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ABSTRACT

This paper considers network protection games for a het-
erogeneous network system with N nodes against cyber-
attackers of two different types of intentions. The first type
tries to maximize damage based on the value of each net-
worked node, while the second type only aims at successful
infiltration. A defender, by applying defensive resources to
networked nodes, can decrease those nodes’ vulnerabilities.
Meanwhile, the defender needs to balance the cost of using
defensive resources and potential security benefits. Existing
literature shows that, in a Nash equilibrium, the defender
should adopt different resource allocation strategies against
different types of attackers. However, it could be difficult for
the defender to know the type of incoming cyber-attackers. A
Bayesian game is investigated considering the case that the
defender is uncertain about the attacker’s type. We demon-
strate that the Bayesian equilibrium defensive resource allo-
cation strategy is a mixture of the Nash equilibrium strategies
from the games against the two types of attackers separately.

Index Terms— Network protection, non-zero-sum game,
Bayesian game.

1. INTRODUCTION

Modern cyber-network systems, such as computer networks
and wireless communication networks, are under threat from
increasing amounts of cyber-attacks. An unexpected cyber-
attack may cause leakage of sensitive data, disruption in in-
dustrial controllers, or even casualties. Game theory-based
models have been used to guide optimal defensive resources
allocation against intelligent attackers in various scenarios [1,
2], including intrusion detection systems [3, 4] and physical
layer security for wireless networks [5, 6, 7].

It is usually assumed that cyber-attackers will prefer some
nodes in the network over other nodes. For example, Chen
and Leneutre [8] proposed a game-theoretic model to find
the optimal target selection strategy for intrusion detection in
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heterogeneous networks with each networked node contain-
ing security assets of different values. Wu et al. [9] inves-
tigated a two-stage intrusion detection resources allocation
game for a network consisting of nodes of different impor-
tance. However, some attackers may have different intentions,
such as the infiltration type attacker discussed in [10, 11] that
treats all networked nodes equally. Garnaev er al. [12] dis-
cussed defensive resources allocation strategies when the at-
tacker may be of maximal damage or infiltration type. The
research in [13] also incorporates the cost of defensive re-
sources and shows that optimal defensive resources alloca-
tion strategies have completely different forms against differ-
ent types of attackers.

It is of great interest in the security community to investi-
gate defense strategies when the type of attacker is unknown a
priori. Zhang et al. [14] defined a Ambiguous Security Game
using the D-S theory for a leader-follower game where there
are attackers (followers) with different payoff functions but
the defender (leader) doesn’t know the probability of which
type of attacker will show up. Chen et al. [15] applied the
principle of Pareto optimality in repeated security games in
which the defender can handle different types of attackers si-
multaneously. In this paper, we focus on the case that the in-
coming attacker is either of maximal damage type according
to a known payoff function, or of infiltration type that treats
every node equally. We proposed a Bayesian Nash game
where the defender has a prior belief about the type of in-
coming attackers. The equilibrium is derived in closed form.
It will be shown that the defender will fight against maximal
damage type attacker on nodes with high value, while against
infiltration type attacker on other nodes.

To the best of our knowledge, the research that is most
relevant to this paper is [12], which also considers those two
types of attackers but ignores the cost of defense. This paper
will show that the cost of defense plays a key role.

2. FORMULATION OF THE PROBLEM

Consider a heterogeneous networked system with N nodes.
The importance of each node is valued as C1,...,Cy, re-



spectively. Such networked system structures may corre-
spond to varieties of information and communication net-
works, for example, a database cluster of N servers, or an
OFDM wireless network with orthogonal sub-carriers. A
cyber attacker is targeting some of the nodes, while an agent
working as the defender tries to minimize the effect of attacks
at the same time. For the sake of simplicity, assume that
C1 > --- > Cy, and the value of C;’s are known by both
defender and attackers.

A strategy of the attacker is a normalized vector y =
(y1,...,yn) such that y; > 0, Vi, and also Zfil ¥ = 1,
where y; is the attack resource applied at node i. Sim-
ilarly, a strategy of the defender is a normalized vector
x = (x1,...,xy) such that z; > 0, Vi = 1, where x; is
the defense resource applied at node 4. Let Zil z; < 1so
that the defender can decide not to use all defensive resources
when it is not cost-effective. Moreover, let G;(x;) = g;x; be
the cost of defending node ¢, where g; > 0 denotes the unit
cost of applying defensive resources at node ¢ [16, 9].

Let p;(x;,y;) € [0,1] be the vulnerability of node 1.
Equivalently, we can consider p;(z;,y;) as the probability
of node i being destroyed. It should satisfy: 1) p;(z;,y;)
is decreasing w.r.t x; > 0; 2) p;(x;,y;) is increasing w.r.t.
y; > 0; 3) the vulnerability is O when node : is not attacked,
that is, p;(x;,0) = 0. In this paper, a linear representation for
vulnerability is adopted as suggested in [12], that is,

pi(zi,y:) = (1 —dizy)ys, Yi=1,...,N,

where d; € (0,1) stands for the effectiveness of applying
defensive resources at node i. Let R;(x;,y;) = pi(xq, yi)Ci
denote the expected damage at node i, thus it is proportional
to node ¢’s vulnerability and importance.

The defender wants to minimize the expected damage to
the whole network caused by a cyber attack while maintain-
ing a reasonable level of defense expenditure. Thus, if the
defender knows the attacker’s type, he needs to maximize the
following utility function

Z Rz -Tl,yh
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where h € {I,1I} stands for the type of the attacker. Here we
call the maximal damage type attacker as the Type I attacker,
and call the infiltration type attacker as the Type II attacker.

This paper considers the situation in which the defender
and the attacker take action simultaneously. Hence, if the de-
fender knows the attacker’s type h, then (z*,y;) is a NE
strategy pair if and only if
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The next two sections show the analytical results from [13]
about the NE structures when the defender is against different
types of attackers.

2.1. The attacker aims to inflict maximal damage

When the attacker wants to inflict maximal expected damage,
she maximizes the following utility function
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and let k be a positive integer such that ¢, < 1 < g1, m
be a non-negative integer such that 1,,, <1 < ¥ 41.

If k& < m, then the game has a unique NE (x*, y7) that
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Note that we assume ¢, # 1 and 1, # 1 for the sake of
simplicity. Also, the NE strategy (z*,yy) has the following
properties summarized as lemma.

Lemma 1. Ify;, > 0, then z; > 0, Vj <.
Lemma 2. If x} > 0, then yi, > 0.

Apparently, in both case (a) and case (b), the defender
and the attacker will focus on nodes with the highest C;’s.
By definition of 1;, m < k implies that cost of defense g;
is large compared to d;C; for some node j. Thus, in case
(b), 211\;1 27 < 1, which means the defender keep some re-
sources unused because it is not cost-effective.

2.2. The attacker aims to infiltrate the network

When the attacker tries to infiltrate the network, ignoring the
difference of C;s, the attacker tries to maximize

=3 =3
where C’ is a constant replacing all C;’s. Define £&n =

Z;V 17, C strategy pair (z*, yf;) also has different
closed form solutions in two cases.
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If £ < 1, then the game has a unique equilibrium strat-
egy (x*,ygp), forall j < N,

N
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If & > 1, then the game has a unique equilibrium strategy
(x*,yfy), forall j < N,
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Note that we assume £ # 1 for the sake of simplicity. The
NE strategy (x*, yy7) has the following property as lemma.

Lemma 3. If{x > 1, thenx; =0, Vi=1,..,N;ifén <
1, thenx; >0, Vi=1,...,N.

When facing a Type II attacker, the defender switches
from protecting all nodes to not protecting any node as &y
becomes greater than 1. £ > 1 actually implies that it is not
cost-effective to protect the network since cost of defense g;
is large compared to d;C'; for some node j.

3. A BAYESIAN GAME WITH UNCERTAINTY
ABOUT ATTACKER’S TYPE

The last section has shown that the defender should take
completely different defensive resource allocation strategies
against different types of attackers. Consider a scenario in
which at any instance, the defender encounters either a Type 1
or a Type II attacker. However, the defender can not observe
the attacker’s type ahead of time, but he may have historical
information about the frequency of each type of attack. Let
the probability of facing a Type I attacker is a€(0, 1), and of
facing a Type II attacker is 1 — a.

The expected payoff of the defender, u”, under a mixed

policy triple (x, yy, yy;), is

uP(ypyn) = a-uP (z,yp) + (1 - a)u” (@, yy)
N
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Meanwhile, every attacker knows her own type. Thus, the
defender is playing a Bayesian game with uncertain attacker
types. Let (z*, yr, y5p) be the Bayesian equilibrium, then
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where v5, v#* and v{] denote the game value of the defender,

Type I and Type II attackers, respectively. A computational
way to find «* is to solve a black-box optimization problem

min  w? — uD(a:, Y1, Ui
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and x* is found when the objective function reaches global
optimum 0. Such a problem may be solved by Genetic Al-
gorithms [17] or Tabu Search [18, 19]. However, those algo-
rithms are not guaranteed to converge to the global optimum.

This paper provides the closed-form solution of * by an-
alyzing the Bayesian equilibrium’s structures. The following
lemma reveals a nodes-sharing property for Type I and Type
II attackers. The equilibrium target sets of two attackers have
at most one node in common.

Lemma 4. For the Bayesian NE (x*, y{, y1y), if y1, > 0,
then yi, =0, Vj <.

Proof. Let S{‘ be a pure policy of attacker such that all attack
resources are allocated to nodes 7. Given yi > 0, it holds that

uf(@*, S > uit(x*, 57, Vji=1,..,N,
implying C; —z7d;C; > C; —x7d;C;,  Vj=1,...,N. This
inequality, then, provides the following bound on the payoff
function of Type II attacker under the pure policy of attacking
nodes j, i.e., uf}(m*, SJA), as

uf}(m*, Sf) =C(1- rid;) < C’%(l —xidy),
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since C; > C;, Vj < 4. It means that Sj"s are not Type II
attacker’s best responses for all j < ¢ under *. O

By lemma 4, there must exist an integer n such that

yi>0,y'=0 Vi<i<n
yn > 0,45 >0 (12)
yr=0,y1>0 Vn<i<N

That is, the defender will confront only Type I attacker from
nodes 1 to n — 1, only Type II attacker from nodes n + 1 to
N, and a mix of Type I attacker and Type II attacker at nodes
n in the Bayesian equilibrium. Let SP be a pure policy of de-
fender such that all defensive resources are allocated to node
i, and let S¥, | represent defender’s choice of not allocating
any defensive resource. Then the payoff of action Sﬁ 11is

N
uD(S]eJrl?y;ayikI) = - Z (Oéyli + (1 — a)yHi)Ci' (13)

i=1



Let iR =uP(SP.yf yfp) —uP(SR.1. 7. ufy) be the
benefit of defending nodes ¢ as opposed to not defending at
all. It is equal to

—gi +ay; d;C;, Vi=1,..,n—1,
p ) —gitay; diCi + (1 — a)yfy diCy, i =n,
KB —gi+(1—a)yf1idi0i, Vi =n+1,..,N,

0, i=N+1.

By the structure of ﬂgi, we can interpret the Bayesian game
in the following way: the defender is playing against Type I
attacker from node 1 to node n and is playing against Type II
attacker from node n to node N where the two games entangle
at node n. The Bayesian game should have similar properties
of the previous 2 games including:
* Lemma 1 and 2 should still hold here for the defender
and Type I attacker between 7 = 1 to n.
* Lemma 3 should still hold here for the defender and
Type II attacker between ¢ = n to N. That is, either
x; >0orx; =0 Vi=n,...,N will be true.
If the defender confronts both Type I and Type II defender
in the Bayesian equilibrium, he will allocate resources to ev-
ery node i. It follows that i, = fij5,, Vi, j. We can then get

the value of ﬁgi s by solving

Up =g, = = HEy»
N
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N *
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And a cut-off index n can be found.

However, the defender may not chose to counter both
Type I and Type II attacker in the Bayesian equilibrium.
The next theorem presents the conditions for the Bayesian
equilibrium to be in different cases and provides analytical
solutions.

(14)

Theorem 1. Consider the Bayesian game described above.
Let 05 be the solution of 14, that is,

N i
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N
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Let k and ¢y, be defined in the same way as before. Let m be

a non-negative integer such that (,,, < 1 < (41 where (; is
a strictly increasing sequence defined as

s)
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Vi=1,..., N,
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and (N1 = o0.

(a) If & < m, the game has unique equilibrium strate-

gies for the defender and Type I attacker, and a continuum of
equilibrium strategies for Type Il attacker, given as
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(b) If k > m, and

(b-1) f)g < 0, the game again has unique equilibrium
strategies for the defender and for Type I attacker, and a con-
tinuum of equilibrium strategies for Type Il attacker, given as

Ci=Cmir

d;C; ngmv
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1-ym, S5 =N+,
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(b-2) f)g > 0, then all players have unique equilibrium
strategies. The attackers’ equilibrium strategies are

1, gi+d ,
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The defender’s equilibrium strategy is

dj_CAj ) VJ S mr,
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N 1
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Proof. We provided a proof in Appendix. O

Remark. Here we assume that 95 # 0,¢, # 1 and ¢, #
1 to focus on the cases in which most players have unique
equilibrium strategies.
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(a) Optimal defense strategies

(b) Type I attacker’s strategies

(c) Type II attacker’s strategies

Fig. 1: Bayesian equilibrium strategies against uncertain types of attackers

The value of 9 indicates whether it is cost-efficient for
the defender to intercept Type II attacker. The case of £ <
m implies that the defender has no additional resources to
intercept Type II attacker. When k£ > m and f)g > 0, itis
cost-effective for the defender to protect all nodes. If £ > m
and 98 < 0, then the defender will not allocate defensive

resources to any nodes targeted by a Type II attacker.

4. NUMERICAL ILLUSTRATION

Consider a network consisted of N = 5 nodes with indices
I=A{1,..,5}. Let{C;,i € I} = (0.5,0.45,0.40, 0.35,0.30)
and {d;,i € I} = {70%,40%,50%,60%,45%}. Let
{9;,1 € I} = {0.18,0.22,0.14,0.12,0.16} be the cost of
defense, and oo = 60% be the probability of a Type I attack.

We introduce a cost coefficient p € [0%, 100%)] and let
gi = p- g, to observe the effect of cost on NE defense strategy.
Fig. 1 demonstrates the equilibrium strategies as p increases.
When p < 24.63%, Theorem 1 gives k = 3 and m = 3. So
the Bayesian equilibrium falls in Theorem 3 case (a), and only
nodes 1 to 3 will be protected. As p > 24.63%, k becomes
larger than m but T)g < 0. Hence, the Bayesian equilibrium
falls in the Theorem 3 case (b - 1), and the defender will pro-
tect fewer nodes. Also, the defender will not put his full effort
into defending the network since it is not cost-effective.

5. CONCLUSIONS

This paper discusses defending against two types of cyber at-
tackers for a heterogeneous networked system consisting of
N nodes while taking the cost of defense into consideration.
The attacker could be of two types, I or II; I) either he tries to
inflict maximal damage based on the value of security assets,
or II) he tries to infiltrate the networked system and treat all
nodes the same. Considered is the case that the attacker’s type
is not known with certainty, a Bayesian game model provides
the best policies for the defender, and Type I and Type II at-
tackers. The attackers’ best policy reveals a somewhat target-
sharing structure, in which Type I attacker will focus on a few
channels, while Type II attacker attacks the rest. However,
one node may be attacked by both types of attackers.

Of interest for future research is to extend consider a dy-
namic game against multiple types of attackers. Instead of
using a one-shot Bayesian game to model the case when the
attacker’s type is not known with certainty, we would like
to investigate how the defender can learn the attacker’s type
from historical attack events.
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Appendix

Proof of Theorem 1

Denote vIA to be the game value of Type I attacker, Uﬁ to be
the game value of Type II attacker, vg be the game value of
the defender in the Bayesian equilibrium. Define 5 = vB —
pP(SE +1, Y1+ Yi1), the next proposition will be essential to

construct an upper bound for n.

Proposition. vE > ’Dg.

Proof. 1If @g < 0, then ng > f;g since Eg > 0 by definition.
If T)g > 0, consider the following optimization problem

min UB
BB YT YT

st. 0B > ﬁgi Vi=1,..,N
n N
vi=1, >y, =1
i=1 i=n

It is easy to show that the optimal value of this minimization
problem is 75 . O

Hence, it holds that v > max {fzg ,0} . This in turn
suggests an upper bound for the cut-off index n, given the
indices m and k defined in Theorem 1.

Proposition. n < min{k,m + 1}.

Proof. By the definition of n, yf > 0. Then, lemma 1 im-

plies that 2% > S >0, Vj = 1,..,n. Thus,n < k
J

since )7 % < 1.

By lemmas 1 and 2, clearly, ] > 0, yi >0, Vi <n-—1,

and pf =05, Vi<n—1,giving

i = v +gi
L adzC’Z

>0, Vi=1,.,n—1.

Since it is also true that y; > 0 and T)g > max {@g, O} , the
following holds

n—1 .p ) n—1_p )
ZUB+91 SZUBJFQZ <1,
i adzCl P adlCl
hence, by definition, n < m + 1. O



The final value of n and the explicit solution of (z*, yf, y{;)

depends on the relationship between k, m and f)g as defined
in Theorem 3. There are three possible cases: (a) k < m, (b -
)m < kand 95 < 0, (b-2)m < kand 95 > 0.

(a) The case k < m is similar to case (a) in sectione 2.1,
where the defender will use up all his attention to intercept
Type I Eve at the first k channels. Thus n = k follows. The
defender will not interfere Type II Eve, with 27 = 0, Vi =
k+1,..,N,N + 1. Meanwhile, Type I attacker will also
focus on channels 1 through k. The equilibrium strategies for
the defender and Type I attacker are the solution to

UIA = ,uf‘(a:*, Sf) == Nf(w*7slf)v

@[B’ - pgl == ﬂ[B)k’ (17)
k k

Zi:1 z; =1, Zi:1 yi =1,

which gives Cj1 < v < Cy, 98 > max {95,0} and
xf >0, Vi=1,..,k Sincex; =0, Vi=k+1,...,]V,it
holds that

vi = pi(a®, Sihy) = = pi' (2%, 88) = C

> pi(x*, 57, Vi=1,.. k.

So in equilibrium, Type II attacker attacks channels £ + 1 to
N and makes sure that it is always more beneficial for the de-
fender to intercept Type I attacker. Any strategy that satisfies

7D 7D .

og <vg, Vi=k+1,..,N,

v (18)
Zi:k+1 Y, = 1

is a NE strategy of Type II attacker.

(b) The case k > m can be imagined as case (b) of sec-
tion 2.1 combined with Type Il game. The defender has extra
resources to fight against Type II attacker, but whether the de-
fender will interfere Type II attacker depends on the value of
an indicator, Og .

Lemma 5. Given k > m, if v5 < 0, then x¥ = 0, Vi =
N, ..., N; but, if o5 > 0, then ©¥ > 0, Vi=mn,...,N.

Proof. In order to prove the first statement by contradiction,
assume =] # 0 for some ¢ = n,..., N given f)g < 0. By
lemma 4, 7 > 0, Vi = n,...,N. Moreover, by lemmas 1
and 2, it is also true that 27 > 0, Vi = 1,...,n — 1. That
requires,

fig, =vg >0, Vi=1,.,N.
However, it is impossible to find such ﬁgi Vi = 1,...,N,
since T)[B) < 0. Hence, the assumption cannot be true.
To prove the second statement again by contradiction, assume
27 = 0 for some 7 = n, ..., N, under the constraint f)g > 0.
Then, lemma 4 implies ;7 = 0, Vi = n,..., N, furthermore,
Ty = 0since 9 > o > 0 = pp, . That will lead

to Z?:_ll z; = 1. Meanwhile, if 7 > 0 for an integer

i =1,...,n, then y > 0 by lemma 2 and p{' (z*, S{!) = v{’.

Moreover, vi* > Cf, since x}, = 0.

It can be seen that it is impossible to find a solution of
2?2—11 x; = 1lgivenn —1 < m, k£ > m and the constraint
pit(x*, SA) > C, i = 1,...,n — 1. Hence, the assumption
cannot be true. O

(b-1DIf k> mand f)g < 0, this case is similar to case
(b) of section 2.1 combined with case (b) of section 2.2. Thus,
n = m+1 follows. Type I attacker will focus on channels 1 to
m + 1, while the defender can protect more than m channels
but it is beneficial not to protect the remaining channels so that
z; =0, Yi=m+1,..., N by lemma 5 and has x%,, > 0.
Thus, the equilibrium strategies of the defender and Type 1
attacker are solutions to

A A A A A
U = M1 (x*751):"':,u[ (QB*,SW):C"H_l,
D _ =D __ _ D _
vp =pp, = =pp, =0,

* _ m * * _ m *
Ty =1-— Die1 T Yy = 1->00 Yr,-

Note that 7 > 0, Vi = 1,...,mand z; = 0, Vi = m +
1, ..., N. Thus, any strategy that satisfies

fg <0, Vi=m+1,..,N,
N
Zi=7n+1 yikli - 17

can be a NE strategy of Type II attacker.

(b-2)If kK > m and @g > 0, this case can be regarded
as case (b) of Theorem 1 combined with case (a) of Theorem
2. By lemma 5 z; > 0, Vi = 1,..., N, so the attackers’
equilibrium strategies (yy, y{;) are solutions to the system of
equations 14, which gives T)g = f)g and n = m + 1. Thus,
(Y7, y77) must satisfy

yi, > 0y, =0, V1i<i<m,
yr, > 0,y >0,
yi, =0y, >0, Vn<i<N.

Hence, the defender’s equilibrium strategy a* is the solution
to

UiA = #fq(w*vsfl) == Mf‘(m*ﬂsréHrl)v
U{IlNz Mﬁ(w*,5$+1) == Mﬁ(m*asﬁ)v
Zi:l z; =1,

which is unique.
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