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Abstract—The challenge of mapping logical qubits to physical
qubits in quantum systems has been addressed in prior proposals
that optimize the Probability of Successful Trial (PST) by
considering the coherence and gate error rates. However, these
proposals do not account for crosstalk errors, which occur when
active qubits interact during execution. The reason for this is that
crosstalk only appears after the initial mapping, while previous
strategies allocate qubits based on program and quantum system
characteristics using one-step mapping methods. Scheduling-
based solutions have been created to address this problem by
inserting barriers between gates to reduce crosstalk, but at the
expense of increased execution time and coherence error rates,
ultimately decreasing overall accuracy. This paper presents and
evaluates TRIM, a novel strategy that characterizes crosstalk and
eliminates it in an iterative fashion using a multi-step greedy
search method, which can be applied to any qubit mapping to
reduce crosstalk while keeping execution time and coherence
errors in check. Evaluations of TRIM using multiple workloads
show PST improvements of 7.3% for single-programmed execution
and 7.7% for multiprogramming scenarios, while reducing or
keeping the number of gates, compared to a state-of-the-art
mapping scheme. Additionally, TRIM achieves 5.4% and 3.3%
PST improvements for single-programmed and multiprogrammed
executions, respectively, compared to a state-of-the-art scheduling
strategy.

Index Terms—Quantum Computing, Reliability, Mapping
Techniques, NISQ, Compiler

I. INTRODUCTION

Quantum computing (QC) is a paradigm that aims to reduce
the execution time of various applications from different do-
mains, including finance [1], chemistry [2], and data mining [3],
through the use of qubits and quantum gates. However, the
“reliability” of quantum computing is a major concern due
to various error types, such as crosstalk, coherence, and gate
errors, which arise from manufacturing variations in quantum
hardware [4]. The effect of these errors can be exacerbated
when the size of the circuit is increased or when multiple
programs run on the same quantum hardware, leading to intense
interactions [4].

While various error correction techniques [5], [6], [7], [8],
[9] have been introduced over the last two decades, due
to enormous size requirements they impose, they cannot be

The material presented in this paper is based upon work supported by
the National Science Foundation under Grant Numbers 2119236, 2122155,
2028929, 1931531, and 1763681.

effectively employed in current systems. Therefore, the concept
of NISQ (Noisy Intermediate-Scale Quantum) [10] architecture
has been introduced, with the goal of executing programs
without any error correction technique while trying to minimize
the reliability issues using alternative approaches. One of the
approaches to improve reliability is mapping, which aims to
minimize errors by using more reliable physical qubits when
executing a quantum program while minimizing the number
of gates by reducing the SWAP operations that need to be
performed. Basically, a mapping scheme maps virtual/logical
qubits (i.e., qubits of the quantum program) to physical qubits
(i.e., qubits of the hardware), aiming to ensure the correct
execution of the program. [4], [11], [12], [13], [14], [15], [16],
[17] are a subset of representative research papers in this area.

Table I reveals that previous mapping and routing techniques
have primarily focused on minimizing error rates by reducing
coherence and gate errors through optimizing SWAP operations
using routing algorithms. However, to our knowledge, none
of these techniques directly address crosstalk errors, which
occur when an operation on one qubit unintentionally impacts
other qubits. This oversight is significant because crosstalk
errors can increase the error rate on neighboring qubits by up
to 11x [4], thereby significantly impacting system reliability.
A state-of-the-art scheduler proposal [4] attempts to minimize
crosstalk effects by scheduling gates in separate steps, using
barriers between them. Unfortunately, this method increases
execution time and, while eliminating crosstalk, introduces
coherence errors, ultimately affecting overall reliability.

In this paper, we first investigate various strategies that can be
incorporated into “one-step” mapping algorithms. Our results
reveal that current one-step mapping approaches cannot remove
crosstalk errors in single-programming or multiprogramming
execution scenarios. To tackle this issue, next, we present
TRIM (crossTalk awaRe qublt Mapping), an iterative, search-
based greedy strategy, which starts with an initial mapping and
then searches through the design space for a superior group
of qubits with fewer crosstalk cases. TRIM keeps running
the search algorithm until it runs out of better candidates,
reaching a local or global minimum (in terms of error rate). To
further improve the effectiveness of TRIM, we also introduce
a relaxed version of a recent mapping scheme (QuCloud [17]).
We observe that TRIM when coupled with this relaxed mapping
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Mapping | Scheduler Routing Coherence Crosstalk Gate Error Multiprogramming or

Optimizer | Mitigation | Mitigation Reduction Single Execution
SABRE [11] v X 4 X X 4 SP
VQA [12] 4 X X X X v Sp
VQM [12] X X v X X 4 SP
HA [14] v X v X X 4 SP
Nash et al. [15] v X v X X v SP
DIS [18] X v X v X X SP
FRP [18] 4 X v X X v MP
QuCloud [17] v X v X X 4 MP
Murali et al. [4] X v X X v X SP

TRIM v v X X v v Both MP and SP

TABLE I: Key characteristics of the existing mapping/scheduling schemes and TRIM.

scheme improves the Probability of Successful Trial (PST) over
the baseline mapping scheme. Our main contributions in this
work can be summarized as follows:

e We characterize the crosstalk error and its extent in quan-
tum hardware using different programs. In lieu of characterizing
the entire system, our method only characterizes a subset of
links that satisfy the criteria of our algorithm, minimizing the
characterization overhead by 5.6x.

e We discuss that existing mapping proposals are agnostic to
crosstalk effects and demonstrate that the crosstalk can severely
hurt the PST of the system. Also, focusing on the scheduling
strategy proposed in [4], we show the extent of the error rate
introduced because of the increase in execution time.

e To address this issue, we propose a novel approach, TRIM,
which is a crosstalk-aware iterative logical-to-physical qubit
mapping scheme that minimizes the crosstalk errors while —
at the same time — maintaining or reducing the gate errors
and coherence errors. We want to emphasize that our iterative
algorithm can start with any initial logical-to-physical qubit
mapping.

e We also present a relaxed mapping algorithm for the
initial mapping, aiming to increase the chances for achieving
the global minimum for the crosstalk error.'

e We present an experimental evaluation of TRIM using a set
of 10 single-programmed and 16 multiprogrammed workloads
using a real quantum system. For single-programmed cases, our
approach achieves 7.3% and 5.4% average PST improvements
over [17] (a state-of-the-art mapping scheme) and [4] (a
state-of-the-art scheduling strategy), respectively. For multi-
programmed cases, the collected experimental data indicate
that our proposed scheme improves the PST by, on average,
7.7% and 3.3%, compared to [17] and [4], respectively.

II. BACKGROUND AND METHODOLOGY
A. Quantum Computing and Quantum Errors

In quantum computing (QC), information is stored in “qubits”
rather than bits. A qubit is a linear combination of two basic
states, |0) and |1), and can be represented as |@) = a|0)+ |1),
with |o|> +|B]> = 1. Quantum gates modify qubit states
by influencing complex numbers o and . Manufacturing
challenges, qubit/gate imperfections, and external interferences
can cause different types of reliability issues in quantum

'The global minimum mapping is a qubit allocation (mapping) that
minimizes crosstalk to the greatest extent possible.

circuits. These errors can be broadly classified into three main
categories:

e Coherence Errors: Qubits maintain their state for only
a limited amount time, with errors increasing exponentially,
potentially causing a qubit to change to state |0).

e Gate Errors: Errors may occur during quantum operations
on qubits. Single-qubit gates have lower error rates (about
1073) compared to two-qubit gates like CNOT (1072).

o Crosstalk and Measurement Errors: Quantum operations
can affect both involved and adjacent qubits. Crosstalk errors
arise when two CNOT's are applied to neighboring qubits,
increasing the error rate significantly. Minimizing simultaneous
CNOTs on nearby qubits is essential. Additionally, measuring
a qubit’s state can impact surrounding qubits. To minimize
this, measurements are typically performed towards the end of
the program.

B. Execution Flow in QC

To execute a program correctly on real quantum hardware, six
steps must be completed in sequence. First, the program should
be converted into 1-qubit and 2-qubit gates to be executable
on real hardware. Next, the “logical qubits” (qubits in the
application program) should be mapped to “physical qubits”
(the physical implementation of qubits). This mapping enhances
system fidelity by reducing the number of SWAP operations and
crosstalk, ultimately lowering gate errors. The compiler then
inserts SWAP operations between gates, ensuring that CNOTs
are executed only on directly linked physical qubits. Following
this, various optimizations such as [19], [20], [21], [22] are
applied to the quantum program’s instructions to minimize
gate count. Lastly, before executing on real hardware, gates
are scheduled to minimize execution time and/or maximize
reliability.

When mapping is not effective, current quantum systems
use scheduling mechanisms to further mitigate reliability issues.
One example of such scheduling is shortening the time between
the preceding operation and measuring the result qubits, which
helps reduce coherence errors. The resulting instructions are
then sent to the quantum machine, and the final result is formed
upon measuring the output qubits. Due to the probabilistic
nature of quantum computing, the outcomes of different
executions of a quantum program may vary. As a result,
multiple runs (also known as shots) are typically performed to
determine the probability of obtaining the correct output. In
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this context, the likelihood of achieving the desired outcome
is denoted by the term Probability of Successful Trial (PST).

[ Workload [ Abb. | Qubits# | Gates# | CNOT# |

Small Benchmarks

pea_5 P1 5 98 42

modSmils_65 | P2 5 35 16
Medium Benchmarks

mini_alu P3 10 168 77

qpe_9 P4 9 123 43

rd53_138 P5 8 132 60

simons_6 P6 6 44 14

bv_14 P7 14 41 13
Large Benchmarks

multiply_13 P8 13 98 40

sat_11 P9 11 679 252

rd73_140 P10 10 230 104

TABLE II: Benchmark characteristics. (P: Program)

C. Experimental Setup

In this section, we provide details about our evaluation

methodology and the benchmark programs used in our study.

The quantum programs utilized in our evaluations are sourced
from RevLib [23] and QASMBench [24]. Table II summarizes
the benchmarks used, their abbreviations (used in result
tables), the number of qubits, and gates. The TRIM evaluation
is performed on ibmq_montreal [25], which is a Quantum
Falcon processor from Qiskit [26]. The high-level view of
this architecture, including qubits and their connections, is
illustrated in Figure 1-a. We execute all our experiments using

4000 shots, and we report PST and gate number in all results.

In case of multiple correct results, we calculate the PST using

pSTi Res 1- i —nil
3 _ es
=L

n;
Count|Res Count|[Res|

the following formula: PST = YR

if(xi =0V |xi—}’l,’| an) — PST; =0,

where x; is the observed output count and n; is the expected
output count. If we apply a Hadamard gate” to a qubit and
take measurements for 4000 shots, for instance, we have an
idea of the qubit’s behavior. The result of this scenario should
contain 2000 zeroes and 2000 ones. Therefore, if we count
1500 zeroes and 2500 ones, we may derive the PST as follows:

PST _ (1_ \150;)&)%)000|)_£(1_ \250;)(;()%)000\) _ 075 _ 75%

To evaluate the effectiveness and reliability of our proposed
TRIM method, we also present results from a multiprogrammed
(MP) execution scenario, where multiple quantum applications
run concurrently on the same quantum hardware. The MP
execution typically leads to higher hardware utilization and
throughput but also intensifies reliability challenges that must
be mitigated to minimize their impact. To achieve optimal
performance and reliability in MP execution scenarios, we
utilize state-of-the-art mapping and scheduling algorithms as
baselines; specifically, QuCloud [17] for mapping and the
method proposed in [4] for scheduling. QuCloud aims to
enhance reliability in MP environments by reducing the number

2When applied to a constant qubit, the Hadamard gate forms a uniformly
random qubit, which, when measured, behaves like a coin toss.
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of SWAP operations, while the method in [4] minimizes
crosstalk by altering the execution order of simultaneous
CNOTs on neighboring qubits. It is important to emphasize
that TRIM can be combined with any mapping and scheduling
algorithm. In single-programmed cases, we use the same
mapping as in multiprogrammed cases, with the only difference
being the absence of the second program.

III. MOTIVATION
A. Mutliprogramming in QC

Over last decade, cloud computing has become a norm
in modern compute platforms, where multiple concurrently-
running application programs share the available hardware
and system resources (also called consolidation). QC is no
exception, and a number of recent proposals (see [17], [18], [27]
and the references therein) have attempted to incorporate mul-
tiprogramming into various quantum systems and consolidate
resources. The increase in system utilization and throughput is
one of the most important advantages of multiprogramming, as
compared to single-program execution. The existing research on
multiprogramming of quantum hardware [17], [18] indicates
that, despite the fact that modern quantum systems have a
restricted number of qubits (on the range of 10-100s), they
are still underutilized, making multiprogramming a promising
option for such systems.

While multiprogramming improves the system’s throughput,
it also introduces a slew of reliability issues, affecting the
system’s final output. One issue is that the quantum programs
that are executed simultaneously can be (and, in most cases,
will be) “incompatible”, in the sense that they can finish
at different times, thereby causing significant coherence er-
rors [18]. Another issue is deciding how to route two qubits
via SWAP insertions when the best path between them could
pass through other (concurrently-running) programs. Since a
given qubit of a program can interact with the qubits of other
programs, allowing inter-program SWAPs can improve gate
error at the cost of crosstalk error. If inter-program SWAPs are
not allowed, routing between two qubits may be impossible
or very expensive to achieve in some cases, depending on the
number of CNOTs. The third and possibly most important issue
is about quantum program mapping. Since different qubits have
different characteristics, e.g., the number of links, error rate
of each link and error rate of the qubit itself, an inefficient
mapping may have a low chance of producing correct output.

B. Related Works and Their Limitations

Mapping and scheduling techniques attempt to improve the
reliability (PST) of quantum programs from different angles.
More specifically, the existing approaches to logical-to-physical
qubit mapping mostly focus on minimizing the number of
SWAPs by introducing new routing strategies and ensuring
that programs can fit into available quantum hardware (shown
in Table I). In contrast, existing scheduling techniques mostly
attempt to minimize the different types of errors by changing the
execution sequence (order of computations) while maintaining
the correctness of the program.
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Fig. 1: (a) Connectivity of the 27-qubit ibmq_montreal, (b) Basic mapping, (c) Basic mapping+crosstalk scheduler [4], (d) A
new mapping that eliminates only one of the cases, and (e) Optimal target.

QuCloud [17] | QuCloud [17]+Murali et al. [4]

Case# | Benchmark PST[%] PST[%]

S1 P1 63.2% 59.4%

S2 P2 58.2% 52.8%

S3 P3 47.6% 42.2%

S4 P4 23.4% 18.1%

S5 P5 78.3% 69.2%

S6 P6 49.1% 44.2%

S7 P7 36.1% 29.5%

S8 P8 21.5% 18.3%

S9 P9 38.2% 30.5%

S10 P10 38.7% 33.2%

Average 45.4% 39.7%

QuCloud [17] QuCloud [17]+Murali et al. [4]
Case# | Benchmarks PST[%] PST[%]

WLI1 | WL2 | WL1 | WL2 Avg | WL1 | WL2 Avg
M1 P10 |PI 37.2% | 56.5% | 46.8% | 33.3% | 51.7% 42.5%
M2 P9 Pl 37.3% | 55.8% | 46.5% | 32.1% | 50.4% 41.2%
M3 P8 Pl 20.1% | 56.5% | 38.3% | 14.1% | 52.8% 33.5%
M4 P7 Pl 35.7% | 55.9% | 45.8% | 29.0% | 50.4% 39.7%
M5 P6 Pl 48.8% | 56.8% | 52.8% | 42.9% | 52.4% 47.6%
Mé6 P5 Pl 76.8% | 55.9% | 66.3% | 72.7% | 47.3% 60.0%
M7 P4 Pl 23.4% | 57.7% | 40.5% | 16.2% | 54.3% 35.2%
M8 P3 Pl 46.6% | 56.1% | 51.4% | 39.7% | 48.1% 43.9%
M9 P10 | P2 37.3% | 51.9% | 44.6% | 32.5% | 46.7% 39.6%
M10 | P9 P2 36.9% | 52.7% | 44.8% | 28.6% | 43.8% 36.2%
Mi11 | P8 P2 19.7% | 50.5% | 35.1% | 15.8% | 47.3% 31.6%
M12 | P7 P2 34.7% | 53.1% | 43.9% | 29.3% | 49.7% 39.5%
M13 | P6 P2 48.9% | 51.3% | 50.1% | 40.0% | 45.3% 42.6%
M14 | P5 P2 772% | 53.1% | 65.2% | 70.6% | 49.2% 59.9%
M15 | P4 P2 232% | 51.8% | 37.5% | 15.5% | 45.0% 30.3%
M16 |P3 P2 45.9% | 51.4% | 48.6% | 39.7% | 45.9% 42.8%
Average 40.6% | 54.2% | 47.4% | 34.5% | 48.8% 41.6%

TABLE III: PST comparison between QuCloud and QuCloud+
[4] without considering crosstalk error. "P#” refers to the
applications listed in Table II.

The state-of-the-art mapping mechanisms focus on minimiz-
ing the gate error rates. For example, SABRE [11], as shown
in Table I, is a SWAP-based heuristic routing and mapping
method that employs a search strategy to optimize the number
of gates. Although it reduces the gate errors, it does not consider
crosstalk which can be of significant concern. Additionally, it
only considers a single application, obviating most crosstalk
concerns. VQA and VQM [12] are complementary methods
that employ routing and mapping techniques to minimize the

SWAPs and to employ qubits with the lowest total link error
rate. FRP [18] is an allocation/mapping technique specifically
proposed to reduce the number of SWAPs, minimizing the
gate error rate when multiple applications are running at
the same time. Nash et al. [15] present a circuit synthesis
technique that takes an input circuit and adjusts it to match the
connectivity profile of the quantum hardware (on which the
program is going to execute) in a single program environment.
QuCloud [17], on the other hand, has introduced a graph-
based mechanism that minimizes the number of SWAPs in a
multiprogramming-based execution environment by allowing
inter-program SWAPs. QuCloud does not consider crosstalk
as part of the mapping; instead, it relies on the subsequent
scheduling step to handle it. While all these prior approaches
improve system reliability to varying degrees by lowering gate
errors, none of them, to our knowledge, has explicitly addressed
crosstalk between applications caused by CNOTs operating on
adjacent qubits. This is primarily because crosstalk happens
when two gates are scheduled to run at the same time, and no
scheduling information is available during the “initial mapping’
process since scheduling is the last step before executing the
program on the target quantum hardware (recall the steps in
running a program mentioned in Section II-B) Unfortunately,
this crosstalk issue may increase the error rate by up-to 11x [4],
and this in turn, can have a significant negative impact on the
system’s PST.

il

Several scheduling strategies have been proposed over the
last decade to minimize different types of errors when mapping
is not efficient. For example, DIS [18] is a scheduler that
executes different applications at different steps; so, all of the
applications finish at the same time, thereby minimizing the
coherence error. The scheduling strategy, presented in [4], aims
to minimize crosstalk errors by providing a scheduler that
alters the sequence of parallel neighboring CNOTSs by placing
a barrier between them and thus eliminating crosstalk in the
process. Figure 1-b illustrates an example where four CNOTSs
are running on neighboring qubits after scheduling, causing two
potential crosstalk errors. As demonstrated in Figure 1-b, the
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proposal in [4] postpones the execution of two of the CNOTSs
so that qubits do not have any interactions. While this solves
the reliability problem, it also increases the execution time,
thus potentially magnifying the system’s coherence error. To
carefully evaluate the impact of the approach presented in [4],
we have conducted a theoretical study comparing the PST of
the original case vs. when the scheduler in [4] is employed.
In both the cases, we have assumed that crosstalk errors are
non-existent to exclusively evaluate the PST difference due
to changes in the order of instructions. Although [4] employs
different techniques, such as increasing the parallelization to
minimize the coherence error impact on the PST, a comparison
of these two scenarios reveals a decrease in PST of 1% to
7% (on average, 2.8%) due to an increase in coherence errors
(reported in Table III). Therefore, while the approach proposed
in [4] minimizes the crosstalk errors, it causes another type of
error — coherence error — which can easily offset any potential
benefits from the crosstalk error minimization.

On the other hand, mapping-based approaches can solve
this problem by limiting the occurrence of scenarios where
two CNOTs share adjacent qubits. It is to be noted however
that, since various crosstalks can occur at different stages of
execution and it is possible to create other crosstalks when
trying to eliminate one of the crosstalks, there is presently
no simple solution to eliminate the crosstalks during the
mapping process. Figure 1-c illustrates how modifying the
mapping can solve the crosstalk for CNOTs between LQ2-
LQ3 and LQ4-LQ5 but it cannot eliminate the crosstalk for
CNOTs between LQO-LQ1 and LQ4-LQ5. In this work, our
main goal is to investigate various strategies to discover the
best feasible mapping that eliminates all potential crosstalks
while minimizing the increase in the execution time. For
our current example, Figure 1-d shows the mapping result
that we aim to achieve. Summarizing the observations from
Table III and Figure 1, it is evident that current mapping and
scheduling techniques are not able to reduce the crosstalk errors
without causing other types of reliability concerns. To that end,
we propose TRIM, an iterative greedy search algorithm that
modifies a given “initial mapping”, in an iterative fashion, to
minimize the crosstalk scenarios while keeping the coherence
error of the system in check.

In summary, our work stands out from existing mapping
strategies by integrating crosstalk considerations into the
initial mapping process. Additionally, it differs from current
scheduling techniques as we do not increase coherence errors
while eliminating crosstalk, unlike existing methods.

IV. DESIGN CHOICES

In this section, we discuss various design choices to address
crosstalk issues in a quantum system. We examine each choice
in detail and explain its potential impact on the system’s output.

Multi-Step vs Single-Step Mapping: The optimization for
reducing crosstalk can be incorporated during or after the
mapping stage. However, since the order of CNOT execution
is only available after scheduling; direct information about
crosstalk is inaccessible during the initial mapping stage. As

a result, the only way to consider crosstalk (“indirectly”) is
by mapping programs to groups of qubits with limited links
between groups. Unfortunately, this mapping cannot mitigate
the PST degradation resulting from crosstalk between qubits
within each program.

While previous approaches [17], [18] have utilized indirect
minimization techniques for crosstalk, to our knowledge,
none has managed to identify accurate crosstalk information,
leading to false crosstalk detection instead. An example of
this is when two neighboring qubits are prevented from
being assigned to different programs in [17]. If these two
qubits do not have any simultaneously running CNOTs, no
crosstalk would occur, limiting the possibility of running other
programs without providing any benefits. Consequently, a two-
or multi-step heuristic should be designed to reduce crosstalk
cases, progressively optimizing the target program’s PST. Our
paper proposes an iterative search algorithm using information
from the “current mapping” to improve “subsequent iterations
mapping” with the aim of reducing crosstalk.

Selection of the Initial Mapping: An essential criterion
in developing a search-like heuristic algorithm is to avoid
getting trapped in a local minimum. Our mapping should
be able to search for different candidates to find the best
logical-to-physical mapping with the highest output reliability.
The initial mapping may not directly affect this issue but can
create scenarios leading to limited options (or no options) for
our search algorithm, reducing the chance of finding a better
mapping.

Various mapping algorithms have been proposed over the
past two decades, including SABRE [11] and QuClou-d [17].
While each has its advantages and disadvantages, none is
definitively superior, as the possibility of finding a global
minimum cannot be directly deduced from the mapping itself.
Therefore, in this work, we conduct experiments with three
(initial) mapping algorithms to determine the best-performing
one.

Criteria to Differentiate among Mapping Algorithms:
To distinguish between different mappings, we must identify
the criteria affecting each mapping and the reliability of the
resulting output. These criteria and their influences on the
system can be summarized as follows:

e Connectivity to qubits from the same program: Assigning
logical qubits from the same program to distant physical qubits
can increase the number of CNOTs (due to SWAP operations),
leading to higher gate errors. Hence, each program should be
mapped to a strongly-connected group of physical qubits to
minimize gate error effects.

e Quality of qubits: Different physical qubits may have
varying error rates and numbers of links. A qubit with more
links can enhance system performance if assigned to the logical
qubit with the most CNOTS, reducing the number of SWAPs.

e Number of gates: A program with fewer gates is more
optimized since it produces fewer gate errors.

e Number and extent of crosstalks: The number of distinct
crosstalk cases indicates the extent of the crosstalks encoun-
tered; typically, the lower this number, the better the results. If
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Fig. 2: (a) Updated flow to accommodate TRIM, and (b) the tree created by QuCloud [17], and (c) Crosstalk characterization
needed for TRIM on ibmq_montreal for a sample 5-qubits benchmark.

we need a tie-breaker between two mappings (with the same
amount of crosstalk), the magnitude of the crosstalk errors can
be used to differentiate between them.

Since the effects of the above criteria on system reliability
vary, a method for comparing their magnitudes should be
developed. For example, a new CNOT gate causes less error
than crosstalk; thus, reducing crosstalk should take precedence
over optimizing gates.

V. OVERALL DESIGN

In this section, we present our optimizations that focus
on eliminating crosstalk errors during the mapping process.
Current mapping approaches do not reduce crosstalk without
increasing coherence errors; so, we propose TRIM, a novel
mapping optimization algorithm that considers “crosstalk error
characterization” to increase system reliability.

A. Crosstalk Characterization

The first step in incorporating crosstalk into the mapping
process is to determine its effect on different qubits of the
target quantum machine. The prior works [4], [28] indicate that
crosstalk can vary dramatically from one qubit to another, thus
necessitating a careful characterization of the target system to
quantify its magnitude. To do this, prior work [4] schedules
two CNOTs on adjacent qubits and calculates crosstalk by
comparing the error rate against the scenario where these two
qubits are operated independently. Note that, to reduce the
total number of runs, multiple characterization scenarios can
be executed simultaneously as long as they do not affect each
other (when one crosstalk scenario between two CNOTSs causes
crosstalk in the other scenario). This process can take up to
10 hours for ibmq_montreal, which is significant.

To find crosstalk, we compare the qubits of each CNOT in
each step to those of the others, detecting crosstalk between the
qubits if they are neighbors. To make the procedure easier, a
tree and an array containing the CNOTs qubits are used. More
specifically, the physical qubits of all CNOTs are represented
by an array in different steps, and by comparing the physical
qubits of CNOTs with each other, we identify the crosstalk
cases. In step i, for example, if two CNOTSs are running at the
same time, we compare the physical locations of the qubits
to see if they are neighbors or not. If they are, we count it as
crosstalk. Then, by executing three different jobs, one executing
both CNOTs and the other two executing one CNOT at a time,

we measure the difference in reliability of the system for each
CNOT and report it as the crosstalk effect on that CNOT.

Algorithm 1: Relaxed QuCloud.

: Coupling Graph G, Quantum Circuits
: Partitions

input
output

Relaxed_G + G

-

2 Function Mapper:

3 for circuit in circuits do

4 Tree < Tree_Constructor(Relaxed_G) // creating the
tree based on the hardware graph

5 candidates < ||

6 for leaf in leafs(Tree) do

7 if circuit fits in leaf then

8 | candidates.add(leaf)

9 else
10 | leaf « leaf parent
1 end
12 end
13 Sort the candidates based on their fﬁ;z’:fm; and choose the best to
the circuit
14 if circuit can fit in the chosen node then
15 assign circuit to leaf
Relaxed_G < Graph_U pdater(Relaxed_G,leaf)
16 else
17 ‘ Execute Separately
18 end
19 end

20 Function Graph_Updater(Graph_G):

21 for node in leaf do

2 Graph_G.remove(node) Graph_G.remove(node.neighbors) return
Graph_G

23 end

24 Function Tree_Constructor:

25 Communities + ] Create a leaf node for every qubit while
Communities.size() > 1 do
26 Find two-element combination (A,B) of communities for (A,B) in all

the combinations do
27 ‘ F(A,B) = Intra_Program_Links - Inter_Program_Links
28 end
29 New_Node = Union(A,B) Communities.remove(A)
Communities.remove(B) Communities.add(New_Node)

» Whit¥ our algorithm’s execution also requires the characteri-
zation procedure, instead of characterizing the “entire” quantum
hardware, we first apply the initial mapping to each of the
single and multi-programmed benchmarks and gather a union
of the chosen physical qubits. After that, TRIM characterizes
the neighboring nodes within a two-node distance for the union
of the qubits in the initial mappings (the physical qubits that
are initial mappings use). Since most reliable qubits and links
are not frequently changed, the mappings of most qubits are
always identical, thus making the union of the mappings not
significant in size. Also, although there may be a theoretical
scenario in which the algorithm completes by remapping some
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Fig. 3: An example illustrating how TRIM works in practice.

of the logical qubits to qubits with a distance greater than 2,
in practice, this rarely occurs because it would increase the
number of SWAPs, thereby reducing the PST of the algorithm.
For example, as Figure 2c shows, for a sample initial mapping
of an algorithm with 5 qubits (shown in blue color), we only
characterize the crosstalk for the red portion of the graph
(the red-colored links), while a complete characterization must
characterize all the qubits and their links. Our results on all
the benchmarks evaluated in Section VI indicate that in 96%
of the cases, we do not need any additional characterization
for the system by using our technique.

By leveraging our new characterization process and crosstalk
characterization algorithm, we achieve a 5.6x reduction in
crosstalk characterization overhead across all tested bench-
marks. While a complete system characterization can be
beneficial in some cases (4% of workloads), it will become
infeasible in the future due to the increasing number of
qubits in quantum systems. For instance, characterizing the
new IBM quantum system with 128 qubits (ibm_washington)
requires evaluating 242 scenarios, significantly more than the
27-qubit ibmq_montreal, which only needs characterization of
39 scenarios. That is, the larger machine spends 6.2x execution
time only for characterization process. It is important to note
that our characterization process is dependent on the number of
links that the physically-mapped qubits have. Since the number
of links for each qubit is typically limited to two or three in
all IBM quantum systems we are aware of, the number of
links that we need to characterize for the same workload using
TRIM is almost identical in different quantum hardware with a
different number of qubits, which shows our algorithm easily
(and in a robust fashion) applies to different quantum hardware
regardless of their qubit counts.

B. Modifications to Execution Flow

We modify the general flow of mapping and optimizations
as, in its current form, it does not adequately address crosstalk
minimization. The updated execution flow is shown in Figure 2a.
The initial mapping (step @) will be performed without any
adjustments. However, we aim to rectify the shortcomings of
the general flow, in which mapping is conducted only once
and without sufficient knowledge of circuit optimizations and
crosstalk. To address this problem, we create a feedback loop

(steps ©@-@) that takes scheduling results, identifies crosstalk
occurrences, and employs a heuristic strategy (discussed in
detail in Section V-D) to find possible alternative mappings
to eliminate crosstalk. This loop continues as long as a new
mapping with improved reliability can be found. Once the loop
terminates, the resulting mapping proceeds to step @, which
consists of two parts. While our approach attempts to remove
crosstalk, it can sometimes be unavoidable due to factors
such as excessive qubit usage or poor initial mapping. Our
method also includes an optional step (step @-a) to eliminate
crosstalk using barriers, as proposed in [4]. This step ensures
that TRIM will always outperform prior mapping proposals in
terms of both reliability and execution time. Finally, in step @-
b, instructions are executed, and the reliability is measured.

C. Initial Mapping

As mentioned earlier in Section IV, in our approach, the
results generated from any existing mapping scheme can be
used as the “initial mapping“. However, our proposal will
achieve the best result if the constraints® imposed by the initial
mapping are minimal and the potential search space is large,
thereby increasing chances to achieve a better PST. For this
purpose, we also introduce a new (initial mapping) scheme,
which is essentially a relaxed version of the mapping scheme
proposed in QuCloud [17]. We want to emphasize that, although
the choice of the initial mapping can affect the extent of the
PST improvements achieved through our proposed approach,
TRIM is applicable to any existing mapping and improves upon
it (in terms of PST).

The QuCloud mapping scheme is based on creating a tightly-
coupled group of nodes to minimize the number of SWAPs. To
do so, first, by merging nodes into a group of tightly coupled
communities, it creates a tree, as illustrated in Figure 2b,
where each node captures the best possible community across
its children’s physical qubits. Criteria such as the ratio of
intra-program to inter-program links and the total error rate
of each community are used to implement this tree. Then,
by sorting the input programs (in the target multiprogrammed
workload), if we have multiple programs, based on their CNOTSs

3Note that, if two programs are assigned to two neighboring strongly-
connected groups of qubits, the search space would be small, decreasing the
possibility of optimizing the initial mapping.
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Algorithm 2: TRIM: our greedy mapping optimizer.

input : Partitions

input : Gate_TH

H // Threshold for the increase in number of Gates.
input : CT_Info

output : Updated Partitions

Function TRIM:

-

2 sorted_qubits <
qubits sorted based on their CNOT density
3 while sorted_qubits is not empty do

/+ find the neighbors of the qubits in the
partition related to the head of the list.

*/
4 options < partition|sorted_qubits.head()).neighbors;
5 for option in options do

New_Partition <
Optimal_Partition.switch(sorted_qubits,option);

7 Num_CT,Num_Gates <+ Scheduler(New_Partition);

/+ Condition 1 */
8 if Num_CT < Best_CT &

Num_Gates < Best_Gate + Gate_TH then
9 Best_CT < Num_CT;
10 Best_Gate <+ Num_Gates,
1 Optimal_Partition <— New_Partition;
12 sorted_qubits <
Update based on new partition;

13 break;

/* Condition 2 */
14 else if Num_CT = Best_CT & Num_Gates < Best_Gate then
15 Best_Gate < Num_Gates;,
16 Optimal_Partition <— New_Partition;
17 sorted_qubits <

Update based on new partition;

18 break;

/* Condition 3 x/
19 else if Num_CT = Best_CT & Num_Gates = Best_Gate then
20 Total_CT_Optimal < 1;
21 for crosstalk in New_Partition do

Total_CT_Optimal <
Total_CT_Optimal x CT_Info[crosstalk];

23 end
24 for crosstalk in New_Partition do
25 Total_CT _New <+
Total _CT_New x CT _Info[crosstalk];
26 end
27 if Total_CT_New < Total_CT_Optimal then
28 Optimal_Partition < New_Partition;
29 sorted_qubits <
Update based on new partition;
30 break;
31 else
32 options.remove(option);
33 continue;
4 end
/+ Condition 4 */
35 else
36 options.remove(option);
37 continue;
38 end
39 end
/* No better option is found. x/
40 if options.empty() == 1 then
41 | sorted_qubits.remove(head)
42 end
43 end

densities, it starts assigning them to different communities (with
sufficient qubits), increasing the PST while minimizing the
conflicts due to SWAPs. This approach minimizes the number
of SWAPS by benefiting from strong connectivity between
qubits of each program. Note however that, it can still lead to
having communities located directly near each other, and this,
unfortunately, reduces the search space. Additionally, although
QuCloud effectively increases the PST of the system by using
error rates as part of the tree creation, doing so would not
be much useful for our approach since TRIM already aims
to improve the PST by performing a greedy search strategy

to identify a better mapping. Therefore, we relax the “tree
creation step” in QuCloud by only creating the tree based on
the intra-program qubits’ connectivities.

The pseudo-code of the routines utilized in our relaxed-
mapping strategy R-QuCloud (Relaxed QuCloud), designed to
provide our algorithm with an expanded search space (over
QuCloud), is given by Algorithm 1. This method generates
partitions for the programs by obtaining the coupling graph of
the hardware and the workloads we wish to run.

The overall algorithm contains three main routines. Our
approach tries to discover the best feasible community across
all nodes of the tree with enough qubits in the mapper
stage (shown in line-2 to line-19). To begin, it stores all
of the nominees/candidates and then chooses among them
based on their % If no choice for simultaneously
executing multiple programs exists, the quantum programs in
the target multiprogrammed workload are executed individually.
Otherwise, the selected node receives the program. The tree is
then updated using our Graph Updater (line-20 to line-23)
and Tree Constructor (line-24 to line-30) functions. While
QuCloud just updates the tree by eliminating the selected node
and its children, our modified version takes a different approach
by attempting to place the next program in a spot that does not
have any other programs as neighbors. This is because we want
to expand the search space of candidate mappings (possible
mappings that we can traverse in our search of crosstalk-aware
mappings; see Section V-D), so that our approach can traverse
more communities and select the best among them. In the
end, the algorithm returns the community assignment for all
programs as its output.

D. TRIM: Our Greedy Mapping Optimizer

This section explains our approach to eliminate the crosstalk
in the mapping process. Algorithm 2 gives the pseudo-code
for the white box shown in Figure 2a. Our approach, shown in
line-1 of the algorithm, already contains the router, scheduler,
optimizer, and the TRIM search module previously mentioned
in Section V-B. Algorithm 2 is invoked as soon as the initial
mapping has been performed and it gradually minimizes the
crosstalk errors. First, as shown in line-2, it sorts the qubits
(based on their CNOT counts), to rank them according to their
importance. Using this result, it then iteratively searches for
better nominees from among the neighbors of each program’s
qubits. In this work, to compare two mappings (current one
and new one), we have developed multiple criteria, which can
be summarized as follows:

e New mapping has lower crosstalk cases (lines 8-13): In
this case, we swap the qubit with its neighbor if the number
of gates is not significantly higher (due to additional SWAPs).
It is because crosstalk is frequently more important than a
few CNOTs, thus justifying the revised mapping. However,
significantly increasing the number of CNOTSs could reduce
the PST benefit we are getting from TRIM. As a result, we
evaluate TRIM, in Section VI-C, using different upper-bounds
for the gate number increase our algorithm allows.
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QuCloud [17] | QuCloud [17] + Murali et al. [4] | TRIM+R-QuCloud | TRIM+R-QuCloud+ Murali et al. [4]
Case# | Benchmark | PST[%] | Gate# | PST[%] Gate# PST[%] | Gate# |PST[%] Gate#
WL WL Total | WL Total WL Total WL Total
S1 Pl 50.7% 209 |53.7% 209 57.8% 197 62.3% 197
S2 P2 48.7% 77 | 49.3% 77 54.8% 77 55.0% 77
S3 P3 44.8% 278 | 44.4% 278 45.1% 260 45.1% 260
S4 P4 8.3% 255 | 11.0% 255 19.4% 234 22.1% 234
S5 P5 63.2% 276 | 68.2% 276 75.6% 255 80.4% 255
S6 P6 47.8% 83 | 40.0% 83 43.4% 71 46.4% 71
S7 P7 26.9% 80 |[27.2% 30 33.1% 92 33.4% 92
S8 P8 14.4% 278 17.8% 278 21.8% 272 22.3% 272
S9 P9 21.2% 1024 | 29.0% 1024 37.4% 1003 39.5% 1003
S10 P10 23.0% 443 | 27.0% 443 33.8% 437 38.7% 437
Average 34.9% 300.3 | 36.8% 300.3 42.2% 289.8 | 44.5% 289.8
QuCloud [17] QuCloud [17] + Murali et al. [4] TRIM+R-QuCloud TRIM+R-QuCloud+ Murali et al. [4]
Case# | Benchmarks PST[%] Gate# PST[%] Gate# PST[%] Gate# PST[%] Gate#
WL1 | WL2 | WL1 | WL2 | Avg Total | WL1 | WL2 | Avg Total WL1 | WL2 | Avg Total | WLI | WL2 | Avg Total
M1 P10 |PI 18.6% | 41.7% | 30.2% | 727 |22.4% | 47.0% | 34.7% 727 26.8% | 49.5% | 38.2% | 703 |29.3% | 51.8% | 40.6% 703
M2 P9 Pl 17.7% | 43.8% | 30.7% | 1305 |20.7% | 48.8% | 34.7% 1305 27.5% | 53.5% | 40.5% | 1293 | 28.8% | 55.7% | 42.3% 1293
M3 P8 Pl 9.5% |45.1% |273% | 281 |14.3% |51.8% |33.0% 281 16.9% | 54.4% | 35.6% | 302 | 18.5% |56.1% | 37.3% 302
M4 P7 Pl 24.6% | 40.7% | 32.7% | 251 |26.9% |44.4% | 35.6% 251 32.3% | 48.2% | 40.3% | 248 |34.3% | 50.2% | 42.3% 248
M5 P6 P1 46.7% | 42.6% | 44.7% | 269 | 48.5% | 50.5% | 49.5% 269 56.6% | 51.2% | 53.9% | 239 |58.8% | 53.5% | 56.2% 239
M6 P5 Pl 58.6% | 42.2% | 50.4% | 281 |62.1% | 47.1% | 54.6% 281 65.6% | 50.4% | 58.0% | 311 [66.7% | 51.4% | 59.1% 311
M7 P4 Pl 59% |41.8% | 23.8% | 239 [7.4% |48.4% |27.9% 239 13.8% | 50.0% | 31.9% | 230 | 15.3% |52.7% | 34.0% 230
M8 P3 Pl 40.3% | 43.4% | 41.9% | 287 |43.6% | 50.7% | 47.2% 287 43.4% | 52.0% | 47.7% | 257 |46.1% | 54.8% | 50.4% 257
M9 P10 [ P2 20.8% | 40.8% | 30.8% | 601 |25.5% | 48.0% | 36.8% 601 25.0% | 49.1% | 37.1% | 598 |26.9% | 50.5% | 38.7% 598
M10 | P9 P2 19.4% | 44.0% | 31.7% | 1128 | 21.1% | 51.6% | 36.4% 1128 24.9% | 53.7% | 39.3% | 1110 |27.9% | 56.6% | 42.2% 1110
Mi11 | P8 P2 9.6% |422% |[259% | 394 | 12.5% | 47.3% |29.9% 394 16.2% | 50.2% | 33.2% | 376 |19.0% |52.5% | 35.8% 376
MI12 | P7 P2 2477% | 41.8% | 33.2% | 196 |26.9% |47.4% | 37.2% 196 32.7% | 48.8% | 40.7% | 172 |35.6% | 50.9% | 43.2% 172
M13 | P6 P2 439% | 44.1% | 44.0% | 247 | 47.5% | 48.3% | 47.9% 247 53.6% | 52.2% | 52.9% | 220 |55.6% | 54.0% | 54.8% 220
Mi14 |P5 P2 61.7% | 40.4% | 51.1% | 437 | 64.2% | 48.0% | 56.1% 437 67.9% | 47.6% | 57.8% | 431 |68.9% | 50.1% | 59.5% 431
M15 | P4 P2 47% |41.9% | 233% | 416 [7.1% [47.1% |27.1% 416 9.0% |51.7% | 30.4% | 407 |10.5% | 53.6% | 32.0% 407
M16 |P3 P2 42.5% | 41.7% | 42.1% | 388 |45.5% | 45.2% | 45.3% 388 51.7% | 47.0% | 49.4% | 394 |54.1% | 48.5% | 51.3% 394
Average 28.1% | 42.4% | 35.2% | 465.4 | 31.0% | 48.2% | 39.6% | 465.4 |352% |50.6% |42.9% | 455.7 | 37.3% | 52.7% | 45.0% 455.7

TABLE IV: Gate and PST comparison between TRIM and the baselines for single- and multi-programmed benchmarks. "WL”

is abbreviation for workload.

e The crosstalk counts are the same but number of gates
is reduced (lines 14-18): In this case, the new mapping is
clearly beneficial and will lower the gate error rate of the
program. As a result, the new mapping will be used as our
mapping for the next step.

e The crosstalk counts and the number of gates are
the same (lines 19-34): In this case, we compare two cases
by considering the system’s crosstalk characterization. To
accomplish this, we compute the total crosstalk product of
the crosstalk for the most optimized case we found so far and
for the new mapping. We choose the new mapping as our
new ~optimized mapping” if it has a better crosstalk product;
otherwise, we continue to use the current mapping. Note that we
choose not to alter the mapping if the crosstalk characterization
required for the comparison has not been previously computed.

e Other cases (lines 39-42): In all other remaining cases,
we decide that the new mapping is not preferable.

If a new mapping passes these criteria, we add the cor-
responding SWAP operations, optimize the mapping, and
schedule it. This strategy updates itself using the new partition,
looking for better candidates in the instruction schedule. This
process continues until no candidates are available in the graph.
Additionally, since the number of neighbors of each partition
of the qubits is not substantial in general, this process is not
expected to take a large amount of time.

An example demonstrating how TRIM works in practice
is given in Figure 3. As stated earlier, the input to TRIM is
an initial mapping we would like to improve upon. In this
case, the qubit we want to optimize is LQ4 (since it has the

highest CNOT density), which is currently assigned to Q2 in
the mapping. First, we locate all of the partition’s neighbors
(qubits that are used in the same program). Only Q1 and Q6
are available in this scenario. As a result, we calculate the
number of SWAPs and gates for both cases (using routing and
scheduling modules) when assigning LQ4 to these nodes. It
can be seen that, when we assign LQ4 to Ql, we increase
both the crosstalk and the number of gates, which is clearly
not beneficial from the system’s reliability standpoint. Another
option is to assign LQ4 to Q6, which lowers the number of
CNOTs while maintaining the number of gates. Therefore, we
update the mapping accordingly and set it as the optimized
baseline, which will be used in the subsequent step.

VI. EVALUATION
A. Results

TRIM+R-QuCloud outperforms other baselines: As seen
in Table IV, in comparison to QuCloud and QuCloud+ [4],
TRIM+R-QuCloud achieves an average PST improvement of
7.7% and 3.3% for multi-programmed workloads, and 5.4%
and 7.3% for single-programmed workloads, respectively. This
improvement is notable because it is built upon an already
heavily optimized baseline. TRIM enhances PST by decreasing
crosstalk compared to QuCloud, which ignores crosstalk errors.
In contrast to QuCloud+ [4], TRIM improves PST by reducing
the number of gates while minimizing coherence error.

Combination of TRIM+R-QuCloud and [4] generates
better results than all other approaches: TRIM and
QuCloud+ [4] achieve 7.7% and 4.4% PST improvements for
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TRIM+R-QuCloud | TRIM+QuCloud [17] | TRIM+SABRE [11] | QuCloud [17]
Case# | Benchmark | PST[%] | Gate# PST[%] | Gate# PST[%] | Gate# PST[%] | Gate#
WL WL Total WL Total WL Total WL Total
S1 P1 57.8% 197 58.7% 197 59.7% 188 50.7% 209
S2 P2 548% |77 51.9% 89 49.9% 83 487% |77
S3 P3 45.1% | 260 41.1% | 269 38.1% 290 44.8% | 278
S4 P4 194% | 234 16.4% | 240 15.7% 240 8.3% 255
S5 P5 75.6% | 255 72.1% | 246 72.9% 243 63.2% | 276
S6 P6 434% |71 414% |65 39.0% 86 47.8% 83
S7 P7 331% |92 29.5% |98 25.7% 89 26.9% 80
S8 P8 21.8% 272 22.6% 290 23.2% 311 14.4% 278
S9 P9 37.4% 1003 37.0% 1018 37.9% 1036 21.2% 1024
S10 P10 33.8% | 437 322% | 434 28.8% | 425 23.0% | 443
Average 422% | 289.8 403% | 294.6 39.1% 299.1 34.9% 300.3
TRIM+R-QuCloud TRIM+QuCloud [17] TRIM+SABRE [11] QuCloud [17]
Case# | Benchmarks PST[%] Gate# PST[%] Gate# PST[%] Gate# PST[%] Gate#
WLI1 | WL2 | WLI | WL2 | Avg Total | WL1 | WL2 | Avg Total | WL1 | WL2 | Avg Total | WL1 | WL2 | Avg Total
M1 P10 |P1 26.8% | 49.5% | 38.2% | 703 |26.6% | 48.8% |37.7% | 700 |20.1% |43.5% |31.8% | 787 |18.6% |41.7% |30.2% | 727
M2 P9 Pl 27.5% | 53.5% | 40.5% | 1293 |25.9% | 49.0% |37.4% | 1305 | 18.7% | 46.1% | 32.4% | 1293 |17.7% | 43.8% | 30.7% | 1305
M3 P8 Pl 16.9% | 54.4% | 35.6% | 302 | 13.5% |54.5% |34.0% | 302 |12.4% |47.3% (29.9% | 308 [9.5% |45.1% |27.3% | 281
M4 P7 P1 32.3% | 48.2% | 40.3% | 248 [29.8% |47.3% |38.5% | 263 [27.1% |41.9% |34.5% | 326 |24.6% |40.7% |32.7% | 251
M5 P6 P1 56.6% | 51.2% | 53.9% | 239 |[54.1% |50.3% |52.2% | 236 [49.1% |45.1% |47.1% | 299 |46.7% | 42.6% | 44.7% | 269
M6 P5 P1 65.6% | 50.4% | 58.0% | 311 [67.6% |50.7% |59.1% | 299 |59.6% |43.9% | 51.7% | 266 |58.6% |42.2% |50.4% | 281
M7 P4 P1 13.8% [ 50.0% | 31.9% | 230 [15.3% |[51.0% | 33.1% | 227 [7.0% |43.9% |[254% | 275 [59% |41.8% |23.8% | 239
M8 P3 Pl 43.4% | 52.0% | 47.7% | 257 |43.6% |49.6% | 46.6% | 275 |42.1% |44.9% |43.5% | 305 |40.3% |43.4% |41.9% | 287
M9 P10 |P2 25.0% | 49.1% | 37.1% | 598 [22.9% |46.9% |34.9% | 610 |23.2% |43.8% |33.5% | 586 |20.8% |40.8% |30.8% | 601
M10 | P9 P2 24.9% | 53.7% [ 39.3% | 1110 |[24.1% | 50.7% |37.4% | 1134 |22.4% | 46.1% | 34.3% | 1143 |19.4% | 44.0% | 31.7% | 1128
M1l | P8 P2 16.2% | 50.2% | 33.2% | 376 |17.2% |49.9% |33.6% | 369 |12.6% |43.3% |28.0% | 385 [9.6% |42.2% |259% | 394
Mi12 |P7 P2 32.7% | 48.8% | 40.7% | 172 [29.6% | 48.3% |38.9% | 181 |[27.4% |42.8% |35.1% | 256 |24.7% |41.8% |33.2% | 196
M13 | P6 P2 53.6% | 52.2% | 52.9% | 220 [52.1% |47.9% |50.0% | 232 |46.4% |453% | 45.8% | 298 |43.9% |44.1% | 44.0% | 247
M14 |P5 P2 67.9% | 47.6% | 57.8% | 431 [63.6% |42.8% |53.2% | 434 |64.5% |42.0% | 53.2% | 422 |61.7% [40.4% | 51.1% | 437
M15 | P4 P2 9.0% |51.7% | 30.4% | 407 [10.4% |46.1% |282% | 410 [62% |44.2% [252% | 419 [4.7% |41.9% |[23.3% | 416
Mi6 |P3 P2 51.7% | 47.0% | 49.4% | 394 [52.1% |45.6% |48.8% | 394 |44.3% |43.0% |43.7% | 409 |42.5% [41.7% |42.1% | 388
Average 35.2% | 50.6% | 42.9% | 455.7 | 34.3% | 48.7% | 41.5% | 460.7 | 30.2% | 44.2% | 37.2% | 486.1 | 28.1% | 42.4% | 35.2% | 465.4

TABLE V: Gate and PST comparison for different initial mappings. "WL” means workload.

multi-programmed workloads and 7.3% and 1.9% for single-
programmed workloads over the QuCloud baseline, respectively.
As TRIM and [4] are orthogonal, targeting mapping and
scheduling, their combination further improves PST in cases
where crosstalk persists after mapping. TRIM minimizes
crosstalk through mapping, while [4] eliminates remaining
crosstalk by increasing execution time. Table IV shows a 9.8%
and 9.4% PST improvement for multi-programmed and single-
programmed cases, respectively, when combining TRIM and
[4], indicating that the scheduler handles some crosstalk cases
remaining after mapping.

Number of gates and PST are not strictly correlated: As
shown in Table IV, the PST results are not strictly correlated
with the number of gates since the coherence and crosstalk
errors are also a factor in shaping the overall PST of the
quantum system. It is worth noting that adding an extra
CNOT can result in an error rate of roughly 1072, whereas
crosstalk error can cause an error rate increase of 10x (10~ 1),
demonstrating the importance of limiting the crosstalk error.

Search algorithm in some cases can lead to a better mapping
with a lower number of CNOTSs: In many cases (like C1), the
number of gates is also reduced, meaning that a better result is
achieved by TRIM. This is because our proposal tries to adjust
and swap qubits until a better location is found. Therefore,
using line-14 of our algorithm, we search for a group of qubits
that have not been considered by the prior works.

B. Comparison of Different Mappings

In order to carefully evaluate different mapping schemes,
we perform a study that measures how TRIM performs on

different initial mappings like R-QuCloud, QuCloud, and
SABRE. Below, we summarize our main observations.
TRIM optimizes all the mappings to achieve a better qubit
allocation: As the results in Table V indicate, TRIM optimizes
the PST by taking into account crosstalk and minimizing gate
error when compared against all the baselines tested. That is,
given any initial mapping, TRIM is able to improve upon it,
demonstrating its robustness.

TRIM+R-QuCloud achieves, on average, better perfor-
mance compared to other baselines: When compared
to TRIM+QuCloud and TRIM+SABRE, it can be seen that
TRIM+R-QuCloud delivers an average PST improvement of
1.4% and 5.7%, respectively, across all multi-programmed work-
loads, and 1.9% and 3.1% for single-programmed benchmarks.
This is because, R-QuCloud gives our approach an expanded
search space to find crosstalk-aware mappings.

O PST H Gate# 200

600

400

u N

60% 0

45%
30%
15%
0%

TH=0 TH=1 TH=2 TH=3

Fig. 4: PST and number of gates for Different gate threshold.
All the results for TRIM are reported at top of R-QuCloud.

In a few cases, TRIM+R-QuCloud results in a lower PST:
It is also worth noting that, due to the probabilistic nature
of the mapping and since greedy algorithms do not always
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produce the best results, other initial mappings can sometimes
produce better final qubit allocations. However, even in such
cases, the difference is minor (0.4%-1.3%), indicating that our
initial mapping can operate quite efficiently in all cases.

C. Heuristic Gate Threshold Sensitivity Analysis

In Algorithm 2, we avoid changing the mapping if the
increase in the number of gates exceeds a threshold, as this
may negate crosstalk reduction benefits. Results presented so
far used a threshold of 0. We also tested thresholds of 1, 2, and
3, as shown in Figure 4. Our findings reveal that increasing the
threshold sometimes improves PST, but may also lower PST
when the number of gates increases significantly. On average, a
threshold of 0 yields the best results, suggesting that increasing
the number of gates can counteract overall improvements.

VII. CONCLUSION

We introduce a new mapping optimizer called TRIM that
addresses crosstalk errors in quantum workloads. We evaluate
TRIM using 16 multi-programmed and 10 single-programmed
quantum benchmarks against several optimized baselines.
Our experimental results reveal that in multi-programmed
workloads, TRIM achieves average PST improvements of 7.7%
and 3.3% compared to QuCloud and QuCloud+ [4] while
maintaining or decreasing the number of gates. For single-
programmed workloads, TRIM achieves PST improvements of
7.3% and 5.4% compared to QuCloud and [4], respectively.
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