use non-private/public data.

The current practice of using public data is to simply use

it to pre-train the model and then use private learning on

a private dataset. In this work, our main goal is to show

this approach is not the optimal technique to take advan-

tage of non-private data. We summarize our work in three

practical steps that can be applied in any setting that uses

public data. First, we should use advanced augmentation

techniques (which include data synthesis approaches such

as GAN, DDPM) on the public data to synthesize more non-

private data points. Second, we should consider including

the non-private dataset in the private data during the

private training and finally, by using more advanced pri-

vate learning algorithms (e.g, DOPE-SGD, (Amid et al.,

2022), (Li et al., 2022a)) which are designed to leverage

public data to achieve better trade-offs. Using these meth-

ods we showed that we can improve the state-of-the-art in

private learning.
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A. Implementation Details

We implemented Algorithm 2 and the related works in

JAX ((Bradbury et al., 2018)) and we implemented Algo-

rithm 2 in Opacus ((Yousefpour et al., 2021) and private-

transformers library (Li et al., 2022b)). Experiments in this

work are the average between 5 independent runs. For each

setting we did a grid hyper-parameters search as mentioned

in Table 8 and picked one with the highest average. While

doing hyper-parameter training will increase the privacy

cost, we didn’t consider this in our privacy calculation simi-

lar to the previous works ((Abadi et al., 2016; Amid et al.,

2022; De et al., 2022; Kurakin et al., 2022)).

Table 8: Set of hyper-parameters used in the hyper-tuning

phase.

Parameter Values

Learning rate [1,2,3,4,5,5.5,6]

Noise multiplier [1,2,3,4,5,8]

Public data sample size [80,160,640,1280,2560]

Clipping norm [0.5,0.8,1.0,1.5]

Batch size [512,1024,2048,4096]

We summarize different settings in the paper in the follow-

ings:

Cold: This refers to a setting where we do not pre-train on

the available non-private dataset.

Warm: We call a setting warm where we first the model on

all available non-private data (both augmented and original

public data) and then train only on the private dataset.

Warm-aug: Similar to the previous setting we first train the

model on the non-private dataset and then train it on both

non-private and private dataset.

Extended: We refer to a setting where we include the non-

private (which includes the augmented dataset) dataset in

the private training dataset.

B. Evaluating different architectures and

datasets.

To show that our techniques can also be applied to a simpler

model, we used a ConvNetnetwork with three layers on

CIFAR10 dataset with batch size of 256. Table 9 presents

the accuracy of this model in different settings as used in

Table 2. Similar to the results in Table 2 we see impressive

improvement over DP-SGD.

We showed the effectiveness of our approach to the pop-

ular vision and language modeling tasks. However, many

practical applications use categorical data. To show the ef-

fectiveness of our approach in such tasks, we focused on the

Purchase dataset which is the shopping records for several

thousand individuals. Each data record corresponds to one

customer and has 600 binary features, we use Purchase10

which has 10 classes. Similar to previous works (Shokri

et al., 2017; Nasr et al., 2018), we use a 4 layers fully con-

nected network. We used 90,000 instances as the private

training dataset, 5,000 instances as the public data and the

public dataset is augmented 10,000 instances. Table 10 sum-

marizes the results of our experiments. As we can see, the

overall accuracy of this task is much lower than the previous

datasets. However, we still see a significant gain when using

public-data and using Algorithm 2.

C. Computation Complexity

The main downside of our approach is the additional com-

putation cost compared to the DP-SGD. There are two main

components to these additional costs. First, the costs of the

augmentation. As we know, augmentation techniques are

used widely in training deep learning models. In this work

we try using diffusion models as our augmentation tech-

nique which have high computation costs. This can be the

main source of the additional computation cost for our work.

As a reference, training a diffusion model (Nichol & Dhari-

wal, 2021) on 2,000 CIFAR10 on a single V100 takes about

48 hours. Also generating 40,000 images using this model

takes about a week of computation. The second component

of the cost, is the additional computation cost since we have

a larger non-private dataset which can increase the computa-

tion cost linearly. Moreover, Algorithm 2 uses an additional

gradient computation call on the public data which will in-

crease the computation cost. Training a model using our

approach is about 2− 3 times slower than using the same

model using DP-SGD without augmented images (without

considering the time to generate the augmentations.).

D. Quality of the generated examples

A critical component of our work involves the utilization of

advanced augmentation techniques and the employment of

generative models as powerful augmentations. To demon-
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Table 9: Comparison of the results on CIFAR10 dataset in different settings for both DP-SGD and DOPE-SGD using

ConvNet architecture (∗ the setting that does not utilize the public data). Public data in these experiments are 2,000 images

from the dataset which are augmented to 40,000 images.

DP-SGD ((Abadi et al., 2016)) DOPE-SGD (Alg.2)

ε cold∗ warm cold-ext. warm-ext. cold warm cold-ext. warm-ext.

1.0 46.7% 61.4% 48.0% 66.6% 67.2% 62.7% 67.8% 70.3%
2.0 50.1% 64.2% 51.9% 68.0% 70.1% 70.4% 71.8% 73.0%
4.0 54.7% 66.4% 57.4% 68.1% 75.7% 74.6% 77.0% 73.2%
6.0 58.4% 68.4% 59.4% 68.7% 76.2% 75.1% 78.1% 76.2%

Table 10: Comparison of the results on Purchase10 dataset in different settings for both DP-SGD and DOPE-SGD using

Fully-Connected architecture. Public data in these experiments are 10,000 records.

DP-SGD ((Abadi et al., 2016)) DOPE-SGD (Alg.2)

ε cold∗ warm cold-ext. warm-ext. cold warm cold-ext. warm-ext.

1.0 30.2% 32.6% 34.3% 36.8% 33.2% 35.3% 40.7% 42.1%
2.0 34.1% 35.7% 37.9% 39.2% 35.1% 37.4% 44.6% 45.6%
4.0 44.4% 45.9% 47.7% 49.2% 45.2% 48.5% 50.2% 52.3%

strate the effectiveness of our approach, we present sample

images from the output of our generative models when

trained on just a small subset of the dataset in Figure 3.

Remarkably, even with a limited number of examples, the

generated images retain high quality. This underscores the

potential of our proposed methodology in situations with

limited access to training data.

E. Imperfect public data

Many real-world applications today operate in a practical

setting where they have access to in-distribution public data.

For example, there are applications that train models using

data directly from users, such as next word prediction for

keyboards. This data comes from a wide range of sources

and can be extremely valuable for enhancing the accuracy

and utility of machine learning models. Another common

use case involves training embeddings and classifiers using

captioned images from users. Similarly, user ratings can be

instrumental in the development and improvement of spam

detection systems.

Typically, industry deployments work with a set of users

who have explicitly given permission for their data to be

used in model training, usually with the aim of improving

the product. It’s crucial to note that this data can be cat-

egorized as in-distribution public data, providing a strong

justification for the focus of our work. Currently, public

data is mostly used for pre-training models. Our work aims

to explore and demonstrate additional potential benefits of

effectively leveraging in-distribution public data. However,

there exists such as medical datasets or settings where the

cost of the cost of collecting such a dataset is high. As

a result many applications are starting to use other public

datasets which are not exactly from the same data distri-

bution for differentially private deep neural networks. We

call such data sets imperfect data distributions which can

be from a slight different distribution or have noise data or

noisy labels.

While many public data algorithms require the data to be in-

distribution, the existing works showed that it is still helpful

to pretrain on the out-of-distribution public datasets (Amid

et al., 2022; Li et al., 2022a). In many cases naively using

the imperfect public dataset can negatively affect the utility

of the learning performance (see Figure 4).

This is because the main assumption in Algorithm 2 is that

the gradient on the public dataset is a very close estimation

of the private data. However, this is not true for the out-

of-distribution dataset. In order to fix this assumption, we

rewrite Algorithm 2 by modifying line 9 to the following

two lines which allow us to limit the effect of the public

data:

∇s′

θ = ∇s
θ ×

λ

max(λ, ||∇s
θ||2)

∇(x,y)
θ [t] = ∇s′

θ + (∇(x,y)
θ [t]−∇s′

θ ) (3)

× C

max(C, ∥∇(x,y)
θ [t]−∇s′

θ ∥2)
) (4)
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(a) 500 public Image (FID=107) (b) 1000 public Image (FID=74.6) (c) 2000 public Image (FID=12.8)

Figure 3: A sample of the generated images when only using the public images to train the diffusion models.
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Figure 4: The effect of out-of-distribution data on Algo-

rithm 2 without clipping the public gradient (Equation 3).

To show the effect of imperfect data in the training, we eval-

uate the effect of other datasets from different but similar

distributions as public data (different distribution) and noisy

public dataset. We used the CIFAR100 dataset as the public

data dataset for CIFAR10, and WikiText-3 for WikiText-2.

While many of the previous works showed that pretraining

on the dataset from a slightly different distribution (such as

CIFAR100 for CIFAR10) can help improve the accuracy of

the original model, we also show our additional techniques

can also boost the accuracy. In particular, we observe that if

we include all of the training dataset in the private training it

will reduce the overall test accuracy, however, by including

a random subset of the public dataset in the private training

part can improve the privacy-utility trade-off. In our exper-

iments for CIFAR10 using 10% of the CIFAR100 gave us

the highest boost in accuracy. For WikiText-2 dataset since

the public dataset (Wikitext-3) is much more similar to the

private dataset we do not see any downside of including all

of the public data in the private training.

In Table 11, we study the effect of each technique on when

the public data does not come from the same distribution as

the private dataset. As we can see from the results, similar

to the in-distribution dataset, using DOPE-SGD improves

the utility further. Finally, in Table 12, we show the results

for different dataset and privacy budgets. As we see, in all

settings our method outperforms current approaches.

Although the CIFAR100 dataset is not typically considered

in-distribution for CIFAR10, there is considerable similarity

among many of the images. This raises the question of

what would happen if the public data differed more sub-

stantially from the private dataset. A recent study (Panda

et al., 2022) investigated the impact of different public data

sources on the performance of private training. They found

that as the disparity between the public and private datasets

increased, the performance improvements diminished. To

assess whether the same principle holds true in our case, we

evaluated our approach using the PathMNIST dataset, which

is a subset of the MedMNIST biomedical images dataset.

Using the PathMNIST dataset, we were able to achieve ac-

curacies of 57.9%, 68.9%, 75.6%, and 79.3% for epsilon

values of 1, 2, 4, and 6, respectively. These results represent

improvements of 0.8, 1.2, 1.5, and 1.8 over the respective

baselines. However, when compared to our previous results,

these improvements are significantly less pronounced. This

suggests that the effectiveness of our approach may be con-

strained when the public dataset is considerably different

from the private dataset.

F. Ensemble of private models without

additional data

As mentioned in Section 3.2, we can also apply the idea

of ensemble of the private models to improve the utility

of the final model without additional privacy cost. In the

main body of this work, we show the effectiveness of this

approach when we have public data. However, this approach

can also be used in cases when we do not have public data.

In Figure 5, we compare the accuracy of different ensemble

approaches. As we see using majority voting can achieve

higher accuracy compared to the other approaches. We
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Table 11: An ablation study on the effect of different techniques using imperfect public data on CIFAR10 models trained

under (2, 10−5)-DP. We used CIFAR100 as public data for the CIFAR10 dataset.

Settings Test Acc (%)

Baseline (WRN16-4 pretrained on CIFAR100) 75.9%
+ Including the 10% of public data in the training dataset (extended) 76.4%
+ Using DOPE-SGD (Algorithm 2) (warm) 77.1%
+ Using Ensemble models 77.3%

Table 12: Test accuracy/perplexity models trained with differential privacy with δ = 10−5 and imperfect data (CIFAR100

for CIFAR10 and WikiText-3 for WikiText-2).

CIFAR10 (Test Acc) WikiText-2 (Test Ppl)

ε DPSGD (warm) DOPE-SGD DPSGD (warm) DOPE-SGD

1.0 68.9% 76.3% 79 77

2.0 76.4% 77.3% 78 68

4.0 79.2% 81.5% 76 65

6.0 82.5% 84.9% 75 62

also evaluate the effect of the number of models we use in

the ensemble in Figure 6. In our experiments we observed

that we need at least 50 models in an ensemble to have a

noticeable gap between the final model and the ensemble

model.
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Figure 5: Comparison of the ensemble of the last 100 mod-

els, the exponential moving average (EMA with decay rate

0.999) and the model without using any ensemble tech-

niques for DP-SGD and any additional data on test accuracy

of CIFAR10.

G. Proofs

Proof of Proposition 2. We start by analyzing the sensitiv-

ity of the gradient update rule. The update before adding

noise and public gradient is equal to
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Figure 6: Comparison of the number of models in the en-

semble on the accuracy for WRN-4-16 on CIFAR10 dataset

with ε = 4, in our implementation of (De et al., 2022) we

observed a slight difference in the accuracy and the reported

accuracy in their work. (De et al., 2022) reported 71.4%
for CIFAR10 dataset with ε = 4 but we were only able to

achieve 71.1%.

∇[t] = |Bt| · ĝ+
∑

(x,y)∈Bt

(∇(x,y)−ĝ)×C
max(C,∥∇(x,y)−ĝ)∥2)

. Note that

ĝ is data independent and comes from public data, therefore

we only need to understand the sensitivity of the sum of

clipped gradients. Since each example (x, y) only affects

one of the clipped gradients
(∇(x,y)−ĝ)×C

max(C,∥∇(x,y)−ĝ)∥2)
and each

of these vectors have a norm bounded by C, therefore the

sensitivity of the sum is C.

Now, since we are adding Gaussian noise, each iteration is

an instantiation of the sub-sampled Gaussian mechanism
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with sensitivity C, sampling rate
|Bt|
|D| and noise σ. There-

fore, all the existing analysis for general DP-SGD (with-

out additional assumptions) would also apply to Algorithm

1.

Proof of Proposition 4. As stated in proof of Proposition

2, each iteration of Algorithm 1 is a Gaussian mechanism

with sampling rate
|Bt|
|D| and noise multiplier σ/r. Therefore,

each iteration will be (
r·
√

2 ln(1.25/δ′)

σ , δ′)-DP. Assuming

ε′ =
r·
√

2 ln(1.25/δ′)

σ < 1, the sub-sampled mechanism

will be (2q · ε′, qδ′)-DP. Then, by using advanced composi-

tion theorem for DP, we have that the composition of all T

steps is (4Tq2 · ε′2 + 2q · ε′ ·
√

2T · log(1/δ̂), T qδ′ + δ̂)-

DP. Assuming ε′ <
√

ln(1/δ̂)
2q2T , the composition of T

mechanisms is (4qε′
√

2T ln(1/δ̂), T δ′ + δ̂)-DP. Now set-

ting δ̂ = δ/2 and δ′ = δ/2n, the entire mechanism is

(4 qr
σ

√

2T ln(2.5 · T/δ) ln(2/δ), δ)-DP which in turn im-

plies (4
√
10 qr

σ

√

T ln(T/δ) ln(1/δ), δ)-DP. In order for

the assumptions to be correct, we need σ > max(2r ·
√

q2T ln(2.5·T/δ)
ln(2/δ) , r ·

√

2 ln(2.5 · T/δ)). The privacy anal-

ysis for DP-SGD follows similarly, the only thing that

changes is that we should use the clipping threshold L in-

stead of r.

We would now prove that the output of Algorithm 1 is

the same as DP-SGD. Note that since the loss function

is L-lipschitz, the clipping operation for DP-SGD is non-

operational. Similarly, for DP-SGDA, since we have

r-concentrated gradients, the clipping operation is non-

operational. Given that the clipping operation is the only

difference between DP-SGD and DP-SGDA, and they both

are non-operational, the output distributions of the two algo-

rithms are exactly the same.
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