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Abstract—The challenge of mapping logical qubits to physical
qubits in quantum systems has been addressed in prior proposals
that optimize the Probability of Successful Trial (PST) by
considering the coherence and gate error rates. However, these
proposals do not account for crosstalk errors, which occur when
active qubits interact during execution. The reason for this is that
crosstalk only appears after the initial mapping, while previous
strategies allocate qubits based on program and quantum system
characteristics using one-step mapping methods. Scheduling-
based solutions have been created to address this problem by
inserting barriers between gates to reduce crosstalk, but at the
expense of increased execution time and coherence error rates,
ultimately decreasing overall accuracy. This paper presents and
evaluates TRIM, a novel strategy that characterizes crosstalk and
eliminates it in an iterative fashion using a multi-step greedy
search method, which can be applied to any qubit mapping to
reduce crosstalk while keeping execution time and coherence
errors in check. Evaluations of TRIM using multiple workloads
show PST improvements of 7.3% for single-programmed execution
and 7.7% for multiprogramming scenarios, while reducing or
keeping the number of gates, compared to a state-of-the-art
mapping scheme. Additionally, TRIM achieves 5.4% and 3.3%
PST improvements for single-programmed and multiprogrammed
executions, respectively, compared to a state-of-the-art scheduling
strategy.

Index Terms—Quantum Computing, Reliability, Mapping
Techniques, NISQ, Compiler

I. INTRODUCTION

Quantum computing (QC) is a paradigm that aims to reduce

the execution time of various applications from different do-

mains, including finance [1], chemistry [2], and data mining [3],

through the use of qubits and quantum gates. However, the

ªreliabilityº of quantum computing is a major concern due

to various error types, such as crosstalk, coherence, and gate

errors, which arise from manufacturing variations in quantum

hardware [4]. The effect of these errors can be exacerbated

when the size of the circuit is increased or when multiple

programs run on the same quantum hardware, leading to intense

interactions [4].

While various error correction techniques [5], [6], [7], [8],

[9] have been introduced over the last two decades, due

to enormous size requirements they impose, they cannot be

The material presented in this paper is based upon work supported by
the National Science Foundation under Grant Numbers 2119236, 2122155,
2028929, 1931531, and 1763681.

effectively employed in current systems. Therefore, the concept

of NISQ (Noisy Intermediate-Scale Quantum) [10] architecture

has been introduced, with the goal of executing programs

without any error correction technique while trying to minimize

the reliability issues using alternative approaches. One of the

approaches to improve reliability is mapping, which aims to

minimize errors by using more reliable physical qubits when

executing a quantum program while minimizing the number

of gates by reducing the SWAP operations that need to be

performed. Basically, a mapping scheme maps virtual/logical

qubits (i.e., qubits of the quantum program) to physical qubits

(i.e., qubits of the hardware), aiming to ensure the correct

execution of the program. [4], [11], [12], [13], [14], [15], [16],

[17] are a subset of representative research papers in this area.

Table I reveals that previous mapping and routing techniques

have primarily focused on minimizing error rates by reducing

coherence and gate errors through optimizing SWAP operations

using routing algorithms. However, to our knowledge, none

of these techniques directly address crosstalk errors, which

occur when an operation on one qubit unintentionally impacts

other qubits. This oversight is significant because crosstalk

errors can increase the error rate on neighboring qubits by up

to 11x [4], thereby significantly impacting system reliability.

A state-of-the-art scheduler proposal [4] attempts to minimize

crosstalk effects by scheduling gates in separate steps, using

barriers between them. Unfortunately, this method increases

execution time and, while eliminating crosstalk, introduces

coherence errors, ultimately affecting overall reliability.

In this paper, we first investigate various strategies that can be

incorporated into ªone-stepº mapping algorithms. Our results

reveal that current one-step mapping approaches cannot remove

crosstalk errors in single-programming or multiprogramming

execution scenarios. To tackle this issue, next, we present

TRIM (crossTalk awaRe qubIt Mapping), an iterative, search-

based greedy strategy, which starts with an initial mapping and

then searches through the design space for a superior group

of qubits with fewer crosstalk cases. TRIM keeps running

the search algorithm until it runs out of better candidates,

reaching a local or global minimum (in terms of error rate). To

further improve the effectiveness of TRIM, we also introduce

a relaxed version of a recent mapping scheme (QuCloud [17]).

We observe that TRIM when coupled with this relaxed mapping
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Mapping Scheduler Routing
Optimizer

Coherence
Mitigation

Crosstalk
Mitigation

Gate Error
Reduction

Multiprogramming or
Single Execution

SABRE [11] ✓ ✗ ✓ ✗ ✗ ✓ SP

VQA [12] ✓ ✗ ✗ ✗ ✗ ✓ SP

VQM [12] ✗ ✗ ✓ ✗ ✗ ✓ SP

HA [14] ✓ ✗ ✓ ✗ ✗ ✓ SP

Nash et al. [15] ✓ ✗ ✓ ✗ ✗ ✓ SP

DIS [18] ✗ ✓ ✗ ✓ ✗ ✗ SP

FRP [18] ✓ ✗ ✓ ✗ ✗ ✓ MP

QuCloud [17] ✓ ✗ ✓ ✗ ✗ ✓ MP

Murali et al. [4] ✗ ✓ ✗ ✗ ✓ ✗ SP

TRIM ✓ ✓ ✗ ✗ ✓ ✓ Both MP and SP

TABLE I: Key characteristics of the existing mapping/scheduling schemes and TRIM.

scheme improves the Probability of Successful Trial (PST) over

the baseline mapping scheme. Our main contributions in this

work can be summarized as follows:

• We characterize the crosstalk error and its extent in quan-

tum hardware using different programs. In lieu of characterizing

the entire system, our method only characterizes a subset of

links that satisfy the criteria of our algorithm, minimizing the

characterization overhead by 5.6x.

• We discuss that existing mapping proposals are agnostic to

crosstalk effects and demonstrate that the crosstalk can severely

hurt the PST of the system. Also, focusing on the scheduling

strategy proposed in [4], we show the extent of the error rate

introduced because of the increase in execution time.

• To address this issue, we propose a novel approach, TRIM,

which is a crosstalk-aware iterative logical-to-physical qubit

mapping scheme that minimizes the crosstalk errors while ±

at the same time ± maintaining or reducing the gate errors

and coherence errors. We want to emphasize that our iterative

algorithm can start with any initial logical-to-physical qubit

mapping.

• We also present a relaxed mapping algorithm for the

initial mapping, aiming to increase the chances for achieving

the global minimum for the crosstalk error.1

•We present an experimental evaluation of TRIM using a set

of 10 single-programmed and 16 multiprogrammed workloads

using a real quantum system. For single-programmed cases, our

approach achieves 7.3% and 5.4% average PST improvements

over [17] (a state-of-the-art mapping scheme) and [4] (a

state-of-the-art scheduling strategy), respectively. For multi-

programmed cases, the collected experimental data indicate

that our proposed scheme improves the PST by, on average,

7.7% and 3.3%, compared to [17] and [4], respectively.

II. BACKGROUND AND METHODOLOGY

A. Quantum Computing and Quantum Errors

In quantum computing (QC), information is stored in ªqubitsº

rather than bits. A qubit is a linear combination of two basic

states, |0⟩ and |1⟩, and can be represented as |ϕ⟩=α|0⟩+β |1⟩,
with |α|2 + |β |2 = 1. Quantum gates modify qubit states

by influencing complex numbers α and β . Manufacturing

challenges, qubit/gate imperfections, and external interferences

can cause different types of reliability issues in quantum

1The global minimum mapping is a qubit allocation (mapping) that
minimizes crosstalk to the greatest extent possible.

circuits. These errors can be broadly classified into three main

categories:

• Coherence Errors: Qubits maintain their state for only

a limited amount time, with errors increasing exponentially,

potentially causing a qubit to change to state |0⟩.

• Gate Errors: Errors may occur during quantum operations

on qubits. Single-qubit gates have lower error rates (about

10−3) compared to two-qubit gates like CNOT (10−2).

• Crosstalk and Measurement Errors: Quantum operations

can affect both involved and adjacent qubits. Crosstalk errors

arise when two CNOT s are applied to neighboring qubits,

increasing the error rate significantly. Minimizing simultaneous

CNOT s on nearby qubits is essential. Additionally, measuring

a qubit’s state can impact surrounding qubits. To minimize

this, measurements are typically performed towards the end of

the program.

B. Execution Flow in QC

To execute a program correctly on real quantum hardware, six

steps must be completed in sequence. First, the program should

be converted into 1-qubit and 2-qubit gates to be executable

on real hardware. Next, the ªlogical qubitsº (qubits in the

application program) should be mapped to ªphysical qubitsº

(the physical implementation of qubits). This mapping enhances

system fidelity by reducing the number of SWAP operations and

crosstalk, ultimately lowering gate errors. The compiler then

inserts SWAP operations between gates, ensuring that CNOTs

are executed only on directly linked physical qubits. Following

this, various optimizations such as [19], [20], [21], [22] are

applied to the quantum program’s instructions to minimize

gate count. Lastly, before executing on real hardware, gates

are scheduled to minimize execution time and/or maximize

reliability.

When mapping is not effective, current quantum systems

use scheduling mechanisms to further mitigate reliability issues.

One example of such scheduling is shortening the time between

the preceding operation and measuring the result qubits, which

helps reduce coherence errors. The resulting instructions are

then sent to the quantum machine, and the final result is formed

upon measuring the output qubits. Due to the probabilistic

nature of quantum computing, the outcomes of different

executions of a quantum program may vary. As a result,

multiple runs (also known as shots) are typically performed to

determine the probability of obtaining the correct output. In
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this context, the likelihood of achieving the desired outcome

is denoted by the term Probability of Successful Trial (PST).

Workload Abb. Qubits# Gates# CNOT#

Small Benchmarks

pea 5 P1 5 98 42

mod5mils 65 P2 5 35 16

Medium Benchmarks

mini alu P3 10 168 77

qpe 9 P4 9 123 43

rd53 138 P5 8 132 60

simons 6 P6 6 44 14

bv 14 P7 14 41 13

Large Benchmarks

multiply 13 P8 13 98 40

sat 11 P9 11 679 252

rd73 140 P10 10 230 104

TABLE II: Benchmark characteristics. (P: Program)

C. Experimental Setup

In this section, we provide details about our evaluation

methodology and the benchmark programs used in our study.

The quantum programs utilized in our evaluations are sourced

from RevLib [23] and QASMBench [24]. Table II summarizes

the benchmarks used, their abbreviations (used in result

tables), the number of qubits, and gates. The TRIM evaluation

is performed on ibmq montreal [25], which is a Quantum

Falcon processor from Qiskit [26]. The high-level view of

this architecture, including qubits and their connections, is

illustrated in Figure 1-a. We execute all our experiments using

4000 shots, and we report PST and gate number in all results.

In case of multiple correct results, we calculate the PST using

the following formula: PST = ∑
Res
i

PST [i]
Count[Res] = ∑

Res
i

1−
|xi−ni |

ni

Count[Res]

i f (xi = 0 ∨ |xi−ni| ≥ ni)→ PSTi = 0,

where xi is the observed output count and ni is the expected

output count. If we apply a Hadamard gate2 to a qubit and

take measurements for 4000 shots, for instance, we have an

idea of the qubit’s behavior. The result of this scenario should

contain 2000 zeroes and 2000 ones. Therefore, if we count

1500 zeroes and 2500 ones, we may derive the PST as follows:

PST =
(1−

|1500−2000|
2000 )+(1−

|2500−2000|
2000 )

2
= 0.75 = 75%.

To evaluate the effectiveness and reliability of our proposed

TRIM method, we also present results from a multiprogrammed

(MP) execution scenario, where multiple quantum applications

run concurrently on the same quantum hardware. The MP

execution typically leads to higher hardware utilization and

throughput but also intensifies reliability challenges that must

be mitigated to minimize their impact. To achieve optimal

performance and reliability in MP execution scenarios, we

utilize state-of-the-art mapping and scheduling algorithms as

baselines; specifically, QuCloud [17] for mapping and the

method proposed in [4] for scheduling. QuCloud aims to

enhance reliability in MP environments by reducing the number

2When applied to a constant qubit, the Hadamard gate forms a uniformly
random qubit, which, when measured, behaves like a coin toss.

of SWAP operations, while the method in [4] minimizes

crosstalk by altering the execution order of simultaneous

CNOTs on neighboring qubits. It is important to emphasize

that TRIM can be combined with any mapping and scheduling

algorithm. In single-programmed cases, we use the same

mapping as in multiprogrammed cases, with the only difference

being the absence of the second program.

III. MOTIVATION

A. Mutliprogramming in QC

Over last decade, cloud computing has become a norm

in modern compute platforms, where multiple concurrently-

running application programs share the available hardware

and system resources (also called consolidation). QC is no

exception, and a number of recent proposals (see [17], [18], [27]

and the references therein) have attempted to incorporate mul-

tiprogramming into various quantum systems and consolidate

resources. The increase in system utilization and throughput is

one of the most important advantages of multiprogramming, as

compared to single-program execution. The existing research on

multiprogramming of quantum hardware [17], [18] indicates

that, despite the fact that modern quantum systems have a

restricted number of qubits (on the range of 10-100s), they

are still underutilized, making multiprogramming a promising

option for such systems.

While multiprogramming improves the system’s throughput,

it also introduces a slew of reliability issues, affecting the

system’s final output. One issue is that the quantum programs

that are executed simultaneously can be (and, in most cases,

will be) ªincompatibleº, in the sense that they can finish

at different times, thereby causing significant coherence er-

rors [18]. Another issue is deciding how to route two qubits

via SWAP insertions when the best path between them could

pass through other (concurrently-running) programs. Since a

given qubit of a program can interact with the qubits of other

programs, allowing inter-program SWAPs can improve gate

error at the cost of crosstalk error. If inter-program SWAPs are

not allowed, routing between two qubits may be impossible

or very expensive to achieve in some cases, depending on the

number of CNOTs. The third and possibly most important issue

is about quantum program mapping. Since different qubits have

different characteristics, e.g., the number of links, error rate

of each link and error rate of the qubit itself, an inefficient

mapping may have a low chance of producing correct output.

B. Related Works and Their Limitations

Mapping and scheduling techniques attempt to improve the

reliability (PST) of quantum programs from different angles.

More specifically, the existing approaches to logical-to-physical

qubit mapping mostly focus on minimizing the number of

SWAPs by introducing new routing strategies and ensuring

that programs can fit into available quantum hardware (shown

in Table I). In contrast, existing scheduling techniques mostly

attempt to minimize the different types of errors by changing the

execution sequence (order of computations) while maintaining

the correctness of the program.
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Fig. 1: (a) Connectivity of the 27-qubit ibmq montreal, (b) Basic mapping, (c) Basic mapping+crosstalk scheduler [4], (d) A

new mapping that eliminates only one of the cases, and (e) Optimal target.

QuCloud [17] QuCloud [17]+Murali et al. [4]

Case# Benchmark PST[%] PST[%]

S1 P1 63.2% 59.4%

S2 P2 58.2% 52.8%

S3 P3 47.6% 42.2%

S4 P4 23.4% 18.1%

S5 P5 78.3% 69.2%

S6 P6 49.1% 44.2%

S7 P7 36.1% 29.5%

S8 P8 21.5% 18.3%

S9 P9 38.2% 30.5%

S10 P10 38.7% 33.2%

Average 45.4% 39.7%

QuCloud [17] QuCloud [17]+Murali et al. [4]

Case# Benchmarks PST[%] PST[%]

WL1 WL2 WL1 WL2 Avg WL1 WL2 Avg

M1 P10 P1 37.2% 56.5% 46.8% 33.3% 51.7% 42.5%

M2 P9 P1 37.3% 55.8% 46.5% 32.1% 50.4% 41.2%

M3 P8 P1 20.1% 56.5% 38.3% 14.1% 52.8% 33.5%

M4 P7 P1 35.7% 55.9% 45.8% 29.0% 50.4% 39.7%

M5 P6 P1 48.8% 56.8% 52.8% 42.9% 52.4% 47.6%

M6 P5 P1 76.8% 55.9% 66.3% 72.7% 47.3% 60.0%

M7 P4 P1 23.4% 57.7% 40.5% 16.2% 54.3% 35.2%

M8 P3 P1 46.6% 56.1% 51.4% 39.7% 48.1% 43.9%

M9 P10 P2 37.3% 51.9% 44.6% 32.5% 46.7% 39.6%

M10 P9 P2 36.9% 52.7% 44.8% 28.6% 43.8% 36.2%

M11 P8 P2 19.7% 50.5% 35.1% 15.8% 47.3% 31.6%

M12 P7 P2 34.7% 53.1% 43.9% 29.3% 49.7% 39.5%

M13 P6 P2 48.9% 51.3% 50.1% 40.0% 45.3% 42.6%

M14 P5 P2 77.2% 53.1% 65.2% 70.6% 49.2% 59.9%

M15 P4 P2 23.2% 51.8% 37.5% 15.5% 45.0% 30.3%

M16 P3 P2 45.9% 51.4% 48.6% 39.7% 45.9% 42.8%

Average 40.6% 54.2% 47.4% 34.5% 48.8% 41.6%

TABLE III: PST comparison between QuCloud and QuCloud+

[4] without considering crosstalk error. ºP#º refers to the

applications listed in Table II.

The state-of-the-art mapping mechanisms focus on minimiz-

ing the gate error rates. For example, SABRE [11], as shown

in Table I, is a SWAP-based heuristic routing and mapping

method that employs a search strategy to optimize the number

of gates. Although it reduces the gate errors, it does not consider

crosstalk which can be of significant concern. Additionally, it

only considers a single application, obviating most crosstalk

concerns. VQA and VQM [12] are complementary methods

that employ routing and mapping techniques to minimize the

SWAPs and to employ qubits with the lowest total link error

rate. FRP [18] is an allocation/mapping technique specifically

proposed to reduce the number of SWAPs, minimizing the

gate error rate when multiple applications are running at

the same time. Nash et al. [15] present a circuit synthesis

technique that takes an input circuit and adjusts it to match the

connectivity profile of the quantum hardware (on which the

program is going to execute) in a single program environment.

QuCloud [17], on the other hand, has introduced a graph-

based mechanism that minimizes the number of SWAPs in a

multiprogramming-based execution environment by allowing

inter-program SWAPs. QuCloud does not consider crosstalk

as part of the mapping; instead, it relies on the subsequent

scheduling step to handle it. While all these prior approaches

improve system reliability to varying degrees by lowering gate

errors, none of them, to our knowledge, has explicitly addressed

crosstalk between applications caused by CNOTs operating on

adjacent qubits. This is primarily because crosstalk happens

when two gates are scheduled to run at the same time, and no

scheduling information is available during the ªinitial mappingº

process since scheduling is the last step before executing the

program on the target quantum hardware (recall the steps in

running a program mentioned in Section II-B) Unfortunately,

this crosstalk issue may increase the error rate by up-to 11x [4],

and this in turn, can have a significant negative impact on the

system’s PST.

Several scheduling strategies have been proposed over the

last decade to minimize different types of errors when mapping

is not efficient. For example, DIS [18] is a scheduler that

executes different applications at different steps; so, all of the

applications finish at the same time, thereby minimizing the

coherence error. The scheduling strategy, presented in [4], aims

to minimize crosstalk errors by providing a scheduler that

alters the sequence of parallel neighboring CNOTs by placing

a barrier between them and thus eliminating crosstalk in the

process. Figure 1-b illustrates an example where four CNOTs

are running on neighboring qubits after scheduling, causing two

potential crosstalk errors. As demonstrated in Figure 1-b, the
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proposal in [4] postpones the execution of two of the CNOTs

so that qubits do not have any interactions. While this solves

the reliability problem, it also increases the execution time,

thus potentially magnifying the system’s coherence error. To

carefully evaluate the impact of the approach presented in [4],

we have conducted a theoretical study comparing the PST of

the original case vs. when the scheduler in [4] is employed.

In both the cases, we have assumed that crosstalk errors are

non-existent to exclusively evaluate the PST difference due

to changes in the order of instructions. Although [4] employs

different techniques, such as increasing the parallelization to

minimize the coherence error impact on the PST, a comparison

of these two scenarios reveals a decrease in PST of 1% to

7% (on average, 2.8%) due to an increase in coherence errors

(reported in Table III). Therefore, while the approach proposed

in [4] minimizes the crosstalk errors, it causes another type of

error ± coherence error ± which can easily offset any potential

benefits from the crosstalk error minimization.

On the other hand, mapping-based approaches can solve

this problem by limiting the occurrence of scenarios where

two CNOTs share adjacent qubits. It is to be noted however

that, since various crosstalks can occur at different stages of

execution and it is possible to create other crosstalks when

trying to eliminate one of the crosstalks, there is presently

no simple solution to eliminate the crosstalks during the

mapping process. Figure 1-c illustrates how modifying the

mapping can solve the crosstalk for CNOTs between LQ2-

LQ3 and LQ4-LQ5 but it cannot eliminate the crosstalk for

CNOTs between LQ0-LQ1 and LQ4-LQ5. In this work, our

main goal is to investigate various strategies to discover the

best feasible mapping that eliminates all potential crosstalks

while minimizing the increase in the execution time. For

our current example, Figure 1-d shows the mapping result

that we aim to achieve. Summarizing the observations from

Table III and Figure 1, it is evident that current mapping and

scheduling techniques are not able to reduce the crosstalk errors

without causing other types of reliability concerns. To that end,

we propose TRIM, an iterative greedy search algorithm that

modifies a given ªinitial mappingº, in an iterative fashion, to

minimize the crosstalk scenarios while keeping the coherence

error of the system in check.

In summary, our work stands out from existing mapping

strategies by integrating crosstalk considerations into the

initial mapping process. Additionally, it differs from current

scheduling techniques as we do not increase coherence errors

while eliminating crosstalk, unlike existing methods.

IV. DESIGN CHOICES

In this section, we discuss various design choices to address

crosstalk issues in a quantum system. We examine each choice

in detail and explain its potential impact on the system’s output.

Multi-Step vs Single-Step Mapping: The optimization for

reducing crosstalk can be incorporated during or after the

mapping stage. However, since the order of CNOT execution

is only available after scheduling; direct information about

crosstalk is inaccessible during the initial mapping stage. As

a result, the only way to consider crosstalk (ªindirectlyº) is

by mapping programs to groups of qubits with limited links

between groups. Unfortunately, this mapping cannot mitigate

the PST degradation resulting from crosstalk between qubits

within each program.

While previous approaches [17], [18] have utilized indirect

minimization techniques for crosstalk, to our knowledge,

none has managed to identify accurate crosstalk information,

leading to false crosstalk detection instead. An example of

this is when two neighboring qubits are prevented from

being assigned to different programs in [17]. If these two

qubits do not have any simultaneously running CNOTs, no

crosstalk would occur, limiting the possibility of running other

programs without providing any benefits. Consequently, a two-

or multi-step heuristic should be designed to reduce crosstalk

cases, progressively optimizing the target program’s PST. Our

paper proposes an iterative search algorithm using information

from the ªcurrent mappingº to improve ªsubsequent iterations

mappingº with the aim of reducing crosstalk.

Selection of the Initial Mapping: An essential criterion

in developing a search-like heuristic algorithm is to avoid

getting trapped in a local minimum. Our mapping should

be able to search for different candidates to find the best

logical-to-physical mapping with the highest output reliability.

The initial mapping may not directly affect this issue but can

create scenarios leading to limited options (or no options) for

our search algorithm, reducing the chance of finding a better

mapping.

Various mapping algorithms have been proposed over the

past two decades, including SABRE [11] and QuClou-d [17].

While each has its advantages and disadvantages, none is

definitively superior, as the possibility of finding a global

minimum cannot be directly deduced from the mapping itself.

Therefore, in this work, we conduct experiments with three

(initial) mapping algorithms to determine the best-performing

one.

Criteria to Differentiate among Mapping Algorithms:

To distinguish between different mappings, we must identify

the criteria affecting each mapping and the reliability of the

resulting output. These criteria and their influences on the

system can be summarized as follows:

• Connectivity to qubits from the same program: Assigning

logical qubits from the same program to distant physical qubits

can increase the number of CNOTs (due to SWAP operations),

leading to higher gate errors. Hence, each program should be

mapped to a strongly-connected group of physical qubits to

minimize gate error effects.

• Quality of qubits: Different physical qubits may have

varying error rates and numbers of links. A qubit with more

links can enhance system performance if assigned to the logical

qubit with the most CNOTs, reducing the number of SWAPs.

• Number of gates: A program with fewer gates is more

optimized since it produces fewer gate errors.

• Number and extent of crosstalks: The number of distinct

crosstalk cases indicates the extent of the crosstalks encoun-

tered; typically, the lower this number, the better the results. If
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(a) (b) (c)

Fig. 2: (a) Updated flow to accommodate TRIM, and (b) the tree created by QuCloud [17], and (c) Crosstalk characterization

needed for TRIM on ibmq montreal for a sample 5-qubits benchmark.

we need a tie-breaker between two mappings (with the same

amount of crosstalk), the magnitude of the crosstalk errors can

be used to differentiate between them.

Since the effects of the above criteria on system reliability

vary, a method for comparing their magnitudes should be

developed. For example, a new CNOT gate causes less error

than crosstalk; thus, reducing crosstalk should take precedence

over optimizing gates.

V. OVERALL DESIGN

In this section, we present our optimizations that focus

on eliminating crosstalk errors during the mapping process.

Current mapping approaches do not reduce crosstalk without

increasing coherence errors; so, we propose TRIM, a novel

mapping optimization algorithm that considers ªcrosstalk error

characterizationº to increase system reliability.

A. Crosstalk Characterization

The first step in incorporating crosstalk into the mapping

process is to determine its effect on different qubits of the

target quantum machine. The prior works [4], [28] indicate that

crosstalk can vary dramatically from one qubit to another, thus

necessitating a careful characterization of the target system to

quantify its magnitude. To do this, prior work [4] schedules

two CNOTs on adjacent qubits and calculates crosstalk by

comparing the error rate against the scenario where these two

qubits are operated independently. Note that, to reduce the

total number of runs, multiple characterization scenarios can

be executed simultaneously as long as they do not affect each

other (when one crosstalk scenario between two CNOTs causes

crosstalk in the other scenario). This process can take up to

10 hours for ibmq montreal, which is significant.

To find crosstalk, we compare the qubits of each CNOT in

each step to those of the others, detecting crosstalk between the

qubits if they are neighbors. To make the procedure easier, a

tree and an array containing the CNOTs qubits are used. More

specifically, the physical qubits of all CNOTs are represented

by an array in different steps, and by comparing the physical

qubits of CNOTs with each other, we identify the crosstalk

cases. In step i, for example, if two CNOTs are running at the

same time, we compare the physical locations of the qubits

to see if they are neighbors or not. If they are, we count it as

crosstalk. Then, by executing three different jobs, one executing

both CNOTs and the other two executing one CNOT at a time,

we measure the difference in reliability of the system for each

CNOT and report it as the crosstalk effect on that CNOT.

Algorithm 1: Relaxed QuCloud.

input : Coupling Graph G, Quantum Circuits

output : Partitions

1 Relaxed G← G

2 Function Mapper:

3 for circuit in circuits do

4 Tree← Tree Constructor(Relaxed G) // creating the

tree based on the hardware graph

5 candidates← []
6 for lea f in lea f s(Tree) do

7 if circuit fits in lea f then

8 candidates.add(lea f )
9 else

10 lea f ← lea f .parent

11 end

12 end

13 Sort the candidates based on their intra links
inter links

and choose the best to

the circuit

14 if circuit can fit in the chosen node then

15 assign circuit to lea f

Relaxed G← Graph U pdater(Relaxed G, lea f )
16 else

17 Execute Separately

18 end

19 end

20 Function Graph Updater(Graph G):

21 for node in lea f do

22 Graph G.remove(node) Graph G.remove(node.neighbors) return

Graph G
23 end

24 Function Tree Constructor:

25 Communities← [] Create a leaf node for every qubit while

Communities.size()> 1 do

26 Find two-element combination (A,B) of communities for (A,B) in all

the combinations do

27 F(A,B) = Intra Program Links - Inter Program Links

28 end

29 New Node =Union(A,B) Communities.remove(A)
Communities.remove(B) Communities.add(New Node)

30 endWhile our algorithm’s execution also requires the characteri-

zation procedure, instead of characterizing the ªentireº quantum

hardware, we first apply the initial mapping to each of the

single and multi-programmed benchmarks and gather a union

of the chosen physical qubits. After that, TRIM characterizes

the neighboring nodes within a two-node distance for the union

of the qubits in the initial mappings (the physical qubits that

are initial mappings use). Since most reliable qubits and links

are not frequently changed, the mappings of most qubits are

always identical, thus making the union of the mappings not

significant in size. Also, although there may be a theoretical

scenario in which the algorithm completes by remapping some
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Fig. 3: An example illustrating how TRIM works in practice.

of the logical qubits to qubits with a distance greater than 2,

in practice, this rarely occurs because it would increase the

number of SWAPs, thereby reducing the PST of the algorithm.

For example, as Figure 2c shows, for a sample initial mapping

of an algorithm with 5 qubits (shown in blue color), we only

characterize the crosstalk for the red portion of the graph

(the red-colored links), while a complete characterization must

characterize all the qubits and their links. Our results on all

the benchmarks evaluated in Section VI indicate that in 96%

of the cases, we do not need any additional characterization

for the system by using our technique.

By leveraging our new characterization process and crosstalk

characterization algorithm, we achieve a 5.6x reduction in

crosstalk characterization overhead across all tested bench-

marks. While a complete system characterization can be

beneficial in some cases (4% of workloads), it will become

infeasible in the future due to the increasing number of

qubits in quantum systems. For instance, characterizing the

new IBM quantum system with 128 qubits (ibm washington)

requires evaluating 242 scenarios, significantly more than the

27-qubit ibmq montreal, which only needs characterization of

39 scenarios. That is, the larger machine spends 6.2x execution

time only for characterization process. It is important to note

that our characterization process is dependent on the number of

links that the physically-mapped qubits have. Since the number

of links for each qubit is typically limited to two or three in

all IBM quantum systems we are aware of, the number of

links that we need to characterize for the same workload using

TRIM is almost identical in different quantum hardware with a

different number of qubits, which shows our algorithm easily

(and in a robust fashion) applies to different quantum hardware

regardless of their qubit counts.

B. Modifications to Execution Flow

We modify the general flow of mapping and optimizations

as, in its current form, it does not adequately address crosstalk

minimization. The updated execution flow is shown in Figure 2a.

The initial mapping (step 2 ) will be performed without any

adjustments. However, we aim to rectify the shortcomings of

the general flow, in which mapping is conducted only once

and without sufficient knowledge of circuit optimizations and

crosstalk. To address this problem, we create a feedback loop

(steps 3 - 7 ) that takes scheduling results, identifies crosstalk

occurrences, and employs a heuristic strategy (discussed in

detail in Section V-D) to find possible alternative mappings

to eliminate crosstalk. This loop continues as long as a new

mapping with improved reliability can be found. Once the loop

terminates, the resulting mapping proceeds to step 8 , which

consists of two parts. While our approach attempts to remove

crosstalk, it can sometimes be unavoidable due to factors

such as excessive qubit usage or poor initial mapping. Our

method also includes an optional step (step 8 -a) to eliminate

crosstalk using barriers, as proposed in [4]. This step ensures

that TRIM will always outperform prior mapping proposals in

terms of both reliability and execution time. Finally, in step 8 -

b, instructions are executed, and the reliability is measured.

C. Initial Mapping

As mentioned earlier in Section IV, in our approach, the

results generated from any existing mapping scheme can be

used as the ªinitial mappingª. However, our proposal will

achieve the best result if the constraints3 imposed by the initial

mapping are minimal and the potential search space is large,

thereby increasing chances to achieve a better PST. For this

purpose, we also introduce a new (initial mapping) scheme,

which is essentially a relaxed version of the mapping scheme

proposed in QuCloud [17]. We want to emphasize that, although

the choice of the initial mapping can affect the extent of the

PST improvements achieved through our proposed approach,

TRIM is applicable to any existing mapping and improves upon

it (in terms of PST).

The QuCloud mapping scheme is based on creating a tightly-

coupled group of nodes to minimize the number of SWAPs. To

do so, first, by merging nodes into a group of tightly coupled

communities, it creates a tree, as illustrated in Figure 2b,

where each node captures the best possible community across

its children’s physical qubits. Criteria such as the ratio of

intra-program to inter-program links and the total error rate

of each community are used to implement this tree. Then,

by sorting the input programs (in the target multiprogrammed

workload), if we have multiple programs, based on their CNOTs

3Note that, if two programs are assigned to two neighboring strongly-
connected groups of qubits, the search space would be small, decreasing the
possibility of optimizing the initial mapping.
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Algorithm 2: TRIM: our greedy mapping optimizer.

input : Partitions

input : Gate TH

; // Threshold for the increase in number of Gates.

input : CT Info

output : Updated Partitions

1 Function TRIM:

2 sorted qubits←
qubits sorted based on their CNOT density

3 while sorted qubits is not empty do

/* find the neighbors of the qubits in the

partition related to the head of the list.

*/

4 options← partition[sorted qubits.head()].neighbors;

5 for option in options do

6 New Partition←
Optimal Partition.switch(sorted qubits,option);

7 Num CT,Num Gates← Scheduler(New Partition);
/* Condition 1 */

8 if Num CT < Best CT &

Num Gates < Best Gate+Gate T H then

9 Best CT ← Num CT ;

10 Best Gate← Num Gates;

11 Optimal Partition← New Partition;

12 sorted qubits←
Update based on new partition;

13 break;

/* Condition 2 */

14 else if Num CT = Best CT & Num Gates < Best Gate then

15 Best Gate← Num Gates;

16 Optimal Partition← New Partition;

17 sorted qubits←
Update based on new partition;

18 break;

/* Condition 3 */

19 else if Num CT = Best CT & Num Gates = Best Gate then

20 Total CT Optimal← 1;

21 for crosstalk in New Partition do

22 Total CT Optimal←
Total CT Optimal×CT In f o[crosstalk];

23 end

24 for crosstalk in New Partition do

25 Total CT New←
Total CT New×CT In f o[crosstalk];

26 end

27 if Total CT New < Total CT Optimal then

28 Optimal Partition← New Partition;

29 sorted qubits←
Update based on new partition;

30 break;

31 else

32 options.remove(option);
33 continue;

34 end

/* Condition 4 */

35 else

36 options.remove(option);
37 continue;

38 end

39 end

/* No better option is found. */

40 if options.empty() == 1 then

41 sorted qubits.remove(head)
42 end

43 end

densities, it starts assigning them to different communities (with

sufficient qubits), increasing the PST while minimizing the

conflicts due to SWAPs. This approach minimizes the number

of SWAPS by benefiting from strong connectivity between

qubits of each program. Note however that, it can still lead to

having communities located directly near each other, and this,

unfortunately, reduces the search space. Additionally, although

QuCloud effectively increases the PST of the system by using

error rates as part of the tree creation, doing so would not

be much useful for our approach since TRIM already aims

to improve the PST by performing a greedy search strategy

to identify a better mapping. Therefore, we relax the ªtree

creation stepº in QuCloud by only creating the tree based on

the intra-program qubits’ connectivities.

The pseudo-code of the routines utilized in our relaxed-

mapping strategy R-QuCloud (Relaxed QuCloud), designed to

provide our algorithm with an expanded search space (over

QuCloud), is given by Algorithm 1. This method generates

partitions for the programs by obtaining the coupling graph of

the hardware and the workloads we wish to run.

The overall algorithm contains three main routines. Our

approach tries to discover the best feasible community across

all nodes of the tree with enough qubits in the mapper

stage (shown in line-2 to line-19). To begin, it stores all

of the nominees/candidates and then chooses among them

based on their intra links
inter links

. If no choice for simultaneously

executing multiple programs exists, the quantum programs in

the target multiprogrammed workload are executed individually.

Otherwise, the selected node receives the program. The tree is

then updated using our Graph Updater (line-20 to line-23)

and Tree Constructor (line-24 to line-30) functions. While

QuCloud just updates the tree by eliminating the selected node

and its children, our modified version takes a different approach

by attempting to place the next program in a spot that does not

have any other programs as neighbors. This is because we want

to expand the search space of candidate mappings (possible

mappings that we can traverse in our search of crosstalk-aware

mappings; see Section V-D), so that our approach can traverse

more communities and select the best among them. In the

end, the algorithm returns the community assignment for all

programs as its output.

D. TRIM: Our Greedy Mapping Optimizer

This section explains our approach to eliminate the crosstalk

in the mapping process. Algorithm 2 gives the pseudo-code

for the white box shown in Figure 2a. Our approach, shown in

line-1 of the algorithm, already contains the router, scheduler,

optimizer, and the TRIM search module previously mentioned

in Section V-B. Algorithm 2 is invoked as soon as the initial

mapping has been performed and it gradually minimizes the

crosstalk errors. First, as shown in line-2, it sorts the qubits

(based on their CNOT counts), to rank them according to their

importance. Using this result, it then iteratively searches for

better nominees from among the neighbors of each program’s

qubits. In this work, to compare two mappings (current one

and new one), we have developed multiple criteria, which can

be summarized as follows:

• New mapping has lower crosstalk cases (lines 8-13): In

this case, we swap the qubit with its neighbor if the number

of gates is not significantly higher (due to additional SWAPs).

It is because crosstalk is frequently more important than a

few CNOTs, thus justifying the revised mapping. However,

significantly increasing the number of CNOTs could reduce

the PST benefit we are getting from TRIM. As a result, we

evaluate TRIM, in Section VI-C, using different upper-bounds

for the gate number increase our algorithm allows.
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QuCloud [17] QuCloud [17] + Murali et al. [4] TRIM+R-QuCloud TRIM+R-QuCloud+ Murali et al. [4]

Case# Benchmark PST[%] Gate# PST[%] Gate# PST[%] Gate# PST[%] Gate#

WL WL Total WL Total WL Total WL Total

S1 P1 50.7% 209 53.7% 209 57.8% 197 62.3% 197

S2 P2 48.7% 77 49.3% 77 54.8% 77 55.0% 77

S3 P3 44.8% 278 44.4% 278 45.1% 260 45.1% 260

S4 P4 8.3% 255 11.0% 255 19.4% 234 22.1% 234

S5 P5 63.2% 276 68.2% 276 75.6% 255 80.4% 255

S6 P6 47.8% 83 40.0% 83 43.4% 71 46.4% 71

S7 P7 26.9% 80 27.2% 80 33.1% 92 33.4% 92

S8 P8 14.4% 278 17.8% 278 21.8% 272 22.3% 272

S9 P9 21.2% 1024 29.0% 1024 37.4% 1003 39.5% 1003

S10 P10 23.0% 443 27.0% 443 33.8% 437 38.7% 437

Average 34.9% 300.3 36.8% 300.3 42.2% 289.8 44.5% 289.8

QuCloud [17] QuCloud [17] + Murali et al. [4] TRIM+R-QuCloud TRIM+R-QuCloud+ Murali et al. [4]

Case# Benchmarks PST[%] Gate# PST[%] Gate# PST[%] Gate# PST[%] Gate#

WL1 WL2 WL1 WL2 Avg Total WL1 WL2 Avg Total WL1 WL2 Avg Total WL1 WL2 Avg Total

M1 P10 P1 18.6% 41.7% 30.2% 727 22.4% 47.0% 34.7% 727 26.8% 49.5% 38.2% 703 29.3% 51.8% 40.6% 703

M2 P9 P1 17.7% 43.8% 30.7% 1305 20.7% 48.8% 34.7% 1305 27.5% 53.5% 40.5% 1293 28.8% 55.7% 42.3% 1293

M3 P8 P1 9.5% 45.1% 27.3% 281 14.3% 51.8% 33.0% 281 16.9% 54.4% 35.6% 302 18.5% 56.1% 37.3% 302

M4 P7 P1 24.6% 40.7% 32.7% 251 26.9% 44.4% 35.6% 251 32.3% 48.2% 40.3% 248 34.3% 50.2% 42.3% 248

M5 P6 P1 46.7% 42.6% 44.7% 269 48.5% 50.5% 49.5% 269 56.6% 51.2% 53.9% 239 58.8% 53.5% 56.2% 239

M6 P5 P1 58.6% 42.2% 50.4% 281 62.1% 47.1% 54.6% 281 65.6% 50.4% 58.0% 311 66.7% 51.4% 59.1% 311

M7 P4 P1 5.9% 41.8% 23.8% 239 7.4% 48.4% 27.9% 239 13.8% 50.0% 31.9% 230 15.3% 52.7% 34.0% 230

M8 P3 P1 40.3% 43.4% 41.9% 287 43.6% 50.7% 47.2% 287 43.4% 52.0% 47.7% 257 46.1% 54.8% 50.4% 257

M9 P10 P2 20.8% 40.8% 30.8% 601 25.5% 48.0% 36.8% 601 25.0% 49.1% 37.1% 598 26.9% 50.5% 38.7% 598

M10 P9 P2 19.4% 44.0% 31.7% 1128 21.1% 51.6% 36.4% 1128 24.9% 53.7% 39.3% 1110 27.9% 56.6% 42.2% 1110

M11 P8 P2 9.6% 42.2% 25.9% 394 12.5% 47.3% 29.9% 394 16.2% 50.2% 33.2% 376 19.0% 52.5% 35.8% 376

M12 P7 P2 24.7% 41.8% 33.2% 196 26.9% 47.4% 37.2% 196 32.7% 48.8% 40.7% 172 35.6% 50.9% 43.2% 172

M13 P6 P2 43.9% 44.1% 44.0% 247 47.5% 48.3% 47.9% 247 53.6% 52.2% 52.9% 220 55.6% 54.0% 54.8% 220

M14 P5 P2 61.7% 40.4% 51.1% 437 64.2% 48.0% 56.1% 437 67.9% 47.6% 57.8% 431 68.9% 50.1% 59.5% 431

M15 P4 P2 4.7% 41.9% 23.3% 416 7.1% 47.1% 27.1% 416 9.0% 51.7% 30.4% 407 10.5% 53.6% 32.0% 407

M16 P3 P2 42.5% 41.7% 42.1% 388 45.5% 45.2% 45.3% 388 51.7% 47.0% 49.4% 394 54.1% 48.5% 51.3% 394

Average 28.1% 42.4% 35.2% 465.4 31.0% 48.2% 39.6% 465.4 35.2% 50.6% 42.9% 455.7 37.3% 52.7% 45.0% 455.7

TABLE IV: Gate and PST comparison between TRIM and the baselines for single- and multi-programmed benchmarks. ºWLº

is abbreviation for workload.

• The crosstalk counts are the same but number of gates

is reduced (lines 14-18): In this case, the new mapping is

clearly beneficial and will lower the gate error rate of the

program. As a result, the new mapping will be used as our

mapping for the next step.

• The crosstalk counts and the number of gates are

the same (lines 19-34): In this case, we compare two cases

by considering the system’s crosstalk characterization. To

accomplish this, we compute the total crosstalk product of

the crosstalk for the most optimized case we found so far and

for the new mapping. We choose the new mapping as our

new ºoptimized mappingº if it has a better crosstalk product;

otherwise, we continue to use the current mapping. Note that we

choose not to alter the mapping if the crosstalk characterization

required for the comparison has not been previously computed.

• Other cases (lines 39-42): In all other remaining cases,

we decide that the new mapping is not preferable.

If a new mapping passes these criteria, we add the cor-

responding SWAP operations, optimize the mapping, and

schedule it. This strategy updates itself using the new partition,

looking for better candidates in the instruction schedule. This

process continues until no candidates are available in the graph.

Additionally, since the number of neighbors of each partition

of the qubits is not substantial in general, this process is not

expected to take a large amount of time.

An example demonstrating how TRIM works in practice

is given in Figure 3. As stated earlier, the input to TRIM is

an initial mapping we would like to improve upon. In this

case, the qubit we want to optimize is LQ4 (since it has the

highest CNOT density), which is currently assigned to Q2 in

the mapping. First, we locate all of the partition’s neighbors

(qubits that are used in the same program). Only Q1 and Q6

are available in this scenario. As a result, we calculate the

number of SWAPs and gates for both cases (using routing and

scheduling modules) when assigning LQ4 to these nodes. It

can be seen that, when we assign LQ4 to Q1, we increase

both the crosstalk and the number of gates, which is clearly

not beneficial from the system’s reliability standpoint. Another

option is to assign LQ4 to Q6, which lowers the number of

CNOTs while maintaining the number of gates. Therefore, we

update the mapping accordingly and set it as the optimized

baseline, which will be used in the subsequent step.

VI. EVALUATION

A. Results

TRIM+R-QuCloud outperforms other baselines: As seen

in Table IV, in comparison to QuCloud and QuCloud+ [4],

TRIM+R-QuCloud achieves an average PST improvement of

7.7% and 3.3% for multi-programmed workloads, and 5.4%

and 7.3% for single-programmed workloads, respectively. This

improvement is notable because it is built upon an already

heavily optimized baseline. TRIM enhances PST by decreasing

crosstalk compared to QuCloud, which ignores crosstalk errors.

In contrast to QuCloud+ [4], TRIM improves PST by reducing

the number of gates while minimizing coherence error.

Combination of TRIM+R-QuCloud and [4] generates

better results than all other approaches: TRIM and

QuCloud+ [4] achieve 7.7% and 4.4% PST improvements for

146

Authorized licensed use limited to: Penn State University. Downloaded on September 11,2023 at 16:38:44 UTC from IEEE Xplore.  Restrictions apply. 



TRIM+R-QuCloud TRIM+QuCloud [17] TRIM+SABRE [11] QuCloud [17]

Case# Benchmark PST[%] Gate# PST[%] Gate# PST[%] Gate# PST[%] Gate#

WL WL Total WL Total WL Total WL Total

S1 P1 57.8% 197 58.7% 197 59.7% 188 50.7% 209

S2 P2 54.8% 77 51.9% 89 49.9% 83 48.7% 77

S3 P3 45.1% 260 41.1% 269 38.1% 290 44.8% 278

S4 P4 19.4% 234 16.4% 240 15.7% 240 8.3% 255

S5 P5 75.6% 255 72.1% 246 72.9% 243 63.2% 276

S6 P6 43.4% 71 41.4% 65 39.0% 86 47.8% 83

S7 P7 33.1% 92 29.5% 98 25.7% 89 26.9% 80

S8 P8 21.8% 272 22.6% 290 23.2% 311 14.4% 278

S9 P9 37.4% 1003 37.0% 1018 37.9% 1036 21.2% 1024

S10 P10 33.8% 437 32.2% 434 28.8% 425 23.0% 443

Average 42.2% 289.8 40.3% 294.6 39.1% 299.1 34.9% 300.3

TRIM+R-QuCloud TRIM+QuCloud [17] TRIM+SABRE [11] QuCloud [17]

Case# Benchmarks PST[%] Gate# PST[%] Gate# PST[%] Gate# PST[%] Gate#

WL1 WL2 WL1 WL2 Avg Total WL1 WL2 Avg Total WL1 WL2 Avg Total WL1 WL2 Avg Total

M1 P10 P1 26.8% 49.5% 38.2% 703 26.6% 48.8% 37.7% 700 20.1% 43.5% 31.8% 787 18.6% 41.7% 30.2% 727

M2 P9 P1 27.5% 53.5% 40.5% 1293 25.9% 49.0% 37.4% 1305 18.7% 46.1% 32.4% 1293 17.7% 43.8% 30.7% 1305

M3 P8 P1 16.9% 54.4% 35.6% 302 13.5% 54.5% 34.0% 302 12.4% 47.3% 29.9% 308 9.5% 45.1% 27.3% 281

M4 P7 P1 32.3% 48.2% 40.3% 248 29.8% 47.3% 38.5% 263 27.1% 41.9% 34.5% 326 24.6% 40.7% 32.7% 251

M5 P6 P1 56.6% 51.2% 53.9% 239 54.1% 50.3% 52.2% 236 49.1% 45.1% 47.1% 299 46.7% 42.6% 44.7% 269

M6 P5 P1 65.6% 50.4% 58.0% 311 67.6% 50.7% 59.1% 299 59.6% 43.9% 51.7% 266 58.6% 42.2% 50.4% 281

M7 P4 P1 13.8% 50.0% 31.9% 230 15.3% 51.0% 33.1% 227 7.0% 43.9% 25.4% 275 5.9% 41.8% 23.8% 239

M8 P3 P1 43.4% 52.0% 47.7% 257 43.6% 49.6% 46.6% 275 42.1% 44.9% 43.5% 305 40.3% 43.4% 41.9% 287

M9 P10 P2 25.0% 49.1% 37.1% 598 22.9% 46.9% 34.9% 610 23.2% 43.8% 33.5% 586 20.8% 40.8% 30.8% 601

M10 P9 P2 24.9% 53.7% 39.3% 1110 24.1% 50.7% 37.4% 1134 22.4% 46.1% 34.3% 1143 19.4% 44.0% 31.7% 1128

M11 P8 P2 16.2% 50.2% 33.2% 376 17.2% 49.9% 33.6% 369 12.6% 43.3% 28.0% 385 9.6% 42.2% 25.9% 394

M12 P7 P2 32.7% 48.8% 40.7% 172 29.6% 48.3% 38.9% 181 27.4% 42.8% 35.1% 256 24.7% 41.8% 33.2% 196

M13 P6 P2 53.6% 52.2% 52.9% 220 52.1% 47.9% 50.0% 232 46.4% 45.3% 45.8% 298 43.9% 44.1% 44.0% 247

M14 P5 P2 67.9% 47.6% 57.8% 431 63.6% 42.8% 53.2% 434 64.5% 42.0% 53.2% 422 61.7% 40.4% 51.1% 437

M15 P4 P2 9.0% 51.7% 30.4% 407 10.4% 46.1% 28.2% 410 6.2% 44.2% 25.2% 419 4.7% 41.9% 23.3% 416

M16 P3 P2 51.7% 47.0% 49.4% 394 52.1% 45.6% 48.8% 394 44.3% 43.0% 43.7% 409 42.5% 41.7% 42.1% 388

Average 35.2% 50.6% 42.9% 455.7 34.3% 48.7% 41.5% 460.7 30.2% 44.2% 37.2% 486.1 28.1% 42.4% 35.2% 465.4

TABLE V: Gate and PST comparison for different initial mappings. ºWLº means workload.

multi-programmed workloads and 7.3% and 1.9% for single-

programmed workloads over the QuCloud baseline, respectively.

As TRIM and [4] are orthogonal, targeting mapping and

scheduling, their combination further improves PST in cases

where crosstalk persists after mapping. TRIM minimizes

crosstalk through mapping, while [4] eliminates remaining

crosstalk by increasing execution time. Table IV shows a 9.8%

and 9.4% PST improvement for multi-programmed and single-

programmed cases, respectively, when combining TRIM and

[4], indicating that the scheduler handles some crosstalk cases

remaining after mapping.

Number of gates and PST are not strictly correlated: As

shown in Table IV, the PST results are not strictly correlated

with the number of gates since the coherence and crosstalk

errors are also a factor in shaping the overall PST of the

quantum system. It is worth noting that adding an extra

CNOT can result in an error rate of roughly 10−2, whereas

crosstalk error can cause an error rate increase of 10x (10−1),

demonstrating the importance of limiting the crosstalk error.

Search algorithm in some cases can lead to a better mapping

with a lower number of CNOTs: In many cases (like C1), the

number of gates is also reduced, meaning that a better result is

achieved by TRIM. This is because our proposal tries to adjust

and swap qubits until a better location is found. Therefore,

using line-14 of our algorithm, we search for a group of qubits

that have not been considered by the prior works.

B. Comparison of Different Mappings

In order to carefully evaluate different mapping schemes,

we perform a study that measures how TRIM performs on

different initial mappings like R-QuCloud, QuCloud, and

SABRE. Below, we summarize our main observations.

TRIM optimizes all the mappings to achieve a better qubit

allocation: As the results in Table V indicate, TRIM optimizes

the PST by taking into account crosstalk and minimizing gate

error when compared against all the baselines tested. That is,

given any initial mapping, TRIM is able to improve upon it,

demonstrating its robustness.

TRIM+R-QuCloud achieves, on average, better perfor-

mance compared to other baselines: When compared

to TRIM+QuCloud and TRIM+SABRE, it can be seen that

TRIM+R-QuCloud delivers an average PST improvement of

1.4% and 5.7%, respectively, across all multi-programmed work-

loads, and 1.9% and 3.1% for single-programmed benchmarks.

This is because, R-QuCloud gives our approach an expanded

search space to find crosstalk-aware mappings.

Fig. 4: PST and number of gates for Different gate threshold.

All the results for TRIM are reported at top of R-QuCloud.

In a few cases, TRIM+R-QuCloud results in a lower PST:

It is also worth noting that, due to the probabilistic nature

of the mapping and since greedy algorithms do not always
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produce the best results, other initial mappings can sometimes

produce better final qubit allocations. However, even in such

cases, the difference is minor (0.4%-1.3%), indicating that our

initial mapping can operate quite efficiently in all cases.

C. Heuristic Gate Threshold Sensitivity Analysis

In Algorithm 2, we avoid changing the mapping if the

increase in the number of gates exceeds a threshold, as this

may negate crosstalk reduction benefits. Results presented so

far used a threshold of 0. We also tested thresholds of 1, 2, and

3, as shown in Figure 4. Our findings reveal that increasing the

threshold sometimes improves PST, but may also lower PST

when the number of gates increases significantly. On average, a

threshold of 0 yields the best results, suggesting that increasing

the number of gates can counteract overall improvements.

VII. CONCLUSION

We introduce a new mapping optimizer called TRIM that

addresses crosstalk errors in quantum workloads. We evaluate

TRIM using 16 multi-programmed and 10 single-programmed

quantum benchmarks against several optimized baselines.

Our experimental results reveal that in multi-programmed

workloads, TRIM achieves average PST improvements of 7.7%

and 3.3% compared to QuCloud and QuCloud+ [4] while

maintaining or decreasing the number of gates. For single-

programmed workloads, TRIM achieves PST improvements of

7.3% and 5.4% compared to QuCloud and [4], respectively.
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