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Abstract
How to usefully encode compositional task
structure has long been a core challenge in AI.
Recent work in chain of thought prompting
has shown that for very large neural language
models (LMs), explicitly demonstrating the in-
ferential steps involved in a target task may
improve performance over end-to-end learning
that focuses on the target task alone. How-
ever, chain of thought prompting has significant
limitations due to its dependency on huge pre-
trained LMs. In this work, we present composi-
tional fine-tuning (CFT): an approach based on
explicitly decomposing a target task into com-
ponent tasks, and then fine-tuning smaller LMs
on a curriculum of such component tasks. We
apply CFT to recommendation tasks in two do-
mains, world travel and local dining, as well as
a previously studied inferential task (sports un-
derstanding). We show that CFT outperforms
end-to-end learning even with equal amounts
of data, and gets consistently better as more
component tasks are modeled via fine-tuning.
Compared with chain of thought prompting,
CFT performs at least as well using LMs only
7.4% of the size, and is moreover applicable to
task domains for which data are not available
during pretraining.

1 Introduction

Philosophy, linguistics, and computer science have
long debated how and whether to explicitly encode
the compositionality of task structure in models
of language understanding and generation (Fodor
and Pylyshyn, 1988). The prevailing paradigm
in today’s NLP is end-to-end learning, in which
the learning of compositional task structure is sub-
sumed by the learning of a complex target task,
with the support of increasingly powerful language
models (LMs) (Devlin et al., 2019; Raffel et al.,
2020; Brown et al., 2020).

Recent work in compositionality in NLP has
been mostly limited to semantic parsing and multi-
hop reasoning for the purpose of Q&A (Shaw et al.,

Figure 1: Component tasks involved in a recommenda-
tion prompt (above) and in sports understanding (below).
In compositional fine-tuning (CFT), component tasks
shaded in light blue precede those in light purple.

2021; Wolfson et al., 2020; Min et al., 2019). How-
ever, a series of recent works have proposed gen-
erating “chains of thought” as a means to expand
an LM’s ability to reason beyond a single forward
pass (Wei et al., 2022; Zelikman et al., 2022; Nye
et al., 2021). The success of chain of thought ap-
proaches suggests broader opportunities to study
the use of compositional structure as a means to
improve the learning of complex tasks, rather than
as a byproduct of end-to-end learning.

Breaking down a complex task into sub-tasks is a
ubiquitous construct in human problem-solving. In
machine learning, it has inspired curriculum learn-
ing (CL) (Bengio et al., 2009), which hypothesizes
that a model should start learning from easier con-
cepts and progress to harder ones, as humans do.
In this work, we explore the idea of CL through
the lens of incremental task complexity, which is
fundamentally different from prior works in NLP
centered on incremental example difficulty (e.g.,
organizing training data by increasing sequence
length or decreasing word frequency).



We propose compositional fine-tuning (CFT), a
fine-tuning strategy in which sub-tasks are orga-
nized as components of a curriculum that progres-
sively teaches a target task, as shown visually in
Figure 1. CFT is novel in two ways: it is a CL
approach in NLP that focuses on incremental task
complexity instead of incremental example diffi-
culty; and unlike chain of thought prompting, CFT
does not depend on huge, pretrained LMs—it relies
on smaller, fine-tuned LMs instead. This is advan-
tageous because the largest LMs are hard to access
and expensive, and their pretraining data, while
vast, still fail to cover a wide range of domains.

We focus on conversational recommendation,
which is especially rich in complex tasks (Bursztyn
et al., 2021). As shown in Figure 1, a relatively
short recommendation prompt may comprise com-
ponent tasks as diverse as understanding a user
preference—related to pragmatics—and finding
an item that correctly matches the semantics of
such a preference. Despite this diversity in compo-
nent tasks, recommendation tasks are still underex-
plored in the NLP community (Penha and Hauff,
2020; Malkiel et al., 2020; Wang et al., 2021).

We make the following contributions:

• We contribute a new schema for generating
recommendation datasets, which we instan-
tiate in two domains: world travel and local
dining. By design, LMs are more likely to
hold prior knowledge about world cities than
about local restaurants, making our released
dataset challenging to different degrees.

• We propose compositional fine-tuning
(CFT): an approach based on decomposing a
target task into component tasks, and then fine-
tuning smaller LMs on a curriculum of such
component tasks. We instantiate CFT in our
recommendation tasks as well as the sports
understanding task from (Wei et al., 2022).

• We present experiments1 showing that CFT
consistently outperforms end-to-end learning,
with up to 32% gains in the local dining do-
main given equal amounts of training data.
When compared to chain of thought prompt-
ing, we further find that CFT performs equally
or better while requiring LMs only 7.4% of
the size (as seen in Table 1).

1Data and code fully available at: https://github.
com/vbursztyn/compositional-fine-tuning

Base
Model

Method
Score on
Decision

Templates
DaVinci 8-Shot Prompting 0.83 ± 0.08
DaVinci 8-Shot Chain of Thought 0.98 ± 0.02

Curie 8-Shot Chain of Thought 0.50 ± 0.12

Curie
CFT on Factual Statements, Factual

Comparisons, and Decision Templates
0.95 ± 0.01

Base
Model

Method
Score on
Decision

Templates
DaVinci 8-Shot Prompting 0.54 ± 0.09
DaVinci 8-Shot Chain of Thought 0.55 ± 0.07

Curie 8-Shot Chain of Thought 0.50 ± 0.06

Curie
CFT on Factual Statements, Factual

Comparisons, and Decision Templates
0.74 ± 0.05

Table 1: Comparison to chain of thought in the world
travel domain (above) and local dining (below). CFT
performs as well as chain of thought prompting for
world cities and 35% better for local restaurants,
with an LM only 7.4% of the size (13B vs 175B).

2 Related Work

2.1 Chain of Thought Approaches

Chain of thought approaches are the most recent
stream of research connected to ours (Wei et al.,
2022; Zelikman et al., 2022; Gu et al., 2021; Nye
et al., 2021; Talmor et al., 2020; Rajani et al., 2019).
Wei et al. (2022) recently proposed chain of thought
prompting, the idea that very large LMs can do
much better at “system 2 tasks”—tasks that require
deeper reasoning skills, such as math problems or
symbolic reasoning—if they are given examples in
the prompt that explicitly describe the intermediate
steps of the task. Although effective in improving
accuracy, its dependency on huge, pretrained LMs
still limits chain of thought prompting. In contrast,
our CFT approach shows similar gains vs end-to-
end learning on our tasks, but in a setting with LMs
that are more than an order of magnitude smaller.

Among these previous works, we highlight (Tal-
mor et al., 2020) as an attempt to study the effect
of factual knowledge injection in LM performance
on tasks that involve chaining different facts. In
our ablation studies in §5, we cover a configuration
that is analogous to theirs and show improvements
from having an additional component task.

2.2 Compositionality in Question Answering

Many recent works in the Q&A literature have
strived to study compositionality on either a ques-
tion or system level. At the question level, learning
to decompose a question into smaller questions
and reasoning over these sub-questions in order to

https://github.com/vbursztyn/compositional-fine-tuning
https://github.com/vbursztyn/compositional-fine-tuning


arrive at a final answer (multi-hop reasoning) has
been a common goal (Khot et al., 2020; Min et al.,
2019; Yang et al., 2018; Khashabi et al., 2018).
At the system level, investigating a system’s abil-
ity to generalize from question types seen during
training (e.g., “Who directed x?”) to new, unseen
instances of the same type (e.g., “Who directed In-
ception?”) has attracted increasing attention (Key-
sers et al., 2019). Further works have explored
both problems—multi-hop reasoning and composi-
tional generalization—through the lens of semantic
parsing (Wolfson et al., 2020; Shaw et al., 2021).

In contrast, we focus on a new schema of recom-
mendation tasks, where by design the decomposi-
tion required to perform the task is not transparent
from the question itself but is known a priori across
a variety of domains. This schema allows us to eval-
uate the effectiveness of a novel CFT approach in
two domains, and to compare it against the recent
chain of thought prompting approach.

2.3 Curriculum Learning (CL)

The seminal work in CL (Bengio et al., 2009) in-
cluded a language modeling experiment in which
training data were ordered from most to least fre-
quent based on corpus statistics. Since then, many
works in NLP have explored different measures of
example difficulty, as simple as sequence length
for NLG (Rajeswar et al., 2017) and as complex
as estimates based on model performance (Sachan
and Xing, 2016; Xu et al., 2020). However, such
a focus on example difficulty has kept these works
distant from the “shaping hypothesis” that inspired
(Bengio et al., 2009): the idea that a complex task
can be taught by breaking it into a sequence of
smaller steps of incremental complexity (Krueger
and Dayan, 2009). In this work, instead of incre-
mental example difficulty, we explore a different
approach to incremental complexity based on orga-
nizing training data around component tasks.

To the best of our knowledge, the closest works
can be found in the domain of spatial navigation
instructions (Dan et al., 2021; Lake and Baroni,
2018), in which an LM starts with simple block-
moving instructions and progresses to composi-
tional ones. However, our work differs in the diver-
sity of our component tasks, in the more extensive
experimentation that ensues, and in the applicabil-
ity of CFT to other similarly diverse domains.

3 Problem Definition

The recommendation task depicted in Figure 1
takes as input a set of items (set I) and a set of user
preferences (set P ), such that Recommend(P, I)
outputs the item that best matches the user prefer-
ences. In its simplest form, we have a pair of items
I = {i1, i2} and a single preference P = {p}, such
that Recommend({p}, {i1, i2}). This form maps
naturally to what we call a “decision template,”
composed of two sentences: one with a prefer-
ence (e.g., “You don’t like cold weather.”), and
another with a sufficiently different pair of items
(e.g., “Between London and Lisbon, you should
visit” → Lisbon). We use the term “decision” be-
cause Recommend(P, I) can be considered an in-
stance of a decision task where I represents options
and P expresses the criteria to be applied.

Breaking down Recommend({p}, {i1, i2})
into component tasks, the first task consists of
comparing two items along a given attribute. This
can be defined as Compare(a, o, {i1, i2}) that
takes as input an attribute a (e.g., temperature),
an order o (e.g., higher), and the two items, and
then outputs the item that satisfies the comparison.
We call this task a “factual comparison” (e.g.,
“Between London and Lisbon, the city with
warmer weather is” → Lisbon), which is further
decomposed into “factual statements” that simply
enunciate the attribute value of an item (e.g., “The
average temperature in Lisbon is” → 17.5C).

With that, a domain D can be formalized as
D = (Ifull, A) where Ifull is the full set of
items and A the set of attributes. Considering
the world travel domain, for example, Ifull may
represent a list of well-known cities and A =
{temperature, population} the average tempera-
ture and total population, respectively. We instanti-
ate this schema in our experiments in §5, but it can
be used to generate new recommendation datasets
or repurposed for other decision tasks.

3.1 A Challenging Task for Pretrained LMs

Even state-of-the-art LMs such as GPT-3 (Brown
et al., 2020) struggle at this recommendation task,
as evidenced by experiments fully described in §5.
As shown in Table 1, 175B parameter DaVinci in 8-
shot mode can accurately recommend 83% of test
cases in the world travel domain, but only 55% in
the local dining domain, which cannot be improved
with chain of thought prompting. As shown in
Tables 2 and 3, performance is very low with 13B



parameter Curie in 0-shot mode: only 6% of test
cases lead to correct recommendations in the world
travel domain, and only 18% in the local dining
domain. It is with this challenge in mind that we
propose compositional fine-tuning (CFT).

4 Compositional Fine-Tuning (CFT)

CFT consists of three sequential steps: Decompose,
where we break the complex task into component
tasks; Demonstrate, where we generate examples
for each of these component tasks; and Fine-Tune,
where we organize the training data according to
task-level compositionality.

4.1 Decompose

For the Decompose step, Figure 1 and §3 establish
the component tasks behind decision templates. In
this work, the decomposition is performed manu-
ally in order to evaluate whether using composi-
tional structure during fine-tuning can potentially
improve the learning of complex tasks. This as-
sumption is similar in spirit to the step-by-step
“exemplars” manually provided in chain of thought
prompting (Wei et al., 2022). In line with their
findings, we believe that the confirmation of our
hypothesis helps to motivate further research in
automating this step.

4.2 Demonstrate

Once we have a diagram with component tasks, we
need to demonstrate them, preferably with some
degree of natural language variation. In our recom-
mendation dataset, we implement a single factual
comparison (e.g., comparing London and Lisbon
with a = temperature and o = higher) using two
different phrasings, and the corresponding decision
template using eight different phrasings.

For factual comparisons, the first phrasing di-
rectly refers to the attribute value (e.g., “Between
London and Lisbon, the city with higher average
temperature is” → Lisbon), and the second phras-
ing indirectly refers to the same attribute value (e.g.,
“Between London and Lisbon, the city with warmer
weather is” → Lisbon).

For decision templates, following (Bursztyn
et al., 2021), each possible a and o combination
(i.e., each preference) is phrased in either a posi-
tive form (e.g., “You like warmer weather.”) or a
negative form (e.g., “You don’t like cold weather.”).
Additionally, each of these two phrasings can be
rephrased in the first- or third-person (“Some-

one...”), as well as in a subjunctive form (e.g., “You
are looking for a city with warmer weather. If I
were you, I would visit”).

Completing our setting, as seen in §3, factual
statements are represented by a single phrasing that
simply enunciates an attribute value. Therefore,
with |A| = 2, each pair of items yields four fac-
tual statements, eight factual comparisons, and 32
decision templates.2

4.3 Fine-Tune
Once all these phrasings are populated with item
pairs from one of our two domains, we are done
generating our training data. For the Fine-Tune
step, we organize such data according to compo-
nent tasks’ dependencies. As seen in Figure 1, there
are tasks that do not depend on any other (in light
blue), while there are tasks that do (light purple).

From left to right, we consider each colored layer
a phase in our curriculum: the first phase includes
data for factual statements and negative preference
interpretations; and the second phase includes fac-
tual comparisons and decision templates. As ex-
plained in §5.4, negative preference interpretations
are a small component task that is useful when de-
cision templates are partially seen during training.

Within each phase, we find empirical benefits in
shuffling training data. We put forward two poten-
tial explanations for that. First, in earlier phases,
shuffling ensures that all component tasks included
in a phase are equally learned by the end of it,
helping in the next one. Second, in later phases,
shuffling should also help training to converge be-
cause these later tasks are increasingly similar to
the target task.

5 Experiments

Considering our problem and CFT, we pose the
following questions:

• RQ1: How does CFT compare with end-to-
end learning?

• RQ2: How does CFT compare with chain of
thought prompting?

We conduct four experiments to answer RQs 1
and 2, leveraging data from two domains: world
travel, and local dining. World travel represents a
less challenging scenario, considering that the LM
is more likely to have prior knowledge about world

2Fully available at: https://bit.ly/3xeP8E1

https://bit.ly/3xeP8E1


cities and their various attributes. Local dining,
conversely, represents a more challenging scenario,
as the LM is less likely to exhibit any prior knowl-
edge. Our experiments are based on GPT-3’s Curie
model (13B parameters), which was the largest LM
available for fine-tuning at that time.3

5.1 Data

Each domain comprises two attributes. For world
cities, we have A = {temperature, population}
where average city temperatures are obtained
from Wikipedia4 and city populations from Sim-
pleMaps 2019.5 After merging items from both
sources, we end with 347 well-known cities (>50k
inhabitans) from around the globe, such that
Dc = (Ifullc , {temperature, population}) and
|Ifullc | = 347. For local restaurants, we ran-
domly sample 240 restaurants from the city with
most restaurants in the Yelp dataset6, Toronto.
We have A = {price, distance} where restau-
rant prices are obtained from Yelp and distances
to a hypothetical location are randomly gener-
ated, thus limiting the LM’s access to prior knowl-
edge in this scenario. With that, we have Dr =
(Ifullr , {price, distance}) and |Ifullr | = 240.

In terms of component tasks, we have 694 fac-
tual statements for the cities domain and 480 for
restaurants, covering two attributes per item. When-
ever factual statements are provided in CFT, they
always cover Ifull entirely in order to give the LM
full knowledge of the attribute values.

However, for factual comparisons and decision
templates, we wish to evaluate the LM’s ability to
generalize to cities and restaurants not seen in such
statements during training. Therefore, we split
Ifull between training and test items before we
generate item pairs. We keep only 30% of Ifull for
training, and we sample from the remaining 70%
when testing a fine-tuned LM. This way, cities and
restaurants used at test time are only seen during
training in factual statements, never in factual com-
parisons or decision templates.

When generating examples from these itemsets,
we enforce minimum differences in attribute values:
for pairs of cities, a 10C difference in temperature
and a 2.5M difference in population; and for pairs

3https://beta.openai.com/docs/engines
4https://en.wikipedia.org/wiki/List_

of_cities_by_average_temperature
5https://simplemaps.com/data/

world-cities
6https://www.yelp.com/dataset

of restaurants, a 1 dollar-sign difference in price
and a 3 mile difference in distance. Factual com-
parisons and decision templates are only populated
with item pairs that exhibit at least these differences
in attribute values.

When applying these rules to the training items,
we end with roughly 1,970 pairs of cities and 2,320
pairs of restaurants. In combination with the phras-
ings in §4.2, we have roughly 15.8k factual com-
parisons for cities and 18.5k for restaurants; and
63k decision templates for cities and 74.2k for
restaurants. To make sure that factual comparisons
and decision templates are represented by similar
amounts of training data, we sample decision tem-
plates until the number of tokens match that of
factual comparisons.

Lastly, across all factual comparisons and
decision templates, we flip the order of the
items (e.g., London and Lisbon) with a 50%
chance so that the LM cannot use position
as a short-cut for the answer. Our data is
made fully available to the research commu-
nity at https://github.com/vbursztyn/
compositional-fine-tuning

5.2 Evaluation

Once we fine-tune Curie on a given CFT configura-
tion, we may evaluate the model on a task from the
second phase—either factual comparisons or deci-
sion templates—in a given domain. We generate
examples by applying the same rules seen in the
generation of training data, but now applied to the
held-out test items. When evaluating factual com-
parisons, we report the average performance on
1.6k test cases (200 examples per phrasing, times
eight phrasings); and when evaluating decision tem-
plates, we report the average performance on 6.4k
test cases (200 times 32 phrasings).

A single test case is evaluated by generating the
top 5 predictions with greedy decoding. If the
answer is more likely than the wrong candidate,
then this test case score is 1; otherwise, it is 0.

5.3 Experiment 1: The Role of Components

In our first experiment, we want to answer RQ1
by examining the role of component tasks in the
learning of our complex task. To this end, we focus
on the deepest dependencies of decision templates,
i.e., factual comparisons and factual statements.
We ablate each of these component tasks in dif-
ferent CFT configurations while measuring model

https://beta.openai.com/docs/engines
https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature
https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature
https://simplemaps.com/data/world-cities
https://simplemaps.com/data/world-cities
https://www.yelp.com/dataset
https://github.com/vbursztyn/compositional-fine-tuning
https://github.com/vbursztyn/compositional-fine-tuning


Model fine-tuned on Average score on
Factual

Statements
Factual

Comparisons
Decision

Templates
Factual

Comparisons
Decision

Templates
No No No 0.16 ± 0.06 0.06 ± 0.07
Yes No No 0.11 ± 0.07 0.27 ± 0.15
No Yes No 0.90 ± 0.02 0.54 ± 0.17
No No Yes 0.74 ± 0.16 0.89 ± 0.04
Yes Yes No 0.95 ± 0.02 0.63 ± 0.18
Yes No Yes 0.78 ± 0.22 0.92 ± 0.02
No Yes Yes 0.89 ± 0.03 0.88 ± 0.03
Yes Yes Yes 0.96 ± 0.01 0.95 ± 0.01

Table 2: Experiment 1 in the world travel domain.
CFT with factual statements or factual comparisons
consistently increases performance. The best config-
uration includes all tasks (row #8, in boldface).

Model fine-tuned on Average score on
Factual

Statements
Factual

Comparisons
Decision

Templates
Factual

Comparisons
Decision

Templates
No No No 0.16 ± 0.04 0.18 ± 0.05
Yes No No 0.00 ± 0.00 0.13 ± 0.06
No Yes No 0.52 ± 0.11 0.51 ± 0.10
No No Yes 0.50 ± 0.06 0.52 ± 0.07
Yes Yes No 0.66 ± 0.13 0.54 ± 0.10
Yes No Yes 0.50 ± 0.05 0.55 ± 0.04
No Yes Yes 0.53 ± 0.12 0.53 ± 0.10
Yes Yes Yes 0.75 ± 0.05 0.74 ± 0.05

Table 3: Experiment 1 in the local dining domain.
The best configuration, again with all tasks, outper-
forms the second best (row #6) by 35%.

performance on decision templates. Although per-
formance on decision templates is our primary end-
point, we secondarily measure performance on fac-
tual comparisons. Tables 2 and 3 show the results
of each CFT configuration for world cities and local
restaurants, respectively.

We can see that factual statements consistently
improve performance: on Table 2, they improve
performance by 3-17%, including an 8% improve-
ment of row #8 (the best configuration) relative to
row #7. On Table 3, they improve performance
by 5-40%, with maximum improvement on row #8
(again, the best configuration) over row #7. This
component task has a small footprint—694 factual
statements for cities and 480 for restaurants—and
is the most likely one to be contemplated in end-to-
end learning schemes (e.g., when knowledge bases
are included during training).

We can also see that factual comparisons mono-
tonically increase performance: on Table 2, al-
though there is no change from row #7 to row #4,
they improve row #8 by 3% over row #6. On Table
3, although again there is no change from row #7 to
row #4, they improve row #8 by 35% over row #6.
Therefore, in the best configuration, the effect of
factual comparisons is comparable to that of factual
statements (35% vs 40%). Scores on factual com-
parisons also suggest that the learning of both tasks

Model fine-tuned on Average score on
Total #

of tokens
Factual

Statements
Factual

Comparisons
Decision

Templates
Factual

Comparisons
Decision

Templates
186,413 Yes No Yes 0.78 ± 0.22 0.92 ± 0.02
367,144 Yes No Yes 0.75 ± 0.26 0.93 ± 0.02
367,157 Yes Yes Yes 0.96 ± 0.01 0.95 ± 0.01

Table 4: CFT vs end-to-end learning (plus facts) with
equal amounts of training data for world cities. The gap
practically does not change.

Model fine-tuned on Average score on
Total #

of tokens
Factual

Statements
Factual

Comparisons
Decision

Templates
Factual

Comparisons
Decision

Templates
293,967 Yes No Yes 0.50 ± 0.05 0.55 ± 0.04
581,370 Yes No Yes 0.50 ± 0.10 0.56 ± 0.04
581,379 Yes Yes Yes 0.75 ± 0.05 0.74 ± 0.05

Table 5: CFT vs end-to-end learning (plus facts) with
equal amounts of training data for local restaurants.
Again, the gap practically does not change.

in the second phase of CFT is indeed synergistic.
Interestingly, the second best configuration (row

#6) represents an end-to-end learning scheme with
access to factual knowledge, which is similar to
configurations studied by (Talmor et al., 2020).
However, because factual comparisons and deci-
sion templates were designed to have the same
number of tokens in our CFT configurations, row
#8 has access to almost two times as much training
data as row #6.

For this reason, we run a follow-up experiment to
test if the performance gains are indeed explained
by the presence of more components, and not by
access to more data. We increase the number of
decision templates in row #6 until we have equal
amounts of training data.

On Tables 4 and 5, we can see how the quantity
of training data does not explain the performance
difference. With equal amounts of training data,
our CFT configuration with more component
tasks consistently outperforms end-to-end learn-
ing with factual knowledge: by 2% for world cities,
and up to 32% for local restaurants. Importantly,
CFT yields substantial improvements in the more
challenging scenario where the LM has less prior
knowledge on items, thus a performance that is
further from the upper bound.

5.4 Experiment 2: Attribute Transfer
In our second experiment, we continue to address
the question: Are more component tasks better for
CFT? To complement Experiment 1, we split the
original decision templates data into two folds, one
for each attribute, and we ablate these folds in each
domain while measuring model performance on
the entire set of decision templates.



Model fine-tuned on Average score on

Factual
Statements

Factual
Comparisons

Decision
Templates
(Weather)

Decision
Templates

(Population)

Negative
Preference

Interpretations

Factual
Comparisons

Decision
Templates

No 0.94 ± 0.01 0.84 ± 0.19
No Yes

Yes 0.95 ± 0.01 0.89 ± 0.10
No 0.95 ± 0.01 0.88 ± 0.12

Yes Yes
Yes No

Yes 0.96 ± 0.01 0.90 ± 0.14

Table 6: Experiment 2 for world cities. Adding only 12 negative preference interpretations improves performance
by 2-6% on the two folds.

Model fine-tuned on Average score on

Factual
Statements

Factual
Comparisons

Decision
Templates

(Price)

Decision
Templates
(Distance)

Negative
Preference

Interpretations

Factual
Comparisons

Decision
Templates

No 0.64 ± 0.13 0.56 ± 0.06
No Yes

Yes 0.70 ± 0.08 0.65 ± 0.05
No 0.68 ± 0.13 0.67 ± 0.17

Yes Yes
Yes No

Yes 0.67 ± 0.17 0.69 ± 0.16

Table 7: Experiment 2 for local restaurants. Again, adding only 12 negative preference interpretations improves
performance by 3-16% on the two folds.

On Tables 6 and 7, when analyzing the configu-
rations on rows #1 and #3, we notice that learning
is partially transferred to the unseen attribute, with
performance drops of 7-24% relative to rows #8 of
Tables 2 and 3. We also notice that unseen pref-
erences phrased in the negative form (e.g., “You
don’t like cold weather.”) are the biggest source of
error. Therefore, we add one extra component task
to these CFT configurations: negative preference
interpretations.7

As seen in Figure 1, these interpretations simply
teach the LM to interpret negations (e.g., “You
don’t like cold weather” → “You like warmer
weather”), consisting of only 12 statements for
each domain—a tiny footprint. Interestingly, this
small component task indeed improves perfor-
mance across all configurations: 2-6% for world
cities, and 3-16% for local restaurants. Analyzing
exclusively the decision templates containing nega-
tions, performance improves by an average of 9%
for cities and 15% for restaurants.

5.5 Experiments 3 & 4: Comparison to Chain
of Thought Prompting

In our two final experiments, we want to answer
RQ2 by comparing CFT with chain of thought
prompting. We do this from two perspectives: first,
from the viewpoint of the recommendation tasks
introduced in this work; and second, from the view-
point of sports understanding, a commonsense task
studied by (Wei et al., 2022).

7Fully available at: https://bit.ly/3O0WIce

5.5.1 Recommendation Tasks

We instantiate chain of thought prompting in our
two domains as described in (Wei et al., 2022),
with k = 8 per their code. For each domain, we
manually construct 8 “exemplars” using item pairs
that only exist in the training set. Each exemplar
includes relevant factual statements, how these are
used in a factual comparison, and how this is used
to answer the overarching decision template.8 As
recommended by (Wei et al., 2022), we leverage
pretrained DaVinci (175B parameters), which is
the largest LM we have access to; but we also test
pretrained Curie (13B parameters), which is the
base model for all our CFT runs. Finally, to isolate
the effect of chain of thought, we test DaVinci with
regular 8-shot prompting. Due to the much higher
costs of 8-shot chain of thought prompting with
DaVinci, in these runs we reduced the sample size
to 100 test cases per phrasing (3.2k test cases in
total). Results can be seen on Table 1.

Interestingly, for world cities, chain of thought
prompting with pretrained DaVinci can answer al-
most all test cases (98% of them), which is not too
far ahead of CFT using Curie (95%). Pretrained
DaVinci with regular 8-shot prompting performs
substantially worse (83%), which shows how both
chain of thought prompting and CFT are more ef-
fective in this scenario. However, chain of thought
prompting with pretrained Curie performs as low as
random chance (50%). This suggests that CFT is
capable of similar performance while requiring
an LM only 7.4% of the size (13B vs 175B).

For local restaurants, results are even more favor-

8Prompts available at: https://bit.ly/3rDiwS6
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able for CFT. All approaches based on pretrained
LMs struggle in this more challenging domain, per-
forming only slightly above chance on the price
attribute (up to 65%). CFT is the only approach
capable of answering 74% of all test cases, which
shows a fundamental limitation of chain of thought
prompting when faced with domains where facts
are not as easily accessible.

5.5.2 Sports Understanding
Next, we instantiate CFT in the sports understand-
ing task from (Wei et al., 2022), which consists in
determining if a sentence mentioning a certain well-
known sport player performing a certain sport act is
plausible. Component tasks can be seen in Figure
1. We note that this task is very similar in structure
to the “hypernymy” and “meronymy” tasks from
(Talmor et al., 2020), thus also representing a large
category of inferential tasks.

To gather data for the Demonstrate step, we re-
sort to a similar strategy to (Zelikman et al., 2022):
using the generated chains of thought in (Wei et al.,
2022), we filter all the explanations that lead to a
correct answer. From these 815 examples (origi-
nally 980, given their accuracy of 83% on the task),
we parse 390 unique membership statements and
182 unique sport acts. Our CFT configuration in-
cludes all membership statements and sport acts,
but only 50% of question-answer pairs in a 2-fold
cross-validation scheme. Performance on the two
folds are 95.83% and 95.57%. Therefore, like in
§5.5.1, this again suggests that CFT is capable of
similar performance to chain of thought promping
while requiring an LM only 7.4% of the size.

6 Discussion

Across our experiments, both in our released
dataset and in sports understanding, we found con-
sistent evidence that LMs may benefit from com-
positional structure when learning a complex task.
Although we obtain improvements from three very
different types of component tasks—factual state-
ments, factual comparisons, and negative prefer-
ence interpretations—standard end-to-end learning
schemes tend to overlook the explicit use of com-
positional structure or focus only on factual knowl-
edge. We hope to encourage further research in
other principled, task-agnostic methods for lever-
aging compositional structure in LM fine-tuning.

Compared to chain of thought prompting, meth-
ods based on fine-tuning have at least two advan-
tages. First, 100+B parameter LMs are hard to

access and expensive. When using DaVinci with
8-shot chain of thought prompting, each of our ex-
amples costs USD 7.5 cents,9 which is roughly 50
times more expensive than fine-tuning Curie with
CFT. Second, many domains are not within pre-
training data (e.g., due to proprietary data), so it
is necessary to consider fine-tuning methods that
inject custom data and preserve the LM’s ability to
chain thought. This limitation of strictly prompt-
based methods has been recently noted by (Zhou
et al., 2022), and we emphasize it in light of our
results in the local dining domain.

While CFT certainly requires more data than
chain of thought prompting, interestingly, we found
it to be remarkably more efficient w.r.t model size.
Works leading up to (Wei et al., 2022) have hypoth-
esized that generating intermediate steps expands
an LM’s ability to reason beyond a single forward
pass (Nye et al., 2021); however, CFT suggests that
we have not yet exhausted what can be done within
one forward pass. Considering this optimal use of
smaller models, CFT can be potentially used for
“distilling” a complex multi-step workflow based on
very large LMs—as seen in (Wu et al., 2022)—into
one smaller LM.

We believe that our findings motivate research
in fully automating the steps behind CFT. For the
Decompose step, prior NLP works in decomposi-
tion (Dan et al., 2021; Sakaguchi et al., 2021; Perez
et al., 2020) could be expanded to this context.
Zhou et al. (2022), in particular, point to an in-
teresting direction with “least-to-most prompting.”
We note that the automation of the Decompose step
is also warranted by chain of thought prompting, in
which decomposition is also performed manually.
For the Demonstrate step, automation would en-
tail a few sub-steps: (i) exploring the lexical space
(e.g., the space of possible preferences); (ii) gen-
erating paraphrases to increase natural language
variation (e.g., our phrasings); and (iii) populating
these phrasings with data from a domain of interest
(i.e., Ifull). In contrast, automating the Fine-Tune
step is straightforward.

Finally, any models generated with CFT can be
viewed as components themselves. For example,
if a model is not able to handle larger sets of pref-
erences or items (i.e., |P | > 1 or |I| > 2) in a
decision template without losing performance, then
one potential solution is to use an upstream agent to

9Two requests required, with 625 prompt tokens each.
Querying DaVinci currently costs USD 6 cents per 1k tokens.



break a complex case into smaller ones (i.e., with
|P | = 1 and |I| = 2) and combine their outputs.
Khot et al. (2022) propose a framework than can
be applied to this end.

7 Conclusion & Future Work

In this work, we proposed CFT as an improvement
upon end-to-end learning. To enable research on
this topic, we developed a new schema for gener-
ating recommendation datasets, which we instanti-
ated in two domains. We showed that CFT indeed
consistently outperforms end-to-end learning, as
much as 32% for local dining. Furthermore, we
found evidence suggesting that more component
tasks can be beneficial for CFT. Finally, instantiat-
ing chain of thought prompting in our dataset and
CFT in sports understanding, we found CFT to be
as good or better with LMs only 7.4% of the size.

For future work, we plan to apply CFT to tasks
with even more depth and breadth as in Figure 1, as
well as to conventional spatial navigation datasets
(e.g., SCAN from Lake and Baroni (2018)). At
the same time, we encourage others to test CFT on
the large family of tasks that fit the inference types
already covered in Figure 1: those including facts,
comparisons, criteria interpretations, and decisions,
as seen in the recommendation task; or those in-
cluding facts and assertions, as seen in sports un-
derstanding. We also plan to explore ways for fully
automating the Decompose and Demonstrate steps.

8 Limitations

This work focuses on testing if CFT outperforms
end-to-end learning and chain of thought prompt-
ing in two very different domains. Despite the
positive evidence, it remains to be seen: (i) if task
decomposition can be fully automated, and (ii) if
different decompositions—in the case of tasks that
allow for multiple decompositions—yield similar
results. Both are second-order research questions
that can be pursued once compositionality has been
confirmed to improve performance. Importantly,
both questions have been left open in the initial
chain of thought work as well. We hope that our
results will add to theirs in attracting more attention
to these questions in the future.

Another limitation of this work is that CFT is
not applicable to several decomposition datasets
that have been proposed. For example, a dataset fo-
cused on compositional generalization may include
many different types of questions, each requiring

different types of intermediate steps. CFT is not
designed for intermediate steps that carry out very
heterogeneous logic. Nonetheless, as shown in the
recommendation tasks, CFT is still relevant for a
substantial family of tasks with real-world applica-
bility.

Lastly, this work is limited by its focus on the
English language, and by the use of GPT-3 for its
unique range of model sizes. For example, when
we discuss that CFT on a 13B parameter model
(Curie) is a much cheaper alternative to chain of
thought prompting on a 175B parameter model
(DaVinci), the finding is limited to this setting. It is
important to replicate this work on other languages
and models, which we plan to do as these become
available.
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