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a b s t r a c t

Using a Cauchy integral formulation of the boundary integral equations, we simulate the erosion of a
porous medium comprised of up to 100 solid bodies embedded in a two-dimensional Stokes flow.
The grains of the medium are resolved individually and erode under the action of surface shear
stress. Through nonlinear feedback with the surrounding flow fields, microscopic changes in grain
morphology give way to larger-scale features in the medium such as channelization. The Cauchy-
integral formulation and associated quadrature formulas enable us to resolve dense configurations of
nearly contacting bodies. We observe substantial anisotropy to develop over the course of erosion;
that is, the configurations that result from erosion generally permit flow in the longitudinal direction
more easily than in the transverse direction by up to a factor of six. These results suggest that the
erosion of solid material from groundwater flows may contribute to previously observed anisotropy
of natural porous media.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Flow-induced erosion acts across a range of scales in the natu-
al world, from massive geological structures sculpted by wind or
ater [1–5], to mesoscopic patterns formed by surface or internal

lows [6–8], and down to granular and porous networks slowly
isintegrating in groundwater flows [9–15]. The associated non-
inear feedback between changing shapes and the surrounding
lows can imprint across all of these scales, affecting large-scale
eatures as well as small-scale ones, such as the microstructure of
orous materials. Porous media encountered in nature typically
xhibit material anisotropy in that they permit seepage flow in
ertain directions more easily than in others. Most commonly,
his anisotropy is attributed to the sedimentation process, in
hich, due to the fluid–structure interaction, non-spherical par-
icles tend to settle with their long axis parallel to the plane
f deposition [16]. This idea is supported by the observation
hat natural materials are typically more permeable in the hor-
zontal direction than the vertical by a factor of 5–20 [16,17].
ontrolled experiments, however, have not been performed to
est this hypothesis, and other mechanisms may be at work.
ere, we use numerical simulations to examine an alternative,
nd possibly complementary, mechanism: namely, that the flow-
nduced erosion of the medium’s solid constituents contributes to
ts overall anisotropy.

∗ Corresponding author.
E-mail address: nickmoore83@gmail.com (N.J. Moore).
ttps://doi.org/10.1016/j.physd.2022.133634
167-2789/© 2022 Elsevier B.V. All rights reserved.
Our method merges spectrally-accurate boundary-integral
equation (BIE) methods [18–20] with stable interface evolution
methods [21,22] to simulate the erosion of dense suspensions of
solid bodies embedded in two-dimensional Stokes flows. Orig-
inally inspired by related work in the high-Reynolds-number
regime [22–25], our method is documented, validated, bench-
marked in [26], and can simulate the erosion of O(100) solid
bodies. The more recent Cauchy reformulation of the BIE and the
associated quadrature formulas allow us to resolve points of near
contact between bodies, thus enabling high-fidelity simulations
of dense suspensions of erodable bodies [9]. Though the govern-
ing Stokes equations are linear, the nonlinear feedback between
evolving microstructure and flow gives rise to highly complex and
anisotropic configurations.

Fig. 1 shows an example simulation with 80 circular bodies
of randomized sizes and positions immersed in a Stokes flow
moving from left to right. Color depicts the local speed of the
flow intervening between bodies. Over time, individual bodies
erode in response to the shear stresses induced on them, and
heterogeneous material removal creates visible features both at
the level of individual bodies and the larger-scale configuration.
For example, horizontally-oriented channels are clearly visible in
the third and fourth frames, and these contribute to the overall
anisotropy of the medium.

The outline of the paper is as follows. In Section 2 we discuss
the governing equations for the fluid flow and interface evolution.
In Section 3 we discuss the numerical methods, including the
Cauchy formulation of the BIE. In Section 4 we explain how to ex-
tract porous-medium properties, such permeability, anisotropy,
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Fig. 1. The erosion of a porous medium. In this simulation, an initial configuration of 80 circular bodies with random sizes and positions are embedded in a Stokes
flow that moves from left to right. The figure shows four snapshots, evenly spaced in time, as the bodies erode in response to the local shear stresses induced
by the flow. The local flow speed, shown by color, highlights the appearance of horizontally-aligned channels created by the shape-flow feedback. These channels
contribute to the high anisotropy of the medium.
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and tortuosity. In Section 5 we provide results and we conclude
in Section 6.

2. Governing equations

Consider an incompressible, Stokes flow inside a domain Ω

containing M erodable bodies. We take the outer boundary Γ

to be a slightly smoothed version of the boundary of [−3, 3] ×
[−1, 1]. The fluid flow is primarily from left to right, so that the
inlet and outlet are located at approximately x = ±3 (the actual
locations are slightly curved versions of these vertical lines due
to domain smoothing). The erodable bodies, with boundaries γℓ,
ℓ = 1, . . . ,M , all sit inside of the central region [−1, 1]×[−1, 1].
The boundary of the fluid domain is thus ∂Ω = Γ ∪γ1∪· · ·∪γM .
The empty space to the left and right of [−1, 1] × [−1, 1] serve
as buffer regions to allow the flow profile imposed at the inlet
and outlet to gradually adjust to the presence of the bodies. The
equations governing the velocity u = (u, v) and pressure p of the
fluid consist of the incompressible, Stokes equations coupled to
boundary conditions:

∆u = ∇p, x ∈ Ω, conservation of momentum,

∇ · u = 0, x ∈ Ω, conservation of mass,
u = 0, x ∈ γ , no slip on the erodable bodies,
u = U, x ∈ Γ , prescribed outer wall velocity.

(1)

The above equations are in dimensionless form, where space has
been scaled on a domain length-scale, velocity has been scaled on
a characteristic inlet value, and pressure has been scaled on the
viscous force-per-unit-area that results from the choices of length
and velocity scales. Meanwhile, U represents the (dimensionless)
fluid velocity imposed along the outer boundary Γ , in particular
at the inlet and outlet, as well as along the top and bottom
walls. In this work, we impose a uniform flow profile along Γ ,
i.e. U = (U, 0), although other choices are possible, for example
a Poiseuille profile as employed in previous work [9,26]. The
advantages of the uniform profile are: (1) it will simplify the
calculation of porous-medium properties, such as permeability
and anisotropy, that will be described later; and (2), it may more
realistically model the flow impinging upon a porous medium.
We will allow the imposed flow speed to change with time U =

U(t) to enforce, for example, a desired pressure drop across the
flow cell.

The embedded bodies may erode in response to the shear
stresses induced by the intervening fluid flow. Erosion typically
occurs over much longer timescales than the fluid flow, per-
mitting a quasi-steady approximation. In this approximation, the
configuration of bodies is held fixed in order to compute the
steady Stokes flow determined by (1), and then this flow field
determines the stresses acting to erode each body. We employ
2

an erosion law in which the local rate of material loss is linearly
proportional to the magnitude of the shear stress τ acting on the
surface [9,22,23,25–28]. The material loss gives rise to an inward
velocity of the solid surface, Vn, pointing in the direction normal
to the surface. The erosion law is thus expressed as

Vn = CE |τ | , x ∈ γ , erosion model, (2)

τ = −
(
(∇u+∇uT )n

)
· s, x ∈ γ , shear stress. (3)

where n is the unit normal vector pointing into each body, s is the
unit tangent vector pointing in the counterclockwise direction,
and CE is a material-dependent erosion constant. For numerical
stability, we will modify this law in Section 3.2 to include a
moothing term that depends on the local curvature of each body.

. Numerical methods

To investigate the large-scale features of microscopic erosion,
e require numerical methods that are accurate in both space
nd time. Section 3.1 reformulates the governing equations using

a boundary integral equation that is discretized with a spec-
trally accurate quadrature rule, and Section 3.2 describes our
second-order numerical method for evolving the bodies. We note
that the numerical methods described in both sections require
the geometry to be two-dimensional. Extending our work to
three dimensions would require different quadrature formulas
and time-stepping methods.

3.1. Boundary integral equation formulation

To numerically solve the Stokes equations (1), we reformu-
late the system as a boundary integral equation (BIE). A BIE
formulation has the advantage that all the unknowns are on
the one-dimensional boundaries of the domain. That is, only the
boundary of the complex geometry must be discretized which we
do with a spectrally accurate Fourier basis. Applying the same
approach as our previous works [9,26], we represent the velocity
as the sum of a double-layer potential and a combination of
Stokeslets and rotlets [29]

u(x) = D[η](x)+
M∑
ℓ=1

(S[λℓ](x)+ R[ξℓ](x)) , x ∈ Ω, (4)

where

D[η](x) =
1
π

∫
∂Ω

r · n
ρ2

r⊗ r
ρ2 η(y) dsy, (5)

where r = x − y and ρ = ∥r∥. Note that ∂Ω includes both the
eroding bodies and the outer boundary. The Stokeslets and the
rotlets are

S[λℓ](x) =
1

(
− log ρℓ +

rℓ ⊗ rℓ
2

)
λℓ, R[ξℓ](x) =

r⊥ℓ
2 ξℓ, (6)
4π ρℓ ρℓ
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espectively, where rℓ = x − cℓ, r⊥ℓ = (r2,−r1), ρℓ = ∥rℓ∥, and
ℓ is a point inside body ℓ. If the density function, Stokeslets, and
otlets satisfy the second-kind boundary integral equation

(x) = −
1
2
η(x)+D[η](x)

+

M∑
ℓ=1

(S[λℓ](x)+ R[ξℓ](x)) , x ∈ Γ , (7a)

0 = −
1
2
η(x)+D[η](x)

+

M∑
ℓ=1

(S[λℓ](x)+ R[ξℓ](x)) , x ∈ γℓ, ℓ = 1, . . . ,M, (7b)

λℓ =

∫
γℓ

η(y) dsy, ℓ = 1, . . . ,M, (7c)

ξℓ =

∫
γℓ

(y− cℓ)⊥ · η(y) dsy, ℓ = 1, . . . ,M, (7d)

hen the representation (4) satisfies the Stokes equations with the
equired boundary conditions (1). We solve (7) by discretizing γℓ
nd Γ at equispaced collocation points, and then replacing the
ntegrals with quadrature rules. This results in a linear system
ith a mesh-independent condition number, and it is solved

teratively with GMRES. Instead of evaluating the Stokes double-
ayer potential (5) as a contour integral in R2, we convert the
ntegral to a sum of contour integrals around Jordan curves in
. This conversion allows us to use quadrature formulas whose
rrors are uniformly bounded independent of the proximity of the
odies. Details of the conversion and the quadrature formulas are
n Appendix.

.2. Interface evolution

With the flow computed, we extract the vorticity which re-
uces to shear stress, τ , on solid boundaries. Next, we seek to
volve the boundaries of these erodable bodies. For numerical
tability, we modify erosion law (2) to include a smoothing term
hat depends on local curvature κ [26]

n = CE |τ | + ϵ⟨|τ |⟩

(
L
2π

κ − 1
)
. (8)

The last term is a smoothing term that has strength ϵ ≪ 1 and
cales with the spatial average of the shear stress ⟨|τ |⟩. L indicates
the total arc length of the body, and, inside the parenthesis, the
mean curvature is subtracted so that this term preserves area.
As such, the only source of material loss is the first term, CE |τ |,
epresenting the shear-dependent erosion law (2). In addition, we
pply a narrow Gaussian filter to the distribution |τ | to further
mprove stability.

Rather than tracking the Cartesian coordinates of each sur-
ace, we employ the θ–L formulation [5,21,22,25] by tracking the
angent angle θ as a function of arc length and the total length
of each body. In this formulation, the curvature-dependent

moothing becomes a linear diffusive term, thus enabling the
se of stable, implicit schemes for this stiff term. The remaining
onlinear terms are not stiff and can be treated by explicit time-
tepping methods. In particular, we use an exponential integrator
or the diffusion term and a Runge–Kutta method for all other
erms, both of which are second-order in time [26].

Random configurations of circular bodies are initialized by a
imulated-annealing algorithm. First, a list of radii are sampled
rom a Chi distribution. The radii are then rescaled to achieve the
esired initial porosity. Next, the circular bodies are positioned
andomly, which typically results in many overlapping bodies. To
liminate overlap, fictitious forces are introduced that act to repel
3

odies from one another and from domain boundaries. The force
lso has a stochastic component whose magnitude decreases
ith time. This algorithm allows the bodies to explore different
onfigurations and eventually settle on one without any overlap
etween bodies.

. Extracting porous-media properties: permeability, drag,
nisotropy, tortuosity

With the numerical methods in place, we now discuss how
o measure the permeability and other porous-media properties
f the configurations generated by fluid-mechanically induced
rosion.

.1. Longitudinal permeability

While the Stokes equations (1) provide a microscopic de-
cription of the detailed flow field u penetrating the complex
configuration of erodable bodies, a coarse-grained description can
be obtained by treating the collection of bodies as a single porous-
medium and homogenizing the flow-field through Darcy’s law,

q = −
1
µ
k∇p. (9)

Here, p represents the pressure field and µ represents the fluid
viscosity, which is set to unity due to the non-dimensionalization,
µ = 1. Meanwhile, q = (q1, q2) represents the specific discharge,
which is the volume of water flowing through a unit cross
sectional area of porous media per unit time; q relates to the
(interstitial) velocity u, by integrating u over a sufficiently small
control region and dividing by the total volume (including both
fluid and solid) of the region. The parameter k represents the
permeability of the porous medium, which generally takes the
form of a rank-2 tensor to permit different propensities to flow
in different directions, i.e. medium anisotropy.

For simplicity, we assume k to be a diagonal matrix, k =

iag(k11, k22), for the sake of characterizing the permeability of
the porous medium. Because the diagonal components of k need
not be equal, the medium can have different permeabilities in the
longitudinal and transverse directions. Further, we will assume k
to be spatially homogeneous in order to characterize the medium
with a single bulk quantity at any instance in time. Naturally, the
permeability will change over time as the bodies that comprise
the medium disintegrate. Consider first the horizontal component
of (9)

q1(x, y) = −k11
∂p
∂x

(x, y). (10)

By conservation of mass, the average of the horizontal dis-
harge, q1, over any vertical cross-section must equal the uniform
low rate U imposed at the inlet and outlet. That is, for any
ocation x0,

¯1 :=
1
2

∫ 1

−1
q1(x0, y)dy = U . (11)

bove and henceforth, the overline signifies an average over a
ertical cross-section. Similarly, consider the pressure averaged
ver a vertical cross-section at x0

¯(x0) :=
1
2

∫ 1

−1
p(x0, y)dy. (12)

In particular, we define the upstream and downstream pressures
as

p = p̄(−1) , p = p̄(1), (13)
u d
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ince x0 = −1 lies immediately upstream of the porous medium
nd x0 = 1 immediately downstream.
Integrating (10) over the porous-medium domain [−1, 1] ×

−1, 1], applying the fundamental theorem of calculus, and rear-
anging gives

11 =
2U

pu − pd
. (14)

his exact formula gives the permeability in terms of the total flux
and measurements of the upstream and downstream pressures.

.2. Relationship to drag

The permeability of the medium is directly related to the drag
xerted by the collection of bodies. The stress tensor associated
ith the Stokes equations (1) is given by σ = −pI+

(
∇u+∇uT

)
,

nd the Stokes equations can alternatively be expressed as ∇ ·

= 0. Integrating over an arbitrary domain D and applying the
ivergence theorem gives

=

∫
D
∇ · σ dV =

∫
∂D

σ n ds. (15)

onsider D ⊆ [−x0, x0] × [−1, 1] to be the subset consisting of
he fluid region (i.e. excluding solid bodies), where x0 ≥ 1 will
e chosen to include the entire porous region plus some amount
f the buffer region. The boundary ∂D consists of all solid-body
oundaries γ , along with an outer boundary.
The hydrodynamic drag on the collection of bodies is obtained

y integrating the surface traction over the boundary γ . The
urface traction on a no-slip boundary is given by

σ n = pn+ τs, (16)

here the negative sign is a consequence of choosing the normal
ector n to point out of the fluid region or into the bodies. The
otal drag on the collection of bodies is thus

d = −

∫
γ

σ n ds =
∫
γ

pn+ τs ds. (17)

Projecting (15) onto the horizontal direction e1, using (17), and
earranging gives the exact relationship

d ·e1 =
∫ 1

−1
(−p(x, y)+ 2ux(x, y))

⏐⏐x=x0
x=−x0

dy+
∫ x0

−x0

uy(x, y)
⏐⏐y=1
y=−1dx.

(18)

e will now make some simplifying assumptions. First, because
he imposed flow profile is uniform U = (U, 0), slip is permit-
ted along the top and bottom boundaries y = ±1. Therefore
he viscous stress is generally much smaller along these top
nd bottom surfaces than on the no-slip erodable boundaries.
e therefore drop the contribution from the second integral

bove. Second, if x0 > 1 is chosen a sufficient distance from
he erodable bodies, the flow profile approximately matches the
niform profile, implying that the term involving ux(±x0, y) can
e dropped. In addition, the pressure p(±x0, y) approximately
atches the downstream and upstream values respectively. With

hese assumptions, (18) simplifies to the approximate form

d · e1 ≈ 2(pu − pd). (19)

ombining with (14) yields a formula relating the longitudinal
rag and permeability
1
k11

≈
1
4U

Fd · e1 (20)

his formula establishes an important link between the micro-
copic (Stokes) perspective and the macroscopic (Darcy) perspec-
ive, and it gives us a way to test the assumptions involved in
4

coarse-graining the system to extract porous-medium properties.
That is, the total drag is an unambiguous quantity that can be
computed with high accuracy in our Stokes-based simulations.
The extraction of permeability, on the other hand, requires a
few key approximations and assumptions, for example that the
length-scale of grains is sufficiently small compared to the do-
main scale so that the flow field can be homogenized. Verifying
relationship (20), as will be done in Section 5, will therefore
support the idea that the collection of bodies can be treated as a
porous medium and meaningful bulk quantities can be extracted.

4.3. Transverse permeability and anisotropy

Now consider measuring the transverse permeability k22 using
Darcy’s law. Taking the vertical component of (9) yields

2(x, y) = −k22
∂p
∂y

(x, y). (21)

his form, however, is not useful if no vertical pressure gradient is
mposed, as is the case in our erosion simulations. It is important
o recognize that the permeability is a property of the medium,
ot the imposed flow. Hence, for a frozen configuration of bodies,
t is permissible to alter the imposed flow for the purpose of
easuring k22 (this altered flow is completely separate from the
imulation of the erosion process that generates the configura-
ions). Thus, instead of a horizontal flow in the far-field, we seek
o impose a vertical one U = (0,U). If this were to be done
irectly, the outer geometry would need to rotate by 90 degrees
bout the fixed configuration of bodies. In practice, it is simpler to
eep the outer geometry fixed and rotate the inner configuration
f bodies, then simply apply the method from Section 4.1 to

measure k22.
With both the longitudinal and transverse components of per-

meability computed, we define the anisotropy of the medium as
the ratio between the two:

A = k11/k22. (22)

Note that the random configuration of circles used to initialize the
erosion simulations will have an anisotropy nearly equal to one.
As this configuration erodes, it would be expected to permit flow
in the longitudinal direction more easily than in the transverse
direction, yielding A > 1.

There are two mechanistic explanations for how erosion can
create medium anisotropy. First, the shear stresses could carve
each individual body into a more slender form, thus creating
anisotropy at the level of individual grains. Second, the shear
stresses could preferentially remove certain bodies before others,
thus creating large-scale anisotropy. For example, a body posi-
tioned in a high-throughput channel might disintegrate relatively
quickly, thus opening the channel and creating higher overall
anisotropy. We will refer to these two possible mechanisms as
shape anisotropy and configurational anisotropy, respectively. As
an extreme example, a tightly-packed horizontal row of circu-
lar bodies would exhibit high configurational anisotropy but no
shape anisotropy. Meanwhile, an array of highly eccentric el-
lipses, all oriented horizontally but positioned randomly, would
exhibit high shape anisotropy and low configurational anisotropy.
We note that channelization is likely associated with both types
of anisotropy. Certainly the overall configuration must support a
channel, and, secondly, the geometry of the individual bodies that
outline the channel could control its structure to some degree.

Fortunately, it is possible to devise a test to isolate these
two types of anisotropy and therefore determine how much
each contributes to the total anisotropy. In particular, for a fixed
configuration of partially-eroded bodies, we replace each body
with a circle having the same area and center of mass. Since
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he configurations resulted from the erosion of initially circular
odies, such a replacement does not lead to any overlap be-
ween bodies. We then measure the two permeabilities, k(c)11 and
(c)
22 , of this configuration of circular bodies. Importantly, since
e have preserved the area of each body, the configurational
ermeability accounts for the distribution of overall body sizes.
e can consider the total permeability, k11, as the product of

(c)
11 and another component, k(s)11, that depends on the detailed
hape of each body. Since k(s)11 depends on shape, but not on
the overall body sizes, this shape permeability is analogous to a
dimensionless drag coefficient. A similar decomposition is made
for k22. Since we have replaced each body with a circle, which
is an isotropic object, the anisotropy that results from this test
is entirely due to the relative positions of the bodies, allowing
us to define the configurational anisotropy as AC = k(c)11/k

(c)
22 .

Further, since k11 = k(c)11k
(s)
11 and a similar formula holds for k22,

we have the total anisotropy as the product of the shape and
configurational anisotropy, A = ASAC , the latter of which we
have measured. We can therefore deduce the shape anisotropy
through AS = A/AC .

4.4. Tortuosity

Like the permeability, the tortuosity provides a macroscopic
perspective of the porous medium [30]. We define the tortuosity
to be the average length of streamlines passing through the
region [−1, 1]× [−1, 1]. In particular, for a partially-eroded con-
figuration of bodies with velocity field u, we calculate streamlines
(t) that satisfy

˙ (t) = u(p), p(0) = (−1, y0), (23)

here y0 ∈ (−1, 1). The streamlines are calculated with a fourth-
rder Runge–Kutta method. Then, the length of each streamline,
hich only depends on its initial y-coordinate, is

(y0) =
∫ t(y0)

0
∥p(t)∥ dt. (24)

he integral limit t(y0) is chosen so that the x-coordinate of
(t(y0)) is +1. Then, the longitudinal tortuosity is

1 =
1
2

(∫
S
u(−1, y)λ(y) dy

)/(∫
S
u(−1, y) dy

)
. (25)

he factor of 1/2 guarantees that T1 ≥ 1, and T1 = 1 if and only if
no grains are present. Identical to how we calculate the transverse
permeability, we rotate the configuration of eroded bodies by 90
degrees to compute a transverse tortuosity T2.

An alternative and computationally more convenient way to
compute the tortuosity is to use an area integral. If there is no
reentrant flow in D = [−1, 1] × [−1, 1], then the longitudinal
tortuosity can be calculated as [31]

T1 =
(∫

D
∥u(x)∥ dx

)/(∫
D
u(x) dx

)
. (26)

We use a similar area integral to compute T2. We note that there
may be slow reentrant regions in our geometries [9], but they are
sufficiently small that the difference between Eqs. (25) and (26)
can be neglected.

5. Results

With the numerical methods in place, we now present results
on how fluid-mechanical erosion alters porous-media properties
over time. We first discuss the results from a single simula-
tion and then generalize to statistical analysis of ensembles of
simulations.
 b

5

5.1. Single simulation results

To begin, we discuss a single simulation of 80 bodies eroding
in Stokes flow. The simulation discussed here is the same one
shown in Fig. 1. The initial configuration consists of 80 circu-
lar bodies having randomized sizes and positions. The material-
removal process alters both the shape of individual bodies as well
as the overall structure of the pore network transmitting the flow,
as can be seen in Fig. 1. Initially, the solid bodies occupy 60% of
the area, or the porosity is ϕ = 0.4, corresponding to a relatively
dense packing; see Fig. 1 for a visual. Fig. 2(a) shows how the
solid-body area decreases, or equivalently the porosity increases,
over time as the bodies erode. The increasing porosity serves as
a convenient proxy for dimensionless time that is insensitive to
the end conditions setting the strength of the flow (i.e. whether
we specify the pressure drop or the end velocity to be constant in
time). We will henceforth use porosity, ϕ, on the horizontal axis
of many plots to represent increasing time.

As the bodies disintegrate and give way to wider pores, the
resistance to flow decreases as seen in Fig. 2(b). The resistance
to flow can be quantified in two separate ways, as outlined in
Section 4, namely by computing the total drag or by extracting
the permeability. As discussed in Section 4, the drag is a micro-
scopic quantity that can be computed with high accuracy and
without ambiguity in our Stokes-based simulations. The perme-
ability, on the other hand, relies on a few approximations, but the
extraction of such bulk quantities will be more valuable in char-
acterizing the evolving porous medium. As such, it is particularly
useful to compare these two perspectives so that the assumptions
underlying the coarse-graining process can be assessed. In par-
ticular, we aim to test the approximate formula (20), relating the
longitudinal drag F1 to the inverse permeability 1/k11, also known
as the resistivity. Fig. 2(b) indeed shows close agreement between
these two quantities over the entire duration of the simulation,
thus confirming the ability to extract medium properties during
the erosion process.

In Fig. 2(b) we also show the transverse resistivity, 1/k22,
as it decreases over the course of the simulation. Notice that
this transverse resistivity exceeds the longitudinal resistivity by
a significant margin, indicating that the configuration provides
greater resistance to flow in the vertical direction. This trend
fits the intuition that horizontally-aligned channels transmit flow
more easily in the longitudinal direction.

Fig. 3(a) shows more directly how permeability in the longitu-
dinal, k11 and transverse, k22 directions increase over time as the
medium erodes. Once again, the relationship k11 > k22 indicates
a higher propensity for flow in the longitudinal direction. Notice
that the permeability increases by nearly five orders of magni-
tude over the course of the simulation, indicating that erosion
substantially alters medium properties.

As given in (22), the ratio of longitudinal to transverse per-
meability defines the anisotropy of the medium, A = k11/k22,
hich is plotted in Fig. 3(b) over the course of the simulation
solid curve). Early on, the anisotropy is nearly one, as the initial
onfiguration of randomly placed circles has no preferred flow
irection. The anisotropy then increases as heterogeneous rates
f erosion promote longitudinal flow over transverse flow. The
nisotropy peaks at a value of A ≈ 4 later in the simulation.
t very late times, the anisotropy approaches unity again as the
odies completely vanish and return the system to a state of no
referred flow direction.
As discussed in Section 4.3, the anisotropy of the medium

esults from the combination of shape anisotropy, at the individ-
al grain level, and configurational anisotropy, at the large scale.
s detailed in Section 4.3, the configurational anisotropy can
e extracted through a process in which, at any point in time,
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Fig. 2. A single simulation of porous-medium erosion. The initial configuration consists of 80 circular bodies of random size and position, as seen in Fig. 1. (a) As the
edium erodes, the fraction of solid-body area decreases, or, equivalently, the porosity increases. (b) Resistance to flow can be characterized by either the resistivity

solid) or the cumulative drag (dots), the two of which are related through (20). Both are seen to decrease as the medium erodes, and relationship (20) is confirmed
by the simulation data. The figure also shows the resistivity in transverse direction (dashed).
Fig. 3. The permeability and anisotropy of the same 80-body simulation featured in Figs. 1 and 2. (a) Both the longitudinal (solid) and transverse (dashed) permeability
ncrease over time as the bodies erode. Also shown is the longitudinal and transverse permeabilities of the corresponding configurations of circles, which allows us to
xtract the configurational component of anisotropy. (b) The anisotropy of the medium increases as the bodies erode and preferentially allow flow in the longitudinal
irection. The total anisotropy is the product of configurational and shape components. The shape contribution is larger throughout most of the simulation, but near
he end of the simulation, the configurational contribution grows large as the channel-structure dominates.
he configuration of partially-eroded bodies is replaced with a
ollection of circles having the same areas and centers of mass.
e perform this process and show in Fig. 3(a) the permeabilities,

(c)
11 and k(c)22 , of the corresponding circle configurations. As seen in
he figure, the permeabilities of the circle configurations always
ie in between the values, k11 and k22, of the true, eroded medium.
he configurational anisotropy is then computed as the perme-
bility ratio of the circle configuration, AC = k(c)11/k

(c)
22 , and then

he shape anisotropy can be determined through AS = A/AC .
s seen in Fig. 3(b), the shape anisotropy is the larger factor
hroughout the majority of the simulation, implying that the
hape of individual grains plays a larger role than their relative
ositions. It is only during the last 20% of the simulation that
he configurational anisotropy grows significantly and surpasses
he shape anisotropy. This relative growth of the configurational
nisotropy corresponds to the strong channelization seen in the
ast panel of Fig. 1.

The late emergence of substantial configurational anisotropy
may seem like a spurious effect that is particular to the simulation
shown in Fig. 3. The statistical analysis presented in Section 5.2,
however, reveals this feature to emerge robustly across many
simulations as long as the number of bodies is relatively large,
M ≥ 60.

As a second way to quantify medium anisotropy, we measure
the tortuosity, T1 and T2, in the longitudinal and transverse di-
rections respectively. Fig. 4(a), shows how both vary over the
course of the simulation. As the bodies erode, T2 grows signifi-
cantly larger than T1, indicating that passive tracers must follow
more tortuous paths when traveling transversely compared to
longitudinally. The ratio (T2−1)/(T1−1) provides a second mea-
sure of anisotropy to complement the permeability-dependent
quantity. We have chosen to subtract one in parenthesis so that
6

the numerator and denominator both vanish when no bodies are
present, as analogous to resistivity. As seen in Fig. 4(b), the ratio
(T2 − 1)/(T1 − 1) grows significantly during erosion, up to a peak
of nearly 8. This ratio can be decomposed into configurational
and shape components, exactly as is done for the anisotropy
(i.e. by replacing a collection of eroded bodies with circles of
the same areas and centers of mass). Fig. 4(b) shows that the
shape component is greater for the majority of the simulation, but
near the end of the simulation, the configurational component is
competitive.

5.2. Statistics of ensembles of simulations

The previous section shows intriguing features to arise from
the erosion of a single, random initialization of solid bodies. The
observations naturally raise the question: are the trends specific
to the particular simulation shown or do these features emerge
robustly across different initial conditions? To answer this ques-
tion, we now analyze the same quantities—permeability, tortu-
osity, and anisotropy—over an ensemble of simulations having
different numbers of bodies and different random initializations.
We analyze runs having M = 20, 40, 60, 80, and 100 bodies,
with at least three different instances of each. We remark that
varying M permits us to study different initial permeabilities
while keeping the initial porosity fixed at ϕ = 0.4. The entire
data set represents roughly 2100 h of computational time.

Fig. 5 shows the permeability and anisotropy measurements
for the complete data set. In particular, for a given number of
initial bodies (M = 20, 40, 60, 80, or 100), the mean of each
quantity (permeability or anisotropy) is plotted against increasing
porosity, with the standard deviation across the runs shown by
the vertical error bars. Different initial numbers of bodies, M , are
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Fig. 4. Tortuosity measurements of the same 80-body simulation featured in Figs. 1 and 2. (a) As the bodies erode, the transverse tortuosity T2 exceeds the longitudinal
omponent, indicating more convoluted paths for tracers traveling vertically, transverse to the flow. Also shown are the measurements for the configurations of
ircles. (b) The ratio (T2−1)/(T1−1) serves as a second proxy for anisotropy. Like anisotropy, this ratio grows large over the course of erosion. It can be decomposed
nto configurational and shape components in a similar manner.
Fig. 5. Permeability and anisotropy statistics from an ensemble of simulations. (a)–(b) Measurements of the longitudinal (a) and transverse (b) permeability are well
separated with respect to the number of bodies, M . For each M , the mean and standard deviation of permeability are shown against increasing porosity (or time).
(c) The same statistics for anisotropy. In all runs, the anisotropy grows substantially and reaches a maximum value of roughly 4–6. Runs with a large number of
bodies (M = 60, 80, or 100) show a second surge in anisotropy near the end of the simulation. (d)–(e) The configurational and shape contributions of anisotropy.
While the shape anisotropy varies fairly regularly across all runs, the configurational anisotropy shows a distinct peak late in the simulation for runs with large M .
shown by different colors. As seen in Fig. 5(a)–(b), the trends
of increasing permeabilities are well grouped by the number of
initial bodies. That is, permeability monotonically decreases with
the number of bodies and the error bars show little overlap
between different values of M until very late in the simulation
when the bodies have nearly vanished.

Fig. 5(c) shows the corresponding statistics of anisotropy, A.
Notice that the anisotropy is not as well separated by M . That is,
given the error-bars, there is significant overlap in the signal of
A across different values of M . For all values of M , the anisotropy
initially increases and reaches a peak of roughly A ≈ 4. Interest-
ingly, for the runs featuring a large number of bodies (M = 60,
80, and 100) there is a second rise in anisotropy that occurs late
in the simulation and results in a higher peak of roughly A ≈ 6.
Thus, the late surge of anisotropy, first observed in Fig. 3, is not
specific to that particular simulation. Rather, it occurs robustly
across all simulations as long as the initial number of bodies is
sufficiently large, M ≥ 60.

As before, the anisotropy can be decomposed into configu-
ration and shape components, AC and AS respectively, and the
statistics of these quantities are shown in Fig. 5(d)–(e). The shape
anisotropy, seen in Fig. 5(e), takes a fairly regular, parabolic arc
— first increasing due to the shapes carved by erosion and then
7

decreasing as the bodies vanish. This behavior is consistent across
all of the values of M . The configurational anisotropy (Fig. 5(d)),
however, shows less regular behavior. For runs with a smaller
number of bodies (M = 20 and 40) the configurational anisotropy
remains relatively small throughout the entire simulation, indi-
cating that the majority of observed anisotropy is due to the
individual shapes of bodies. For the runs with a higher body count
(M = 60, 80, and 100), though, the configurational anisotropy
grows moderately and then surges late in the simulation, as was
observed in the single 80-body simulation from Fig. 3. Since the
shape anisotropy is decreasing at this time, the observed second
rise in the total anisotropy is due entirely to this surge in the
configurational component. For these high-body count runs, the
latest stages of erosion are dominated by channelization, which
substantially promotes the configurational anisotropy over shape
anisotropy. That is, the large-scale arrangement of the bodies has
greater effect than the shape of individual bodies.

We show in Fig. 6(a)–(b) similar statistical analysis performed
on the longitudinal and transverse tortuosity measurements, T1
and T2. Fig. 6(a) shows that, in all simulations, the longitudinal
tortuosity decreases with time as erosion allows passive tracers
to take more direct paths when traveling in the flow direction. In
contrast, Fig. 6(b) shows the transverse tortuosity increases with
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Fig. 6. Tortuosity statistics from an ensemble of simulations. (a) The longitudinal tortuosity decreases monotonically with time across all simulations as erosion
allows particles to take more direct paths when traveling in the flow direction. (b) The transverse turtuosity initially increases with time as vertically traveling
particles are forced to navigate the horizontally aligned shapes carved by erosion. (c)–(e) Statistics of the ratio, (T2 − 1)/(T1 − 1), including its configurational and
hape contribution. While the tortuosity ratio reaches a high peak, it is a less sensitive indicator of configurational changes such as channel formation.
ime, as vertically-traveling passive tracers must circumvent the
orizontally aligned bodies carved by erosion.
As before, the tortuosity ratio, (T2−1)/(T1−1), provides a sec-

ond proxy for medium anisotropy to complement the
permeability-based definition. Fig. 6(c) shows that the tortuosity
ratio behaves similarly across all simulations and all different val-
ues of M . The ratio increases substantially with erosion, reaching
a peak of roughly (T2−1)/(T1−1) ≈ 8, before descending during
the final stages of erosion. As before the tortuosity ratio can be de-
composed into configurational and shape components, as shown
in Fig. 6(d)–(e). Here, we see that the shape component is the
main contribution and the configurational component remains
minimal. This observation fits with the intuition that the main
hindrance to a passive tracer should be the shape of individual
obstructions, rather than how those obstructions are arranged
relative to one another. As such, the tortuosity ratio is a less
sensitive indicator of the channelization seen to develop late in
the erosion simulations.

6. Conclusion

In this paper, we have presented a Cauchy formulation of
the boundary integral equations to simulate the fluid-mechanical
erosion of many bodies in a Stokes flow. The accuracy and effi-
ciency of the method enables high-fidelity simulations of dense
suspensions of O(100) bodies and statistical analysis across an
ensemble of different initializations. By linking the governing
Stokes equations to Darcy’s law, we are able to extract porous-
media properties, including permeability, resistivity, tortuosity,
and anisotropy, as they evolve over time. Direct comparison
between the resistivity and the total drag force confirms such
bulk properties are extracted with high accuracy.

The ratio of longitudinal to transverse permeability provides
our main diagnostic of medium anisotropy. Measurements
indicate that the anisotropy grows substantially as a result of
fluid-mechanical erosion, reaching a peak of roughly six in most
simulations, before the bodies completely vanish and return the
system to an isotropic state. The anisotropy can be further decom-
posed into a configurational component, due only to the relative
positions of bodies, and a shape component, due to the detailed
geometry of each body. Statistical analysis across a large number
8

of simulations reveals that if the number of bodies is sufficiently
large, M ≥ 60, the configurational anisotropy surges near the
final stages of erosion and surpasses the shape anisotropy as the
primary contribution. This surge in configurational anisotropy is
associated with the formation of visual channels that transmit
a large portion of the flow. The tortuosity provides a second
metric and also reveals strong anisotropy to develop across all
simulations. In the future, we hope to extend the methodol-
ogy to more complex scenarios of thermal convective flows in
porous media [32], erodable porous structures formed by pre-
cipitation reactions [33], and first arrival statistics of Brownian
particles [34].
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Appendix. Cauchy integral representations and quadrature of
the integral operators

Here we convert the Stokes double-layer potential (5) and
its derivatives to contour integrals around Jordan curves. We
also provide quadrature formulas for each of these integrals. We
identify x = (x1, x2) with x = x1 + ix2 and use similar notation
for y, n, and η. We also interpret γ , the boundary of the ith grain
or the bounding box Γ , as a Jordan curve in C. We introduce the
functions

τ (y) = η(y)n(y)Re(n(y)), τ (y) = η(y)n(y)Im(n(y)), (A.1)
1 2
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nd define the five Cauchy integrals

1(x) =
1

2π i

∫
γ

Re(η(y))
x− y

dy, v2(x) =
1

2π i

∫
γ

Im(η(y))
x− y

dy,

3(x) =
1

2π i

∫
γ

Re(yη(y))
x− y

dy, (A.2)

4(x) =
1

2π i

∫
γ

τ1(y)
x− y

dy, v5(x) =
1

2π i

∫
γ

τ2(y)
x− y

dy. (A.3)

hen, the first and second components of the Stokes double-layer
otential (5) are

u1(x) = −Re(x)Re(v′1(x))− Im(x)Re(v′2(x))+ Re(v′3(x))

+ Re(v4(x)), (A.4a)
u2(x) = +Re(x)Im(v′1(x))+ Im(x)Im(v′2(x))− Im(v′3(x))

+ Re(v5(x)), (A.4b)

respectively. The deformation tensor is found by differentiating
equation (A.4), and the vorticity satisfies [9]

ω(x) = Im(v′1(x))+ Re(v′2(x))+ Re(v′5(x))+ Im(v′4(x)). (A.5)

We note that the deformation tensor requires second-order
derivatives of Cauchy integrals, while the vorticity only requires
first-order derivatives. On solid boundaries, the vorticity reduces
to the shear stress given in (3) and needed in erosion law (2)
[9,26].

The overall accuracy of our method is determined by the
accuracy of the quadrature methods used to compute vi(x), i =
1, . . . , 5, and their first and second derivatives. Each vi(x) is a
Cauchy integral with the generic form

v(x) =
1

2π i

∫
γ

η(y)
x− y

dy. (A.6)

ere we describe a quadrature formula that was first used to
pproximate analytic functions [35], and then extended to Stokes
ayer potentials [36]. The quadrature method requires the bound-
ry data of the analytic function (A.6) which satisfies the

Sokhotski–Plemelj jump relation

v−(x0) = lim
x→x0
x∈Ω

1
2π i

∫
γ

η(y)
x− y

dy = −
1
2
η(x0)−

1
2π i

∫
γ

η(y)
x0 − y

dy,

x0 ∈ γ , (A.7)

here the last integral is interpreted in the principal-value sense.
ere we are assuming that Ω is the bounded region interior
o γ . Once v− is calculated, v(x) and its derivatives can be ap-
proximated by applying the trapezoid rule to the Cauchy Integral
Theorem. For example,

v(x) =
1

2π i

∫
γ

v−(y)
y− x

dy ≈
1

2π i

N∑
j=1

wj
v−(yj)
yj − x

, (A.8)

here yj are equispaced points on γ ,wj = L/N , and L is the length
of γ . Because the integrand is both periodic and smooth, given a
fixed point x, the trapezoid rule achieves spectral accuracy [37].
However, for a fixed N , the quadrature error is not bounded uni-
formly with respect to x because the derivative of the integrand
rows without bound as x approaches γ . This error is problematic
or many of our simulations since we allow eroding bodies to
e arbitrarily close to one another, and we often compute the
elocity and vorticity at points in the fluid domain that are close
o an eroding body. In contrast to the integrand in the Cauchy
ntegral (A.8), the integrand in the identity

1
∫

v−(y)− v(x)
dy = 0, x ∈ Ω, (A.9)
2π i γ y− x
9

is bounded with respect to x, and therefore the error of the trape-
zoid rule is bounded with respect to x. Applying the trapezoid
rule, we have

1
2π i

N∑
j=1

wj
v−(yj)− v(x)

yj − x
≈ 0, (A.10)

where the error is now uniformly bounded for all x. Rearranging,
we have

v(x) ≈

⎛⎝ 1
2π i

N∑
j=1

v−(yj)
yj − x

wj

⎞⎠/⎛⎝ 1
2π i

N∑
j=1

1
yj − x

wj

⎞⎠ , x ∈ Ω.

(A.11)

ote that the numerator in (A.11) is identical to the approxima-
tion in Eq. (A.8), while the denominator is an approximation of
the analytic function v(x) = 1. As x approaches γ , the errors in the
numerator and denominator grow, however, since the integrand
in Eq. (A.9) is bounded independent of x, the error of the ratio is
also bounded independent of x.

The derivatives of the Cauchy integral in (A.6), which are need
to compute the vorticity and deformation tensor, can be ap-
proximated with spectral accuracy, uniformly in x, using similar
quadrature rules. To summarize, for x ∈ Ω ,

v′(x) ≈

⎛⎝ 1
2π i

N∑
j=1

v−(yj)− v(x)
(yj − x)2

wj

⎞⎠/⎛⎝ 1
2π i

N∑
j=1

1
yj − x

wj

⎞⎠ ,

(A.12)

v′′(x) ≈

⎛⎝ 2
2π i

N∑
j=1

v−j − v(x)− (yj − x)v′(x)

(yj − x)3
wj

⎞⎠
/⎛⎝ 1

2π i

N∑
j=1

1
yj − x

wj

⎞⎠ , (A.13)

e note that Eqs. (A.11), (A.12), and (A.13) all assume that x ∈

Ω , where Ω is the bounded region interior to the Jordan curve
γ . However, in our application, when γ is one of the eroding
bodies, x is in the exterior region of the Jordan curve. In this case,
slightly different identities are used, but they all guarantee that
the trapezoid rule achieves spectral accuracy with an error that
is independent of x. A complete description of the quadrature
rules for (A.11) and (A.12) are described by Barnett, Wu, and
Veerapaneni [36], and the quadrature rule for (A.13) is described
in our previous work [9].
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