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Derivation and Validation of an Algorithm
to Detect Stroke Using Arm Accelerometry
Data
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Benjamin M. Jackson, MD; James Weimer @2, MS, PhD

BACKGROUND: Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with
worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by moni-
toring upper limb movements in hospitalized patients.

METHODS AND RESULTS: A prospective case—control study in hospitalized patients evaluated bilateral arm accelerometry from
patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from
123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute
strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was
associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR],
2.1-5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0-73.5) minutes. A median false alarm rate of
1.1 (IQR. 0-2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0-58.0) minutes.
There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondomi-
nant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime.

CONCLUSIONS: Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low
false alarm rate. Additional studies are needed to demonstrate clinical usefulness.
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in-hospital stroke is associated with delayed detection

hrombolysis and mechanical thrombectomy, are
highly time dependent. Eligibility for intervention
and the probability of good outcome if treated de-
cline continuously as time from onset of symptoms in-
creases.'~® Thus, rapid detection of the onset of stroke
symptoms is of paramount importance.*8
Of the 800000 strokes that occur annually in the
United States, 5% to 17% develop in patients who
are already hospitalized, the majority in patients who
recently underwent an intervention or procedure.”®
Compared with strokes that occur in the community,

Proven stroke treatments, including intravenous

and assessment, fewer interventions, and worse out-
comes.”" Thus, these complications lead to markedly
increased cost, length of stay, morbidity, mortality, and
medicolegal liability for hospitals and caregivers.”8.10-14

Upper extremity weakness is one of the most com-
mon findings in acute stroke.!® As a result, asymmetric
arm strength is used in all screening tools for stroke.'®"”
In addition, neglect is a frequent stroke symptom that
also leads to a tendency to move the arm less on the
affected side!®' We hypothesized that continuous
monitoring for asymmetric arm movement would be
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CLINICAL PERSPECTIVE
What Is New?

Stroke in hospitalized patients often has delayed
detection and is associated with poor outcome
and high cost.

* Asymmetric arm weakness is one of the most
common symptoms of stroke.

+  We performed a prospective case control study
of bilateral arm accelerometry monitoring in
hospitalized patients with and without stroke to
derive and validate an algorithm to detect asym-
metric weakness.

What Are the Clinical Implications?

» The algorithm provides a median time to detec-
tion of stroke of <30 minutes, while maintaining
a median false alarm rate of about 1 per patient
per day.

» This algorithm may allow for continuous moni-
toring of patients to detect stroke with lateral-
ized weakness.

« If automated monitoring can detect stroke
faster than usual care, this could lead to more
and earlier stroke interventions and improved
outcomes.

Nonstandard Abbreviations and Acronyms

NIHSS National Institutes of Health Stroke Scale

a sensitive and practical approach to identify stroke
onset. An automated system to identify stroke could
facilitate more and earlier acute stroke treatments and
improve outcomes. The overarching goal of this proj-
ect was to develop and validate an alerting algorithm
incorporating features from upper extremity acceler-
ometry data to rapidly identify stroke in hospitalized
patients.

METHODS

We performed a 2-part prospective case—control study
of upper extremity movements of patients admitted to
the Hospital of the University of Pennsylvania to first
derive and then validate a stroke detection algorithm.
The derivation and validation studies were performed
by the same research team and approved by the insti-
tutional review board at the Hospital of the University
of Pennsylvania. All patients or their legally authorized
representatives provided informed consent before en-
rollment. Data may be made available upon reasonable
request to the authors.
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Subjects

All subjects were recruited from the inpatient setting at
the Hospital of the University of Pennsylvania. Because
of the relative rarity and frequently uncertain timing of
stroke, it is challenging to accumulate a large volume of
accelerometry data from individual patients before and
after they have a stroke. Thus, a case—control study de-
sign was used to derive and then validate the algorithm,
which allows for an estimation of the time to detection
of asymmetric limb movement in patients with stroke
and false alarm rates in patients without stroke. Controls
were neurologically normal, with no asymmetric arm
weakness, no history of stroke, and no above the wrist
amputation (to facilitate wearing the accelerometers).
For the derivation cohort, controls included patients with
transient ischemic attack without acute infarct on mag-
netic resonance imaging, patients undergoing workup of
transient spells of uncertain cause with normal magnetic
resonance imaging, and patients who recently under-
went cardiothoracic surgery or vascular surgery without
evidence of neurologic complications. For the validation
cohort, only patients who underwent recent cardiotho-
racic or vascular surgery and had no evidence of stroke
were included. Cases for both the derivation and vali-
dation cohort consisted of patients admitted with acute
ischemic or hemorrhagic stroke with a National Institutes
of Health Stroke Scale (NIHSS) assessment with at least
1 point for upper extremity weakness on item 5a or 5b
of the NIHSS, weaker on the side affected by the stroke.
Before the initiation of monitoring, subjects underwent a
neurologic evaluation including the NIHSS and a strength
assessment, using the Medical Research Council scale
to rate the deltoid, biceps, triceps, wrist extension, wrist
flexion, intrinsic finger, hip flexor, quadriceps, hamstrings,
ankle extension, and ankle flexion ranging from 0 (no
movement) to 5 (full strength) on each side.

Monitoring

The subjects had wrist straps incorporating acceler-
ometers placed on both arms and were asked to keep
them on for as long as the battery would last, which
varied based on the device used in the 2 cohorts. For
the algorithm derivation cohort, we used a commer-
cially available battery-powered Bluetooth-enabled
accelerometer/gyroscope, the Wit Motion (Shenzhen
City, China) BWT901CL Bluetooth output 9-axis accel-
erometer gyroscope, synced with an Android tablet to
stream the data to a cloud-based server (Heroku, San
Francisco, CA). These accelerometry devices had an ex-
pected battery life of 2 to 3hours. To capture more data
and allow for comparisons of performance between
daytime and nighttime, we required a longer lasting
accelerometry device. Thus, for the validation cohort,
we used the commercially available Samsung Galaxy
Watch Active to collect accelerometry data. An app
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collected accelerometry data (Raproto, Philadelphia,
PA), which was transmitted via WiFi using a data trans-
fer protocol called message queueing telemetry trans-
port quality of service 1, which ensures that every data
point is received and then stored on a cloud-based
platform (Thingsboard, New York, NY).2° The expected
battery life of this device was 18 to 24 hours. For both
phases of the study, patients and clinical staff were told
that the straps could be removed at any time if they
were uncomfortable, interfered with clinical treatment,
or for any other reason they chose. To ensure condi-
tions were representative of real-world practice, no in-
structions to limit therapy or passive range motion of
the affected limb were given while the patient was being
monitored. The neurologic assessments were repeated
after monitoring was complete to confirm that there
were no changes in neurologic status.

Algorithm Derivation

Although patients with stroke will frequently have
weakness on one side leading to reduced movement,
a neurologically normal person without weakness will,
at times, also demonstrate asymmetric arm move-
ments. The goal of this work, then, is to create an al-
gorithm that can discriminate normal movement from
pathological movement patterns and will alarm when
there is asymmetric arm movement indicative of acute
stroke while minimizing alarms in patients who are
neurologically intact. We derived the algorithm using
a parameter-invariant method designed to maximize
diagnostic performance and generalizability.2'-2> This
approach has been previously used to develop multiple
medical classifier algorithms requiring high sensitivity
and specificity along with stable performance across
patients without outliers.?? The parameter-invariant
method uses a statistical first-principle approach to de-
rive algorithms that are invariant to patient-specific pa-
rameters (eg, being left or right handed, awake/asleep,
restrained/free to move) as well as system anomalies
common in accelerometer-based systems (eg, accel-
erometer bias/drift or device orientation). As a result,
the algorithm achieves stable performance across the
population without requiring individual tuning.

The algorithm derivation methodology is available
in Data S1. Briefly, using the derivation cohort acceler-
ometry data, we identified features invariant to patient-
specific parameters and then trained a structured
classification tree, combining the features to maximize
stability and accuracy for detection of asymmetric
movement patterns seen in patients with stroke. Using
multiple concurrent threshold tests of varying dura-
tions is a common technique in detection theory to
balance the trade-off between accuracy and time to
detection.?® Threshold tests, with shorter monitoring
durations, provide faster time to detection, whereas
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longer monitoring durations have increased accuracy.
The algorithm simultaneously uses multiple windows
of increasing duration of preceding data (when avail-
able) and alarms if any window detects the possible
presence of a stroke.

In a real-world deployment, an alarm that leads to
identification of a stroke triggers a clinical intervention
that would include removing the device. Thus, if move-
ment data continue to accrue after an alarm, the algo-
rithm assumes that the prior alarm was a false positive,
and no further alarms are generated for 1 hour to allow
the monitoring windows to accumulate new data.
Every subsequent alarm within 4 hours of the previous
alarm extends the alarm pause by an additional hour,
up to a maximum of 4 hours. If there is no generated
alarm within 8 hours, the alarm pause duration is reset
to 1hour. We note that the proposed strategy results
in a maximum false alarm rate of 8 alarms in the first
24 hours, followed by 6 alarms per day from then on.
An open source implementation of the described algo-
rithm is available for academic and noncommercial use
(https:/jamesweimer.net/StrokeDetectAl/).

Validation

The final candidate algorithm was validated using an
independent and blinded test data set that was col-
lected separately from the data set used for algorithm
derivation using a different, longer-lasting accelerom-
eter as noted above.?” For this preplanned analysis,
the algorithm evaluated individual patient data and
was executed every 15minutes. The performance of
the population was then calculated using medians
and interquartile ranges of the average performance
of the individual subjects. As a result of using mes-
sage queueing telemetry transport quality of service
1 to transfer data to the cloud, the accelerometry data
set had no missing data. However, it remains possi-
ble that data will be missing, at least temporarily, in a
real-world implementation of a clinical stroke monitor,
in which case the algorithm is designed to handle data
in the following manner: Data are timestamped by the
accelerometry devices and, when evaluated by the al-
gorithm, missing data are treated as missing and not
imputed. Examples of how missing data may occur in
a real-world implementation include a weak or erratic
WiFi network, which would lead to temporary delays
in communication of data, although it would eventually
be collected and analyzed when the WiFi signal allows.
Alternatively, if a wrist strap device runs out of power,
stroke detection will not be possible during that time
because accelerometry data cannot be collected.

Statistical Analysis

For control subjects without stroke, we evaluated the
algorithm performance in terms of false alarms per
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patient per day, defined as the number of alarms di-
vided by the monitoring time in days. We report the
median false alarms per day by taking the median
of the false alarms per day over all control subjects.
For each case subject with stroke, we evaluated the
algorithm performance in terms of detection rate as
time from initiation of monitoring increased. Start
times of monitoring were in 15-minute increments
throughout the entire duration of monitoring for each
patient. Because data for subjects who transition
from neurologically intact to having a stroke during
monitoring were not available in our study, we used a
conservative evaluation for detection rate versus time
to detection commonly used in the quickest detec-
tion literature.?® As the time from initiation of moni-
toring increases, the aggregate test includes only
windows of shorter duration, and the detection rate
is calculated based on the percentage of aggregate
tests that identified stroke.

As noted above, a false alarm will lead to a tran-
sient pause in alarm generation. To account for how
this feature impacts the time to detection in stroke
cases, we calculated the duration that the alarm was
paused per day based on the algorithm performance
in the control subjects. The median and interquartile
range (IQR) of the delay because of pauses was then
added to time to detection for the stroke cases. For
example, if the median false alarm rate in controls was
1 per day, the alarm would be paused for 1hour out
of 24 hours. Assuming that a stroke can occur at any
time during the 24-hour period, there will be 23hours
with no additional delay and 1hour when the alarm is
paused (with a median delay of 30 minutes); therefore,
(23/24)x0 minutes+(1/24)*30 minutes=1.25minutes ad-
ditional expected delay per day.?” We also evaluated
the correlation between time to detection and false
alarm rates across a range of operating points for the
algorithm, using a Spearman p test. Finally, we eval-
uated whether patient-specific factors would lead to

Stroke Detection Using Accelerometers

variations in performance of the algorithm by compar-
ing the median time to detection and false alarm rates
by age, sex, race, handedness, nondominant hemi-
sphere involvement, hospital location (intensive care
unit versus ward), and whether monitoring occurred
during nighttime or daytime using Wilcoxon rank sum
testing.

Sample Size

The enrollment of 200 subjects in the derivation co-
hort was based on prior work on parameter invariant
algorithms, which suggested we would need at least
500 hours of bilateral arm movement data to derive the
algorithm. The validation cohort sample size was not
based on a sample size calculation and instead was
determined to be the same number of patients as the
derivation cohort but using accelerometers that lasted
=8 times longer, increasing precision of the estimates
of performance.

RESULTS

From May 8, 2018 through November 23, 2021, we en-
rolled 405 patients including 200 in the derivation cohort
and 205 in the validation cohort. Accelerometry data
were not available for 5 control subjects in the valida-
tion cohort because of technical difficulties, and they
were excluded from the analysis. The algorithm deriva-
tion cohort included 77 patients with acute stroke and
lateralizing arm weakness and 123 neurologically intact
control subjects. In total, 540hours of bilateral arm ac-
celerometry data were acquired during this phase, with
a mean 2.7 hours per subject. The algorithm validation
cohort included 33 patients with acute stroke and 167
controls, totaling 4169 hours of bilateral arm accelerom-
etry data with a mean of 20.8 hours per subject. Table 1
presents the clinical and demographic characteristics
of the controls for the derivation and validation cohorts,

Table 1. Clinical and Demographic Characteristics of Neurologically Normal Controls in the Algorithm Derivation and

Validation Cohorts

Derivation cohort,

Characteristic Total, n=290 n=123 Validation cohort, n=167 P value
Age, y, mean+SD 6415 62418 65+12 0.06
Female sex 109 (38%) 55 (45%) 54 (32%) 0.03
Non-White race® 42 (14%) 23 (19%) 19 (11%) 0.08
Left handed 39 (13%) 12 (10%) 27 (16%) 013
Admission reason <0.001

TIA 1(0.3%) 1 (1%) 0

Epilepsy monitoring 24 (8%) 24 (19%) 0

Surgery 265 (91%) 98 (80%) 167 (100%)
Monitoring duration, min, median (IQR) 972 (174-1340) 171 (135-190) 1320 (1216-1404) <0.001

Continuous variables are presented as median (IQR) unless otherwise specified. IQR indicates interquartile range; and TIA, transient ischemic attack.

*Black, Native American, Asian, or other.

J Am Heart Assoc. 2023;12:¢028819. DOI: 10.1161/JAHA.122.028819
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and Table 2 provides these data for the stroke cases.
Among the nonstroke controls, subjects in the valida-
tion cohort were less likely to be women and were more
likely to have recently had surgery. For stroke cases,
the validation cohort was similar to the derivation co-
hort, with the exception of a greater difference in arm
strength between the affected and unaffected side, as
measured by the sum of the Medical Research Council
upper extremity motor scores, although the differential
in the NIHSS upper extremity motor score was similar.
Within the validation cohort, stroke cases had simi-
lar age (mean 68 versus 65 years, P=0.25), percentage
of women (45% versus 32%, P=0.15), and percentage
who were right handed (94% versus 84%, P=0.13)
compared with the controls, but patients with stroke
were more often non-White, self-described as Black,
Native American, Asian, or other (45% versus 11%,
P<0.001) and were more often in an intensive care unit
or step-down unit (85% versus 34%, P<0.001). Overall,
stroke cases in the validation cohort were predomi-
nantly ischemic (73%) and moderately severe (NIHSS
median 14; IQR, 9-18). For both the algorithm deriva-
tion and validation cohorts, the wrist straps were well
tolerated. None of the patients in the derivation co-
hort and 2 patients in the validation cohort removed
the devices and prematurely terminated the study
(after 1 hour and 22 hours of monitoring, respectively).
Nurses reported no issues with the straps interfer-
ing with clinical care. There were no changes in pa-
tient upper extremity strength or presence of neglect

Stroke Detection Using Accelerometers

comparing the examinations at baseline and study
completion.

Algorithm Performance

Figure 1 displays the median and IQR for the percent-
age of stroke cases that alarm as monitoring time in-
creases using 2 different alarm thresholds. For each,
the percentage of patients with stroke who were cor-
rectly identified as having a stroke rose as the duration
of monitoring increased. With a median false alarm rate
among nonstroke controls of 1.1 alarms per patient per
day (IQR, 0-2.2 alarms per patient per day), the me-
dian time to alarm in stroke cases was 29 minutes (IQR,
11-58 minutes). At 60minutes, the algorithm is ex-
pected to detect 76% of strokes. Among the nonstroke
controls, the median time to first alarm was 12.7 hours.
With a median false alarm rate of 3.6 alarms per patient
per day (IQR, 2.1-5.0 false alarms), the median time to
detection in stroke cases was 15 minutes (IQR, 8-74
minutes). At this setting, the algorithm is expected to
detect 91% of strokes at 60 minutes. Figure 2 provides
the performance of the algorithm at 5 different oper-
ating points, demonstrating that as false alarm rates
increase, the times to detection decrease (Figure 2;
Spearman p, —1.0; P<0.001). Importantly, the algorithm
was unaffected by patient-specific factors that could
theoretically lead to variable performance. Specifically,
using the lower sensitivity threshold, there was no sig-
nificant difference in false alarm rates (median 1.1 ver-
sus 1.0 alarms per day, P=0.22) or time to detection

Table 2. Clinical and Demographic Characteristics of Stroke Cases in the Derivation and Validation Cohorts

Derivation cohort,

Characteristic Total, n=110 n=77 Validation cohort, n=33 P value
Age, y, mean+SD 68+16 68+15 68417 0.95
Female sex 53 (48%) 38 (49%) 15 (45%) 0.71
Non-White race* 51 (46%) 36 (47%) 15 (45%) 0.90
Left handed 11 (10%) 9 (12%) 2 (6%) 0.33
Stroke type 0.10

Intracerebral hemorrhage 20 (18%) 11 (14%) 9 (28%)

Ischemic stroke 90 (82%) 66 (86%) 24 (73%)
Nondominant hemispheric stroke 40 (36%) 27 (35%) 13 (39%) 0.67
Total NIHSS score at time of monitoring 13 (8-18) 12 (7-16) 14 (9-18) 0.16
Difference in NIHSS upper extremity motor 4 (3-4) 4 (2-4) 4 (3-4) 0.22
score between affected and unaffected side
Difference in sum of upper extremity 24 (18-30) 24 (16-30) 30 (22-30) 0.01
strength scores between affected and
unaffected side**
Weakness from stroke on left side 66 (60%) 47 (61%) 19 (58%) 0.73
Neglect present 54 (49%) 36 (47%) 18 (55%) 0.45
Monitoring duration, min 190 (168-1102) 178 (150-192) 1299 (1235-1408) <0.001

Continuous variables are presented as median (interquartile range) unless otherwise specified. NIHSS indicates National Institutes of Health Stroke Scale.

*Black, Native American, Asian, or other.

**Upper extremity muscle groups assessed with the Medical Research Council muscle strength score (ranging from 0-5) included deltoid, biceps, triceps,

wrist extension, wrist flexion, and intrinsic finger strength with full strength in all 6 muscles tested scoring 30.

J Am Heart Assoc. 2023;12:¢028819. DOI: 10.1161/JAHA.122.028819
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Figure 1. Stroke detection rate over time and false alarm rates per day.

A, Median (solid line) and interquartile range (dashed lines) of the percentage of patients with stroke
alarming as the duration of monitoring increases. B, The distribution of false alarms per patient per day in
non-stroke controls. The black line represents the cumulative percentage of patients. The time to detection is
faster with a lower alarm threshold as shown in (C) with the median (solid line) and interquartile range
(dashed lines) providing the percentage of patients with stroke alarming as the duration of monitoring
increases. The lower alarm threshold demonstrates more false alarms in (D) with the black line displaying

the cumulative percentage of patients.

(median 29 versus 28 minutes, P=0.83) comparing
right-handed versus left-handed patients. There were
similarly no differences in time to detection (31 versus
27 minutes, P=0.83) or false alarm rate (median 1.2
versus 1.1 alarms per day, P=0.08) comparing patients

J Am Heart Assoc. 2023;12:¢028819. DOI: 10.1161/JAHA.122.028819

below or above the median age (68years), in time to
detection (25 versus 31 minutes, P=0.51) or false alarm
rate (1.1 versus 1.1 alarms per day, P=0.91) comparing
men to women, in time to detection (29 versus 29 min-
utes, P-1.0) or false alarm rate (1.1 versus 1.1 alarms per
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Figure 2. The correlation between false alarm rates in
nonstroke controls and speed of detection of stroke in
cases across 5 different operating points.

day, P=0.72) comparing non-White to White subjects,
in time to detection (32 versus 17 minutes, P=0.51) or
false alarm rate (1.1 versus 1.1 alarms per day, P=0.75)
comparing patients in the intensive care unit to those
on a ward, in false alarm rate (1.1 versus 1.2 alarms
per day, P=0.73) comparing control patients below the
median number of days since their procedure (2days)
compared with those above the median, and in time to
detection (median 30 versus 29 minutes, P=0.83) if the
stroke involved the dominant or nondominant hemi-
sphere. Most importantly, there were no differences
in time to detection (median 28 versus 28 minutes,
P=0.83) or false alarms detected (median O versus 0
alarms, P=0.80) comparing daytime versus nighttime.
These results were similar when evaluated using the
threshold with increased sensitivity (data not shown).

DISCUSSION

This study demonstrates that arm accelerometry
data can be used to discriminate patients with weak-
ness caused by acute stroke from neurologically intact
hospitalized patients. The algorithm’s diagnostic per-
formance achieves a high sensitivity and specificity,
such that it could provide a clinically useful monitor to
rapidly detect the onset of stroke while maintaining a
low false alarm rate. The alarm threshold is modifiable,
and a lower threshold demonstrated greater sensitivity
and faster time to detection, with a concomitant higher
false alarm rate. Importantly, the estimate of the time
to detection is conservative and may be faster in clini-
cal use. In the analyses of time to detection, we only
included data from patients with stroke. In practice,
patients will convert from nonstroke to stroke in the
midst of an evaluation window, which may still trigger an
alarm, yielding faster times from onset to detection than
we report. In addition, stroke cases were cared for in

J Am Heart Assoc. 2023;12:¢028819. DOI: 10.1161/JAHA.122.028819
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real-world routine clinical practice while they were being
monitored, and there were times when the care team or
family members would move the patients’ weak arms.
These time periods were not censored for the validation
analysis. In clinical use, we expect that the algorithm will
detect over half of strokes within 30 minutes of onset,
while maintaining <2 false alarms per day for the vast
majority of patients. Of greatest importance, we saw no
significant variability in algorithm performance based on
handedness, nondominant hemispheric involvement,
or whether we were monitoring during daytime versus
nighttime. This latter finding suggests that we can de-
tect stroke equally during sleep or wakefulness, which is
a critical feature of a useful stroke monitor.

In-hospital stroke is a major public health issue that
accounts for a meaningful portion of all strokes and
is associated with delayed assessment and treatment,
poor outcome, and dramatically increased cost and
length of stay.””'? Importantly, periprocedural stroke
accounts for the majority of cases in most series, and
stroke rates for common procedures, such as aortic
valve surgery, are much higher than commonly reported
when prospective assessments are performed.’-2:29-31
Given that the algorithm detects asymmetry and is
not based on change in movement patterns from a
baseline period, it is particularly well suited to detect
stroke in the perioperative setting, where patients may
awaken from anesthesia with weakness. Prior stud-
ies of in-hospital stroke have reported times from last
known normal to symptom detection ranging from =2
to 10hours.?>-3! Although proven stroke treatments
may have robust benefit, the likelihood of being able
to receive these treatments and the response to treat-
ment steadily decline over time.-3 Thus, rapid detec-
tion of the onset of stroke remains critically important.
A device incorporating this algorithm to continuously
monitor for stroke onset may be able to reduce the
time to assessment, leading to more and faster inter-
ventions and better outcomes for patients.

There are several studies that have attempted
to identify clinical predictors of in-hospital stroke."
However, the algorithm was intentionally designed to
not require any patient-specific clinical information to
detect asymmetric movement seen in acute stroke.
This is analogous to cardiac telemetry monitors that
have built-in automated detection of life-threatening ar-
rhythmias but do not rely on clinical parameters such
as history of coronary artery disease or congestive
heart failure. Upper limb weakness is one of the most
common symptoms of acute stroke, seen in =75% of
patients.” For this reason, prehospital stroke screen-
ing tools and scales that aim to identify patients with
the greatest likelihood of having a large vessel occlu-
sion have all included arm strength.®'"32 |n addition,
attentional neglect is present in 20% to 70% of strokes,
and studies of patients with stroke using wrist-worn
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accelerometers have demonstrated that neglect is as-
sociated with asymmetric movement.'®'® Importantly,
weakness and neglect are both strongly associated
with long-term disability from stroke.333* Thus, al-
though upper limb accelerometry monitoring will not
capture every stroke, it will identify the vast majority of
strokes, including those most likely to result in disabil-
ity and be most amenable to thrombectomy, which is
proven to dramatically improve outcomes.

Patient physiologic monitors are ubiquitous in hos-
pitals in general and in intensive care units in particular,
where multimodal monitoring is the standard of care.
Unfortunately, these pervasive monitors may result in
alarm fatigue, leading to delayed or absent responses.3®
Fatigue is more likely when nonactionable alarms are
much more prevalent than actionable alarms that re-
quire both clinical awareness and intervention. Stroke is
a critical patient event that is both actionable and time
sensitive.® A study of 461 adults treated in intensive care
units annotated a total of 381560 unique audible alarms
over a 31-day study period.3® Accelerated ventricular ar-
rhythmia alarms, a potentially critical patient abnormal-
ity, occurred at an average of 4.5 alarms per patient per
day of monitoring, of which only 12 (0.3%) were clinically
relevant actionable events. This stroke detection algo-
rithm provides a far lower false alarm rate, while greatly
reducing time from symptom onset to stroke detection
compared with current clinical practice.

To our knowledge, this study is the first to demon-
strate that arm accelerometry data can rapidly iden-
tify patients with weakness caused by acute stroke
while maintaining clinically acceptable false alarms
in neurologically normal hospitalized patients at risk
of stroke. Notably, we performed the validation anal-
ysis on a separate prospectively acquired cohort of
patients, using different accelerometry devices than
were used to collect data to derive the algorithm. The
performance of the algorithm under these conditions
reflects its robustness and generalizability. The valida-
tion cohort included control patients who underwent
cardiothoracic or vascular surgical procedures, reflect-
ing a population that is high risk for stroke and would
benefit from continuous stroke monitoring. As a result
of these data, the company using this algorithm to de-
velop a commercially available stroke monitor device
was granted Breakthrough Technology status by the
US Food and Drug Administration.

Our study did have several limitations. The case-
control design leads to risk of spectrum bias. Most stroke
cases enrolled were moderate or severe, and it is possi-
ble that the algorithm is less sensitive for milder strokes.
Importantly, the algorithm appears to perform well in pa-
tients with significant weakness, which are the strokes
most likely to have a large vessel occlusion amenable to
intervention, and most likely to lead to disability or death if
untreated. The fact that stroke cases were not specifically
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postoperative may also lead to an inaccurate assess-
ment of time to stroke detection, although they were all
bed bound and many were in an intensive care unit set-
ting. Furthermore, the false alarm rate in the control arm
should provide an accurate estimate of what we would
expect to see in a clinical trial, because it is the same
population of high-risk patients who will be enrolled. The
overall size of the validation study may be underpowered
to detect clinically important differences in performance
for specific subgroups. In particular, only 2 left-handed
patients with stroke were enrolled, and it is possible that
performance may be different in these patients. However,
there is no biological expectation of differential perfor-
mance, and the results overall suggest there are not
likely to be large differences. In addition, subjects were
enrolled at a single tertiary referral center, which may limit
generalizability, although patient arm movements are not
likely to vary meaningfully at different hospitals. The algo-
rithm requires 15 minutes of data initially and uses up to
90 minutes of preceding movement data when assess-
ing for stroke. Given that we test every 15 minutes, there
is an unavoidable correlation between successive tests.
Importantly, our reported confidence intervals reflect the
variance in the population, not the individual, and such an
evaluation scenario is consistent with how the algorithm
would ultimately be used in practice. Finally, our results
do not directly assess how well the algorithm performs
when an individual patient converts from being neuro-
logically intact to having a stroke. However, as noted, the
algorithm does not rely on a comparison from baseline
movements, and this may lead to even faster times to
detection that we report here.

CONCLUSIONS

In-hospital stroke is a major public health issue, and
a monitor that can rapidly detect the onset of stroke
and facilitate expedited assessment and treatment
could lead to improved outcomes for patients. We
derived a stroke detection algorithm using upper ex-
tremity accelerometry data from hospitalized patients
that demonstrates promising diagnostic performance
in a prospective validation case—control study. The al-
gorithm’s performance on speed of detection when a
patient develops a stroke and false alarm rates in a
real-world clinical setting is not known, and a trial to
prospectively monitor patients at risk of stroke is re-
quired to demonstrate clinical use and tolerability.
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Supplemental Methods

Algorithm derivation methodology
Data pre-processing

To design a low-cost lightweight comfortable wrist-worn device for stroke detection, we
sought to utilize only accelerometry data in our stroke detection analysis. While
incorporating additional sensors, such as gyroscopes and magnetometers, would
theoretically enable device orientation and arm position estimation, they would also
increase device cost, power consumption, battery size, and weight. Consequently, this
work aimed to utilize off-the shelf low-power accelerometers to detect stroke and the pre-

processing considered herein assumed only accelerometry data were available.

Low-cost low-power accelerometers common in wrist-worn devices produced, at time k,
3-dimensional data, a,(k), a,(k), and a,(k), but were also susceptible to bias and
rotation/sliding on the wrist. We denoted the constant bias as ¢, ¢,, and c,, and removed

their effect by utilizing the first-derivative of acceleration (known as “jerk”) since J.(k) =
;—k(ax(k) +c,) = dd—kax(k), and similarly for the y and z dimensions. Once the bias was

removed, we removed the effect of rotation/sliding on the wrist by only considering the

magnitude of jerk, written for the left-arm motion data as x,(k) =

\/],%,L (k) +]§,,L (k) +JZ.(k) € X, where X denotes the feature space and a similar equation

exists for the right arm, xz(k). This pre-processing step served to eliminate inherent

system biases that are likely to occur during real-world deployments and are consistent
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with other data pre-processing techniques for accelerometry data without access to

gyroscopes and magnetometers.
Test statistic engineering

To engineer a test statistic for discriminating the between stroke and neurologically intact
subjects, we began by writing Dy = {f: X — P}, to be a space of probability distributions
mapping the feature space to a probability. In an (idealized) controlled evaluation
environment, where a subject performs a prescribed sequence of actions/motions, the
distribution for the left arm, f; € Dy, and right arm, fr € Dy, can discriminate between
neurologically intact subjects (i.e., f; = fr) and stroke subjects (i.e., f; # fr). While this
idealized scenario can yield highly sensitive and specific stroke detection, in practice it
would be far too invasive -- requiring frequent neurological assessments to timely detect

stroke.

Rather than require patients to perform a set of prescribed tasks at set intervals, we
sought to engineer a test statistic that is suitable for passive monitoring scenarios. Such
a test statistic must be robust to changes in the underlying patient motion distribution,
referred to in the statistical literature as a covariate shift.3” Motion distribution covariate
shift is common in passive monitoring scenarios and captures the effect of any patient-
specific tendency in the data (e.g., dominant hand, comorbidities, etc.). However, the
impact of the motion covariate shift will be limited by the patient’s neurological state, which
is presumed to be unknown at the time of testing. Consequently, we modeled the family
of motion covariate shifts as a group of distribution nuisance transformations applied to

the patient’s (unknown) neurological state, namely for f € {f}, fr},
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Gy ={g:Dx = Dx|Vx € X, f(x) # 0 & g(f(x)) # 0}

where g € Gy denotes a potential motion covariate shift. Consequently, we seek a test

statistic that can assess the neurological state robust to motion distribution covariate shift.

A promising approach to realize a robust test statistic utilizes parameter invariant (PAIN)
statistics — which have been previously applied in multiple domains.2'-24 Given a group of
nuisance transformations, a PAIN statistic, t, seeks to provide invariance to the nuisance
transformations (i.e., is invariant: Vf € Dx,Vg € G, t(g(f)) = t(f)) while only eliminating
information affected by the nuisance transformations, (i.e., is maximal Vf, f € Dx, 3g €

G, t(f) =t(f) —» g(f) = f'). Thus, we considered a candidate PAIN statistic,
t:d € Dy » d € Dy:3c,Vx € X, c1(d(x) # 0)

and proved it to be invariant since, Vf € Dx,Vg € G

Vg € G, t(g(f)) =d € Dx:3c,Vx € X,c1(g(f(x)) #0) =d € Dy: 3c,Vx

€X,c1(f(x)) # 0) = t(f)

and maximal since, Vf, f € Dx,3g € G,

t(f) =t(f) > d € Dy: 3c,Vx € X,c1(f(x) # 0) = d € Dx:3c,Vx € X,c'1(f (x) # 0)
~g(H)=f

Moreover, we note that t(f;) and t(fr) have an attractive property, namely if f;, = fr (as
is the case in neurologically intact subjects in the idealized scenario), then t(f)) = t(fp.,
stated formally as f; = fr = t(f;) = t(fz). This means that in the idealized monitoring
scenario, if subjects are neurologically intact, then in the passive monitoring scenario they

should also appear neurologically intact.
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Thus, we aimed to generate a test statistic, that discriminated between neurologically
intact subjects (i.e., t(f,) = t(fz)) and stroke subjects (i.e., t(f;) # t(fz)). In this
scenario, we utilized the Kolmogorov-Smirnov (KS) statistic,383% denoted by letting t; =
t(f;) and tg = t(fy), and writing the test statistic

z
s = supzex | [ t1(x) — tr(x) dx|

—00

which, represents a non-parametric statistic of distribution equality that equals the
maximum absolute deviation of the cumulative distribution functions corresponding to the
probability mass functions t;and tz. The KS statistic is a widely used test of distribution
equality when the underlying test distribution family is unknown or non-parameterized

(i.e., non-parametric).
Test generation

We then developed a threshold test for the test statistic, s, derived in the previous section.
The test statistic requires the cumulative distribution functions corresponding to the
probability mass functions t;, and tz. Unfortunately, these are not generally known and
must be estimated from a recent history (1 hour) of the pre-processed sampled data,
X(k) = {(x,(k), xg(k)), (x (k — 1),xg(k — 2)),...}. Utilizing sampled data estimates in
place of the actual distribution presents two potential concerns. First, when there is
significant missing data the amount of information contained in the sampled data
decreases. Second, anytime the patient has no motion (i.e., laying perfectly still) while
the data is not technically missing, it provides no discriminatory information for testing

stroke versus neurologically intact. Consequently, we write s(k) to be the test statistic
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estimated using X(k), and write r;(k) = |X (k)| to be the number of data points in X (k)
and r,(k) = |{(x1, xr)|(x1, xr) € X(k),x, # 0V xg # 0}|/|X(k)| to be the percentage of

X (k) with patient movement.

To derive a threshold test we leveraged r; and r, to adapt a threshold such that the
resulting test has a constant false alarm rate, a € [0,1]. To achieve this, we grouped the
data using kmeans with k=100 on [(r;(1),7,(1)), (r1(2),7,(2)),...] and generated a
corresponding threshold for each group to achieve a constant false alarm rate . To
achieve maximal distributional accuracy when tuning the false alarm rate the threshold
test was calibrated prior to threshold selection.*® At runtime, a new s(k) was generated
with corresponding r;(k) and r,(k). The decision threshold utilized for testing s(k)
corresponds to the group containing (r;(k),r,(k)). In the following, we refer to the
threshold test described above as ¢€{0,1}, where ¢=0 predicts the absence of stroke

and ¢=1 predicts the presence of stroke.

To improve sensitivity to the onset of stroke, we ran multiple threshold tests, ¢y, ..., ¢y,
simultaneously with different monitoring durations, d, ..., d;, respectively. For example,
foreach [ € {1, ...,L} at time t, ¢, utilized data in the time range [t — d4,t]. Leveraging
the multiple threshold tests, we defined an aggregate threshold test, ¢ = max{¢y, ..., ¢.},
that predicts the presence of stroke if and only if one of the L monitoring durations predicts
the presence of a stroke. We note that the false alarm rate of the aggregate test is always
greater than a. Consequently, we select « in the threshold test design to be small enough

such that the aggregate test achieves our desired false alarm rate.
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Section/Topic Item Checklist Iltem Page
Title and abstract
. Identify the study as developing and/or validating a multivariable prediction model,
Title 1 . ;
the target population, and the outcome to be predicted.
Provide a summary of objectives, study design, setting, participants, sample size,
Abstract 2 . oot . -
predictors, outcome, statistical analysis, results, and conclusions.
Introduction
Explain the medical context (including whether diagnostic or prognostic) and
3a rationale for developing or validating the multivariable prediction model, including
Background o
and obiectives references to existing models.
J Specify the objectives, including whether the study describes the development or
3b N
validation of the model or both.
Methods
Describe the study design or source of data (e.g., randomized trial, cohort, or
4a . o ) .
registry data), separately for the development and validation data sets, if applicable.
Source of data - - - - - -
ab Specify the key study dates, including start of accrual; end of accrual; and, if
applicable, end of follow-up.
5 Specify key elements of the study setting (e.g., primary care, secondary care,
Particioant a general population) including number and location of centres.
arlicipants 50 | Describe eligibility criteria for participants.
5c Give details of treatments received, if relevant.
6a Clearly define the outcome that is predicted by the prediction model, including how
Outcome and when assessed.
6b Report any actions to blind assessment of the outcome to be predicted.
Clearly define all predictors used in developing or validating the multivariable
7a L . .
Predict prediction model, including how and when they were measured.
redictors 7b Report any actions to blind assessment of predictors for the outcome and other
predictors.
Sample size 8 Explain how the study size was arrived at.
Missing dat 9 Describe how missing data were handled (e.g., complete-case analysis, single
Issing data imputation, multiple imputation) with details of any imputation method.
10a Describe how predictors were handled in the analyses.
Statistical 10b Specify type of model, all model-building procedures (including any predictor
analysis selection), and method for internal validation.
methods 104 Specify all measures used to assess model performance and, if relevant, to
compare multiple models.
Risk groups 11 Provide details on how risk groups were created, if done.
Results
Describe the flow of participants through the study, including the number of
13a participants with and without the outcome and, if applicable, a summary of the
Particioant follow-up time. A diagram may be helpful.
articipants Describe the characteristics of the participants (basic demographics, clinical
13b features, available predictors), including the number of participants with missing
data for predictors and outcome.
14a Specify the number of participants and outcome events in each analysis.
Model - — - -
If done, report the unadjusted association between each candidate predictor and
development 14b
outcome.
Present the full prediction model to allow predictions for individuals (i.e., all
Model 15a regression coefficients, and model intercept or baseline survival at a given time
specification point).
15b Explain how to the use the prediction model.
Model 16 Report performance measures (with Cls) for the prediction model.
performance
Discussion
Limitati 18 Discuss any limitations of the study (such as nonrepresentative sample, few events
imitations per predictor, missing data).
) 19b Give an overall interpretation of the results, considering objectives, limitations, and
Interpretation results from similar studies, and other relevant evidence.
Implications 20 Discuss the potential clinical use of the model and implications for future research.
Other information
Supplementary 21 Provide information about the availability of supplementary resources, such as study
information protocol, Web calculator, and data sets.
Funding 22 Give the source of funding and the role of the funders for the present study.

We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.




