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TRAPPING OF PLANAR BROWNIAN MOTION: FULL FIRST
PASSAGE TIME DISTRIBUTIONS BY KINETIC MONTE CARLO,
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Abstract. We consider the problem of determining the arrival statistics of unbiased planar
random walkers to complex target configurations. In contrast to problems posed in finite domains,
simple moments of the first passage time distribution, such as its mean and variance, are not defined.
Therefore, it is necessary to obtain the full arrival statistics. We describe several methods to obtain
these distributions and other associated quantities such as splitting probabilities. One approach
combines a Laplace transform of the underlying parabolic equation with matched asymptotic analysis
followed by numerical transform inversion. The second approach is similar but uses a boundary
integral equation method to solve for the transformed variable. To validate the results of this theory,
and to obtain the arrival time statistics in very general configurations of absorbers, we introduce an
efficient kinetic Monte Carlo (KMC) method that describes trajectories as a combination of large
but exactly solvable projection steps. The effectiveness of these methodologies is demonstrated on
a variety of challenging examples highlighting the applicability of these methods to a variety of
practical scenarios, such as source inference. A particularly useful finding arising from these results
is that homogenization theories, in which complex configurations are replaced by equivalent simple
ones, are remarkably effective at describing arrival time statistics.
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perturbation methods, integral methods
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1. Introduction. We consider the problem of describing the full arrival time
distribution of diffusing particles to complex absorbing sets in planar regions R2 \ Ω
(see Figure 1). For a particle released from location x0 ∈ R2 \ Ω, the central quan-
tities of interest are its occupation density p(x, t; x0) and its survival probability
P (t; x0) =

∫
R2\Ω p(x, t; x0) dx together with the dependence on the number and loca-

tion of absorbing sites. Our new contributions are several new efficient numerical and
asymptotic methods to rapidly determine these quantities in the presence of complex
configurations of targets (cf. Figure 1).

The general problem takes the form of a diffusion equation in x ∈ R2 \ Ω, where
Ω := ∪j=1Aεj is a collection of targets, each with effective “radius” O(ε). In the
vanishing limit ε→ 0, we solve for the probability p(x, t; x0) of a particle originating
at x0 being free at position x at time t. This probability density solves the exterior
parabolic problem
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ARRIVAL TIMES OF PLANAR DIFFUSION 1285

Fig. 1. Schematic of planar Brownian motion to a collection of targets Ω := ∪j=1Aεj . We

consider the vanishing limit Aεj → xj as ε→ 0 and specifically parameterize targets as Aεj = xj+εAj
to accommodate individual target geometries Aj . Each target can be combinations of absorbing and
reflecting sections.

∂p

∂t
= D∆p, x ∈ R2 \ Ω, t > 0; p(x, 0) = δ(x− x0), x ∈ R2 \ Ω;(1.1a)

p = 0, x ∈ ∂Ωa; D∇p · n = 0, x ∈ ∂Ωr,(1.1b)

where D is the diffusivity of the particle and Ω is a subset of R2. The boundary ∂Ω
is partitioned into an absorbing set Ωa and its impermeable complement Ωr where
reflecting boundary conditions are applied. We choose n, the normal to the surface
∂Ω, to point into the bulk. Some key quantities of interest for which rapid and
accurate determination is desirable include the fluxes over each target, the splitting
probabilities (likelihood particle encounters a certain target first), and the arrival time
distribution. The survival probability

P (t; x0) =

∫
R2\Ω

p(x, t; x0) dx

is another important quantity obtained, together with its dependence on the number
and location of targets.

First passage time problems and their variants appear in a variety of disparate
applications from cellular biology [7, 8, 9, 25], ecology [2, 24, 33, 44], and electrostatics
[11]. A few comprehensive survey references are [5, 17, 32, 39]. Preceding works
on the theory of first arrival times to small absorbing sites have largely focused on
determining moments such as the mean first passage time (MFPT) [12, 17, 20, 21,
22, 36, 37] and in some cases the variance [24, 28, 30]. In the present scenario of
an unbounded domain, these moments are not finite [32, 39], and we must therefore
seek the full distribution of arrival times. In the scenario where diffusion occurs in a
bounded domain, the full arrival time distributions to small absorbing targets have
been considered in two [8, 30] and three [7, 19] dimensions.

In the planar (unbounded) scenario considered here, capture is guaranteed; how-
ever, it may occur over very long timescales. This becomes apparent from the arrival
time distribution χ0(t) for a particle of diffusivity D = 1, initially at distance R from
a target disk of unit radius centered at the origin. This distribution χ0(t) and its
large time behavior (see [39] and Appendix A) are given by
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1286 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE

χ0(t) =
2

π

∫ ∞
0

[
J0(ω)Y0(ωR)− J0(ωR)Y0(ω)

Y 2
0 (ω) + J2

0 (ω)

]
ωe−ω

2t dω = O
(

1

t log2 t

)
, t→∞,

(1.2)

where J0(z), Y0(z) are Bessel functions. The slow rate of decay in the tail of this
distribution reveals that very long arrival times are typical (see Figure 5(a)). For ex-
ample, when R = 10, a particle with diffusivity D = 1 still has an approximately 20%
chance of being free after t = 1010. Equilibrium quantities (e.g., splitting probabili-
ties) therefore emerge on timescales that may not necessarily be the most biologically
meaningful. For example, in applications such as a moth’s search for a mate [44], or
cellular signaling where a downstream event initializes as soon as a molecule reaches a
receptor [25], the statistics of particles which reach the target first are of most interest.
These extreme statistics are governed by the behavior of P (t; x0) for t� 1 [26], and
so it is necessary to have methodologies for determining full distributions of arrival
time statistics.

In the present work, we outline several methods to solve (1.1). First, in
section 2 we apply a Laplace transform p̂(x, s) =

∫∞
t=0

p(x, t)e−st dt to (1.1) to ar-
rive at an elliptic problem of modified Helmholtz type:

D∆p̂− s p̂ = −δ(x− x0), x ∈ R2 \ Ω;(1.3a)

p̂ = 0 x ∈ Ωa; ∇p̂ · n = 0 x ∈ Ωr.(1.3b)

In the limit of well-separated traps, we solve the resulting transform problem in
terms of an asymptotic expansion where solutions are obtained in terms of modified
Helmholtz Green’s function. This methodology was originally developed in [30] and
recently applied in [7, 8] to the study of first passage times of particles with resetting.
The Laplace transform is inverted numerically by Talbot quadrature [1] resulting in
a hybrid numerical-asymptotic method. In section 3, we take a similar approach but
replace the asymptotic solution of (1.3) with a layer potential representation. This
results in a boundary integral equation that is solved numerically using a collocation
method.

In section 4 we develop a particle based kinetic Monte Carlo (KMC) method
that evaluates solutions of (1.1) by dividing the sojourn of particles into projection
steps where exact solutions are available [18, 6]. This offers a rapid, accurate, and
easy to implement method for the solution of (1.1) in very general geometries. In
section 5 we demonstrate the applicability of these methods on a variety of examples.
In particular, we provide numerical validation of previously derived homogenization
theories and find them to be highly effective in reproducing the arrival time distribu-
tions. We also investigate the time dependent accumulation of signal into the targets
which are observed to converge very slowly to the static splitting probabilities that
describe the relative flux into each target. This suggests that a relevant physical or
biological timescale should be considered before using receptor arrival information to
make inferences on environmental conditions.

2. Asymptotic description of arrival times of particles diffusing in R2.
In this section we use matched asymptotic expansions to derive an approximation for
the density of a particle diffusing in R2 \ Ω in the presence of well-separated target
sites. We assume N targets Aεj with centers {xj}Nj=1 so that Aεj = xj + εAj and Aj
is a rescaling of the target. The collection of target sites is then described by
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ARRIVAL TIMES OF PLANAR DIFFUSION 1287

Ω =
N⋃
j=1

(xj + εAj),(2.1)

where ε is a parameter controlling the extent of the targets and enforces the well-
separated condition as ε → 0. The geometry of individual targets Aj can be quite
general.

The aim is to solve the solution of the initial-boundary value problem (1.1) and
determine the free probability P (t) =

∫
Ω
p(x, t) dx together with the capture time

density C(t) = −P ′(t). The first step [30] in the analysis is to define, for s ∈ C, the
Laplace transform p̂(x, s) =

∫∞
t=0

p(x, t)e−st dt that solves (1.3). The mixed boundary
conditions (1.3b) indicate that the target boundary may have a combination of ab-
sorbing or reflecting components so that ∂Ω = Ωa ∪ Ωr. In the absence of the target
set Ω, the solution p̂ of (1.3) is defined in terms of the free space modified Helmholtz
Green’s function Gh(x; ξ, s),

D∆Gh − sGh = −δ(x− ξ), x ∈ R2 \ {ξ};(2.2a)

Gh(x; ξ, s) =
1

2πD
K0(

√
s/D|x− ξ|),

∫
R2

Gh(x; ξ, s) dx =
1

s
;(2.2b)

Gh(x; ξ, s) ∼ − 1

2πD
log |x− ξ|+Rh(s) +O(1), x→ ξ.(2.2c)

Here Rh(s) is the regular part of Gh(x; ξ, s) at the source. The small argument
asymptotics K0(z) ∼ − log(z) + log 2 − γe as z → 0 give this self-interaction term
to be

Rh(s) =
1

2πD

(
log 2− γe − log

√
s/D

)
,(2.3)

where γe ≈ 0.5772 is the Euler–Mascheroni constant.
In the limit of well-separated absorbers ε→ 0, we employ a matched asymptotic

analysis to replace each target (1.3b) by effective singularity conditions. To establish
this singularity condition, the following change of variables is introduced near the jth
absorber:

y =
x− xj
ε

, v(y) = p̂(xj + εy).(2.4)

In these coordinates, the transformed equation (1.3a) is D∆yv−sε2v = −ε2δ(x−x0).
In addition to the limit ε → 0, we additionally consider the case sε2 � 1, which is
valid provided s is not too large. The limit s→∞ corresponds to t→ 0, and therefore
we cannot expect good agreement for arbitrarily short times. With these points in
mind, we continue by considering the local solution v(y) = vj(y) + O(ε) near the
target where vj(y) satisfies the exterior problem

∆yvj = 0, y ∈ R2/Aj , vj = 0, y ∈ ∂Aj ;(2.5a)

vj(y) ∼ log |y| − log dj +O
( 1

|y|2
)
, |y| → ∞.(2.5b)

Here the parameter dj is the logarithmic capacitance, which depends on the shape of
Aj and the boundary conditions applied to it. In section 2.2 we give an overview of
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1288 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE

many scenarios in which dj can be calculated. The behavior of vj(y) at infinity gives
the matching condition for p̂(x) as x approaches xj . That is,

p̂(x, s) ∼ Sjνj
(

log

∣∣∣∣x− xj
ε

∣∣∣∣− log dj

)
= Sjνj log |x− xj |+ Sj , x→ xj ;(2.6)

νj = − 1

log εdj
,

where Sj is a strength term to be determined in terms of (N + 1) parameters (s, ν) =
(s, ν1, . . . , νN ). Therefore, in the outer region away from targets, we pose the asymp-
totic expansion

p̂(x; s) = p̂0(x; s,ν) + ε p̂1(x; s,ν) +O(ε), ε→ 0.

The leading order solution p̂0(x; s,ν) “sums-the-logs” and is accurate to all logarith-
mic orders. The correction term p̂1, which we do not explicitly determine, describes
how target orientation influences capture and can be found following methods outlined
in [29]. The leading order problem satisfies

D∆p̂0 − s p̂0 = −δ(x− x0), x ∈ R2/{x1, . . . ,xN},(2.7a)

p̂0 ∼ Sjνj log |x− xj |+ Sj , x→ xj , j = 1, . . . , N.(2.7b)

The solution p̂0(x, s) of (2.7) is described in terms of the modified Helmholtz Green’s
function (2.2) as

p̂0(x, s) = Gh(x; x0, s)− 2πD
N∑
j=1

SjνjGh(x; xj , s).(2.8)

The coefficients Sj can be determined by equating the regular parts in (2.7b) and in
(2.8). That is,

Sj = Gh(xj ; x0, s)−2πD

SjνjRh(s) +
N∑
i=1
i6=j

SiνiGh(xj ; xi, s)

 , j = 1, . . . , N.(2.9)

In summary, we have that the transform equation (1.3) has asymptotic solution
p(x; s) ∼ p0(x; s) + · · · as ε→ 0, where p0(x; s) satisfies

p̂0(x, s) = Gh(x; x0, s)− 2πD
N∑
j=1

SjνjGh(x; xj , s).(2.10a)

The strengths {Sj}Nj=1 satisfy (2.9), which can be represented in compact matrix
form as

(2.10b)

(I + 2πD GhV) S = g0, [Gh]i,j =

{
Rh(s), i = j,

Gh(xi; xj , s), i 6= j,
[V ]i,j =

{
νi i = j,

0, i 6= j,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ARRIVAL TIMES OF PLANAR DIFFUSION 1289

where I ∈ RN×N is the identity, and S ∈ RN and g0 ∈ RN are given by

S = [S1, S2, . . . , SN ]T , g0 = [Gh(x1; x0, s), Gh(x2; x0, s), . . . , Gh(xN ; x0, s)]
T .

(2.10c)

The matrix G describes the interactions between targets and their competition for
flux, while the vector g0 reflects the influence of the initial location on each of the
targets. The vector Ĵ = 2πDVS(s) describes the transformed fluxes through each of
the targets and is obtained from solving the linear system (2.10).

At this stage we calculate additional quantities of interest, namely the survival
probability P (t) and arrival time distribution C(t). Using (2.8) and (2.2c), the Laplace
transform P̂ (s) of the free probability is given by

P̂ (s) =

∫
Ω

p̂0(x, s) dx =

∫
Ω

Gh(x; x0, s)dx− 2πD
N∑
j=1

Sjνj

∫
Ω

Gh(x; xj , s)dx

=
1

s

1− 2πD

N∑
j=1

Sj(s)νj

 .(2.11a)

The relationship C(t) = −P ′(t), yields that the Laplace transform of the arrival time
distribution C(t) is

Ĉ(s) = −[sP̂ (s)− P (0)] = −sP̂ (s) + 1 = 2πD
N∑
j=1

Sj(s)νj .(2.11b)

2.1. Inverse Laplace transform. To obtain P (t) and C(t) defined by (2.11),
the inverse Laplace transform

P (t) =
1

2πi

∫
ΓB

estP̂ (s) ds(2.12)

must be evaluated, where ΓB is the Bromwich contour ΓB = {γ+ iy | −∞ < y <∞}.
The parameter γ is chosen so that all singularities of P̂ (s) lie to the left of Re(s) = γ.
In the present scenario associated with diffusive motion, the singularities of P̂ (s) lie
along the negative real axis due to the branch cut of

√
s. Rapid and effective numerical

evaluation of (2.12) can be achieved by deforming the contour around Re(s) = 0 since
the integrand of (2.12) decays very rapidly for Re(s) < 0. The Talbot contour ΓT is
a family of deformations (see Figure 2) to ΓB , where

ΓT = {σ + µ(θ cot θ + νi θ) | − π < θ < π},(2.13)

and σ, µ, and ν are parameters that control the curve shape [48, 49]. Rapid and
accurate evaluation of the inverse Laplace transform is then achieved by applying the
midpoint rule on this curve.

2.2. Logarithmic capacitance for various shapes. The asymptotic solution
(2.11) encodes the geometry of each target Aj into the logarithmic capacitance dj ,
determined by the solution of (2.5). Here we discuss the determination of dj and
briefly recap known results for regular geometries and simple boundary conditions.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1290 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE
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Fig. 2. A schematic of the Talbot curve (2.13) for parameter values σ = 0, µ = 2, ν = 0.5. The
red line indicates the singularities along the negative real line arising from the

√
s singularity.

Table 1
The logarithmic capacitance of some simple geometries with absorbing boundary conditions;

reproduced from [24].

Shape of Aj Logarithmic capacitance dj

circle of radius a dj = a

ellipse, semiaxes a, b dj =
a+ b

2

equilateral triangle, side-length h dj =

√
3Γ(

1

3
)3h

8π2
≈ 0.422h

isosceles right triangle, side-length h dj =
33/4Γ(1/4)2h

27/2π3/2
≈ 0.476h

square, side-length h dj =
Γ(1/2)2h

4π3/2
≈ 0.590h

Regular geometric shapes. For simple shapes such as circles, ellipses, triangles, and
squares with all absorbing perimeters, the logarithmic capacitance is known exactly.
A list of these quantities, reproduced from [24], is included in Table 1.

Partially absorbing disk: Single window. For a circular trap that is absorbing
except for the reflecting portion θ ∈ (−σ, σ), the problem (2.5) may be expressed in
polar coordinates (r, θ) as

∆v = 0, r ≥ 1, θ ∈ (−π, π);(2.14a)

∂rv = 0, r = 1, θ ∈ (−σ, σ); v = 0, r = 1, θ ∈ (σ, π) ∪ (−π,−σ);
(2.14b)

v ∼ log r − log dc +O
(
r−1
)
, r →∞.(2.14c)

The separable solution of (2.14) takes the form of the cosine series

v(r, θ) = log r +
a0

2
+
∞∑
n=1

an
rn

cosnθ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ARRIVAL TIMES OF PLANAR DIFFUSION 1291

where the coefficients {an}∞n=0 satisfy the dual trigonometric series

a0

2
+
∞∑
n=1

an cosnθ = 0, θ ∈ (σ, π),(2.15a)

∞∑
n=1

nan cosnθ = 1, θ ∈ (0, σ).(2.15b)

The solution of (2.15) was determined in [29] from an integral equation theory which
reveals that

− log dc =
a0

2
=

√
2

π

∫ σ

0

u sin u
2√

cosu− cosσ
du.(2.16)

For the half absorbing case (σ = π/2), a0 = 2 log 2, while in the singular mostly
reflecting limit σ � 1, it can be determined that a0 ∼ −4 log σ

2 . In other scenarios,
the integral (2.16) is readily evaluated by quadrature.

Partially absorbing disk: Multiple windows. In the scenario of a circular trap with
N small absorbing windows of length σ centered at points {yj}Nj=1, it was shown in
[29] that as σ → 0,

− log dc =
a0

2
∼ − 2

N
log

σ

4
− 2

N2

N∑
i=1

log
N∏
j=1
j 6=i

|yi − yj |.(2.17a)

For windows centered at roots of unity yj =
(
cos 2πj

N , sin 2πj
N

)
, and for Nσ < 1,

(2.17a) reduces to

− log dc =
a0

2
= − 2

N
log

σ

4
− 2

N2
(N logN) = − 2

N
log

σN

4
.(2.17b)

Partially absorbing disk: Homogenization limit. The results (2.17) can be used
to identify a homogenization limit as N → ∞ and σ → 0. The absorbing fraction f
is defined through Nσ = 2πf, and the homogenized logarithmic capacitance problem
satisfies

∆vh = 0, r > 1; σ
∂vh
∂r

+ κ(f)vh = 0, r = 1;(2.18a)

vh ∼ log r − log dc + · · · , r →∞.(2.18b)

In the dilute limit f � 1, the homogenized parameters were identified in [29] to be

κ(f) = − πf

log πf
2

, log dc =
σ

κ(f)
.(2.18c)

In section 5.2, we show numerical results that validate this homogenized formulation
and demonstrate that it is highly accurate in predicting the arrival time statistics of
the full problem.

The logarithmic capacitance for a two trap cluster. In the case of two circular
traps separated by distance `, it was derived in [24] (see also [20, 36, 40, 45]) from an
expansion in bipolar coordinates that

log dc =
1

2
log(`2 − 4)− β

2
+
∞∑
k=1

e−kβ

k cosh(kβ)
, β = cosh−1

(
`

2

)
.(2.19)
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1292 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE

Numerical evaluation of the logarithmic capacitance for general configurations. For
very general configurations of clusters, the logarithmic capacitance problem (2.5) can
be obtained numerically by a boundary integral approach [15]. Another approach
developed in [20, 36], and based on works [10, 47], is to develop a series solution of
(2.5) followed by a least squared method to obtain the unknown coefficients. For the
case of m circular absorbers with centers {cj}mj=1, the series takes the form

v(z) = − log dc +
m∑
j=1

ej log |z − cj |(2.20)

+
m∑
j=1

n∑
k=1

(
ajkRe(z − cj)−k + bjkIm(z − cj)−k

)
, z ∈ C.

The constants dc, ej , ajk, bjk are to be determined, while
∑m
j=1 ej = 1 enforces the far

field behavior v ∼ log |z| as |z| → ∞. A system for the unknown constants is formed
by evaluating (2.20) at a collection of boundary points along which v = 0. A similar
methodology was used in [29] to solve a truncated version of the dual trigonometric
series (2.15) by evaluation at a set of boundary values followed by least squared
solution.

3. Boundary integral equation description of arrival times of particles
diffusing in R2. An alternative approach to matched asymptotics for solving (1.1)
is to use an integral equation approach. Integral equations are a natural choice for
unbounded complex domains such as the one in Figure 1 since they easily resolve
complex geometries while automatically satisfying the far-field boundary conditions.
Others have applied integral equation methods to solve (1.1) using the full space-time
heat kernel [27] or by discretizing in time and solving the resulting elliptic PDE with
an integral equation formulation [10, 23]. However, these approaches have several
challenges that include maintaining long time histories and computing volume inte-
grals. We take a new approach by solving for the Laplace transformed variable p̂(x, s)
that satisfies (1.3). We only consider the case where ∂Ω is absorbing so that the
boundary condition is Dirichlet and homogeneous.

We begin by writing p̂ as the sum of a particular and homogeneous solution
of (1.3),

p̂(x, s) = Gh(x; x0, s) + p̂H(x, s),

where Gh is the free space modified Helmholtz Green’s function (2.2). Using the
boundary condition (1.3b), p̂H satisfies the homogeneous PDE

D∆p̂H − sp̂H = 0, x ∈ Ω,(3.1a)

p̂H(x) = f(x), x ∈ ∂Ω,(3.1b)

where f(x) = −Gh(x; x0, s). We represent the solution of (3.1) with the double-layer
potential

p̂H(x) = D[σ](x) =

∫
∂Ω

∂

∂ny
Gh(x; y, s)σ(y) dsy, x ∈ Ω,
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ARRIVAL TIMES OF PLANAR DIFFUSION 1293

where σ is an unknown density function. We remind the reader that the unit normal
ny points into the bulk. To satisfy the boundary condition (3.1b), the density function
must solve

f(x) =
1

2
σ(x) +D[σ](x), x ∈ ∂Ω.(3.2)

A numerical solution of the second-kind integral equation (3.2) is formed by discretiz-
ing ∂Ω at N quadrature points and approximating the integrals with the trapezoid
rule. The resulting linear system is

f(xi) =
1

2
σ(xi) +

1

2π

N∑
j=1

∂

∂nj
Gh(xi; xj , s)σ(xj) ∆sj , i = 1, . . . , N,(3.3)

and the diagonal term of this linear system is replaced with the limiting value

lim
y→x
x∈∂Ω

∂

∂ny
Gh(x; y, s) = −1

2
κ(x),

where κ(x) is the curvature of ∂Ω. The linear system (3.3) is solved with the gen-
eralized minimal residual method (GMRES), and since it is the discretization of a
second-kind integral equation, the number of required iterations is mesh-independent.
This method to solve for p̂(x, s) is coupled with the inverse Laplace transform (2.12),
where we use the same Talbot contour illustrated in Figure 2.

The flux at point x ∈ ∂Ω and time t is J (x, t) = ∂
∂np(x, t). Since we write p̂(x, s)

as the sum of a fundamental solution and a homogeneous solution, we compute the flux
of these terms individually, and the flux due to the fundamental solution is computed
analytically. The flux due to the homogeneous solution p̂H is

ĴH(x; s) =
∂

∂nx
D[σ](x) =

∫
∂Ω

∂

∂nx

∂

∂ny
Gh(x; y, s)σ(y) dsy,(3.4)

which needs to be estimated with quadrature. As x → y, the integrand of (3.4)
satisfies

∂

∂nx

∂

∂ny
Gh(x; y, s) ∼ ‖x− y‖−2,

and the trapezoid rule cannot be used. An alternative quadrature rule uses the
odd-indexed quadrature points for even-indexed discretization points, and it uses the
even-indexed quadrature points for odd-indexed discretization points [43]. However,
this odd-even integration quadrature rule converges only when the singularity of the
integrand is no stronger than ‖x− y‖−1.

To formulate the normal derivative of the double-layer potential with a tractable
integrand, we first add and subtract the leading order asymptotics of Gh described in
(2.2c). That is, ĴH(x; s) = I1 − I2, where

I1 =

∫
∂Ω

∂

∂nx

∂

∂ny

(
Gh(x; y, s) +

1

2π
log |x− y|

)
σ(y) dsy,

I2 =

∫
∂Ω

∂

∂nx

∂

∂ny

(
1

2π
log |x− y|

)
σ(y) dsy.
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1294 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE

The singularity of the integrand in I1 behaves as ‖x−y‖−1, and odd-even integration
can be applied. The integral I2 is further decomposed as

I2 =
1

2π

∫
∂Ω

∂

∂nx

∂

∂ny
log |x− y|(σ(y)− σ(x)) dsy

− σ(x)

2π

∫
∂Ω

∂

∂nx

∂

∂ny
log |x− y| dsy.

The second integral in this expression is the normal derivative of a constant function,
and therefore is zero. The remaining integral has an integrand with a singularity that
also behaves as ‖x− y‖−1, and odd-even integration can be applied.

Having developed a quadrature method to compute ĴH(x; s), the pointwise flux
can be computed at time t by applying the midpoint rule along the Talbot contour
in Figure 2. Then, the total flux into ∂Ω can easily be computed by applying the
trapezoid rule to

S(t) =

∫
∂Ω

J (s, t) ds.

4. Particle based kinetic Monte Carlo simulations. Monte Carlo simula-
tions provide a valuable tool for numerically estimating the distribution of capture
times of diffusing particles for problems such as (1.1) and have been used extensively
[4, 31, 34, 35]. Trajectories associated to the density (1.1) can be constructed through
the discretization

x(t+ dt) = x(t) +
√

2DdtZ, x(0) = x0,(4.1)

where Z ∼ N(0, 1). The sequence of small displacements (4.1) terminates when the
particle encounters the absorbing surface ∂Ωa. The algorithm is repeated for many
particles (millions or even billions) to sample the capture time distribution. This
approach is flexible and easy to implement but hampered by a set of problems.

If a fixed stepsize dt is adopted, errors are introduced at that lengthscale that
accrue near boundaries. First, for a capture event in the interval (t, t+dt), we typically
choose t + dt as the arrival time, which is an overestimate. Second, trajectories
drawn from (4.1) will necessarily miss some encounters with boundaries and therefore
overestimate the hitting time. Another challenge is that capture problems associated
with (1.1) are notorious for their fat-tailed distributions, i.e., a significant fraction of
realizations undergo long excursions before capture. A key component of any efficient
method is adaptivity in stepsize since a trajectory of (4.1) simulated with a fixed step
method will take a very long time to reach an absorbing site.

4.1. Kinetic Monte Carlo (KMC) method for simulation of planar dif-
fusion to absorbers. Decreasing the step size in an adaptive manner based on dis-
tance to target can ameliorate these issues. The kinetic Monte Carlo (KMC) method
[3] maximizes this opportunity by advancing the diffusion process in a spatial stepsize
corresponding to the distance to the target, d(x0, ∂Ω). The geometry of each step
can take many forms, but it should be chosen such that the details of the sojourn can
be rapidly and accurately sampled from closed form expressions. Similar ideas have
been employed in N -body simulations of kinetic gases [35], chemical reactions [50],
and epitaxial crystal growth [41, 42, 46]. In this paper we describe implementation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ARRIVAL TIMES OF PLANAR DIFFUSION 1295

details and rudimentary analysis of such a scheme that can handle complex geome-
tries and mixed boundary conditions. This method completely bypasses the need to
advance particles based on discretized steps such as (4.1).

Setup. We adopt a piecewise linear representation for the boundary ∂Ω of the
target set Ω based on vertexes with M straight edges ∂Ωj so that ∂Ω =

⋃M
j=1 ∂Ωj .

On each boundary edge ∂Ωj , we precalculate midpoints and unit normal vectors and
associate either Neumann or Dirichlet boundary conditions (others such as Robin can
be incorporated too). In addition, we calculate R0, the radius of the smallest circle
centered at the origin that encloses all targets (see Figure 4(b)).

A frequent and potentially expensive operation is the determination of d(x0, ∂Ω),
the distance of x0 ∈ R2 \ Ω to the nearest target. A simple approach is to calculate
the distance of x0 to each vertex of ∂Ω and select the minimum. However, for highly
refined target geometries or numerous targets, the number of vertexes to scan over
may be prohibitive.

To accommodate such scenarios, we employ a quadtree, a common data structure
in computational graphics [14]. This structure consists of a hierarchy of Cartesian
grids that envelop ∂Ω. At the coarsest level, the bounding box of the target is subdi-
vided into four cells. Any cell that contains one or more boundary points is subdivided
into four subcells, thereby creating the next branch in the tree. This process continues
until each cell contains exactly one point, or a predetermined number of levels is used
(see Figure 3).

To determine the closest pointwise distance, the method first queries the mid-
points of the coarsest grid and uses simple geometric criteria to eliminate those that
cannot contain the closest point. Queries are made of remaining subgrids at the next
level of refinement until a predefined level of refinement or a single point remains.
This results in a vastly smaller set of candidate vertexes to calculate pointwise dis-
tances at the cost of some overhead and extends this approach to large and complex
target sets.

With this setup in place, for each free particle x0 ∈ R2 \ Ω, we calculate the
shortest distance R = d(x0, ∂Ω) and the associated projection p = projPjx0, where
Pj is the line that contains the closest edge ∂Ωj . The position of the particle is
advanced based on four projection steps (Figure 4) described below.

Fig. 3. Visualization of the quadtree structure method for efficient evaluation of the distance
d(x0, ∂Ω). The coloring of each point indicates the highest grid level that the vertex of ∂Ω is consid-
ered for the closest point evaluation. If the maximum refinement level is k, then all points in levels
1, 2, . . . , k − 1 are excluded from the distance calculation of d(x0, ∂Ω).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1296 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE

(a) Stage I: walk on sphere
step.

(b) Stage II: reinsertion step.

(c) Stage III: square projection step. (d) Stage IV: reflection step.

Fig. 4. Schematic of the four stages of the planar KMC algorithm.

Stage I: Radially symmetric projector. If R ∈ (Rmin, Rmax) such that the particle
is neither too close to nor too far from a target, we project to a ball of radius R centered
at x0. The parameters Rmin, Rmax are associated with stages II and III, respectively,
and defined shortly. The time duration of this projection step is determined from
the solution of the radial diffusion equation with a zero Dirichlet boundary condition
at r = R and a Dirac initial condition specifying that the particle is initially at the
origin. The solution u(r, t) of the parabolic equation

∂u

∂t
= D

1

r

∂

∂r

(
r
∂u

∂r

)
, r ∈ (0, R), t > 0; u(R, t) = 0, t > 0;

u(r, 0) =
δ(r)

r
, r ∈ (0, R),

gives the cumulative distribution of arrival times at r = R to be

F (τ) = 1− 2
∞∑
n=0

e−z
2
nτ

znJ1(zn)
, t =

D

R2
τ, J0(zn) = 0, n = 0, 1, 2, . . . .(4.2)

This distribution is sampled by drawing a uniform number U ∈ (0, 1) and solving
F (τ) = U . The cumulative distribution function (CDF) F (τ) is efficiently sampled
by precomputing values of zn and J1(zn) and using only as many terms as is necessary
to approximate F (τ) to a predetermined tolerance.

Stage I (alternative for convex shapes): Plane projector. This projector can be
adopted when the target is strictly convex so that the entire absorbing target lies to
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ARRIVAL TIMES OF PLANAR DIFFUSION 1297

one side of the tangent plane to the surface. After translating the projection point p
to the origin and rotating by the slope of the incident edge, the projection step arises
from the solution to the heat equation in the upper half plane with initial location
(0, y0). Combining the relevant fundamental solutions with method of images yields
the density

u(x, y, t) =
1

4πDt

[
e−

x2+(y−y0)2

4Dt − e−
x2+(y+y0)2

4Dt

]
,

with association arrival time distribution to the plane

ρT (t) =

∫
R
uy(x, 0, t) dx =

y0

2
√
π(Dt)

3
2

e−
y20
4Dt .

The cumulative distribution is
∫ t

0
ρT (τ) dτ = erfc(y0/

√
4Dt) so that the arrival time

is sampled as

t∗ =
1

4D

[
y0

erfc−1(η)

]2

, η ∈ (0, 1).(4.3a)

The hitting location on the tangent line is determined by the displacement x∗ from
the projection point p which has the (Gaussian) distribution

PX(x∗) =
uy(x∗, 0, t∗)

ρT (t∗)
=

1√
4πDt∗

e−
x2∗

4Dt∗ ,(4.3b)

so that x∗ ∼ N (0, 2Dt∗).
Stage II: Reinsertion. It is inefficient to simulate the detailed trajectory of par-

ticles far from the absorbers. Therefore, when the distance R = d(x0, ∂Ω) exceeds a
threshold (R > Rmax), we project the particle to a smaller disk of radius Rins > R0

that encloses all the absorbers (Figure 4(b)). Similar reinsertion procedures have been
utilized in Monte Carlo solutions of elliptic problems [16, 18]. Here we must take ad-
ditional care to sample both the reinsertion time and the time-dependent reinsertion
location correctly. The arrival distribution for a particle initially on the x-axis (see
Appendix A) is

J (τ, θ) =
D

R2
ins

[
1

2π
χ0(τ) +

1

π

∞∑
n=1

χn(τ) cosnθ

]
, θ ∈ (−π, π), t > 0, τ =

D

R2
ins

t,

(4.4a)

where the coefficients are

χn(τ) =
2

π

∫ ∞
0

[
Jn(ω)Yn(ωµ)− Jn(ωµ)Yn(ω)

Y 2
n (ω) + J2

n(ω)

]
ωe−ω

2τ dω.(4.4b)

Here µ := |x0|/Rins is the ratio of the distance |x0| of the initial location from the
origin to the reinsertion radius Rins. The optimal reinsertion radius is Rins = R0,
where R0 is the radius of the smallest disk enclosing all absorbers, as shown in Fig-
ure 4(b). However, many computational efficiencies are gained by sampling (4.4) for
a fixed value of µ;in practice we take µ = 60, Rmax = µR0 and reinsert to the disk of
radius Rins = |x0|/µ. By fixing µ, the integrands of (4.4b) can be tabulated over a
range of ω values for efficient quadrature.
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101 1010 1020 1030 1040
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(a) Arrival time distribution.

- - /2 0 /2
0.0

0.2

0.4
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0.8

1.0

(b) Arrival angle distribution for sev-
eral τ∗ values.

Fig. 5. CDFs of arrival time and location for the reinsertion step when D = 1, µ = 60. (a)
The reinsertion time distribution Fθ(τ) =

∫ τ
0 χ0(η) dη given by (1.2) (dashed line indicates the cutoff

τ = 1010 after which the fitted density (4.6) is used). (b) The arrival location CDF (4.7) for several
arrival times τ∗. The distribution is largely uniform for large τ∗.

The first step in the sampling of (4.4) is to determine the arrival time density∫ 2π

θ=0
J (τ, θ) dθ = D

R2
ins
χ0(τ) with associated CDF FT (t) =

∫ τ
0
χ0(η) dη where τ =

D
R2

ins
t. The arrival time is sampled first since the location will be dependent on this

value—for shorter times, the arrival location is more tightly focused around the initial
location, while for larger arrival times, the insertion location has a weaker dependence
on the start location and approaches a uniform distribution (see Figure 5(b)). For
smaller values of τ (in practice τ < 1010), the values of the integrand (4.4b) and the
associated CDF are tabulated over a range of ω values for rapid quadrature. The
sampling of χ0(τ) can be quite delicate for large τ due to the slow convergence of the
integral. To see this, consider that for τ � 1 the main contribution to the integral
χ0(τ) is when ω2τ = O(1) or ω � 1. In this regime we have that

χ0(τ) ∼ 4 log µ

π2

∫ ∞
0

w

1 + 4
π2 (γe + log(w/2))2

e−ω
2τ dω = O

(
1

τ | log τ |2

)
, τ →∞.

(4.5)

When τ � 1 (in practice τ > 1010), we use the limiting form (4.5) to posit the
following explicit form of the density:

χ0(τ) =
4 log µ

π2

1

τ(a1 + a2 log τ + a3 log τ2)
+O

(
1

τ2

)
, τ � 1,

for constants a1, a2, a3 determined from fitting. This gives the exact cumulative den-
sity function for τ � 1

FT (t) = 1−
∫ ∞
τ

χ0(η) dη = 1− 4 log µ

π2
√

4a1a3 − a2
2

(
π − 2 tan−1

[
a2 + 2a3 log τ√

4a1a3 − a2
2

])
,

(4.6)

τ =
D

R2
ins

t,

where, for µ = 60, we obtain from fitting the constants

a1 = 1.4670, a2 = 0.3102, a3 = 0.2029.
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ARRIVAL TIMES OF PLANAR DIFFUSION 1299

For a particular arrival time realization τ = τ∗, the angular location θ of reinsertion
satisfies

Fθ(θ; τ∗) =

∫ θ

−π

J (τ∗, η)

χ0(τ∗)
dη =

θ + π

2π
+

1

π

∞∑
n=1

sin(nθ)

n

χn(τ∗)

χ0(τ∗)
, θ ∈ (−π, π).(4.7)

To sample from (4.7), a uniform number U ∈ (0, 1) is drawn, and the equation
Fθ(θ; τ∗) = U is solved for θ. In practice we use an adaptive procedure where we
retain only the terms satisfying |χn(τ∗)/(nχ0(τ∗))| > τtol in the summation of (4.7).
For a large proportion of realizations, the arrival time τ∗ is sufficiently large (in prac-
tice τ∗ > 1010) so that the first term is negligible and the arrival location is uniformly
distributed on the disk. In Figure 5, we plot the CDFs of arrival time distribution
and arrival location distribution for µ = 60. This method permits rapid and accurate
sampling of the reinsertion step.

Stage III: Square projector. If R < Rmin, then the particle is close enough to
determine if contact occurs. By “close enough,” we mean that the projection p lies
within the edge segment so that a square of side length 2R centered at x0 lies entirely
within the target edge (cf. Figure 4(c)). This gives explicitly that Rmin = min(d1, d2),
where d1, d2 are the distances between p and the edge vertexes (cf. Figure 4(c)). The
projection step is then determined from the solution to the parabolic equation on the
square S = [−R,R]2,

∂u

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y2

)
, x ∈ S, t > 0; u(x, t) = 0, x ∈ ∂S, t > 0;(4.8a)

u(x, 0) = δ(x)δ(y), x ∈ S, t = 0.(4.8b)

The separable solution to (4.8) yields the CDF of first arrival times to the square
edge ∂S,

PT (τ) =

∫ τ

0

ρT (η) dη

= 1− 32

π2

∞∑
l=0

∞∑
k=0

2k + 1

2l + 1

(−1)l+k

(2k + 1)2 + (2l + 1)2
e−((2l+1)2+(2k+1)2)π2τ .

τ =
D

R2
t.

This distribution is sampled by drawing a uniform number U ∈ (0, 1) and solving
PT (τ∗) = U . Each side of the square has an equal probability 1/4 of being hit, and
the arrival location is sampled from the density

ρX(x) =
4uy(x, 0, τ∗)

ρT (τ∗)

=
π

2

∞∑
l=0

∞∑
k=0

(2l + 1)(−1)l+k e−((2l+1)2+(2k+1)2)π2τ∗
sin[(2k + 1)πx]

∞∑
l=0

∞∑
k=0

2k + 1

2l + 1
(−1)l+ke−((2l+1)2+(2k+1)2)π2τ∗

.

In practice, we sample with replacement from 105 precalculated pairs {(τj , xj)}. Fur-
ther samples can obtained from interpolation on this set.
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1300 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE

Stage IV: Reflection step. In the scenario that the particle hits a reflecting portion
of the target surface, it is then projected back into the bulk onto a semicircle of radius
R = min(d1, d2), corresponding to the distance to the nearest vertex. In practice, we
avoid rounding errors by setting R = max(ε,min(d1, d2)), where ε is a small number
comparable to machine precision. In the reflecting boundary condition scenario, the
projection step is identical to that of stage I with uniform location and arrival time
sampled from (4.2). For highly convoluted geometries, it may be that this semicircle
intersects with distal elements of the target. This scenario can be accounted for by
calculating the shortest distance d to other segments of the boundary and setting
R = max(ε,min(d1, d2, d)).

4.2. Rudimentary convergence analysis in half plane case. In this section
we present some analysis of the convergence properties of the KMC approach in the
simplified scenario of diffusion in the upper half plane with capture in the window
{(x, 0) | |x| < h/2} with particular emphasis on the role of reinsertion. Specifically,
we solve the equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, x ∈ R, y > 0, t > 0;(4.9a)

u = 1, y = 0, |x| < h

2
, uy = 0, y = 0, |x| ≥ h

2
;(4.9b)

u = δ(x− x0)δ(y − y0), x ∈ R, y > 0, t = 0,(4.9c)

with a simplified KMC method composed of stages I (alternative) and III. From an ini-
tial point x0 = (x0, y0), this algorithm results in a sequence of points (x1,x2, . . . ,xn) ∈
R2+, which will eventually alight on the absorbing portion. For an ensemble of par-
ticles, we denote an to be the fraction free after n iterations, so

an+1 = (1− pn)an, a0 = 1,

where pn is the probability of capture at the nth iteration. To investigate pn, we first
consider the splitting problem p(x, y) for the probability that a particle starting at
(x, y) first contacts the plane y = 0 on the absorbing window. This satisfies

∂2p

∂x2
+
∂2p

∂y2
= 0, x ∈ R, y > 0;(4.10a)

p = 1, y = 0, |x| < h/2, p = 0, y = 0, |x| ≥ h/2,(4.10b)

and admits the solution

p(x, y) =
1

π

[
tan−1

(
x+ h

2

y

)
− tan−1

(
x− h

2

y

)]
.(4.10c)

We consider that the current location xn = (xn, yn) has arisen from a projection step
(stage III). Without loss of generality, we assume the previous contact (x̄n, 0) with
the yn = 0 plane is such that x̄n >

h
2 . We may then parameterize (cf. Figure 6) the

point xn = (xn, yn) as

xn =
h

2
+ r̄n(1 + cosφ), yn = r̄n sinφ, φ ∈ (0, π), x̄ ∈ (h/2,∞).
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ARRIVAL TIMES OF PLANAR DIFFUSION 1301

(a) KMC step (b) Reinsertion

Fig. 6. A schematic showing the simplified KMC solution in the upper half place. (a) The
projection step from the real line back into the bulk. (b) The reinsertion step to keep the particle in
the vicinity of the absorbing set.

It follows from the splitting probability (4.10c) that

p(xn, yn) =
1

π

[
tan−1

(
xn − h

2

yn
+

h

yn

)
− tan−1

(
xn − h

2

yn

)]

=
1

π

[
tan−1

(
cot

φ

2
+

h

r̄n
cscφ

)
− tan−1

(
cot

φ

2

)]
=

1

π

[
tan−1

(
tan

(
π

2
− φ

2

)
+

h

r̄n
cscφ

)
−
(
π

2
− φ

2

)]
,

where the angles φ ∈ (0, π) are distributed uniformly. Applying the change of variables
η = π−φ

2 yields

p =
1

π

[
tan−1 (tan η + αn csc 2η)− η

]
, αn =

h

r̄n
.

We now define the average probability pn = 1
π

∫ π
φ=0

p dφ = 2
π

∫ π/2
η=0

p dη and find that

pn =
2

π2

∫ π
2

η=0

[
tan−1 (tan η + αn csc 2η)− η

]
dη, αn =

h

r̄n
.(4.11)

Without reinsertion, many trajectories will yield very small values for the parameter
αn as r̄n can attain very large values. To gain further insight into this scenario, we
consider the limiting case of (4.11) as α→ 0.

4.3. Asymptotic analysis of splitting probability. Here we develop an as-
ymptotic approximation for (4.11) in the limit as α → 0 (the subscript n is dropped
for convenience). The integral features global contributions and local contributions
near η = 0. To delineate between these contributions, we define the small parameter
δ > 0 such that α� δ � 1. Then we have that

pn(α) =
2

π2

∫ δ

η=0

[
tan−1 (tan η + α csc 2η)− η

]
dη︸ ︷︷ ︸

A1

(4.12)

+
2

π2

∫ π
2

η=δ

[
tan−1 (tan η + α csc 2η)− η

]
dη︸ ︷︷ ︸

A2

,

where A1 and A2 will be considered separately and combined so that their sum is
independent of δ.
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1302 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE

Evaluation of A1. In this region we apply the approximation tan−1(x + y) =
tan−1(x) + y/(1 + x2) + O(y2) for y → 0 with x = α csc 2η and y = tan η. Then we
have that

A1 :=
2

π2

∫ δ

0

[
tan−1 (tan η + α csc 2η)− η

]
,

dη ∼ 2

π2

∫ δ

0

[
tan−1(α csc 2η) +

tan η

1 + α2 csc2(2η)
− η
]
dη.

Applying small argument approximations for η � 1, we have that

A1 ∼
2

π2

∫ δ

0

(
tan−1

(
α

2η

)
− α2η

4η2 + α2

)
dη =

α

π2

∫ 2δ
α

0

(
tan−1 1

z
− α

2

z

z2 + 1

)
dz,

(η = αz/2)

=
α

π2

[
1

2
log(1 + z2) + z tan−1 1

z
− α

4
log(1 + z2)

] 2δ
α

0

=
α

π2

[(
1

2
− α

4

)
log

(
1 +

4δ2

α2

)
+

2δ

α
tan−1 α

2δ

]
.

The parameter δ is defined so that α� δ and therefore δ
α � 1. Applying Taylor, we

find that

A1 =
α

π2

(
log

2δ

α
+ 1

)
+O

(
α3

δ2
, α2 log

(
δ

ε

))
.(4.13)

Evaluation of A2. In the integral A2 we have that α � δ, and we apply the
approximation tan−1(x+y) = tan−1(x)+y/(1+x2)+O(y2) for y → 0 with x = tan η
and y = α csc 2η. It then follows that

A2 :=
2

π2

∫ π
2

η=δ

[
tan−1 (tan η + α csc 2η)− η

]
,

dη ∼ 2

π2

∫ π
2

δ

[
tan−1(tan η) + α

csc 2η

1 + tan2 η
− η
]
dη

=
2α

π2

∫ π
2

δ

csc 2η

1 + tan2 η
dη =

α

π2

∫ π
2

δ

cot η dη =
α

π2
[log sin η]

π
2

δ

= − α

π2
log δ.(4.14)

To finalize the approximation of (4.12), we combine expressions (4.13) and (4.14) and
reintroduce αn reflecting that this parameter changes over each iteration. This yields
that

pn ∼ A1 +A2 =
αn
π2

(
log

2

αn
+ 1

)
, αn → 0, αn =

h

r̄n
.(4.15)

Hence we see that while the probability of capture is positive at each iteration, it
can become arbitrarily small as |x̄n| = h

2 + r̄n → ∞. This results in an algorithm
with polynomial convergence rate (see Figure 8(a)). A comparison of the asymptotic
approximation (4.15) with (4.11) is displayed in Figure 7(a).
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ARRIVAL TIMES OF PLANAR DIFFUSION 1303

(a) Capture probability without reinsertion. (b) Capture probability from reinsertion disk.

Fig. 7. (a) Comparison of the capture probability pn(α) (solid curve) (4.11) and the small
arguement approximation (4.15) (dashed curve) without reinsertion. We note that p → 1/4 for
αn = h/r̄n →∞. (b) Here we show the probability of capture with reinsertion to a disk of radius R.

4.4. Reinsertion analysis. The aim of reinsertion is to reestablish an expo-
nential convergence rate in the algorithm by limiting the maximum value of x̄n and
hence promoting faster capture.

Reinsertion projects wayward particles back to a smaller disk of radius R that
encloses all targets and therefore omits simulating trajectories far from the capture
regions. When reinserting from sufficiently distant points, the placement on the disk
is largely uniform with (x, y) = R(cos θ, sin θ) with small corrections given by (4.7).
Points on this disk have average probability of capture (see (4.10))

pn =
1

π

∫ π

0

p(R cos θ,R sin θ) dθ

=
1

π2

∫ π

0

[
tan−1

(
cot θ +

h

2R
csc θ

)
− tan−1

(
cot θ − h

2R
csc θ

)]
dθ

∼ 2

π2

h

R
as

h

R
→ 0.(4.16)

The accuracy of the approximation (4.16) is shown in Figure 7(b). In an ensemble of
particles, some will be reinserted to the disk x2 + y2 = R2, while others remain inside
it. Those inside have greater probability of capture at the next step; therefore the
quantity (4.16) reflects a lower bound on the likelihood of capture. Hence we see that
the probability of capture after n stages has bound pn ' 2

π2
h
R . The key observation

here is that the probability of capture at each iteration is now bounded below by a
constant defined in terms of the geometric parameter h and the reinsertion radius
R. This ensures an exponential convergence rate of the algorithm with slower rates
associated with smaller targets (h � 1) and a faster rate associated with a smaller
reinsertion radius R.

As an exposition of this analysis, we show in Figure 8 the convergence of the KMC
method on the simplified half plane problem (4.9) with and without reinsertion. In the
absence of reinsertion, polynomial convergence is attained as shown by linear behavior
on a log-log plot. When reinsertion is implemented (to radius R = 1), we observe
exponential convergence shown by linear behavior on a log plot. This demonstrates
the key role of reinsertion in attaining exponential convergence of the KMC method.
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1304 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE

100 101 102 103 104 105 106
10-6

10-5

10-4

10-3

10-2

10-1

100

(a) Convergence without reinsertion

0 200 400 600 800 1000
10-6

10-5

10-4

10-3

10-2

10-1

100

(b) Convergence with reinsertion

Fig. 8. Convergence statistics of the KMC method for the simplified problem (4.9). (a) In the
absence of reinsertion, a polynomial rate of convergence is attained shown by the linear behavior on
the log-log plot. (b) Reinsertion recovers exponential convergence as seen in the linear behavior on
the log plot. Simulations based on ensemble of 106 particles.

5. Results. In this section we show a variety of examples to demonstrate the
ability of these methodologies for approximating full arrival time distributions to
complex absorbing sets. In our simulations, we have used a common diffusivity of
D = 1. Arrival times from the KMC method are translated with t → t + 1 so that
t = 0 is mapped to 100 in log space. The MATLAB histogram function is then applied
with the “probability” normalization option. The hybrid approaches refer to solving
the Laplace transform using either the expansion asymptotic (2.10) or the boundary
integral method (BIM) described in section 3. This is followed by numerical inversion
of the transform equation as described in section 2.1.

5.1. Planar results. Here we use three examples to validate the numerical KMC
method and corroborate with both hybrid approaches (asymptotic and boundary
integral). The first example is a simple one-target scenario in which the closed form
solution (A.10) is available for comparison. The remaining two examples show the
efficacy of the method on more complex absorbing sets consisting of multiple targets
of varying radii. The parameter values for the three examples are

(One target) x1 = (0, 0), r1 = 0.05, x0 = (5, 0).

(Three targets) x1 = (3, 3), x2 = (8, 8), x3 = (10, 10),

r1 =
1

8
, r2 =

1

6
, r3 =

1

3
, x0 = (0, 0).

(Six targets) x1 = (−3, 0), x2 = (0,−2), x3 = (
√

2,−
√

2), x4 = (2, 0),

x5 = (
√

2,
√

2), x6 = (0, 2),

r1 = 0.275, r2 = . . . = r6 = 0.02, x0 = (0, 0).

The results shown in Figure 9 show good agreement among the three approaches. In
Figure 9(a) we compare the hybrid-asymptotic, KMC, and exact one-pore solutions
showing excellent agreement. In the two more challenging examples, we generally
see good agreement between the asymptotic and boundary integral approaches. In
the more challenging six-target case, we see in Figure 9(c) that a slightly diminished
agreement is observed near the peak.
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ARRIVAL TIMES OF PLANAR DIFFUSION 1305

(a) One target example (b) Three target example (c) Six target example

Fig. 9. Relative frequency of arrival times to planar targets from N = 1 × 106 KMC arrival
times, exact solution (one target case), and hybrid approaches (asymptotic and boundary integral).
Schematics of target arrangements are shown as insets.

5.2. Homogenization. In this example, we consider the case of a single target
with a mix of absorbing and reflecting portions. This describes the scenario where an
impermeable cellular membrane surface is covered in surface receptors. We determine
the full distribution of arrival times using both the KMC method and the hybrid-
asymptotic homogenization result (2.18). In the application of the hybrid approach,
we use the analytically determined logarithmic capacitance (2.18), or equivalently the
effective radius, in the single patch result.

In the two examples shown in Figure 10, we take a circular absorbing target
centered at the origin with radius ε = 0.05. The target itself features M equally spaced
absorbing windows centered at the roots of unity (cos 2πk

M , sin 2πk
M ). The windows

occupy a combined fraction f, and each has common angular extent σ = 2πf
M . In each

case we use the homogenized formula (2.18c) to obtain the logarithmic capacitance d
and then apply the result (2.11) for N = 1.

The relevant parameters obtained for the two examples are

Ex 1: M = 12, f =
1

3
, d = 0.8978, x0 = [5, 0];(5.1a)

Ex 2: M = 8, f =
1

8
, d = 0.6657, x0 = [2, 0].(5.1b)

In Figure 10(b), (d) we show good agreement between the two methods, while in
Figure 10(a), (c) we display a visualization of the solution to the capacitance problem
(2.5). We remark that the homogenization effect can be seen through the gradual
radial symmetrization of the contours.

5.3. Clustering. In this section, we use two examples of clustered target con-
figurations to compare results from the KMC method with both the asymptotic and
BIM approaches. In addition, we show the effectiveness of homogenization where the
clustered target configuration is replaced by a single circular target of appropriately
chosen radius. The specific parameters are given by

Ex 1: xk =
3

2

(
cos

2πk

5
, sin

2πk

5

)
, k = 1, . . . , 5, x6 = (0, 0),

r1,...,6 = 0.1, x0 = (10, 0);(5.2a)
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1306 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE

(a) Ex 1: M = 12, f = 1/3. (b) Ex 1: M = 12, f = 1/3.

(c) Ex 2: M = 8, f = 1/8. (d) Ex 2: M = 8, f = 1/8.

Fig. 10. Results from the KMC and asymptotic method on the homogenization examples (5.1).
Left panels: Target (scaled to unity radius) with layout of absorbers. Contours indicate the numerical
solution of (2.5). Right figures: Agreement between the full arrival time densities obtained from
N = 105 KMC arrival times and the hybrid-asymptotic method.

Ex 2: xk =
3

2

(
cos

2πk

8
, sin

2πk

8

)
, k = 1, . . . , 8,

r1,...,8 = 0.05, x0 = (5, 0).(5.2b)

The numerical method described by (2.20) allows for the computation of the
logarithmic capacitance for each of the absorbing sets (cf. Figure 11(a),(d)). For the
parameters specified in (5.2), we determine d = 1.2295 (Ex 1) and d = 1.2737 (Ex
2). The logarithmic capacitance can be interpreted as the effective radius of a single
target that reflects the capture potential of the cluster. As with the homogenization
example in section 5.2, we observe that replacing complex configurations with a single
target of appropriately chosen radius produces a very accurate representation of the
full arrival time distribution. However, the single target representation does reduce
certain directional information encoded in the distribution of arrivals over the targets
in the cluster. The hybrid-asymptotic method can rapidly determine the fluxes by
numerical inverse Laplace transform of Ĵj = 2πDνjSj , where each Sj is determined by
(2.10). In Figure 11(b),(e) we show normalized fluxes into four sets of traps that are
symmetrically arranged with respect to the initial location. The traps aligned towards
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ARRIVAL TIMES OF PLANAR DIFFUSION 1307

-2 -1 0 1 2

-2

-1

0

1

2

(a) Numerical solution
of (2.5) yielding log-
arithmic capacitance
d = 1.2295.

100 101 102 103 104
0.0
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Front (Asymptotics)
Right (Asymptotics)
Back (Asymptotics)
Center (Asymptotics)
Front (BIM)
Right (BIM)
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(b) Normalized target fluxes. (c) Agreement of capture times
(from KMC) with asymptotic and
homogenized densities.

-2 -1 0 1 2
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2

(d) Numerical solution
of (2.5) yielding loga-
rithmic capacitance d =
1.2737.

100 101 102 103
0.0

0.2

0.4

0.6

0.8

1.0
Front (Asymptotics)
Right (Asymptotics)
Top (Asymptotics)
Back (Asymptotics)
Front (BIM)
Right (BIM)
Top (BIM)
Back (BIM)

(e) Normalized target fluxes. (f) Capture times (from KMC)
with asymptotic and homogenized
densities.

Fig. 11. Comparison of the full asymptotic density with those arising from the KMC method,
boundary integral method (BIM), and homogenization (replacing the target cluster with a single
absorbing target). Panels (a) and (d) display schematics of the target configuration. Panels (b) and
(e) show fluxes over groups of receptors as colored in the schematic. Panels (c) and (f) favorably
compare homogenized and asymptotic densities of to those derived from N = 105 KMC times.

the initial data accrue most of the inbound flux, while the peaks, representing most
likely arrival times at a particular target, are ordered by their distance to the initial
location. The distribution of fluxes over the targets encodes directional information
that can imply the source location [25].

5.4. Splitting probabilities. In this section, we demonstrate the convergence
of the dynamic fluxes to the static splitting probabilities {φk(x)}Nk=1, where φk(x)
denotes the probability that a diffusing particle originally at x reaches the kth target
before any others. For exposition purposes, we focus on the scenario of completely
absorbing targets. These probabilities satisfy the exterior Laplace problem

∆φk = 0, x ∈ R2 \ Ω; φk(x) = δjk, x ∈ ∂Aj , j = 1, . . . , N ;(5.3a)

φk(x) finite as |x| → ∞,(5.3b)

where δjk is the Kronecker delta. The asymptotic solution of (5.3) as ε → 0 is
developed along similar lines to section 2 (also see section 5 of [24]). Accordingly, we
present the solution as ε→ 0 directly as
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1308 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE

φk(x) ∼ 2π
N∑
j=1

νjAjG0(x; xj) + φ̄, G0(x; y) =
1

2π
log |x− y|,(5.4a)

where the (N + 1) constants (A1, . . . , AN , φ̄) are determined from the linear system,

N∑
j=1

νjAj = 0; −Aj + 2π
N∑
i=1
i6=j

νiAiG0(xj ; xi) + φ̄ = δjk, j = 1, . . . , N.(5.4b)

The gauge functions νj = −1/ log εdj are defined in (2.6). We remark that since

capture is guaranteed for planar Brownian motion, we have that
∑N
k=1 φk(x) = 1.

To demonstrate this theory, we compare these static splitting probabilities with
the time-dependent fractional signals

qk(t) =

∫ t
0
Jk(η)dη∑N

j=1

∫ t
0
Jj(η)dη

, k = 1, . . . , N,(5.5)

into each target (see Figure 12) obtained from the hybrid-asymptotic method (section
2). We draw attention to two important conclusions from this example. First, the
dynamic signal converges to the static splitting probabilities on a very long timescale.
For many physically or biologically relevant timescales, this calls into question the
usefulness of using splitting probabilities for inference [25] purposes. Second, the or-
dering of the relative fluxes into each target changes over the displayed time interval.
Specifically, at short times (t / 101), target 1 captures almost all of the signal and in-
deed is the most significant absorber over the entire timeline. Target 1 is the smallest
target but closest to the initial location, demonstrating that this distance is a sig-
nificant indicator of capture ability. Later in the timeline, we see that targets 2 and
3 interchange their prominence in signal (around t ≈ 104), implying that proximity
to the initial location promotes faster capture at short times, while at larger times
target size can play a more significant role. Importantly, none of these subtleties are
apparent from the static splitting probabilities, highlighting the necessity of obtaining
full time-dependent statistics.

0 2 4 6 8 10 12

0

2

4

6

8

10

12

(a) Schematic of target configuration.

100 102 104 106 108
0.0

0.2

0.4

0.6

0.8

1.0
Target 1
Target 2
Target 3

1 = 5.24e-01

2 = 2.14e-01

3 = 2.62e-01

(b) Splitting probabilities and dynamic
fluxes.

Fig. 12. (a) A schematic of the three target configuration from section 5.1. (b) The fractional
signal qk(t) (5.5) into each target together with the steady state splitting probabilities φk obtained
from (5.4).
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ARRIVAL TIMES OF PLANAR DIFFUSION 1309

Absorbing
Reflecting

Fig. 13. A tricky first passage time distribution to evaluate using either KMC or hybrid-
asymptotic methods.

6. Discussion. In this work we have demonstrated several methodologies for
obtaining arrival time statistics of diffusing particles to complex sets of absorbing
targets in planar regions. The Laplace transform approach seeks to solve an equation
of modified Helmholtz type by either an asymptotic expansion for well-separated
targets or a boundary integral representation. In both cases the target geometries
can be very general, but for the boundary integral method, they are presently limited
to purely absorbing targets. In future work, we aim to extend to targets with both
absorbing and reflecting components. The inverse transform is obtained by quadrature
of the Bromwich integral. To complement these approaches, we developed a particle-
based kinetic Monte Carlo (KMC) method that can resolve the arrival distribution
for very general configurations of targets and boundary sets. These methods are
rapid, accurate, and easy to implement. The hybrid-asymptotic method is particularly
suited to the scenario of well-separated targets, while the KMC method is applicable
to general geometric scenarios and varied boundary conditions.

There are a few conclusions that emerge from our study. Homogenization is a
powerful technique that accurately reproduces the first passage time distributions of
complex target sets by replacing them with a single circular target of appropriately
chosen radius. However, homogenization brings limitations with it, particularly as
it coarse-grains the spatial distribution of arrivals across the targets. The relative
fraction of particles that arrives across a distribution of targets has directional in-
formation that can be used to infer source location [25]. Additionally, the dynamics
available from the full distribution of arrival statistics reveals the limitations of using
static information, e.g., splitting probabilities, which are only representative of very
long-time behavior. Our example of dynamic splitting probabilities (section 5.4) sug-
gests that there are several timescales over which arrival statistics can be important
and that the relevant physical or biological timescale must be considered when infer-
ring source location from arrival information. Coarse-graining is also unreasonable for
nonhomogeneous distributions of grains that arise in applications such as microscale
erosion [13, 38].

While the methods developed here are quite general, there are certain scenar-
ios where they fail and new approaches are needed. For example, in the scenario
where there are numerous targets but only a few are reactive (Figure 13), particles
must navigate a torturous route through inert targets to reach the destination. The
combination of targets with either purely Neumann or Dirichlet boundary conditions
hampers all the approaches developed here. This scenario is particularly challenging
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1310 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE

for the KMC method due to the fact that on a reflecting target surface, the particle
will tend to perform a surface diffusion characterized by many small jumps. The
very long wait time for a large jump necessary to leave the target vicinity means
that the convergence rate is greatly reduced. To address these shortcomings, we plan
extensions to the boundary integral formulation.

Appendix A. Two dimensional problem arrival problem. Arrival time
and angle distribution. For a particle with diffusivity D originally at x ∈ (b, 0),
the occupation density in r = |x| > a satisfies

pt = D

(
prr +

1

r
pr +

1

r2
pθθ

)
, r > a, θ ∈ (−π, π), t > 0;(A.1a)

p(a, θ, t) = 0, θ ∈ (−π, π), t > 0;(A.1b)

p(r, π, t) = p(r,−π, t), r > a, t > 0;(A.1c)

p(r, θ, 0) =
1

r
δ(r − b)δ(θ), r > a, θ ∈ (−π, π).(A.1d)

Our goal is to determine closed form expressions for the quantities

P (t) =

∫ π

θ=−π

∫ ∞
r=a

p(r, θ, t) rdrdθ, [Survival probability](A.2a)

C(t) = 1−
∫ π

θ=−π

∫ ∞
r=a

p(r, θ, t) rdrdθ, [Capture probability](A.2b)

S(t) = −P ′(t). [Arrival time distribution](A.2c)

Applying the divergence theorem to S(t) = −P ′(t), we see that

S(t) = −
∫ π

θ=−π

∫ ∞
r=a

pt(r, θ, t) rdrdθ(A.3)

= −D
∫ π

θ=−π

∫ ∞
r=a

(rpr)r drdθ = Da

∫ π

θ=−π
pr(a, θ, t) dθ.

To obtain the flux pr(a, θ, t), we nondimensionalize by introducing variables

p(r, t) =
1

a2
p̃(r̃, θ, t̃), r̃ =

1

a
r, t̃ =

D

a2
t, R =

b

a
,(A.4a)

so that S(t) = D
a2

∫ π
θ=−π p̃r̃(1, θ, t̃) dθ. Under the change of variables (A.4a), (A.1)

becomes

p̃t̃ =

(
p̃r̃r̃ +

1

r̃
p̃r̃ +

1

r̃2
p̃θθ

)
, r̃ > 1, θ ∈ (−π, π), t̃ > 0;(A.4b)

p̃(1, θ, t̃) = 0, θ ∈ (−π, π), t̃ > 0;(A.4c)

p̃(r̃, θ, 0) =
1

r̃
δ(r̃ −R)δ(θ), r̃ > 1, θ ∈ (−π, π).(A.4d)
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ARRIVAL TIMES OF PLANAR DIFFUSION 1311

After dropping the tildes, we solve for the dimensionless occupation density p(r, θ, t)
by transforming to Laplace space p̂(r, θ, s) =

∫∞
t=0

p(r, θ, t) e−stdt to see that (A.4b)
satisfies the PDE

p̂rr +
1

r
p̂r +

1

r2
p̂θθ − sp̂ = −1

r
δ(r −R)δ(θ), r > 1, θ ∈ (−π, π), s ∈ C.(A.5)

The separable solution that is continuous and bounded and satisfies p̂(1, θ, s) = 0 is

p̂(r, θ, s) =



∞∑
n=0

An

[
In(
√
sr)− In(

√
s)

Kn(
√
s)
Kn(
√
sr)

]
cosnθ, 1 < r ≤ R;

∞∑
n=0

An

[
In(
√
sR)

Kn(
√
sR)
− In(

√
s)

Kn(
√
s)

]
Kn(
√
sr) cosnθ, r > R,

(A.6)

with constants An determined from incorporation of the Dirac source to be

An = Kn(
√
sR)

[∫ 2π

θ=0

cos2(nθ) dθ

]−1

=

{
1

2πK0(
√
sR), n = 0,

1
πKn(

√
sR), n ≥ 1.

(A.7)

Correspondingly, the flux over r = 1 is given in series form by

p̂r|r=1 =
1

2π

K0(R
√
s)

K0(
√
s)

+
1

π

∞∑
n=1

Kn(R
√
s)

Kn(
√
s)

cosnθ.(A.8)

To invert the Laplace transform of p̂r|r=1, we must evaluate the Bromwich integrals

1

2πi

∫ c+i∞

c−i∞

Kn(
√
sR)

Kn(
√
s)

est ds, n = 0, 1, 2, . . . ,

where c is chosen to lie to the right of any poles of the integrand. Since the only
singularity is a branch cut on the negative real axis, we deform the contour to a
hairpin along the negative real axis and introduce the substitution s = −w2. The
integral becomes

1

πi

∫ ∞
0

[
Kn(iωR)

Kn(iω)
− Kn(−iωR)

Kn(−iω)

]
ωe−ω

2t dω

=
2

π

∫ ∞
0

[
Jn(ω)Yn(ωR)− Jn(ωR)Yn(ω)

Y 2
n (ω) + J2

n(ω)

]
ωe−ω

2t dω,

where we have used Kn(−iz) = π
2 [−Yn(z) + iJn(z)]. The expression for the flux

J (t, θ) = pr|r=1 is now

J (t, θ) =
1

2π
χ0(t) +

1

π

∞∑
n=1

χn(t) cosnθ, θ ∈ (−π, π), t > 0,(A.9a)

where the coefficients are

χn(t) =
2

π

∫ ∞
0

[
Jn(ω)Yn(ωµ)− Jn(ωµ)Yn(ω)

Y 2
n (ω) + J2

n(ω)

]
ωe−ω

2t dω.(A.9b)

The total flux to the inner disk, and distribution of arrival times, is given by

χ0(t) =

∫ 2π

0

J (t, θ) dθ =
2

π

∫ ∞
0

[
J0(ω)Y0(ωR)− J0(ωR)Y0(ω)

Y 2
0 (ω) + J2

0 (ω)

]
ωe−ω

2t dω.(A.10)
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1312 CHERRY, LINDSAY, NAVARRO HERNÁNDEZ, AND QUAIFE

Returning to dimensional time through (A.4a), we have that S(t) = D
a2χ0(Da2 t). To

determine C(t) and P (t) = 1− C(t), we note from P ′(t) = −S(t) that

P (t) = 1−
∫ D

a2
t

0

χ0(η) dη, C(t) =

∫ D
a2
t

0

χ0(η) dη.(A.11)

For the dimensional arrival time t = t∗, the conditional distribution of arrival angles
θ is then given by J (Da2 t

∗, θ)/χ0(Da2 t
∗) with cumulative distribution

F (θ; t∗) =

∫ θ

−π

J (Da2 t∗, η)

χ0(Da2 t∗)
dη =

θ + π

2π
+

1

π

∞∑
n=1

χn(Da2 t∗)

nχ0(Da2 t∗)
sinnθ, θ ∈ (−π, π).

(A.12)
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