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Abstract This paper considers a defensive resource allocation problem in which a defender

protects a set of assets either individually or collectively using overarching protections. An

overarching protection refers to an option that protects multiple assets at the same time,

e.g., emergency response, border security and counter intelligence. Most of the defensive

resource allocation models with overarching protections assume that there is only one option

that protects all targets. However, this may not be realistic considering that, for example,

emergency response investment may cover only a certain region. In this paper, we develop a

new resource allocation model to accommodate generalized overarching protections against

intentional attacks. The model also considers multiple natural disaster types. We show that

the proposed optimization model is a convex optimization problem and therefore can be

solved to optimality in polynomial time. Furthermore, the overall country-level resource
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allocation problem can be decomposed into smaller city-level subproblems, thus resulting

in a more efficient algorithm. The numerical experiments demonstrate the performance of

the proposed approach.

Keywords OR in Disaster Relief · Decision Analysis · Resource allocation · Decomposi-

tion · Homeland Security

1 Introduction

Defensive resource allocation to protect a set of valuable assets against terrorist attacks or

natural disasters has been the subject of intensive studies [Bier et al., 2008, Brown et al.,

2006, Hausken and Levitin, 2012, Seaberg et al., 2017, Zhuang and Bier, 2007]. One aspect

of this problem is to strike a balance between protecting individual assets and the overar-

ching protection options. Overarching protections refer to the options that protect multiple

assets at the same time. For example, a country can allocate resources to protect its borders

to reduce the potential damage from international terrorism. Similarly, expending resources

on gathering information and intelligence to counter terrorism is another form of overarch-

ing protection.

Powell [2007], Haphuriwat and Bier [2011] conducted the early studies on the trade-off

between individual target hardening and overarching protection. Powell investigated a model

in which the defender has the option of allocating resources to harden the targets individu-

ally or to protect all of the targets via enhancing the border security. Haphuriwat and Bier

introduced a model to allocate resources between target hardening and an overarching pro-

tection option covering all targets. They studied the effect of various factors on the relative

desirability of each option. Golalikhani and Zhuang [2011] developed a model with a de-

fender simultaneously protecting any subset of targets based on their functional similarity or

geographical proximity. Hausken [2014] presented a two-period resource allocation game.

In the first period, both players allocate their resources to engage in an overarching contest

covering all of the targets. If the attacker wins the overarching contest, in the second pe-

riod, the players decide on resource allocation to defend/attack individual targets. Hausken

[2017] considered a system consisting of two components either in series or in parallel. In

his model, the players can either allocate resources to special efforts to protect individual

components or a general effort to protect both components in the system. The difference
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of this model from the existing ones with overarching protection is that, the existing mod-

els regard the overarching protection as an extra layer of protection that the attacker has to

breach to have a successful attack. However, in his proposed model, there is only one protec-

tion layer and the special and general protection efforts operate additively to contribute to a

single joint protection. Hausken [2019] investigated a similar system with two independent

components.

There are a number of studies that considered systems consisting of logically linked

components. For example, Levitin and Hausken [2012] examined individual and overar-

ching protections for series and parallel systems. Hausken [2013] expanded this model to

include heterogeneous unit protection costs. Levitin et al. [2013] introduced a model that

generalizes the k-out-of-n system. In this model, the damage to the system depends on the

number of destroyed elements as well as the unfulfilled demand. Levitin et al. [2014] devel-

oped a three-stage minimax game model with multiple overarching protections and a system

consisting of identical elements. In this model, the defender decides the number of groups of

targets to protect using overarching protections as well as the number of targets to protect in-

dividually within each group. Peng et al. [2014] considered the resource allocation problem

to individual, overarching protection and replacement for a parallel system of heterogeneous

components.

Most existing models in literature assume that there is only one overarching protection

option that protects all of the targets. However, this may not be true in reality. For example,

in case of emergency response, investment is not limited to only one option that covers the

entire country. It is possible to make targeted investments that are focused on a city or an area

inside a city. Moreover, investment in border security can be divided into different points of

entry, each of which is expected to benefit areas that are closer to that particular point of

entry. The only model with multiple overarching protections is proposed by Levitin et al.

[2014]. However, this model assumes that the targets are identical and each overarching

protection covers a fixed number of targets. Therefore, the overarching protection options

are identical and the defender decides on how many times to use this option. In reality,

the targets may not be identical and, depending on the subset of targets that are covered,

various options for overarching protections may be available. To this end, we introduce

overarching protection options that protect a subset of targets. We consider two types of

overarching protections: country-level overarching protections and city-level overarching

protections. Each country-level overarching protection option protects all of the assets in a
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set of cities. And each city-level overarching protection option in a city protects a subset

of assets. Moreover, there are different types of natural disasters and the defender has to

decide on how much to invest to protect against each disaster type in each city. Another

consideration in this area is that the number of targets maybe very large and a practical

resource allocation model needs to be scalable for problems of realistically large size. We

show that our proposed resource allocation model is a convex optimization problem that

can be solved in polynomial time. Moreover, we also demonstrate that the proposed model

can be decomposed into smaller city-level subproblems. Using this observation, we develop

an efficient decomposition approach to optimally solve the proposed resource allocation

problem.

The rest of this paper is organized as follows. Section 2 introduces the proposed resource

allocation model. Section 3 develops a solution approach based on decomposing the problem

into city-level subproblems to solve the proposed model. Section 4 demonstrates numerical

experiments to investigate the efficiency of the proposed algorithms and to gain insight into

properties of the model. Finally, section 5 presents the main conclusions of the paper and

future research ideas.

2 Problem Description

A defender has a budget, say B, to allocate in order to protect cities in a country against

both natural and man-made disasters. Each asset j in city i has a value Vi j that will be lost

in case of a successful attack or a natural disaster. Against man-made attacks, the defender

can either protect assets in cities individually or collectively through overarching protection

options. Overarching protection refers to alternatives that lead to protecting more than one

individual asset, e.g., border security, public health, emergency response, or intelligence.

Two types of overarching protections exist: country-level overarching protections and city-

level overarching protections. Each country-level overarching protection option o protects

all of the assets in a set of cities Γo. On the other hand, each city-level overarching protection

option l in city i protects a set of assets Λil . A single adversary is the perpetrator of a man-

made disaster and chooses the asset with the highest expected damage to attack. If there are

multiple assets with the highest expected damage, we assume that the adversary chooses one

of them arbitrarily. In order to successfully destroy an asset, all of the protection measures

need to be breached. There are different types of natural disasters and the defender decides
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how much to invest for protection against each disaster type in each city.

Model parameters are listed as follows:

– i : Index for cities, i = 1, . . . , I.

– j : Index for assets in city i, j = 1, . . . ,Ji.

– k : Index for the type of natural disaster, k = 1, . . . ,K.

– ρ : Probability of an intentional attack.

– ωk : Probability of a type k natural disaster.

– B : Defenders budget.

– Vi j : Value of asset j in city i.

– xi : Amount of resource allocated to protect city i against intentional attacks.

– xH
i j : Amount of resource allocated to harden asset j in city i against intentional attacks.

– xC
o : Amount of resource allocated to country-level overarching protection option o.

– xN
ik: Amount of resource allocated to protect city i against natural disaster of type k.

– xL
il : Amount of resource allocated to city-level overarching protection option l, in city i.

– Γo: Set of cities that are protected in country-level overarching protection option o.

– Ψi : Set of country-level overarching protection options that protect city i.

– Λil : Set of assets in city i that are protected through city-level overarching protection

option l.

– Ωi j : Set of city-level overarching protection options in city i that protect asset j.

– fi(xi) : Expected damage from a man-made attack in city i, given that budget level is xi,

and all of the country-level overarching protections are breached.

– PC
o (x

C
o ): Probability of breaching country-level overarching protection option o.

– PL
il (x

L
il) : Probability of breaching city-level overarching protection in city i option l.

– PH
i j (x

H
i j ) : Probability of breaching hardening protection in for asset j in city i.

– PN
ik (x

N
ik) : Probability of failure of protection against natural disaster type k in city i.

Using this notation, the resource allocation problem can be formulated as follows:

min ρ

[
max
(i, j)

{
Vi jPH

i j (x
H
i j ) ∏

l∈Ωi j

PL
il (x

L
il) ∏

o∈Ψi

PC
o (x

C
o )

}]
+∑

k
ωk ∑

i
PN

ik (x
N
ik)∑

j
Vi j (1)

subject to ∑
i

[
∑

j

(
xH

i j + ∑
l∈Ωi j

xL
il

)
+ ∑

o∈Ψi

xC
o

]
+∑

i
∑
k

xN
ik ≤ B, (2)

xH
i j ,x

L
il ,x

C
o ,x

N
ik ≥ 0, ∀ k = 1, . . . ,K, o ∈Ψi, l ∈Ωi j for i = 1, . . . , I, j = 1, . . . ,J.

(3)
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In this formulation, the objective function is to minimize the expected damage from both

man-made and natural disasters. The first term is the expected damage from man-made

disasters. For each asset j in city i, the probability of a successful attack is

PH
i j (x

H
i j ) ∏

l∈Ωi j

PL
il (x

L
il) ∏

o∈Ψi

PC
o (x

C
o ).

Therefore, the expected damage of an attack on asset j in city i is

Vi jPH
i j (x

H
i j ) ∏

l∈Ωi j

PL
il (x

L
il) ∏

o∈Ψi

PC
o (x

C
o ).

The attacker chooses the asset that leads to the maximum expected damage. The second

term in the objective function is the expected damage from natural disasters. We assume

that natural disasters affect entire cities, thus investments to protect against them need to

cover all assets in a city. Therefore, for each city i, the expected damage from a natural

disaster of type k is equal to ∑i PN
ik (x

N
ik)∑ j Vi j. Clearly, total investment is constrained by the

budget.

The following lemma shows the conditions under which the above formulation is a con-

vex optimization program.

Lemma 1 If the success probability functions are log-convex, then the resource allocation

problem is a convex optimization problem.

Proof For each pair (i, j), the expression PH
i j (x

H
i j )∏l∈Ωi j PL

il (x
L
il)∏o∈Ψi PC

o (x
C
o ) is a log-convex

function. Note that log-convex functions are also convex. Thus,

max
(i, j)

{
Vi jPH

i j (x
H
i j ) ∏

l∈Ωi j

PL
il (x

L
il) ∏

o∈Ψi

PC
o (x

C
o )

}
,

is a point-wise maximum of a set of convex functions. This means that

max
(i, j)

{
Vi jPH

i j (x
H
i j ) ∏

l∈Ωi j

PL
il (x

L
il) ∏

o∈Ψi

PC
o (x

C
o )

}
,

is convex. Therefore, the objective function is a linear combination of convex functions,

which is convex. Moreover, the constraint is linear. Therefore, the resource allocation prob-

lem (1)-(3) is to minimize a convex function with linear constraints. This completes the

proof.
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3 A Decomposition Approach to Solve the Resource Allocation Problem

If functions PC
o (x

C
o ), PL

il (x
L
il), and PH

i j (x
H
i j ) are log-convex, then the resource allocation prob-

lem can be decomposed into smaller city-level resource allocation problems. The assump-

tion of log-convexity is not very limiting and many of the existing functions in literature

have this property Bier et al. [2008], Hao et al. [2009], Haphuriwat and Bier [2011], Wang

and Bier [2011], Yolmeh and Baykal-Gürsoy [2019]. We can rewrite the defender’s resource

allocation problem as follows:

min
xi,xC

o ,x
N
ik

[(
max

i
ρ fi(xi)

)
∏
o∈Ψi

PC
o (x

C
o )+∑

k
ωk ∑

i
PN

ik (x
N
ik)∑

j
Vi j

]
(4)

subject to ∑
i

(
xi + ∑

o∈Ψi

xC
o

)
+∑

i
∑
k

xN
ik ≤ B, (5)

xi,xC
o ,x

N
ik ≥ 0, ∀ o ∈Ψi, l ∈Ωi j for i = 1, . . . , I. (6)

In this formulation, fi(xi) is the expected damage of a man-made attack in city i if xi amount

has been allocated to this city for its protection against intentional attacks and all country-

level overarching protections have been breached. The value of fi(xi) is obtained by solving

the following city-level resource allocation problem against intentional attacks:

fi(xi) = min
xH

i j ,x
L
il

max
j

Vi jPH
i j (x

H
i j ) ∏

l∈Ωi j

PL
il (x

L
il) (7)

subject to ∑
j

xH
i j +∑

l
xL

il ≤ xi, (8)

xH
i j ,x

L
il ≥ 0, ∀ l ∈Ωi j, for i = 1, . . . , I, j = 1, . . . ,J. (9)

We refer to the above optimization problem as the city-level subproblem and show that

this problem, under the conditions of Lemma 1, is a convex optimization problem. First, we

need the following lemma, which is adapted from [Boyd et al., 2004].

Lemma 2 Let function g0 : Rn −→ R be log-convex and g1,g2, . . . ,gh : Rn −→ R be convex.

Then, f ∗(x) = infu{g0(u)|u ∈ D,gi(u)≤ xi, i = 1,2, . . . ,h} is log-convex.

Proof Let function G(u,x)≡ g0(u) be defined in the domain, {(u,x)|u ∈ D,gi(u)≤ xi, i =

1,2, . . . ,h}. Define the domain of f ∗(x) as dom f ∗(x) = {x|(u,x) ∈ dom G for some u ∈

Rn}. It is easy to see that the domain of G(u,x) is convex. By assumption, G(u,x) is log-

convex. Next, we show that f ∗(x) = infu G(u,x) is log-convex. Consider two points (x1) and
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(x2) both in dom f ∗. For ε > 0 there are u1 and u2 in dom G such that G(ui,xi)≤ f ∗(xi)+ε .

We have:

f ∗(θx1 +(1−θ)x2) = inf
u

G(u,θx1 +(1−θ)x2)

≤ G(θu1 +(1−θ)u2,θx1 +(1−θ)x2)

≤ G(u1,x1)
θ G(u2,x2)

(1−θ) ≤ ( f ∗(x1)+ ε)θ ( f ∗(x2)+ ε)(1−θ)

≤ f ∗(x1)
θ f ∗(x2)

(1−θ)+δ (ε),

with δ (ε) that converges to zero as ε goes to zero. Since this holds for any ε > 0, we have:

f ∗(θx1 +(1−θ)x2)≤ f ∗(x1)
θ f ∗(x2)

(1−θ).

This completes the proof.

Based on this lemma for h = 1, the following corollary holds:

Corollary 1 If PH
i j (x

H
i j ) and PL

il (x
L
il) are log-convex, then fi(xi) is also log-convex.

Using Corollary 1, an iterative outer approximation method can be used to solve the

decomposed problem. Given a set of points xm
i for m ∈ Φ , we can develop the following

master problem:

min
xi,xC

o ,x
N
ik

z+∑
k

ωk ∑
i

PN
ik (x

N
ik)∑

j
Vi j (10)

subject to z≥ ρ fi(xm
i )e

f ′i (x
m
i )

fi(x
m
i )

(xi−xm
i )

∏
o∈Ψi

PC
o (x

C
o ), ∀i = 1, . . . , I, m ∈Φ (11)

∑
i

xi + ∑
o∈Ψi

xC
o +∑

i
∑
k

xN
ik ≤ B, (12)

xi,xC
o ,x

N
ik,z≥ 0, ∀ k = 1, . . . ,K, o ∈Ψi, for i = 1, . . . , I. (13)

In this formulation, f ′i (x
m
i ) is the first derivative of fi(xi) with respect to xi evaluated

at xi = xm
i . Note that, because fi(xi) is a log-convex function, the solution of this master

problem gives a lower bound to the optimal solution of the resource allocation problem. We

use the obtained xi values to set xM+1
i = xi, Φ = Φ

⋃
{M+1} and M = M+1. We then use

the xM to solve the subproblems:

fi(xM
i ) = min

xH
i j ,x

L
il

max
j

Vi jPH
i j (x

H
i j ) ∏

l∈Ωi j

PL
il (x

L
il) (14)

subject to ∑
j

xH
i j +∑

l
xL

il ≤ xM
i , (15)

xH
i j ,x

L
il ≥ 0. (16)
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Note that, in the subproblem, xM
i values are fixed and they are treated as parameters. Solving

the subproblems gives an upper bound which can be computed as

UB = max
i

ρ fi(xi) ∏
o∈Ψi

PC
o (x

C
o )+∑

k
ωk ∑

i
PN

ik (x
N
ik)∑

j
Vi j.

We continue iteratively solving the master problem and the subproblems until the lower and

upper bounds converge. Algorithm 1 provides the pseudo-code for the overall decomposition

procedure. The algorithm starts by initializing M = 0 and Φ = /0. Then the master problem

is solved to obtain the optimal solution as x∗ = [x∗i ], [x
C∗
o ] and [xN∗

ik ]. The algorithm then sets

the current lower bound LB as the optimal objective function obtained by solving the master

problem. In the next step, the algorithm adds the current point x∗ to the set of points xm
i ,

m∈Φ , and updates M and Φ . We then use xM to solve the subproblems (14)-(16) and obtain

[xH∗
i j ] and [xL∗

il ]. In the next step, the algorithm uses the current solution to compute an upper

bound on the optimal objective function. Subsequently, the current lower and upper bounds

are compared to check if they are close enough. If the difference between the bounds is

smaller than ε , then the algorithm terminates and the current solution is returned. Otherwise,

we go back to line 2 to repeat the procedure until the bounds converge.

Algorithm 1: Pseudo-code for the overall decomposition algorithm

1 Initialize M = 0 and Φ = /0.

2 Solve master problem (10)-(13) to obtain x∗ = [x∗i ], [x
C∗
o ] and [xN∗

ik ].

3 Set the lower bound LB as the optimal objective function of the master problem.

4 Set xM+1 = [xM+1
i ] = x∗, Φ = Φ

⋃
{M+1} and M = M+1.

5 Use xM to solve the subproblems (14)-(16) to obtain [xH∗
i j ] and [xL∗

il ].

6 Compute the upper bound UB = maxi ρ fi(x∗i )∏o∈Ψi PC
o (x

C∗
o )+∑k ωk ∑i PN

ik (x
N∗
ik )∑ j Vi j .

7 if (UB−LB)≤ ε then

8 Return the current solution as the optimal solution of the problem.

9 Terminate the procedure.

10 else

11 Go to Line 2.

12 end

Remark 1 At every iteration of the decomposition algorithm, the values of fi(xm
i ) and f ′i (x

m
i )

give an aggregation of the asset-level data for each city i. Using these values, one can com-

pare the cost effectiveness of investments in different cities with differing numbers of as-
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sets (and differing asset values). Specifically, at the current level of investments, a lower

bound on the expected damage from man-made disasters in city i is given in the form of

Cie−λi(xi−xm
i ), where λi = −

f ′i (x
m
i )

fi(xm
i )

and Ci = fi(xm
i )∏o∈Ψi PC

o (x
C
o ). This bound is tight at the

current level of investments. Moreover, λi can be interpreted as the cost effectiveness of the

new investments in city i. For example, if λi = 0.01, an extra unit of investment in city i will

lead to a reduction of about 1% in the expected damage in city i.

Remark 2 Note that a similar decomposition approach can be developed for the case in

which, instead of using a budget constraint, investment costs are added to the objective

function.

4 Numerical Experiments

In this section, we perform computational experiments to investigate the efficiency of the

proposed algorithm and to gain insight into the properties of the game. The algorithms are

coded in GAMS and the IPOPT (Interior Point OPTimizer) solver has been used to solve

the NLPs. The computational experiments are performed on a computer with 2.6 GH pro-

cessor and 32 GB of RAM. Throughout this section, unless mentioned otherwise, we use

the following parameter values. Similar to [Haphuriwat and Bier, 2011], power-law func-

tions represent the success probability of an attack and the failure probability of protection

against natural hazards. Specifically, assume PH
i j (x

H
i j )≡

(
αH

i j
αH

i j +xH
i j

)κH
i j

, where αH
i j and κH

i j are

positive-valued parameters that determine the cost effectiveness of defensive investment.

Similarly, let PL
il (x

L
il) ≡

(
αL

il
αL

il+xL
il

)κL
il

, PC
o (x

C
o ) ≡

(
αC

o
αC

o +xC
o

)κC
o

, and PN
ik (x

N
ik) ≡

(
αN

ik
αN

ik+xN
ik

)κN
ik

. In

addition, assume κH
i j = κL

il = κC
o = κN

ik = 7, αH
i j = 0.01, αL

il = 0.1, and αC
o = αN

ik = 1. The

acceptable gap of the optimum objective function value, ε , is set as 0.001. Thus, in all ex-

periments, the run time represents the time it takes the algorithm to reach a gap of less than

or equal to ε. Furthermore, assume that all types of disasters are equally likely to happen

with a probability of 0.001.

In the first experiment, we compare the performance of the decomposition approach

with directly solving the mathematical model. We generate the instances for these experi-

ments randomly. Asset values are uniform random variables in the range [43,56]. This range

includes the minimum and maximum risk scores given in the case study by Haphuriwat

and Bier [2011]. We use L1 and L2 to denote the number of country-level and city-level
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Table 1: Average run times (in seconds) of the decomposition approach (DA) and the direct optimization

(DO) of the mathematical model

I
J = 200 J = 250 J = 300 Mean

DO DA DO DA DO DA DO DA

100 71.79 30.49 79.73 38.33 97.19 46.74 82.91 38.52

150 151.76 48.03 153.11 58.42 190.24 72.19 165.04 59.55

200 189.37 67.79 258.04 81.06 264.86 97.50 237.42 82.12

Mean 137.64 48.77 163.63 59.27 184.10 72.14 161.79 60.06

overarching protections, respectively. For all possible combinations of I ∈ {100,150,200},

J ∈ {200,250,300}, K,L1,L2 ∈ {10,15,20}, we generated an instance of the problem to

obtain a data set of 243 problem instances. We then used our proposed decomposition ap-

proach as well as the direct optimization approach to solve all of these problem instances.

Table 1 exhibits the average run times for different number of cities (I) and number of assets

in each city (Ji = J,∀i = 1, . . . , I). The columns DA and DO show the average run times

for the decomposition approach and the direct optimization method, respectively. As seen

in this table, the decomposition approach performs significantly better than the direct opti-

mization approach. This table also reveals that the run times for both DA and DO increase

as the number of cities increases. Moreover, the run times also increase as the number of

assets inside each city increases.

Table 2: Average run times (in seconds) of the decomposition approach (DA) and the direct optimization

(DO) of the mathematical model

I
K = 10 K = 15 K = 20 Mean

DO DA DO DA DO DA DO DA

100 83.42 38.80 84.77 38.60 80.53 38.16 82.91 38.52

150 149.47 59.24 194.48 59.25 151.17 60.16 165.04 59.55

200 240.14 81.28 237.35 82.90 234.77 82.18 237.42 82.12

Mean 157.68 59.77 172.20 60.25 155.49 60.16 161.79 60.06

Table 2 shows the average run times for different number of cities and number of natural

disasters (K). The columns DA and DO present the average run times for the decomposition
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approach and the direct optimization method, respectively. The decomposition approach

performs significantly better than the direct optimization approach. The run times for DO

increase as the number of natural disaster types increases. However, the number of natural

disaster types does not seem to influence the run times of DA.

Table 3: Comparison of the decomposition approach with the mathematical model

L1
L2=10 L2=15 L2=20 Mean

DO DA DO DA DO DA DO DA

10 123.90 48.09 148.76 62.69 176.83 74.43 149.83 61.74

15 129.58 46.12 152.57 61.59 180.66 71.84 154.27 59.85

20 178.34 45.45 165.37 60.47 200.09 69.90 181.27 58.60

Mean 143.94 46.55 155.57 61.58 185.86 72.05 161.79 60.06

Table 3 exhibits the average run times for different number of country-level (L1) and

city-level overarching protections (L2). The columns DA and DO show the average run

times for the decomposition approach and the direct optimization approach, respectively.

The decomposition approach performs significantly better than direct optimization of the

mathematical model. In general, the run times for both DA and DO increases as the number

of city level overarching protections increases. Increasing the number of country-level over-

arching protections, leads to an increase in the run times of DO but decreases the run times

of DA.

In our next experiment, we study the effect of some of the model parameters on the

optimal resource allocation. For this experiment, we assume that all assets have the same

valuations, i.e., Vi j = 1. We consider 5 randomly generated country-level overarching pro-

tection options. We also assume that, for each city, there is only one city-level overarching

protection option, and it covers all of the assets inside the city. Figure 1 demonstrates the

effect of number of assets per city on the optimal allocation of resources. In this figure, C

and L refer to the portion of the budget that has been assigned to country-level and city-

level overarching protection options, respectively. Moreover, H refers to the proportion of

the budget that has been assigned to individual target hardening. According to this figure,

as J increases, the resource amount allocated to individual target hardening decreases and

the resources are shifted toward the overarching protection types. This is in line with exist-
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Fig. 1: The effect of number of assets per city on the optimal resource allocation

ing observations in the literature. Moreover, as J increases, the optimal resource allocation

levels converge and after a certain point, the optimal allocation of resources does not change.

Figure 2 displays the effect of number of cities on the optimal allocation of resources.

In this figure, the optimal resource level for country-level overarching protection options

increases as I increases. However, as I increases, the amount of resource allocated to city-

level overarching protection options decreases. Moreover, the effect of I on the amount of

resource allocated to target hardening options is not monotonic. Specifically, as I increases,

the amount of resource allocated to target hardening options increases at first, then decreases.

The effect of I on the resource allocated to different protection options depends on the

cost efficiency of these options. For example, Figure 3 shows the effect of number of cities

on the optimal allocation of resources, for the case with αL
i j = 0.075 parameter. This is a

slight change from Figure 2, in which we had αL
i j = 0.1. As seen in this figure, the effect of I

on the amount of resource allocated to city-level overarching protections and target harden-

ing is different from Figure 2. This highlights the importance of having accurate estimates of

the parameters that determine the cost efficiency of the protection options. Figure 4 exhibits

the effect of αH
i j on the optimal resource allocation. As seen in this figure, as αH

i j increases,

the amount of resource allocated to harden individual targets decreases while amounts al-

located to city-level and country-level overarching options both increase. This is due to the
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Fig. 2: The effect of number of cities on the optimal resource allocation for αL
i j = 0.1
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Fig. 3: The effect of number of cities on the optimal resource allocation for αL
i j = 0.075

fact that, as αH
i j increases, the cost efficiency of target hardening decreases. Therefore, allo-

cating resources to other protection options becomes more appealing. Figure 5 displays the

effect of αC
o on the optimal resource allocation. As αC

o increases, the amount of resources

allocated to country-level overarching options decreases and the amount allocated to other

protection options increases. This is due to the fact that, as αC
o increases, the cost efficiency
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Fig. 4: The effect of αH
i j on the optimal resource allocation
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Fig. 5: The effect of αC
o on the optimal resource allocation

of country-level overarching options decreases. Therefore, allocating resources to other pro-

tection options becomes more appealing.

In many realistic situations, the cities are not identical and they differ in the number

and valuation of their assets. In such cases, an interesting question to address is how to

compare the cost effectiveness of investments in different cities. In this experiment, we

highlight the ability of the decomposition approach to aggregate asset-level data to com-
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pare cities in terms of cost effectiveness. For this experiment, we ignore the natural dis-

asters and assume that there are no overarching protection options. Therefore, all of the

available resources will be assigned to individual target hardening against intentional at-

tacks. Given a budget of 100 units, we consider two cities; the first one has 10 assets

with the values given as (V1,1,V1,2, . . . ,V1,10) = (10,10,5,8,10,10,7,5,10,10). Moreover,

we have (αH
1,1,α

H
1,2, . . . ,α

H
1,10) = (1,3,4,2,4,1,5,3,4,3). The other city has only one asset

with V2,1 = 5 and αH
2,1 = 2. Using the decomposition approach we solve this instance of the

problem and obtain the expected damage from an intentional attack as 1.94 units under the

optimal resource allocation policy. The optimal policy is to assign 96.84 units to the first city

and 3.16 units to the second city. At the optimal solution, we have f1(x1) = f2(x2) = 1.94,

f ′1(x1) = −0.0153 and f ′2(x2) = −0.3761. These values aggregate the asset-level data and

enable us to compare these two cities in terms of the current expected damage due to an

attack and the cost effectiveness of new investments. Both cities have the same level of

expected damage from an attack, f1(x1) = f2(x2) = 1.94.

The decomposition approach also gives us an idea about the cost effectiveness of in-

vestment in each city. Because the first city has more assets, which in general have higher

values than the asset in the second city, we expect protecting the first city to be more costly

than protecting the second city. In other words, for each unit of extra investment, we ex-

pect the rate of reduction in the expected damage for the first city to be smaller than for

the second city. However, quantifying the difference is not a trivial task. The decomposition

approach offers a way to address this issue. Specifically, the values f ′1(x1) = −0.0153 and

f ′2(x2) = −0.3761 give us an idea about the cost effectiveness of the two cities for new in-

vestments. Based on these numbers, protecting the first city is roughly 24 times more costly

than protecting the second city.

5 Conclusions and Future Research

This paper introduces a new decomposable resource allocation model for protection against

both man-made and natural disasters. The model accommodates multiple types of natural

disasters and offers more flexibility in modeling overarching protections to cover multiple

targets. We show that the proposed model is a convex optimization problem and can be

solved in polynomial time. This means that the model can scale well to solve resource al-

location problems of realistic size. Furthermore, we develop a decomposition approach to
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break the country-level resource allocation problem into smaller city-level problems. The

results of our numerical experiments demonstrate the efficiency of the proposed decomposi-

tion approach. The experiments further investigate the effect of different parameters on the

optimal resource allocation policy.

This paper addresses a gap in the literature of resource allocation problems to develop

a decomposable model that allows more flexibility in modeling protection options. It also

develops an efficient solution approach to solve problems of larger size. However, there are

many ideas to extend the current research and obtain even more realistic models. One way

to extend the current model is to accommodate parameter uncertainty. Our numerical re-

sults show the effect of various model parameters on the optimal resource allocation. The

model seems to be particularly sensitive to the parameters that determine the cost efficiency

of the protection options. These parameters are often not known with certainty. Therefore,

developing a model that addresses the uncertainty of these parameters is a possible avenue

for future research. Another possible extension is to consider all-hazard protection options.

Some of the protection alternatives may protect against both terrorism and natural disasters;

e.g., hardening a bridge. Using a similar argument to the proof of Lemma 1, we can show

that the resource allocation model still remains a convex optimization problem after adding

all-hazard protection options. We plan to develop a decomposition approach for the prob-

lem with the addition of all-hazard protection options. Another extension is to incorporate

discrete decision variables into the model in case protection decisions are not continuous

and it is more appropriate to model them as binary or integer variables. The addition of

discrete decision variables into the model will make the problem a mixed integer nonlinear

program (MINLP). We expect the resulting MINLP to be amenable to outer approxima-

tion approaches similar to the one proposed in [Fletcher and Leyffer, 1994]. Lastly, an all

encompassing model may accommodate multiple planning periods.

Extending the proposed solution approach to solve these models is another inviting topic

to be explored. For example, the addition of binary or integer variables to the model leads

to mixed integer non-linear models that can be addressed using outer approximation or de-

composition approaches. Similarly, if a scenario-based stochastic programming approach is

used to address parameter uncertainties, then the model can be solved using decomposition

approaches. Because our proposed model is a convex optimization problem, we expect the

extensions of this model to also have the same property. Therefore, we expect the future
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extensions of the model to be amenable to decomposition and outer approximation solution

approaches.
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