
43

Evaluating Alarm Classifiers with High-confidence Data

Programming

SYDNEY PUGH and IVAN RUCHKIN, University of Pennsylvania

CHRISTOPHER BONAFIDE and SARA DEMAURO, Children’s Hospital of Philadelphia
OLEG SOKOLSKY, INSUP LEE, and JAMES WEIMER, University of Pennsylvania

Classification of clinical alarms is at the heart of prioritization, suppression, integration, postponement, and other methods

of mitigating alarm fatigue. Since these methods directly affect clinical care, alarm classifiers, such as intelligent suppression

systems, need to be evaluated in terms of their sensitivity and specificity, which is typically calculated on a labeled dataset

of alarms. Unfortunately, the collection and particularly labeling of such datasets requires substantial effort and time, thus

deterring hospitals from investigating mitigations of alarm fatigue. This article develops a lightweight method for evaluating

alarm classifiers without perfect alarm labels. The method relies on probabilistic labels obtained from data programming—

a labeling paradigm based on combining noisy and cheap-to-obtain labeling heuristics. Based on these labels, the method

produces confidence bounds for the sensitivity/specificity values from a hypothetical evaluation with manual labeling. Our

experiments on five alarm datasets collected at Children’s Hospital of Philadelphia show that the proposed method provides

accurate bounds on the classifier’s sensitivity/specificity, appropriately reflecting the uncertainty from noisy labeling and

limited sample sizes.
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1 INTRODUCTION

Alarm fatigue is a well-known problem of physiologic monitoring in the hospital setting [11]. Bedside monitors
continuously measure heart rhythm, heart rate, respiratory rate, blood oxygen, and other signals—and produce
an alarm when the signals appear abnormal. Many of these alarms are not actionable or informative and often
overwhelm the caregivers. The end result is that the clinicians react slowly, if at all, to alarms that have a small
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but nonzero probability of representing a critical patient need [5]. Ideally, the clinicians should only be alerted
by the most important and actionable alarms, be able to interact with other informative alarms as they prefer,
whereas the rest of the alarms are suppressed.

Alarm fatigue can be mitigated by reducing or prioritizing alarms via threshold tuning, customization, de-
laying, integration, and other methods [18]. Researchers have proposed novel algorithms for monitoring and
suppressing unnecessary alarms based on advanced data processing [1, 8, 10]. At the core of algorithmic meth-
ods of reducing alarm fatigue is the classification of alarms into multiple classes such as priority, actionability,
informativeness, suppressibility, delayability, and so on. This classification needs to be carefully balanced with
the possibility of missing critically important and urgent alarms.
The clinical investigation and deployment of alarm classification systems is predicated on their expected per-

formance. For example, when deploying an alarm suppression system, hospital policy makers need to ensure
that its specificity to critical alarms is above a certain level, so that most of the critical alarms will continue to be
reported. Measuring the performance of an alarm classifier typically requires a representative dataset of alarms
correctly labeled with the classes of interest (e.g., suppressible vs. non-suppressible).
It is time-consuming and expensive to create highly accurate labeled datasets for the evaluation and tuning of

alarm classifiers. A commonway to do so is to perform an observational study [3] of many patients and manually
label each period of time when a certain type of alarm would be, for instance, actionable. Such a study is a major
commitment when it comes to an initial deployment of a novel alarm classifier, in part due to the significant
effort of manually labeling thousands of alarms. Furthermore, it is impractical to perform an observational study
for every adjustment of the settings of an alarm classifier throughout its lifecycle. This cost can be reduced with
patient simulations [7], but precise and realistic simulations of human physiology are notoriously difficult and
expensive to construct.
This article proposes a cheap and rapid method of estimating the performance of a clinical alarm classification

system in the absence of a dataset with highly accurate labels. Our method can support early-stage low-cost eval-
uations of alarm classifiers in a variety of ways. For example, it can prioritize observational studies of classifiers
with a higher potential to alleviate alarm fatigue so that the manual labeling effort is spent optimally. It can also
guide the tuning of the classifier’s settings towards effective alarm management, reducing the risk of missing
critically important alarms.
A key step of our method is to probabilistically label patient data according to the emerging paradigm of data

programming [16]. We start with a dataset of unlabeled patient data, typically abundant in most clinical settings,
several alarm classes of interest, and an alarm classifier with tunable settings. We then collect clinical intuitions
about this alarm type and encode them as labeling functions—weak classifiers of these alarms that can abstain
and need not be comprehensive or non-contradictory. Often, a labeling function represents an intuitive heuristic
such as “if the heart rate is high, then the alarm is actionable”. The outputs of the labeling functions can be
combined in a variety of ways, via majority vote or a generative model, resulting in labels of varied confidence
for each data point. Finally, using the high-confidence subset of the labeled data, we estimate the uncertain true

class-wise rates (e.g., sensitivity and specificity if we consider only two classes of alarms) of the alarm classifier.
To communicate the uncertainty of our estimates, we mathematically develop confidence bounds on the true

rates of the alarm classifier. These bounds indicate, for a given level of confidence, the interval of possible values
for the true rate that one could obtain from a hypothetical observational study of a given size. These bounds
account for a finite number of samples for each class, potentially incorrect weak labels, and the uncertainty in
estimating the confidence in our weak labels. Accounting for the confidence estimation uncertainty is a novel
contribution in this journal extension of our earlier work [14].
We validated our method with five datasets of clinical alarms, derived from a 551-hour alarm labeling effort

from Children’s Hospital of Philadelphia. One of these datasets was used in our prior work [14], while the
remaining four allow for novel experiments. We evaluated the performance of alarm actionability classifiers
that threshold the key physiological signals such as SpO2 and heart rate. Our method’s estimated confidence
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bounds almost always contain the true-label-based specificity and sensitivity—and vary appropriately based on
the amount of available data. This application demonstrated our method of estimating the sensitivity-specificity
tradeoffs in an alarm classifier without investing hundreds of hours into labeling the alarm data.
In summary, this article makes three research contributions:

— A data programming-based method for estimating the true rates of alarm classifiers.
— Confidence bounds on the true rate estimates, accounting for the uncertainty in sampling, labeling, and

confidence estimation.
— A successful application of the above method to five clinical alarm datasets.

The remainder of this article proceeds as follows. The next section presents a motivating scenario for low-
cost evaluation of alarm classifiers. Section 3 discusses the literature related to evaluating alarm classifiers. Sec-
tion 4 introduces the minimal background and precisely formulates the mathematical problem at the heart of our
method, which then is described in the following section. The five alarm datasets of are described in Section 6,
and its results can be found in Section 7. The article concludes with a summary in Section 8.

2 MOTIVATING SCENARIO

This article focuses on clinical alarms produced by physiological monitors in a hospital setting. By an “alarm”
we mean a combination of waveforms and patient data that have triggered a monitor to notify the clinicians.
An alarm classifier is some algorithm or device that categorizes the alarms in a clinically useful manner. For
example, one algorithm may determine which alarms are actionable and prioritize their delivery to the nursing
staff. Another algorithm may find suppressible alarms and remove them from the feed. Yet another algorithm
may discover equipment malfunction alarms (as opposed to the patient-related ones) and notify the technical
personnel or the manufacturer. Our work considers all such algorithms to be alarms classifiers.
Most alarm classifiers have a direct impact on patient treatment and, therefore, need to be evaluated to justify

their deployment and use. For example, to justify using an alarm suppression system, the decision-makers need
to ensure that it suppresses some fraction of false alarms and avoids suppressing too many true alarms. This
evaluation would quantify the true class-wise rates: the proportion of samples labeled correctly for each class. In
a two-class setting, the true rates are sensitivity (for the positive class) and specificity (for the negative class).

Consider a scenario to motivate our work. A hospital is considering the deployment of an alarm suppression
system, which has tunable parameters. The effect of these parameters on the hospital’s population of patients
is not known: will the reduction in superfluous alarms be worth the risk of missing important and actionable
alarms? To answer this question, the hospital would need to perform a controlled observation study in which a
sample of alarms is collected, labeled, and used to test the suppression system with different parameter settings.
Such a study is particularly time-consuming because the collected alarms (likely thousands of them) would
need to be manually labeled. This study may indicate that the expected suppression performance is far below
acceptable, and the labeling effort would be wasted. On the other hand, the classifier may perform so well that
the hospital may decide to skip the observational study and, instead, advance to an interventional pilot study.
Thus, the hospital could benefit from cheaper and faster ways of predicting the range of hypothetical outcomes

of an observation study for an alarm suppression system, ideally avoiding the manual labeling of alarms. As the
hospital continues to collect alarm data, it wants to gain increasing confidence in its prediction, until the point
when some decision can made. This scenario is possible not only for alarm suppression systems, but also for
other algorithmic classifiers of alarms, for example, whether an alarm is actionable, what priority it should have,
or whether it was caused by clinical events or technical issues. Since the classes of alarms and patient populations
differ and change over time, clinicians need to repeatedly predict classifier performance, and therefore a general
estimation approach is needed. This general scenario of evaluating an alarm classifier without perfect labels is
shown in Figure 1.
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Fig. 1. A motivating scenario: An alarm classifier needs to be evaluated without true labels of alarms.

3 RELATED WORK

There exists a vast literature on clinical alarms and unsupervised/weakly-supervised learning. We focus on the
areas particularly relevant to our goal of evaluating alarm classifiers.
Alarm fatigue is a serious and well-known problem of physiological monitors [5, 11]. To address it, a variety

of approaches to suppress or prioritize alarms have been proposed based on techniques from signal processing,
statistics, and machine learning [1, 8, 10]. Many of such approaches need patient data labels to be designed or
trained, and all of them need the labels to be evaluated. Our article introduces a lightweight way of performing
these evaluations without investing in high-quality labels. Note that our proposed method is not specific to any
physiological input, unlike many alarm classification techniques.
The gold standard for evaluating the clinical effectiveness of an alarm classifier is an interventional study, in

which the researchers deploy the system and measure its effects compared to a control group. To estimate the
true rates of a classifier (e.g., its sensitivity and specificity), a controlled observational study would be sufficient:
alarms are collected from physiological monitors, manually labeled by the clinical experts, and fed into the
classifier. Then the true rates are computed by comparing its outputs with the manual labels. Both types of
studies require substantial time and effort, in part due to the need to label each alarm by hand. For example,
nurses may need to review video feeds of patients to determine the actionability of alarms [9]. Our work is not
meant to replace either type of studies; instead, we aim at prioritizing, guide, and reduce the risk of observational
studies by providing an early and cheap estimation of the expected performance of an alarm classifier.
The Area under the Receiver Operating Characteristic Curve (AuROC) is a metric often used to eval-

uate the quality of medical classifiers. There exists literature where the AuROC can be estimated in the form
of confidence intervals from parameters such as error rates and the number of positive/negative samples [4].
Another AuROC estimation method from test scores via bootstrapping [2]. However, these methods require a
labeled dataset which is prohibitively expensive to collect. Our approach can be used to generate confidence
intervals for sensitivity/specificity using a weakly labeled dataset, from which AuROC can be calculated.
Alarms can be labeled with high-precision methods using patient simulations and computer-aided clinical

trials [6]. To provide realistic data, these methods require detailed physiological models, a building which is an
expensive and lengthy task. For clinical alarms, an appropriate model is rarely available. Our method is related
to observational studies in the same way as computer-aided clinical trials are related to traditional clinical trials.
That is, we perform a virtual algorithmic evaluation of alarm classifiers. After that, our results can provide the
basis for an observational study or a clinical trial of the algorithm or a device that classifies alarms.
Recently, a quick and inexpensive way of labeling data has emerged, known as data programming [16]. A key

element of data programming is a set of quantitative intuitions about how the data corresponds to labels. For
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example, a clinician might say, “when a patient over 60 years old has had a heart rate over 120 beats for over
a minute, such an alarm is a high priority.” These intuitions, algorithmically represented as labeling functions,
are allowed to be incomplete, sometimes incorrect, and contradictory. A labeling function returns a class label
or an “abstain” verdict for any input. Given a diverse combination of many labeling functions and an unlabeled
dataset, data programming algorithms produce probabilistic labels—a label and a confidence between 0 and 1—
for each sample in the dataset. A prominent data programming tool Snorkel [15] estimates an optimal weight
for each labeling function by using a generative graphical model and a prior on the class balance. Our approach
encodes clinical intuitions about classes of alarms (e.g., suppressible vs. non-suppressible) as labeling functions,
feeds them along with alarm data into Snorkel, and relies on the resulting probabilistic labels to quantify the
uncertainty in the classifier performance.
Extending the data programming work, adversarial data programming generates data in addition to labeling

it [12, 13]. A Generative Adversarial Network (GAN) is used to estimate the weight of each labeling func-
tion as well as the dependencies between them given a set of labeling functions and an unlabeled dataset. The
weights and dependencies are used by the GAN’s generator to produce labeled samples that come from the data
distribution. This technique is related to patient simulations and computer-aided clinical trials in that realistic
labeled data can be generated for the purpose of evaluating an alarm classifier. Data generation can be used in
an extension of our work to address applications with small datasets or imbalanced datasets.
This article builds on our previous approach to estimating true rates in alarm suppression systems [14].

Compared to that, we have extended the scope from evaluating suppression systems to evaluating any alarm
classifier—and correspondingly extended our evaluation with four new alarm datasets of varying sizes. We have
also extended the technical approach to account for the uncertainty in estimating the label confidence in a finite
sample. This extension allows us to vary the bound width appropriately datasets with few samples, which did
not satisfy the assumptions of the earlier approach.

4 PROBLEM FORMULATION

We start with an unlabeled dataset of alarms (I) and consider a hypothetical, unavailable dataset of alarms
(I∗) of a known size collected during a hypothetical observation study from the same population as I. We are
evaluating an alarm classifier (S) that takes a sample and assigns one of J classes to it. This alarm classifier has
tunable parameters affecting its output (e.g., an alarm threshold for high heart rate), and in the rest of the article,
we treat each alarm classifier with different parameter values as a separate classifier S .

Our goal is to quantify how well the alarm classifier S would perform on the hypothetical dataset I∗. We
measure the classifier performance with its true rate for each class. For any class j, a true rate R j is the fraction
of samples labeled j that are indeed of class j. In the case of only two classes, the positive true rate is called
sensitivity, and the negative true rate is called specificity. We aim at predicting the true rates for each class on the
hypothetical dataset I∗. We refer to these hypothetical, unknown rates as R∗j , and each of them is, conceptually,

determined on a subset of I∗ containing all samples with label j, which we refer to as I∗j . Since we do not have

access to I∗, we will predict R∗j indirectly using I.
To use dataset I, we first need to overcome the absence of true labels for it. So one sub-task will be to create a

probabilistic labeler—an algorithm that takes a sample and assigns it an estimated label and a confidence in that
label (a number between 0 and 1). We refer to the assigned label as f (x ) and its confidence as д(x ) for any sample
x . We will build that labeler from labeling functions, which encode rules of thumb and heuristics acquired from
clinicians. Each labeling function takes a sample and either abstains or assigns one of the classes to it. Labeling
functions can contradict each other or abstain in different combinations. Once a probabilistic labeler is created,
each sample x in the dataset I will be characterized by three values: a true (unknown) label f ∗ (x ), an estimated
label f (x ), and a confidence д(x ) in the estimated label. In practice, we only have access to the latter two.
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Fig. 2. Our approach of estimating the true rates of alarm classifiers.

Our second sub-task will be to structure I based on the estimated labels. For each label j, we form a high-

confidence set Ij of samples x from I that the probabilistic labeler labeled with j (i.e., f (x ) = j) and high confi-
dence, (i.e., д(x ) ≥ 1 − ϵ for some constant ϵ that we pick up front).
On each high-confidence set Ij , we can calculate the estimated true rate of S on class j, denoted as R j . To

predict the hypothetical rate R∗j , we will come up with an interval Cj of possible true rates around R j . This

interval should contain the value of R∗j with at least the containment probability pj (a.k.a. the significance level),

given to us by the user.
To summarize, the technical problem addressed in this article is to create the smallest interval containing the

hypothetical rate R∗j with a probability at least pj . This problem can be stated mathematically as follows:

min
Cj

|Cj | subject to P(R∗j ∈ Cj ) ≥ pj .

5 TRUE RATE ESTIMATION APPROACH

This section describes our approach for producing confidence bounds for the class-wise true rates of an alarm
classifier. Figure 2 summarizes the five steps of our approach:

(1) Collect unlabeled alarms and patient data
(2) Elicit heuristic labeling functions from clinicians
(3) Produce probabilistic labels for the collected alarms
(4) Estimate the average true rates of the alarm classifier
(5) Quantify confidence bounds around those rate estimates

5.1 Collecting Unlabeled Alarms

Our initial step is to collect a dataset of representative alarms and the corresponding patient data, which we will
use to evaluate the alarm classifier. The patient data includes the static data (demographics, disease history, and
so on.) and the vital signals that contextualize a raised alarm. Thus, there are two key aspects of data: determining
which alarm instances to use and collecting the relevant patient and vitals data. More formally, we produce a set
of representative unlabeled alarms data I, with each datapoint corresponding to the features of an alarm that
was raised for some patient.

When choosing the alarms, our goal is to get a sample from the representative distribution in a particular
clinical setting. To this end, we use the state-of-the-art sampling approaches. Typically, alarms would be sampled
from the sub-types targeted by the labeling system (e.g., technical or clinical, discussed in Section 6), based on
their frequency during different times of the day, and appropriately from the target patient demographics.
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The collection of patient and alarm data should be fully automated and, therefore, cheap. Given full automation,
we aim for the data to be as comprehensive and unbiased as possible in a given clinical context. Richer datasets,
such as those that include more patient information and diverse vitals, allow for more detailed labeling functions
in the next step, ultimately improving the outcomes of our approach.

5.2 Eliciting Labeling Functions

We ask clinical experts (e.g., physicians and nurses) working in the relevant context to describe the guidelines
that they use to make decisions on how an alarm should be classified (e.g., whether it is actionable or not). In
the context of our case studies, we seek quantifiable guidelines for determining alarm suppressibility (e.g., if the
heart rate is above 200 then actionable), as opposed to the difficult-to-quantify observations (e.g., if a child is
kicking or moving then the alarm is not actionable) which are often used by clinicians. Such observations are
difficult to encode in our data-driven approach and, hence, are excluded from our approach for now and left for
future work.
The obtained guidelines are not perfect; that is, they output noisy labels, and our approach will account for

that. Nonetheless, extremely inaccurate labeling functions can negatively affect the performance down the line.
To address this, we ask clinicians stick to guidelines that, in their expert opinion, are better than random chance

at identifying the alarm class correctly. Better-than-random labeling functions is a common requirement in data
programming [16].
Each guideline is implemented as one or more labeling functions. Each labeling function takes patient data as

input and either emits a label (suppressible/non-suppressible) or abstains for each sample in the unlabeled alarm
dataset. Formally, the labeling functions Λ are elicited and applied to the data I to obtain the weak labels. For
each data point, its weak label is a set of confidence for each of the J classes, and the highest-confidence class is
understood to be the class label. We will refer to the weak labels of our data I as LΛ (I).

5.3 Probabilistic Labeling

In this step, we combine the weak labels from the labeling functions into a single “strong” probabilistic label.
This label is characterized by a confidence value between 0 and 1, indicating the level of certainty regarding the
label’s accuracy. Mathematically, for each alarm x , we combine its weak labels LΛ (x ) into a probabilistic strong
label f (x ) with confidence д(x ).

Our framework computes the strong label and the confidence using a weighted combination over the weak
labels with a fixed vector of weightsw , which contains one weight per labeling function. Our framework allows
for different techniques for weighted combination, and in this article, we use three of them:

— Majority vote
— Generative model with an uninformed prior
— Generative model with an informed prior

These three techniques are applied in two steps:

(1) Determine the weightsw
(2) Combine weak labels using weightsw

The goal of the first step is to learn a non-negative weight vector where each weight indicates the relative pri-
ority of the corresponding labeling function. The majority vote, a widely-used and straightforward method for
combining multiple discrete signals into one, assigns equal priority to each labeling function. Hence, the weight
vector for the majority vote is uniform (i.e., w = 1 for all functions). The other two methods utilize a generative
graphical model. Generative models are popular in state-of-the-art data programming literature [16]. Such mod-
els give higher weights to labeling functions with higher accuracies. Since the accuracies are unknown a priori,
this model leverages the agreements and disagreements of the labeling functions in the data (LΛ (I)) during its
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training phase to estimate their accuracies. It can be trained with an uninformed prior (equal probability of every
class) or with an informed prior (clinicians indicate the frequencies of each class of alarms). The technical details
on this use of generative models can be found in our prior work [14].

In the second step, the learned weights are used to combine the weak labels into a probabilistic label for every
alarm. Suppose now we want to label an alarm x given its weak labels LΛ (x ) and the weightsw . For the majority
vote, since the weights are uniform, the confidence in class j д(x ) of a particular label is computed as the fraction
of non-abstaining labeling functions choosing j. For generative models, we obtain class weights by adding up
the weights of all labeling functions choosing that class. Then we pass the class weights through the softmax
function, which is a standard way to normalize positive real numbers into a probability distribution. Finally, the
highest normalized weight is used as the confidence д(x ).
The majority vote is a simple approach that is straightforward to apply. However, if many of the labeling

functions are inaccurate, the label prediction can be incorrect with high confidence. The benefit of using gener-
ative models is that they can account for the inaccuracies of labeling functions and, thus, give a more accurate
confidence.

5.4 Estimating Average True Rates

Now we estimate the average true rates of the alarm classifier using the probabilistic labels. That is, we are inter-
ested in finding a vector of numbers to estimate each of the J true rates given the probabilistic labels. Formally,
for each j from 1 to J , we compute point estimates of R j for an alarm classifier S given the data I, weak labeler f ,
and confidence estimator д. The challenge here is to balance three uncertainties: the sampling uncertainty due
to the limited size of I, the weak labeling uncertainty in f from potentially inaccurate labeling functions, and
confidence uncertainty that stems from a limited dataset where we estimate confidence д.

First, we need to pick the data that was labeled in a trustworthy manner. In our experience, using the whole
datasetI is inadvisable because low-accuracy/low-confidence labels would significantly bias the outcome. There-
fore, intuitively, we place more trust in samples that we label with high confidence (i.e., with low uncertainty
about their true label). The threshold to qualify as a high confidence sample is different for each class to handle
class imbalanced datasets. For each class j, we tolerate at most ϵj labeling uncertainty and, thus, only select sam-
ples with confidence at least 1 − ϵj . This leads us to construct high-confidence subsets Ij parameterized by ϵj , as
defined earlier in Section 4.
The tradeoff between the sampling uncertainty and the labeling uncertainty is moderated by ϵj . For example,

if we pick an arbitrarily small value of ϵj , our high-confidence setIj will have few samples and large sampling un-
certainty. On the other hand, if we pick a relatively large ϵj , the average confidence in Ij may be high, indicating
a high labeling uncertainty. We will resolve this tradeoff in the next subsection by minimizing the combination
of these uncertainties to get the tightest confidence bounds around our estimates.
Now, we are ready to estimate the average true rate on each class j by calculating the proportion of samples

that our classifier labels j in the high-confidence set Ij :

R j =

∑

x ∈Ij 1 (S (x ) = j )

|Ij |
. (1)

In a two-class setting, this formula gives us a point estimate of sensitivity (j = 1) and specificity (j = 0) of the
alarm classifier.

5.5 Producing Confidence Bounds

Our average rate estimates from the previous subsection rely on finite samples and noisy labeling functions and,
as a result, can be inaccurate. We quantify their potential inaccuracy by providing confidence bounds around our
estimates—the intervals where the hypothetical true rate (i.e., one estimated from perfect labels in an observa-
tional study) could be found with some given confidence. More precisely, we interpret our confidence bound as
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follows: it is an interval of likely true estimates using the correct labels of that class from a hypothetical obser-
vation study. That is, for class j, we aim at creating an intervalCj = [R j −c j ,R j +c j ] containing, with probability
of at least pj , the hypothetical true rate R∗j estimated from the manually (i.e., perfectly) labeled samples in I∗j .
Notice that pj can differ between the classes and, hence, reflect the acceptable level of clinical risk.
The interval size c j needs to account for three uncertainties:

(1) Sampling uncertainty: the potential difference between random samples in Ij and I∗j .
(2) Labeling uncertainty: the potential inaccuracy of probabilistic labels of Ij .
(3) Confidence uncertainty: the inaccuracy of the estimated average confidence in Ij .
The first uncertainty will be estimated as a function of the sizes of Ij and I∗j using the standard statistical

bounds. For the second uncertainty, in our experience, with appropriate labeling functions discussed Section 5.2,
high-confidence labels correspond to the low-uncertainty situations in which alarm classification is relatively
consistent. We formalize this intuition with the following assumption over the underlying random variable x̃
that generates our alarms:

Assumption 1 (Consistent Rates across Datasets). The true rates measured on high-confidence sets Ij do
not differ in expectation from those measured on the manually-labeled sets I∗j by more than the expected average

uncertainty of the labels in Ij :

���E [
S (x̃ ) = j | x̃ ∈ I∗j

]
−E

[
S (x̃ ) = j | x̃ ∈ Ij

] ��� ≤ 1 −E

[
д(x̃ ) | x̃ ∈ Ij

]
.

Intuitively, our assumption means that, if the samples were labeled with confidence 95%, then the underlying
average true rate on perfectly labeled samples could not differ by more than 5%.
For the third uncertainty, we derive a bound on the difference between the actual unknown average con-

fidence E[д(x̃ ) | x̃ ∈ Ij ] and our sample-based estimate of average confidence in dataset |Ij |, denoted as

ηj =
1
|Ij |
∑

n∈Ij д(xn ), using standard statistical bounds.

Putting together the three uncertainties, we derive the desired bound c j on the difference between the estimates
based on our probabilistic labels and the hypothetical-observation-study labels. The probability of exceeding that
bound is given in the following theorem.

Theorem 1 (Bounded Difference of Accuracy Estimates). For any class j, the difference between the prob-

abilistic and manual estimates of true rate on class j exceeds bound c j with a bounded probability:

P

[���R j (Ij ) − R j (I∗j )��� ≥ c j
]
≤ 6 exp

����
�

−2|Ij | |I∗j |
(

√

|Ij | + 2
√

|I∗j |
)2

(c j + ηj − 1)2
�			


,

where ηj =
1
|Ij |
∑

n∈Ij д(xn ) is the average label confidence in Ij .

The proof can be found in Appendix A. This result means that the chance of our estimates disagreeing with
the hypothetical estimates by more than c j decreases with the increasing number of samples in Ij and I∗j , larger
interval size c j , and the higher confidence of our estimates ηj . This bound is contingent on the satisfaction of
Assumption 1 about probabilistic labeling.

We want to guarantee that the hypothetical labeled estimate R∗j is within c j of our estimate R j with probability

pj . Then, by equating pj with the right-hand side of the inequality in Theorem 1 and expressing c j in terms of
pj , we obtain the desired interval size c j .
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Corollary 1. For any desired confidence pj , the interval width c j can be chosen as,

1 − ηj +

√
√

√

√

√

√

(

√

|Ij | + 2
√

|I∗j |
)2

−2|Ij | |I∗j |
ln
(pj

6

)

.

Finally, we return to the problem formulation from the end of Section 4: our goal is to minimize the size of the
interval c j given a fixed confidence pj . So we optimize for the smallest interval over the choice of samples in Ij
(by changing ϵj , which defines Ij , which in turn determines ηj ). Thus, we pick the interval size c j as follows:

min
Ij ⊆I

1 − ηj +

√
√

√

√

√

√

(

√

|Ij | + 2
√

|I∗j |
)2

−2|Ij | |I∗j |
ln
(pj

6

)

.

In summary, the presented results give us a way to produce uncertainty bounds for the true rates of the alarm
classifier by putting a confidence bound around the accuracy estimates from Section 5.4. We pick the tightest
interval given Theorem 1 while accounting for the sampling uncertainty, labeling uncertainty, and confidence
estimation uncertainty.

6 CASE STUDIES

To evaluate the performance of our approach, we conducted experiments on five alarm datasets: low SpO2, low/
high respiratory rate (RR), and low/high heart rate (HR)1 alarms. We consider alarm classifiers that label
an alarm as either suppressible or non-suppressible. For low vital sign alarms, the classifier labels an alarm as
suppressible if the vital sign measurement is above a specified threshold at the time of the alarm; otherwise it is
labeled non-suppressible. For high vital sign alarms, the classifier labels an alarm as suppressible if the vital sign
measurement is below a specified threshold, otherwise, it labels non-suppressible. We consider the context where
the threshold of these alarm classifiers were improperly configured, resulting in a large volume of suppressible
alarms beingmissed. Our goal is to establish and visualize the connection between the alarm classifiers’ threshold
and its sensitivity/specificity, given an unlabeled dataset of patient vitals data. This visualizationwill be compared
with the sensitivity/specificity computed from the manually-annotated alarm data, which is our case stands in
for a hypothetical observational study. In this section, we overview the dataset and data preprocessing approach,
introduce the labeling functions collected for labeling alarms, and describe the implementation details of our
approach.

6.1 Data

We used a de-identified dataset originally collected as part of a study approved by the Institutional Review Board
of the Children’s Hospital of Philadelphia (IRB #14-010846). Researchers video-recorded 551 hours of patient care
on a medical unit at Children’s Hospital of Philadelphia during July 2014 to November 2015 from 100 children
whose families and nurses consented. In addition, the following data were collected: patient background informa-
tion, all physiologic monitoring alarms with corresponding timestamps, and continuously recorded vital signs:

— Blood oxygen saturation (SpO2) measured by a pulse oximeter,
— Pulse rate measured by a pulse oximeter,
— Heart rate measured by a 3-lead electrocardiography (ECG),
— Cardiac rhythm measured by a 3-lead ECG,
— Respiratory rate measured by a 3-lead ECG,
— Noninvasive blood pressure (NBP) measured by a cuff, from the physiologic monitoring network.

1These heart rate alarms were generated based on the pulse oximeter readings.
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After the study, the researchers reviewed the alarms along with the video recordings and then annotated
them with along three dimensions: technical versus clinical alarms, valid versus invalid alarms, and actionable
versus non-actionable alarms [9]. Technical alarms indicate an issue with a physiologic monitor or its sensors,
whereas clinical alarms indicate an issue with a patient’s physiologic status (e.g., heart rate is too high). Valid
alarms are those that correctly identify the physiologic status of a patient. Conversely, alarms that are false
are considered invalid. A valid clinical alarm that results in or warrants clinical intervention or consultation
can be further classified as actionable, otherwise non-actionable. Hence the alarms have the following annota-
tions: technical alarms, invalid clinical alarms, valid actionable clinical alarms, and valid non-actionable clinical
alarms.
A total of 9,547 clinical alarms of 26 different types are in the dataset. Low SpO2, low/high respiratory rate,

and low/high heart rate alarms account for 58% of total alarms, of which, 54% are invalid. Hence, calibrating a
suppression classifier for these alarm types can help reduce alarm fatigue, and we focus on these alarms in our
case study.

6.2 Data Preprocessing

Our analysis only considers a subset of the features of the original dataset:

— Patient age group: less than one month old, from one month to less than two months, from two months to
less than six months, and six months and older.

— Patient vital signs: blood oxygen saturation, respiratory rate, heart rate measured by an ECG, and heart
rate measured by a pulse oximeter—all measured at a maximum sampling rate of 0.2 Hz.

— Annotated low SpO2, low/high respiratory rate, and low/high heart rate alarms with corresponding times-
tamps and durations.

As mentioned earlier, each alarm is annotated in terms of technical/clinical, valid/invalid, and actionable/non-
actionable alarms. We interpret these labels with respect to suppressibility as follows. Technical alarms, valid
non-actionable clinical alarms, and invalid alarms are interpreted as suppressible, whereas only valid actionable
clinical alarms are non-suppressible.

6.3 Labeling Functions

We conducted two one-hour unstructured interviews with two pediatric physicians where we collected eighteen
guidelines for deciding whether an alarm is suppressible or non-suppressible. Six of the guidelines are excluded
from this study because the dataset does not have sufficient information to implement them. The guidelines are
as follows:

(1) Long alarm: If the alarm duration is longer than t seconds, then the alarm is likely non-suppressible.
(2) SpO2 below the threshold for duration: If SpO2 is below threshold x for longer than t seconds since the alarm

sounded, then the alarm is likely non-suppressible.
(3) Heart rate above the threshold for duration: If the heart rate is above threshold x for longer than t seconds

since the alarm sounded, then the alarm is likely non-suppressible.
(4) Heart rate below the threshold for duration: If the heart rate is below threshold x for longer than t seconds

since the alarm sounded, then the alarm is likely non-suppressible.
(5) Respiratory rate below the threshold for duration: If the respiratory rate is below threshold x for longer than

t seconds since the alarm sounded, then the alarm is likely non-suppressible.
(6) Repeat alarms: If more than n alarms occurred within t seconds of the alarm, then the alarm is likely

non-suppressible.
(7) Short alarm: If the alarm duration is less than t seconds, then the alarm is likely suppressible.
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Table 1. Summary of the Five Alarm Datasets

Case Study
Number of Percent Number of
Alarms Suppressible Datapoints

Low SpO2 3,265 0.81 11,300
Low RR 312 0.35 527
High RR 574 0.25 968
Low HR 79 0.38 145
High HR 1,315 0.03 6,081

(8) Immediate recovery: If SpO2 recovers to x within t seconds after the alarm sounds, then the alarm is likely
suppressible.

(9) Heart rate technical error : If the difference between ECG heart rate and pulse oximeter heart rate is greater
than x at the time of the alarm, then the alarm is likely suppressible.

(10) Bad SpO2 waveform: If the SpO2 waveform contains anomalies,2 then the alarm is likely suppressible.
(11) Bad heart rate waveform: If the ECG heart rate waveform contains anomalies, then the alarm is likely

suppressible.
(12) Bad respiratory rate waveform: If the respiratory rate waveform contains anomalies, then the alarm is likely

suppressible.

From these guidelines, we instantiated sixty-two labeling functions for different values of parameters x , t , and n,
picked in consultation with the two aforementioned physicians (see Appendix B). Of these labeling functions,
40 produce only suppressible labels, and the rest produce only non-suppressible labels.

6.4 Implementation

We implement the labeling functions as Python functions, taking in an alarm from the dataset and returning
either a suppressible/non-suppressible label or an abstain. To generate probabilistic labels for the alarms in the
dataset we use a tool called Snorkel to train our generative model [15]. Snorkel is the state-of-the-art tool for
weak label combination and has been applied to several applications. We use the latest version at the time of
writing, version 0.9.7 (www.snorkel.org).

The only hyperparameter we specify within Snorkel is the prior probability of labels. For the informed prior
we use the exact proportion of suppressible/non-suppressible labels which were interpreted from the manual
annotations; the priors are listed in the second column of Table 1. In cases when the prior is unknown, it can
also be estimated from the labeling functions [17].

Our alarm samples for estimating sensitivity/specificity are generated from the vital sign readings at the mo-
ments when an alarm was sounding. For each case study, we consider the timestamps for which there is a
measurement of the relevant vital sign (their counts are in the third column of Table 1). Then we map the labels
assigned to the known alarms onto these samples. For each alarm, we assign all timestamps that occur during
this alarm with its own labels (true and probabilistic). Lastly, we simulate applying the alarm classifier to the
samples for different thresholds, and save the result as a label. Those thresholds are 0 to 100 for low SpO2, 0 to
300 for low/high respiratory rate, and 0 to 200 for low/high heart rate. Thus for each sample we have,

— A timestamp,
— A vital sign measurement,
— A ground-truth label (from the original annotations),

2Waveforms with artifacts are generally unreliable. We look for anomalies (e.g., spikes and outliers) in the waveform to determine if it is bad

or not.
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— A label and its confidence from the generative model,
— A label from the alarm classifier for each threshold.

7 RESULTS

This section presents the results of our experiments described in the previous section.3 Specifically, we evaluate
the performance of the confidence bounds for the sensitivity and specificity of alarm suppression classifiers
produced by our approach. We also evaluate the bounds for the tradeoff curve between sensitivity and specificity,
because this curve may inform clinical choices of alarm classification parameters. A successful application of our
approachwould result in bounds that contain the hypothetical sensitivity/specificity and tightenwhenmore data
is made available. We compare our confidence bounds to those produced by the confidence uncertainty-unaware
approach from earlier work [14].
The parameters of our approach are set as follows. We allow for a 10% chance of the confidence bounds not

containing the true sensitivity/specificity, i.e., significance level p0 = p1 = 0.1. Label uncertainty ϵj determines
the high-confidence subsets Ij that we optimize over in our approach when computing the confidence bounds.
We search the space ϵj ∈ [0.001, 0.5] to find the tightest bounds.4

The confidence bounds for sensitivity, specificity, and the tradeoff between the two using different probabilistic
labeling methods are depicted in Figures 3–5, respectively. To draw the tradeoff bounds, for each threshold we
plot the (specificity + c0, sensitivity + c1) for the upper-bound and (specificity − c0, sensitivity − c1) for the lower-
bound. Since we have access to true labels (i.e., the labels extracted from the alarm annotations), we use them to
plot the true curve for the sensitivity/specificity/tradeoff, which represents the results of an observational study.
Furthermore, we use the true labels to implement a fourth probabilistic labeling method, an oracle labeler, that,
for each alarm, yields its true label and a 99% confidence. The oracle bounds represent the result of the approach
if we were able to perfectly label the alarms dataset, eliminating the labeling and confidence uncertainty. Oracle
bounds always contain the true curve and are sufficiently wide enough to account for sampling uncertainty;
therefore, we seek bounds that are at least as wide as the oracle bounds. Table 2 summarizes the average width
of the sensitivity and specificity bounds as well as the percentage of the true curve contained in the sensitivity,
specificity, and tradeoff confidence bounds. We defer to Appendix C for the hyperparameters that produce the
confidence bounds in the aforementioned table and figures. We note that only a subset of the thresholds for
each alarm classifier can plausibly be adopted into a clinical setting, and hence only portions of these curves are
clinically relevant. In discussion with pediatric physicians, we defined the following clinically relevant regions:
80 to 95 for low SpO2, 0 to 30 for low RR, 60 to 120 for high RR, 50 to 120 for low HR, and 160 to 220 for high HR.
Our main observation is that our approach produces confidence bounds with high containment. Furthermore,

the results demonstrate that bound containment improves as progressively more accurate and data efficient
probabilistic labeling methods are used. Our confidence uncertainty-aware approach yields 100% containment
for 11, 11, and 15 out of 15 bounds usingmajority vote, uninformed, and informed generativemodels, respectively.
While most majority vote bounds have high containment, we can understand the instances where it is low
by looking at the low SpO2 case study tradeoff bounds (Figure 5, top row). The bounds bow outward unlike
traditional tradeoff curves, and if we flipped the labels it would bow inward and improve containment. This
implies that the majority vote labeled incorrectly with high-confidence as we anticipated in Section 5.3. The
uninformed generative model is disadvantaged when the actual class balance is heavily skewed. This can explain
the lower containment in the high HR and the low SpO2 case. Finally, since all bounds produced by an informed
generativemodel achieve 100% containment of the true curve, our approach has effectively captured this outcome
of a hypothetical observational study.

3Code and data is available at https://github.com/sfpugh/Evaluating-Alarm-Classifiers-with-High-Confidence-Data-

Programming.
4The smallest possible label confidence is 50%, hence ϵj = 0.5 uses all of our data.
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Fig. 3. Sensitivity confidence bounds.
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Fig. 4. Specificity confidence bounds.
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Fig. 5. Tradeoff confidence bounds.
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Table 2. Average Confidence Bound Width and Percentage of the True Curve Contained in the Confidence Bounds for Significance Level p0 = p1 = 0.1

Case Study Rate Metric
Confidence Uncertainty Unaware [14] Confidence Uncertainty Aware

Majority GM GM
Oracle

Majority GM GM
Oracle

Vote Uninformed Informed Vote Uninformed Informed

Low SpO2 Sensitivity Width 0.060 0.049 0.020 0.050 0.107 0.082 0.071 0.070
Containment 0.519 0.897 0.683 - 0.641 1.000 1.000 -

Specificity Width 0.072 0.129 0.037 0.089 0.102 0.176 0.289 0.133
Containment 0.562 0.583 0.572 - 0.572 0.727 1.000 -

Tradeoff Containment 0.115 0.350 0.200 - 0.194 0.483 1.000 -

Low RR Sensitivity Width 0.572 0.345 0.115 0.183 0.757 0.500 0.584 0.280
Containment 1.000 1.000 1.000 - 1.000 1.000 1.000 -

Specificity Width 0.182 0.286 0.080 0.204 0.279 0.439 0.360 0.313
Containment 1.000 1.000 1.000 - 1.000 1.000 1.000 -

Tradeoff Containment 1.000 1.000 1.000 - 1.000 1.000 1.000 -

High RR Sensitivity Width 0.265 0.314 0.161 0.235 0.448 0.488 0.568 0.347
Containment 0.732 1.000 0.687 - 1.000 1.000 1.000 -

Specificity Width 0.154 0.173 0.066 0.140 0.243 0.268 0.239 0.209
Containment 1.000 0.789 0.708 - 1.000 1.000 1.000 -

Tradeoff Containment 0.617 1.000 0.488 - 1.000 1.000 1.000 -

Low HR Sensitivity Width 0.912 0.488 0.252 0.433 1.000 0.732 0.715 0.654
Containment 1.000 1.000 1.000 - 1.000 1.000 1.000 -

Specificity Width 0.397 0.512 0.173 0.318 0.611 0.676 0.760 0.485
Containment 1.000 1.000 1.000 - 1.000 1.000 1.000 -

Tradeoff Containment 1.000 1.000 1.000 - 1.000 1.000 1.000 -

High HR Sensitivity Width 0.312 0.202 0.146 0.314 0.476 0.276 0.449 0.475
Containment 0.854 1.000 0.700 - 1.000 1.000 1.000 -

Specificity Width 0.046 0.053 0.022 0.054 0.073 0.088 0.066 0.077
Containment 0.572 0.500 1.000 - 0.662 0.581 1.000 -

Tradeoff Containment 0.629 0.410 0.463 - 1.000 0.761 1.000 -

For each approach, we put the bound width that is closest to and at least as wide as the oracle bounds in bold face. We also put the best (largest) true curve containment

out of both approaches and all probabilistic labeling methods in bold face.
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Fig. 6. Sample count (log) versus the average confidence bound width using our confidence uncertainty-aware approach for

each case study.

By comparing the left and the right columns in Figures 3–5, we conclude that accounting for confidence
uncertainty trades bound width for higher containment. The confidence uncertainty-unaware approach yields
100% containment for 7, 9, and 7 out of 15 bounds using majority vote, uninformed, and informed generative
models, respectively. In the cases where 100% containment is not achieved, the confidence bounds produced
by our approach have better containment. On average, the improvement is 0.187 ± 0.12, 0.224 ± 0.17, and
0.437 ± 0.16 for each labeling method, and 0.284± 0.19 overall. However, our approach’s bounds are wider than
the confidence uncertainty-unaware bounds in all cases by 0.178 ± 0.14 on average. Confidence uncertainty
widens the bounds in order to capture more of the hypothetical observational study result.

We compare each approach to their respective oracle bounds and find that the confidence uncertainty-aware
approach yields bounds that are good approximations of the oracle bounds. Our approach’s bounds are wider
than the oracle bounds in 24 out of 30 cases by 0.129 ± 0.12 on average. The confidence uncertainty-unaware
approach’s bounds are wider than the oracle bounds in 13 out of 30 cases by 0.127 ± 0.14 on average. Our
uncertainty-aware bounds better account for the sampling uncertainty than the uncertainty-unaware approach.
Furthermore, our approach using an informed generative model is able to achieve the same containment as the
oracle bounds (100% containment) in all cases, whereas the confidence uncertainty-unaware approach achieves
oracle containment in less than half of the cases. Hence, the bounds produced by our approach, though slightly
wider, converge to the quality of the best possible confidence bounds producible by our approach.

The width of our bounds varies appropriately with the amount of provided data. For example, the bounds for
larger dataset cases, low SpO2, high RR, and high HR, are of moderate width. However, small dataset cases, low
RR and low HR, have wide bounds. Bound width is directly affected by the number of samples used (determined
by the dataset I and label uncertainty ϵj ) and the choice of significance level pj (which follows from Corollary 1).
We explore the effect of the sample count per class in the dataset on the bound width using our approach with
an informed generative model in Figure 6. This figure shows that having more data yields tighter bounds.
Recall the context of the case study is to better pick alarm thresholds of a previously poorly calibrated alarm-

generating device. In practice, to help determine the best threshold for alarm suppression classifiers, hospital
policy makers could use the sensitivity/specificity tradeoff. A good threshold would produce specificity close to
1 (i.e., not suppress any non-suppressible alarms) while maximizing sensitivity (i.e., silence as many suppressible
alarms as possible). Suppose policy makers decide to allow a minimum of 90% specificity. For the low vital sign
alarms, the minimum threshold using our approach using an informed generative model and the true curve,
respectively, are 92 and 91 for SpO2, 27 and 28 for RR, and 114 and 103 for HR. For the high vital sign alarms,
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the respective maximum thresholds are 70 and 69 for RR, and 178 and 178 for HR. The thresholds selected using
our approach are sufficiently accurate approximations, if not exact, to those that would have been selected in an
observational study.
Limitations: Our confidence bounds are accurate when suppression accuracy is relatively consistent on differ-

ent high-confidence labels, as stated in Assumption 1. This assumption may be violated in contexts with few
available samples or when high-confidence labeling is particularly biased/inaccurate — and then our theoreti-
cal guarantees might not hold. For example, there may exist a subset of the patient population for which the
clinician-designed labeling functions always label incorrectly. Alternatively, the high-confidence datasets may
be biased by only containing alarms of a patient subset not representative of the entire patient population. Our
conclusions are expected to generalize to the setting of our data collection, i.e., actionable alarms for pediatric
medical-floor patients. To apply our method in a different setting, one may need to elicit different/more labeling
functions, and so the tightness and accuracy of the confidence bounds may vary.

8 CONCLUSION

In this article, we proposed an approach for estimating the performance of a clinical alarm classification system
without access to labeled alarm data. Probabilistic labels obtained via generative modeling were used as a proxy
for the unknown true labels to estimate the average true rates. We then quantified confidence bounds for these
estimates. Finally, we evaluated our approach in case studies of low SpO2, low/high respiratory rate, and low/high
heart rate alarms. The results show that we outperform prior work and produce confidence bounds that contain
most, if not all, of the true curves generated in an observational study. For future work, we plan to analyze
the impact of the number of weak labeling functions used in our approach, automate the extraction of weak
labeling functions that satisfy the assumptions of generative models, as well as explore unsupervised confidence
calibration of generative models for data programming.

APPENDICES

A THEOREM AND COROLLARY PROOF

We start with an unlabeled dataset of alarms I and a hypothetical, unavailable dataset of alarms I∗. We pick
some subset of high-confidence samples:

Ij ⊆ {x ∈ I | f (x ) = j ∧ д(x ) ≥ 1 − ϵj }.

Recall our assumption of consistent true rates:
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x ∈Ij

1 (S (x ) = j )

������
+

������E
[
д(x̃ ) | x̃ ∈ Ij

]
− 1

|Ij |
∑

x ∈Ij

д(x )

������ ≥ (c j − δ j − 2γj ) + γj + γj
⎤⎥⎥⎥⎥⎦

≤P

⎡⎢⎢⎢⎢⎣
������E

[
S (x̃ ) = j | x̃ ∈ I∗j

]
− 1

|I∗j |
∑

x ∗∈I∗j

1 (S (x∗) = j )

������ ≥ c j − δ j − 2γj
⎤⎥⎥⎥⎥⎦

+P

⎡⎢⎢⎢⎢⎣
������E

[
S (x̃ ) = j | x̃ ∈ Ij

]
− 1

|Ij |
∑

x ∈Ij

1 (S (x ) = j )

������ ≥ γj

⎤⎥⎥⎥⎥⎦
+P

⎡⎢⎢⎢⎢⎣
������E

[
д(x̃ ) | x̃ ∈ Ij

]
− 1

|Ij |
∑

x ∈Ij

д(x )

������ ≥ γj

⎤⎥⎥⎥⎥⎦
≤ 2 exp

(

−2|I∗j |(c j − δ j − 2γj )2
)

+ 4 exp
(

−2|Ij |γ 2
j

)

≤ 6 exp
����
�

−2|Ij | |I∗j |
(

√

|Ij | + 2
√

|I∗j |
)2

(c j − δ j )2
�			


.

For the corollary, we are given desired significance level pj :

pj = 6 exp
����
�

−2|Ij | |I∗j |
(

√

|Ij | + 2
√

|I∗j |
)2

(c j + ηj − 1)2
�			


.

Solving the equation above for c j yields the following equation for the bound size,

c j = 1 − ηj +

√
√

√

√

√

√

(

√

|Ij | + 2
√

|I∗j |
)2

−2|Ij | |I∗j |
ln
(pj

6

)

.

B LABELING FUNCTIONS

The twelve guidelines for deciding whether an alarm is suppressible or non-suppressible from Section 5.2 are
encoded as labeling functions (LFs) in the following ways.

(1) LF_long_alarm_T labels non-suppressible if the length of the alarm is at least T seconds, otherwise it
abstains. LFs 1 through 3 use T = 60, 65, and 70, respectively.

(2) LF_spo2_aboveX_belowY_overT labels non-suppressible if SpO2 stays within range (X ,Y ] for longer than
T seconds after the alarm start, otherwise it abstains. LFs 4 to 9 use (X ,Y ,T ) = (80, 85, 120), (0, 80, 120),
(70, 80, 100), (60, 70, 90), (50, 60, 60), and (0, 50, 30), respectively.

(3) LF_hr_aboveX_overT labels non-suppressible if heart rate is above X for longer than T seconds after the
alarm start, otherwise it abstains. LF 10 uses X = 220 and T = 10.
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(4) LF_hr_aboveX_belowY_overT labels non-suppressible if heart rate stays withing range (X ,Y ] for longer
than T seconds after the alarm start, otherwise it abstains. LFs 11 to 14 use (X ,Y ,T ) = (0, 50, 10), (40 ·
α , 50 · α , 120), (30 · α , 40 · α , 60), and (0, 30 · α , 0), respectively, where α is a scaling age factor taking value
of 3.833 for less than one month, 3.766 for one month to less than two months, 3.733 for two months to
less than six months, 3.533 for six months and older.

(5) LF_rr_aboveX_belowY_overT labels non-suppressible if respiratory rate stayswithin range (X ,Y ] for longer
than T seconds after the alarm start, otherwise it abstains. LFs 15 to 18 use (X ,Y ,T ) = (0, 10, 120), (40 ·
α , 50 · α , 120), (30 · α , 40 · α , 60), and (0, 30 · α , 0), respectively, where α is a scaling age factor taking value
of 0.933 for less than one month, 0.900 for one month to less than two months, 0.866 for two months to
less than six months, 0.800 for six months and older.

(6) LF_repeat_Xalarms_inT labels non-suppressible if at least X additional low SpO2 alarms sound within T

seconds of the alarm, otherwise it abstains. LFs 19 to 22 use (X ,T ) = (1, 15), (1, 30), (1, 60), and (10, 300),
respectively.

(7) LF_short_alarm_T labels suppressible if the length of the alarm is at mostT seconds, otherwise it abstains.
LFs 23 to 25 use T = 5, 10, and 15, respectively.

(8) LF_recoverX_inT labels suppressible if SpO2 improves by more than X percent within T seconds of the
alarm, otherwise it abstains. LFs 26 and 27 use (X ,T ) = (20, 10) and (20, 15), respectively.

(9) LF_hr_tech_error_X labels suppressible if the absolute difference between ECG heart rate and pulse oxime-
ter heart rate is greater than X at the time of alarm, otherwise it abstains. LFs 28 and 29 use X = 20 and 30
respectively.

(10) LF_bad_spo2_waveform_X_T labels suppressible if there exists an outlier with value greater thanX within a
T second window of the alarm in the SpO2 waveformmatrix profile, otherwise it abstains.5 LFs 30 to 40 use
(X ,T ) = (8.4, 120), (7.8, 110), (7.2, 100), (6.6, 90), (6.0, 80), (5.3, 70), (4.6, 60), (3.8, 50), (2.9, 40), (2.1, 30),
and (1.0, 20), respectively.

(11) LF_bad_hr_waveform_X_T labels suppressible if there exists an outlier with value greater than X within
a T second window of the alarm in the heart rate waveform matrix profile, otherwise it abstains.
LFs 41 to 51 use (X ,T ) = (9.0, 120), (8.5, 110), (7.8, 100), (7.3, 90), (6.7, 80), (6.0, 70), (5.4, 60), (4.7, 50),
(3.9, 40), (3.1, 30), and (2.1, 20), respectively.

(12) LF_bad_rr_waveform_X_T labels suppressible if there exists an outlier with value greater than X within a
T second window of the alarm in the respiratory rate waveform matrix profile, otherwise it abstains. LFs
52 to 62 use (X ,T ) = (8.7, 120), (8.1, 110), (7.6, 100), (7.1, 90), (6.5, 80), (6.0, 70), (5.4, 60), (4.7, 50), (3.9, 40),
(3.0, 30), and (2.0, 20), respectively.

C ADDITIONAL RESULTS

Table C.1 summarizes the hyperparameters that produce the confidence bounds in Figures 3–5. Recall that ϵj is
the allowed level of label uncertainty in both approaches, and γj is an admissable free parameter that applies
only to the confidence uncertainty unaware approach [14].

5To find anomalies in vitals waveforms we analyze their matrix profiles. At a high-level, a matrix profile represents the dissimilarity between

each vital sign measurement in the data and the rest of the data. Large values in the matrix profile correspond to outliers. We use the

matrixprofile-ts Python library (github.com/matrix-profile-foundation/matrixprofile).
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Table C.1. Summary of Hyperparameters Corresponding to the Confidence Bounds in Figures 3–5

Case Study Hyperparameter
Confidence Uncertainty Unaware [14] Confidence Uncertainty Aware
Majority GM GM Majority GM GM
Vote Uninformed Informed Vote Uninformed Informed

Low SpO2 ϵ0 0.001 0.041 0.495 0.001 0.067 0.155
ϵ1 0.001 0.001 0.497 0.001 0.001 0.016
γ0 0.021 0.021 0.360 - - -
γ1 0.034 0.034 0.138 - - -

Low RR ϵ0 0.001 0.094 0.499 0.001 0.177 0.140
ϵ1 0.334 0.163 0.491 0.500 0.246 0.320
γ0 0.079 0.079 0.332 - - -
γ1 0.191 0.556 0.460 - - -

High RR ϵ0 0.001 0.041 0.495 0.001 0.091 0.053
ϵ1 0.001 0.086 0.466 0.125 0.156 0.024
γ0 0.066 0.066 0.224 - - -
γ1 0.142 0.142 0.419 - - -

Low HR ϵ0 0.001 0.233 0.344 0.200 0.323 0.344
ϵ1 0.500 0.110 0.383 0.500 0.141 0.064
γ0 0.201 0.175 0.555 - - -
γ1 0.243 0.886 0.437 - - -

High HR ϵ0 0.001 0.009 0.029 0.001 0.030 0.019
ϵ1 0.001 0.001 0.288 0.143 0.001 0.014
γ0 0.020 0.020 0.036 - - -
γ1 0.156 0.156 0.282 - - -
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