
Citation: Phalak, K.; Chatterjee, A.;

Ghosh, S. Quantum Random Access

Memory for Dummies. Sensors 2023,

23, 7462. https://doi.org/10.3390/

s23177462

Academic Editors: Yutaka Shikano

and Masazumi Fujiwara

Received: 25 July 2023

Revised: 18 August 2023

Accepted: 20 August 2023

Published: 28 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Quantum Random Access Memory for Dummies

Koustubh Phalak * , Avimita Chatterjee and Swaroop Ghosh *

School of Electrical Engineering and Computer Science, The Pennsylvania State University,

State College, PA 16802, USA; amc8313@psu.edu

* Correspondence: krp5448@psu.edu (K.P.); szg212@psu.edu (S.G.)

Abstract: Quantum Random Access Memory (QRAM) has the potential to revolutionize the area

of quantum computing. QRAM uses quantum computing principles to store and modify quantum

or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its

importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM

architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its

significance and viability in existing noisy quantum computers. By drawing comparisons with

conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions

of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by

reading and writing all data at once, which is achieved owing to storage of data in a superposition

of states. Overall, we compare six different QRAM technologies in terms of their structure and

workings, circuit width and depth, unique qualities, practical implementation, and drawbacks. In

general, with the exception of trainable machine learning-based QRAMs, we observe that QRAM

has exponential depth/width requirements in terms of the number of qubits/qudits and that most

QRAM implementations are practical for superconducting and trapped-ion qubit systems.

Keywords: quantum computing; quantum RAM; qudit; bucket-brigade QRAM; flip-flop QRAM;

EQGAN; PQC

1. Introduction

Quantum Computing (QC) has progressed rapidly in the past decade. With the ad-
vancement in qubit technologies such as superconducting qubits [1], trapped ion qubits [2],
photonic qubits [3], quantum dots [4], and diamond nitrogen-vacancy centers [5], imple-
mentation of quantum algorithms on quantum computers has become practically possible.
This has enabled the application of quantum computing in fields such as machine learn-
ing [6], finance [7], chemistry [8], cybersecurity [9], and advanced manufacturing [10]. A
potential game changer in quantum computing is the augmentation of Quantum Random
Access Memory (QRAM), which has shown potential to provide exponential speedup for
Fourier transform [11], discrete logarithm [12], and pattern recognition [13–15] algorithms.
QRAM is a key requirement for important quantum algorithms such as quantum searching
of classical databases [16,17], collision-finding for hash and claw-free functions [18], and
distinctness of elements in a list [19,20]. Along with this, QRAM can serve as an important
memory element to load classical data into the quantum Hilbert space as compared to
simpler methods such as amplitude, angle, and basis embeddings [21].

The existing literature on QRAM fails to summarize key aspects of QRAM and explain
them in layman’s terms, which is the objective of this paper. In [22], the authors discussed
various QRAM approaches such as bucket-brigade QRAM, large width–small depth QRAM,
and small width–large depth QRAM; however, they approached the topic from a fault-
tolerance standpoint rather than a fundamental explanatory perspective. An overview of
the practicality of QRAM in modern Noisy Intermediate-Scale Quantum (NISQ) systems is
provided in [23]; however, it can be esoteric at times and difficult to fully comprehend. In
this paper, we provide a simple-to-grasp review of QRAM for readers interested in diving

Sensors 2023, 23, 7462. https://doi.org/10.3390/s23177462 https://www.mdpi.com/journal/sensors

Sensors 2023, 23, 7462 2 of 21

deeper into the field of quantum memory. While complex mathematical knowledge of
quantum physics is not required, we do assume that the readers know the fundamentals
of quantum computing [24], such as ket notation, quantum gates, and quantum circuit
notation.

We perform a thorough review by first presenting important information on QRAM,
then discuss each QRAM technology in turn. For each different approach to QRAM, we
describe its structure, the circuit width and the circuit depth, and with its unique qualities.
Finally, we talk about the practical implementation of QRAM and weigh the pros and cons
through a tabular comparison. This review considers six QRAM technologies that have been
published in the literature within period ranging from 2008 to 2022. These works include
Bucket-Brigade QRAM [25], Fan-Out QRAM [26], Flip-Flop QRAM [27], Qudits-based
memory [28], Approximate PQC-based QRAM [29], and EQGAN-QRAM [30].

The remainder of this paper is organized as follows: in Section 2, we provide prelimi-
naries on quantum computing and the workings of classical RAM; in Section 3, we delve
into the fundamentals of QRAM, answering key questions about its structure, utility, and re-
quirements; Section 4 explores the practical implementation of QRAM; and Section 5 offers
an overview of the challenges involved in implementing QRAM and its future potential.
Finally, we conclude the paper in Section 6.

2. Preliminaries

2.1. An Overview of Quantum Computing

2.1.1. Qubits

Qubits, the elementary units of quantum computing, are distinct from classical bits in
that they can exist in a superposition of states and represent both 0 and 1 simultaneously.
This unique property allows quantum computers to perform multiple computations in
parallel, providing the potential for exponential speedup compared to classical comput-
ers. In a Hilbert space, a qubit is represented by a two-dimensional vector denoted as
|ψ〉 = α |0〉+ β |1〉, where α and β are the coefficients of the basis states of the qubit. These
coefficients are constrained by the normalization condition |α|2 + |β|2 = 1, and the proba-
bilities of measuring the state of the qubit in the basis state of |0〉 or |1〉 are provided by
|α|2 or |β|2, respectively [24].

2.1.2. Quantum Gates

Quantum gates are the fundamental operations that act on qubits in a quantum circuit,
akin to how classical logic gates operate on classical bits. These gates include the Pauli-X,
Pauli-Y, Pauli-Z, Hadamard, CNOT, and Toffoli gates. They are often depicted as unitary
matrices that act on qubit states to maintain the quantum properties of the system [31].
Quantum gates can be created and realized physically utilizing a variety of techniques,
including lasers, magnetic fields, and microwave pulses [24].

2.1.3. Quantum Circuit

Quantum circuits are collections of quantum gates that work together to carry out
particular quantum computations. Initialization of the qubits is the first step in the creation
of a quantum circuit. Gate operations, which involve multi-qubit gates such as the CNOT
and the Toffoli gates as well as single-qubit gates such as the Hadamard and Pauli gates, are
used to change the qubits to the required state. Prior to execution, the high-level gates in
the circuit, including the Toffoli gate, are disassembled into a native gate set of the quantum
hardware (called transpilation). The output of the quantum circuit is then obtained by
measuring the qubits using a measurement gate, which converts the quantum state into a
classical state [32].

2.1.4. Quantum Entanglement

Two or more qubits can become correlated in a way that prevents one qubit from being
described independently of the other qubits through the phenomenon known as quantum

Sensors 2023, 23, 7462 3 of 21

entanglement. This characteristic is critical for the development of effective quantum
algorithms and protocols, including quantum teleportation and superdense coding [33].
The nonlocal correlations available through entanglement are crucially importance in
quantum computing, as they permit the execution of tasks that are classically impossible.

2.1.5. Quantum Superposition

Superposition is a phenomenon that allows both of the computational basis states |0〉
and |1〉 to exist in the quantum Hilbert space at the same time. A qubit state can be placed
into superposition using the Hadamard (H) gate. If the initial qubit state is |0〉 (|1〉), then
the superposition state after the H gate becomes 1√

2
(|0〉+ |1〉) (1√

2
(|0〉 − |1〉)). We present

an example in Figure 1 showing how to generate a superposition of all the basis states for a
two-qubit system.

|0⟩⊗2 = |0⟩|0⟩ = |00⟩|0⟩

|0⟩

H

H

([|0⟩ + |1⟩]) ([|0⟩ + |1⟩])

= ([|00⟩ + |01⟩ +|10⟩ + |11⟩])

|0⟩⊗2

Figure 1. The presented circuit illustrates a fundamental instance of quantum superposition. It

commences with an initial 2-qubit state 1© and culminates in a superposition state 2©, demonstrating

the essential properties of quantum systems. 1©: |0〉 |0〉 = |00〉; 2©: 1
2 [|00〉+ |01〉+ |10〉+ |11〉].

2.1.6. Quantum Algorithms and Applications

The potential of quantum computing has been illustrated by a number of quantum al-
gorithms. Examples include Grover’s method for exploring unsorted databases [16], Shor’s
algorithm for factoring large integers [12], and the quantum simulation algorithms [34].
Among other applications, these algorithms have substantial effects on cryptography, op-
timization, and quantum system simulation. Combinatorial optimization issues can be
resolved using variational quantum–classical algorithms such as the Quantum Approxi-
mate Optimization Algorithm (QAOA) [35], Variational Quantum Eigensolver (VQE) [36],
and Quantum Machine Learning (QML) models such as Quantum Support Vector Machine
(QSVM) [37] and Quantum Principal Component Analysis (QPCA) [6].

2.2. Classical RAM

Desktop computers can often slow down when running data-intensive applications.
To address this issue, one solution is to install additional Random Access Memory (RAM),
which can provide a temporary storage medium for the central processing unit (CPU) to
retrieve data quickly in any order while executing a program. RAM is volatile ‘read/write’
memory that stores data temporarily while the computer is operational. When the computer
is switched off, these stored data are lost due to their volatile nature. RAM is more efficient
than hard drive storage for temporary storage due to its faster access time. The fundamental
capability of any computing device is the ability to store and manipulate information in a
series of memory cells organized in an array [38]. RAM is the most well-known architecture
for such a memory array, as it allows each cell to be addressed [39].

A memory array, an input register, and an output register constitute RAM. The memory
cells are organized into rows and columns, with each cell holding one bit of data. Data are
accessed and manipulated using address lines, data lines, and control lines (read and write
enable signals). When the CPU needs to access data from the memory, it sends the memory
address through the address lines. Depending on the read or write signal, the data are
either retrieved from the memory cell (read operation) or stored in the memory cell (write
operation) [40]. The contents of a memory cell are recovered and transferred to the output
register when the address of that cell is loaded into the address register, a procedure known
as ‘decoding’. Traditional RAM requires effective data storage, retrieval, and manipulation

Sensors 2023, 23, 7462 4 of 21

in order to function. The two main types of RAM, namely, Static Random Access Memory
(SRAM) and Dynamic Random Access Memory (DRAM), have unique characteristics that
determine their use in different applications [41]. Figure 2 illustrates the position of RAM
within the memory hierarchy and presents a functional block diagram showcasing its key
components and their interactions.

D

E

C

O

D

E

R

Read/Write

Memory

Address

INPUT REGISTER

OUTPUT REGISTER

Control Unit

Arithmetic & Logic

Unit

Random Access

Memory

Auxiliary Storage

Central Processing Unit

Memory Unit

Figure 2. Left: Depiction of the placement of RAM within the memory hierarchy, highlighting

its proximity to the CPU. The speed of RAM can be attributed to this closeness, as it serves as an

intermediary between the CPU and auxiliary memory systems. Right: A detailed representation of the

various functional components within the RAM, illustrating their organization and interconnections.

Memory Array: made up of a grid of rows and columns that stand in for memory cells used to store

data; one piece of information is stored in each cell. Input Register: during a write operation, it

temporarily stores the data that are stored in the memory array. Output Register: during a read

operation, it temporarily stores the data that were read from the memory array. Decoder: takes the

memory address from the address bus and converts it into row and column coordinates, allowing it

access to the associated memory cell. To demonstrate the flow of row and column signals, the arrows

from the decoder should point in the direction of the memory array. Control Bus: transmits read and

write enable signals to the memory array to control data access activities.

3. Fundamentals of QRAM

QRAM is a memory element analogous to RAM that is able to store data in a quantum
format. Similar to RAM, QRAM has three components: the input (or address) register,
the output (or data) register, and the memory arrays. The difference here though is that
the input and output registers are composed of qubits instead of bits, while the memory
arrays can be either classical or quantum depending on the use of QRAM [25]. For example,
for the two fan-out QRAM implementations in [26], the optical implementation has 1-bit
classical memory cells that change the polarization of the output register photons based
on the bit value while the phase gate implementation uses two superconducting qubits
in a single memory cell (one for storing information and one for extracting information).
Table 1 shows the differences between RAM and QRAM. Another key difference in QRAM
is the way in which memory access is performed. Rather than accessing a single memory
location at a time, QRAM uses superposition to simultaneously access multiple memory
locations. This is made possible by leveraging the power of quantum Hilbert space, where
all memory addresses are first loaded into superposition. The overall state is then passed
through the QRAM to obtain another superposition state, this time with the addresses and
data combined. Say that we have n qubits, and consequently have N = 2n address lines.
All the addresses are represented as basis states, from |0〉 to |N − 1〉 [25], and stored in the
address register r. Each address |i〉 has an amplitude αi; thus, the effective superposition

Sensors 2023, 23, 7462 5 of 21

of the addresses is ∑
N−1
i=0 αi |i〉r. This superposition state is then sent to QRAM and the

output is another superposition state, which contains both the address state and the data
state chosen from the data register o. If Xi represents the data in address i, then the output
state of the QRAM is ∑

N−1
i=0 αi |i〉r |Xi〉o. Effectively, the storage of data in QRAM can be

summarized through the following equation:

N−1

∑
i=0

αi |i〉r
QRAM−−−→

N−1

∑
i=0

αi |i〉r |Xi〉o

However, retrieving the data can be challenging due to the no-cloning theorem [42]. This is
generally dealt with by performing entanglement operations between memory cell qubits
and output register qubits using gates such as the SWAP gate or CNOT gate.

Table 1. A comparison of classical RAM and quantum RAM.

Attributes Classical RAM Quantum RAM

Information storage Classical bits (0/1)
Qubits

(|ψ〉 = α |0〉+ β |1〉)
Access mechanism

implementation
Using transistors

and capacitors
Encoding into
superposition

Read operation Read signal
Quantum swap

operation

Write operation Write signal Qubits in input register

Gate activations Θ(2n); n = #bits Θ(n); n = #qubits

Error correction Repetition codes Surface codes

Scalability Increasing #bits Increasing #qubits

From the aforementioned statements, readers may become curious and ponder several
crucial aspects of QRAM, such as (i) the motivation behind the need for QRAM: Why do we
need QRAM?; (ii) the configuration of QRAM: What is the structure of QRAM?; and (iii) the
extent of QRAM’s utility and usage: Where is a QRAM used? We provide answers to all of
these questions in the following subsections.

3.1. Why Do We Need QRAM?

In quantum computing, the fundamental building blocks of computation are quantum
states, which can represent information as a superposition of basis states. These quantum
states are fragile, and are sensitive to external disturbances such as environmental noise and
decoherence [43] that can cause them to rapidly lose coherence and become unusable for
computation. Present-day quantum computers are plagued by noise. These noisy quantum
computers are formally known as NISQ computers, which refers to the susceptibility of
quantum computing technology to qubit errors caused by varied sources of noise, including
thermal fluctuations, electromagnetic interference, and device imperfections. Errors such
as decoherence, cross-talk, gate errors, etc., can degrade the overall fidelity of computation.
In such an environment, loading data in the quantum Hilbert space can be challenging due
to its large gate and circuit depth requirements. The overall loading process can end up
being noisy, and may store inaccurate data as a result. QRAM can provide data reliably
if it is implemented using shallow gate count and low depth circuits. By storing data in
superposition, QRAM can enable parallel data access, which is important for efficient use
of quantum algorithms. This parallel data access reduces the overall access time, increasing
resilience against noise. Therefore, it is crucial to be able to efficiently store and retrieve
quantum states themselves in order to execute quantum algorithms.

Classical memory devices are not suitable for storing quantum states, as they requires
collapsing of the wave function through a measurement operation [44]. The collapse of

Sensors 2023, 23, 7462 6 of 21

the wavefunction destroys the superposition of states, and causes the quantum state to
take on a singular classical value (either 0 or 1), which can be stored in classical RAM
but is no longer be valuable for quantum computation. QRAM is a potential solution to
this problem, as it allows quantum states to be stored and retrieved efficiently without
collapsing the superposition of states. This is accomplished by using quantum mechanics to
encode information in a way that is resistant to decoherence and other sources of noise [45].
This allows quantum states to be stored and retrieved with minimal error, making QRAM
an essential component of quantum computing technology.

In addition, QRAM can potentially be useful for loading classical data into quantum
Hilbert space. Hybrid quantum–classical optimization algorithms in the field of QML
often require the conversion of classical data in Euclidean space (e.g., image datasets
such as MNIST, Iris, CIFAR-10/100, etc.) into to quantum data in Hilbert space. This is
achieved using encoding methods such as angle embedding, amplitude embedding, and
basis embedding [21]. Amplitude embedding embeds 2n classical features on n qubits,
while angle and basis embeddings embed n classical features on n qubits. A problem with
these methods, however, is that they are rather simplistic in nature and do not take the
complexity of the dataset into account. QRAM-based data loading can potentially address
the above issue.

3.2. What Is the Structure of a QRAM?

The different QRAM architectures that have been proposed to date are described in
this subsection.

3.2.1. Bucket-Brigade QRAM

The very first proposal of a QRAM [25] implemented a bifurcation graph-based
structure as opposed to the traditional d-dimensional lattice of memory arrays (shown in
Figure 2). This approach is called bucket-brigade QRAM; the bifurcation graph for this
QRAM is a binary tree with the leaf nodes as the memory cells and the rest of the nodes as
switches used to route the address state to the correct cell. Overall, there are three main
components of this QRAM: the input register, the QRAM itself, and the output register. Note
that the terms input/index/address register and output/data register/quantum bus are
used interchangeably in the literature. For ease of understanding, in this paper we use the
terms input register and output register. There are two primary cases to explain how a
bucket-brigade QRAM works; in the first there is only a single address in the input register,
while in the second there is a superposition of addresses in the input register. These two
cases are explained below.

Single Address Case. First, consider a QRAM that supports two addresses (two
qubits) and uses four memory cells for storage. The initial bifurcation graph for this QRAM
is shown in Figure 3, with the quantum switches initialized at the wait state and the four
memory cells present at the leaf nodes. Each quantum switch is a three-level system
with states |·〉, |0〉, and |1〉, unlike a qubit, which is a two-level system (|0〉 and |1〉). This
three-level system is often referred to as a qutrit, and is inspired by the classical three-level
system trit, which is generally a tri-state logic multiplexer [46]. The significance of the wait
state |·〉 in each quantum switch is that whenever a qubit state (either |0〉 or |1〉) is received
by the switch, it changes from |·〉 to the received state. This helps to ensure that the next
time the same switch receives another qubit state it will route the qubit state to one of its
children’s node switches. The wait state ensures that unaccessed memory cells are not
disturbed. The direction of routing depends on the state of the qubit. Typically, |0〉 (|1〉)
routes the next state to the left (right) child.

Next, we show the example of an incoming address |01〉 accessing the initialized
QRAM. The address state comes from the input register in sequential fashion from the
Most Significant Bit (MSB) to the Least Significant Bit (LSB). Because the address is |01〉, the
MSB is |0〉 and the LSB is |1〉. Therefore, the state |0〉 is first sent to the root node switch of
the QRAM. Because the root node switch is in |·〉, it changes its state to |0〉 (Figure 3.2(a)).

Sensors 2023, 23, 7462 7 of 21

Next, the LSB state |1〉 arrives at the root node switch, which routes it to the left child.
The left child is then activated to state |1〉 (Figure 3.2(b)). In this way, all the address
qubits in the input register are used to create a route to the memory cell |X01〉. Along
with the graph-based implementation, we show the circuit-based implementation of the
bucket-brigade QRAM with two address lines and four memory cells (inspired from [47])
in Figure 4.

|"⟩

|"⟩

|X!!⟩|X!"⟩

|"⟩

|X"!⟩|X""⟩

|0⟩

|"⟩

|X!!⟩|X!"⟩

|"⟩

|X"!⟩|X""⟩

|0⟩

|"⟩

|X!!⟩|X!"⟩

|1⟩

|X"!⟩|X""⟩

|0⟩

|"⟩

|X!!⟩|X!"⟩

|1⟩

|X"!⟩|X""⟩

|X"!⟩ |+⟩

|+⟩

|X!!⟩|X!"⟩

|+⟩

|X"!⟩|X""⟩

|+⟩
⨂$

|+⟩

|+⟩

|X!!⟩|X!"⟩

|+⟩

|X"!⟩|X""⟩

Out.

1

2
!|X ⟩

In.

|1⟩|0⟩

a b

a b

In.

In.

Out.

Figure 3. Working of a bucket-brigade QRAM with two address lines and four memory cells. 1© The

initial state of the QRAM; all quantum switches are initialized to the |·〉 state, which is a waiting state

in which the quantum switch waits for incoming qubit states of the memory address to be accessed.

2© The input register activates switches that allow the output register to access data with address |01〉
(|X01〉). The address qubits are sent in sequential top-down fashion, from the Most Significant Bit

(MSB) to the Least Significant Bit (LSB). In the example shown here, the MSB qubit |0〉 is sent first,

and changes the state of the root quantum switch a©, followed by the LSB qubit |1〉, which routes the

switch in the direction of the memory cell |X01〉 b©. 3© The output register reads the data |X01〉 via

the activated quantum switches. 4© The superposition of all addresses turns on all quantum switches

a© to read the superposition of all the data b©. Note that |+〉 = 1√
2
(|0〉) + |1〉). In.: Input register,

Out.: Output register.

After the creation of the route, the data in the output register can either be stored or
read in the routed memory cell. Figure 3.3 shows an example of reading the contents of the
address |01〉 (|X01〉) from the memory cell to the output register along the route. Note that
in order to store new data the direction of routing need to be opposite, i.e., from the output
register to the memory cell.

Superposition of Addresses. In this case, all the qubits are present in a superposition
state, similar to the case shown in Figure 1. When a qubit in superposition encounters a
quantum switch, the switch changes from |·〉 to the superposition state |+〉 = 1√

2
(|0〉+ |1〉).

Because the superposition state includes both the |0〉 state and the |1〉 state, the quantum
switch activates both the left and right routes. In this way, the routes to all memory cells
are activated when all the superposition address qubits arrive at all the quantum switches
(Figure 3.4(a)). When the read operation on the output register is performed, the contents
of all the memory cells traverse the activated routes and load a superposition of all the data
1
2 ∑

3
i=0 |Xi〉 on the output register. Compared to classical RAM, the advantage provided

by bucket-brigade QRAM is that whereas the classical RAM requires O(2n) transistor
activations for n address lines to access data in a single address, QRAM requires only O(n)
quantum switch activations. Furthermore, QRAM can read the data from all the addresses
at a comparable classical cost of O(2n) quantum switch activations.

Sensors 2023, 23, 7462 8 of 21

|a
1
⟩

|a
0
⟩

|1⟩

|0⟩

|0⟩

|0⟩

|m
00
⟩

|m
01
⟩

|m
10
⟩

|m
11
⟩

|0⟩ |out⟩

Figure 4. Circuit-based implementation of a bucket-brigade QRAM. Th data in memory cell m01

with address |01〉 are being accessed via a series of CNOT and Toffoli gates performing intermediate

computation on ancilla qubits. The CNOT gates highlighted in red are the ones being activated, and

the red path represents the active route of the QRAM.

3.2.2. Fan-Out QRAM

A follow-up paper [26] on the original bucket-brigade QRAM work [25] presented
architectural implementations of bucket-brigade QRAM along with another QRAM termed
‘fan-out’ QRAM. Fan-out QRAM is taken directly from its classical equivalent, fan-out
RAM, where each kth address bit controls 2k switches. Usually, for an n-bit binary address,
the MSB is considered the 0th address bit and the LSB is considered the n− 1th address bit.
The quantum version of the fan-out RAM has a kth address qubit controlling 2k quantum
switches. A difference between the quantum switches of bucket-brigade QRAM and the
fan-out QRAM is that while bucket-brigade QRAM requires qutrits, fan-out QRAM requires
only a two-level system; thus, qubits are used as the quantum switches. Initially, all of
the quantum switches are initialized to |0〉 state. Next, the address qubits in the input
register are used to change the state of the quantum switches. All of the quantum switches
connected to an address qubit in state |0〉 remain at state |0〉, while those connected to an
address qubit in state |1〉 change their states to |1〉.

To explain the functionality of fan-out QRAM, we can again consider QRAM with two
address lines and four memory cells. The bifurcation graph for QRAM with the quantum
switches initialized to the |0〉 state is shown in Figure 5.1. As in the previous case, the input
register can contain either a single address or a superposition of addresses.

Single Address Case. First, let us take the simple case of single address access, where
the memory cell in address |01〉 (X01) is being accessed. The MSB address state |0〉 has
index 0 and controls the quantum switch 20 = 1, which is the root node switch. The LSB
address state |1〉 has index 1; thus, it controls 21 = 2 quantum switches, which are the
two child switches of the root node switch. The root node switch stays at state |0〉, while
the child switches change their states to state |1〉 (Figure 5.2). As a consequence, all the
quantum switches are activated, while only a single complete path from the root node to
the memory cell is active (in this case, X01). The contents from the memory cell are then
either updated from or loaded into the output register via the active path (Figure 5.3).

Sensors 2023, 23, 7462 9 of 21

|0⟩

|0⟩

|X ⟩|X ⟩

|0⟩

|X ⟩|X ⟩

|0⟩

|1⟩

|X ⟩|X ⟩

|1⟩

|X ⟩|X ⟩

|0⟩

|1⟩

In.

|0⟩

|1⟩

|X ⟩|X ⟩

|1⟩

|X ⟩|X ⟩

|+⟩

|+⟩

|X ⟩|X ⟩

|+⟩

|X ⟩|X ⟩

|+⟩

|+⟩

|X ⟩
Out.

In.

Figure 5. Workings of fan-out QRAM. 1© Fan-out QRAM initialization with all quantum switches

initialized to the |0〉 state. 2© Address qubits in the input register control the state of their respective

quantum switches and create a path from the root node switch to the desired memory cell X01. 3© The

data in memory cell X01 are accessed in the output register through the active route of the switches.

4© The superposition of addresses means that all routes are switches on, allowing access to the

contents of all memory cells.

Superposition of Addresses. Extrapolating the above process to a superposition
of addresses, the quantum switches are switched to a superposition. As a result of the
superposition, each quantum switch activates the routes to both of its child switches, as
shown in Figure 5.4. Finally, for a read operation, the contents of all the memory cells
traverse all the active routes and the output register reads a superposition of the data,
similar to the case shown in Figure 3.4(b). Compared to bucket-brigade QRAM, fan-out
QRAM activates O(2n) switches to access both single addresses and the superposition of all
addresses.

3.2.3. Flip-Flop QRAM

A more recent quantum circuit-based QRAM implementation called flip-flop QRAM
(FF-QRAM) was proposed in [27]. FF-QRAM stores binary data in superposition one by
one, such that the overall circuit has exponential circuit depth and linear width in terms of
the number of address lines (or address qubits). Assuming that there are n address lines
and that the size of the binary data in each address is m bits, the QRAM circuit has circuit
depth O(2n) and circuit width O(n + m). Storing a single data point occurs in three stages:
the flip stage, the register stage, and the flop stage. The flip stage is a ‘compute’ stage that
is used to match all the data and address qubit states to |1〉, which is stored; the register
stage consists of a multi-controlled rotation gate that stores the data in a register qubit; and
the flop stage is an ‘uncompute’ stage which performs the inverse of the compute stage
operation on the address and data qubits.

To explain the working of FF-QRAM, consider a two-address-line QRAM with four
address–data pairs, with each datapoint having a size of 2 bits (n = 2; m = 2). For
each of the four addresses, we have the data shown in Table 2, and for each datapoint
we generate its respective rotation angle in two steps: (i) first, we normalize the data;
if we have data {2, 3, 1, 1}, the normalization factor is

√
22 + 32 + 12 + 12 =

√
15 and

we divide the dataset by the normalization factor, making the new normalized dataset
1√
15
{2, 3, 1, 1} = {0.51, 0.77, 0.25, 0.25}; (ii) second, we compute the rotation angle for each

datapoint using the normalized values. The rotation angle θk for a datapoint xk with
normalized value xk,n is given as θk = 2arcsin(xk,n) [48]. For the example shown in Table 2,
the rotation angles are 2arcsin({0.51, 0.77, 0.25, 0.25}) = {1.06, 1.74, 0.5, 0.5}.

Sensors 2023, 23, 7462 10 of 21

Table 2. Creation of dataset with rotation angle for FF-QRAM.

Address
(A)

Data (X)
Data
Value

Normalized
Value (XN)

θ =

2arcsin(XN)

00 x00 2(10) 2/
√

15 = 0.51 1.06

01 x01 3(11) 3/
√

15 = 0.77 1.74

10 x10 1(01) 1/
√

15 = 0.25 0.5

11 x11 1(01) 1/
√

15 = 0.25 0.5

Now that the rotation values have been computed, we can build the FF-QRAM circuit
for these address–data pairs. We show the FF-QRAM for our example dataset in Figure 6.
The quantum circuit has 2 qubits for address lines, 2 qubits for data lines, and 1 qubits for
register lines. First, all of the address and data qubits are initialized to the state |0〉 and
brought into superposition using the Hadamard gate. After this, the process of storing the
data begins. As mentioned earlier, the datapoints are stored one by one in three stages.
In the flip stage, which is the compute stage, the qubit states of the relevant address
and data are flipped to |1〉 such that the multi-controlled Ry rotation gate is triggered to
store the rotation of the desired data. This is achieved using classically-controlled NOT
gates [27]. Essentially, when the classical bit value is 0, the NOT gate is activated; otherwise,
the NOT gate is not activated. We present a simpler version of this gate here for ease
of understanding. When the classical bit value is 0, we place an X gate, while when
the classical value is 1 we do not place the X gate. Consider the first address–data pair
|00〉 − |10〉 in Figure 6. For address qubits, because both the target address lines are in state
|0〉, we place an X gate on both of the qubits. Similarly, for the data lines we place an X gate
only on the LSB qubit. Next is the register stage, where we add the multi-controlled Ry

gate with a computed rotation angle of 1.06 radians. Finally, we then add the inverse of
the flip stage in the flop stage, in which X gates are placed only on those qubits where X
gates were placed during the flip stage. The same process is repeated for all the remaining
address–data pairs, as shown in Figure 6. The end result of this repetitive process is that
the FF-QRAM has a superposition of addresses and their corresponding data and angles
stored in the address, data, and register qubits, respectively.

A
d
d
.

D
a
ta

H

H

H

H

X

X

X

X

X

X

		R𝒚(1.06)

a𝟎 = |00⟩

x𝟎 = |10⟩

X X

		R𝒚(1.74)

a𝟏 = |01⟩

x𝟏 = |11⟩

X X

		R𝒚(0.5)

X X

x𝟐 = |01⟩

a𝟐 = |10⟩

		R𝒚(0.5)

X X

a𝟑 = |11⟩

x𝟑 = |01⟩

MSB

LSB

LSB

MSB

|𝟎⟩
𝑹

Figure 6. Working of FF-QRAM circuit. The QRAM stores data 10, 11, 01, and 01 in addresses 00, 01,

10, and 11 respectively.

3.2.4. Entangling Quantum Generative Adversarial Network (EQGAN) QRAM

EQGAN [30] is a pure quantum entanglement-based Generative Adversarial Network
(GAN) which is PQC-based and has a quantum generator and a quantum discriminator
that are both trained together with a minimax game. For a discriminator model D with

Sensors 2023, 23, 7462 11 of 21

parameters θd, generator model G with parameters θg, real data σ, and generated data
ρ(θg), the minimax problem is provided as follows:

min
θg

max
θd

C(θg, θd) = min
θg

max
θd

{1− Dσ[θd, ρ(θg)]}.

This EQGAN model is used for variational QRAM as an application in which data-
points from two Gaussian distributions are stored. The QRAM [30] uses two generators
with exponential peak ansatz, one for class 0 and one for class 1 (where each class signifies
data from one Gaussian distribution), and a swap-test-based discriminator. We show the
circuit of this variational EQGAN QRAM, which stores data from class 0, in Figure 7. For
class 1, the PQC is nearly the same, with a slight difference in generator ansatz. Using
this generator–discriminator setup, the QRAM is able to place data into superposition
approximately using constant O(1) gates. Another advantage of this approach to QRAM is
observed in classification tasks. Without QRAM, training the data on a Quantum Neural
Network (QNN) yields an average classification accuracy of 45%, while when augmented
with QRAM the average classification accuracy increases to around 65%.

H

		Ry(𝜽𝟏)

		R𝒚(𝜽𝟐)

		R𝒚(𝜽𝟑)

H H

H H

H H

X H H|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

Generator Discriminator

Figure 7. EQGAN variational QRAM circuit for storing superposition of data from class 0; the

generator ansatz is only slightly different for storing the superposition of data in class 1.

3.2.5. Qudits-Based Memory

Qudits are higher-state quantum units that contain more than two computational
basis states. While a qubit in superposition can be represented as |ψ〉 = α |0〉+ β |1〉, the
superposition of a qudit with d computational basis states is represented as

|ψ〉 = α0 |0〉+ α1 |1〉+αd−1 |d− 1〉 =
d−1

∑
i=0

αi |i〉

Recent works such as [28,49] have proposed qudit-based quantum memory, in which
qubits are temporarily compressed onto qudits in their higher states using reversible
compression circuits. When unused, the qudits can be used elsewhere as ancillary bits.
During computing, the qudits can be reverted back to qubits by performing the inverse of
the compression circuit operation.

The authors of [28] defined two higher state gates analogous to the X-gate. As-

suming that the input qubit state is |i〉, (i) the X+t gate performs the operation |i〉 X+t−−→
|(i + t) mod d〉 (ii) and the Xij gate performs |i〉

Xij−→ |j〉 and |j〉
Xij−→ |i〉. In this approach,

there are two qudit-controlled versions of these gates, where the control qudit has a ref-
erence control state and the target qudit has the gate. An x-y-z qudit–qubit compression
scheme is introduced that is dependent on the radix of the input and output qudits. Here,
x is the radix of the input qudits, y is the radix of the output qudits, and z represents the

Sensors 2023, 23, 7462 12 of 21

number of ancilla generated. The compression scheme should follow xa ≤ yb such that
0 < b < a and a− b = z, where a and b are integers, xa denotes the number of computa-
tional basis states of the input, and yb denotes the number of computational basis states of
the output. A natural restriction is that the computational basis states of the output should
all be higher than that of the input. Another restriction is that the number of input qudits a
should be greater than the number of output qudits b, enabling compression; as a result of
this compression, a total of a− b = z ancilla qubits are generated.

A simple example is the conversion of qubits (d = 2) to qutrits (d = 3). Three qubits
can store 23 = 8 computational basis states and two qutrits can store 32 = 9 computational
basis states; thus, three qubits can be compressed into two qutrits and the leftover qubit can
be generated as an ancilla that can be used in other circuits. In this example, we have x = 2,
y = 3, and z = 1; thus, we have a 2-3-1 compression scheme. We show the compression
and decompression circuits of this scheme in Figure 8. The compression circuit consists
of controlled X+1 and X01 conditioned on either |1〉 or |2〉 states. The decompression
circuit has the gates of the compression circuit in reverse order, with an added difference of
having controlled X−1 gates instead of controlled X+1 gates. The truth table of the 2-3-1
compression scheme is shown in Table 3. By substituting the values of the qubits A, B, and
C in the circuit and performing higher-level qudit operations, it can be verified that the
compression yields corresponding A’, B’ (qutrits), and C’ (ancilla in |0〉 state) entries from
the truth table and that decompression yields back the original values of A, B, and C.

B

A

C

B’

A’

C’

B

A

C

	X

1 	X

2

	X

1 	X

2

	X

1

	X

1 	X

2

2

Compression

	X

2

2

	X

1

	X

1 	X

2 	X

1 	X

2 	X

1

Decompression

Figure 8. Compression and decompression circuits for a 2-3-1 compression scheme [28]. The

compression circuit compresses the contents of three qubits (A,B,C) into two qutrits (A’,B’) and

generates a free ancilla in state |0〉 (C’). The decompression circuit then reverts the qutrits and ancilla

back to the original three qubits.

Table 3. Truth table for 2-3-1 compression scheme [28].

A B C A’ B’ C’

0 0 0 0 0 0

0 0 1 2 2 0

0 1 0 0 1 0

0 1 1 0 2 0

1 0 0 1 0 0

1 0 1 2 1 0

1 1 0 1 1 0

1 1 1 1 2 0

3.2.6. Approximate PQC-Based QRAM

In [29], a trainable PQC-based QRAM similar to EQGAN QRAM was proposed that is
able to store data in the quantum Hilbert space by training the PQC. Compared to EQGAN,
approximate PQC-based QRAM does not store data in a superposition, instead using a
one-by-one in sequential order; thus, it is able to store more complex datasets such as image
datasets such as the UCI digits dataset. approximate PQC-based QRAM can be used for

Sensors 2023, 23, 7462 13 of 21

the storage of purely binary data as well. The detailed PQC of the approximate QRAM
is shown in Figure 9. It consists of an embedding scheme, such as angle, amplitude, or
basis embedding, used to load classical data, followed by three sets of circular layers and
strongly entangling layers. It has been noted that loading images from QRAM and sending
them to a QNN yields faster convergence of classification (by the 6th epoch) as compared to
loading images without QRAM (around the 15th epoch), and for pure storage the QRAM is
able to store 4-bit binary data without any errors.

E

M

B

E

D

D

I

N

G

 L

C

T

⋱⋮ ⋮⋮

Convolution Pooling

Layer (L)

𝜃 = (𝛼 , 𝛽 , 𝛾)

⋱

Strongly

Entangling Layers (x3)
Circular

Layers (x3)

 L

C

T

 L

C

T

U(𝜽𝟏)

U(𝜽𝟐)

U(𝜽𝟑)

U(𝜽𝟒)

Ry

Ry Rz 	X Rx

C

T

Figure 9. PQC structure of approximate PQC-based QRAM. In the context shown here, ‘C’ symbolizes

the control qubit and ‘T’ stands for the target qubit.

3.3. Where Is QRAM Used?

QRAM that is able to store and load data in superposition is very helpful for certain
classes of quantum algorithms.

• Database search: Grover’s algorithm [16], along with its more generalized version,
Quantum Amplitude Amplification and Estimation (QAE) [17], have been proposed
to perform database search for an element out of n elements with complexity O(

√
n).

They take data in superposition as the input and perform the amplification operation
O(
√

n) times prior to performing estimation with a reduced number of measurements.
• Element distinctness: for a set of n elements, the element distinctness problem asks

whether all n elements in the set are distinct. Classically, this takes O(n log(n)) time,

while quantum algorithms such as [19] can solve it in O(n
2
3) time.

• Collision detection: collision detection is an important problem in cryptography. For a
given collision function H, the collision detection problem asks for two distinct inputs,
x and y, such that H(x) = H(y). Quantum versions of the collision detection problem

such as [18] report O(n
1
3) runtime, where n denotes the cardinality of the domain of

the collision function.
• NAND tree evaluation: in this problem, a Boolean expression is solved using a tree

of NAND gates. For an input of size n, quantum algorithms such as [50] propose a
runtime of O(

√
n).

• Quantum forking: in classical operating systems, forking is the process of creating a
child process from a parent process which is a copy of it while retaining the parent
process. Quantum forking is a similar idea, in which the QRAM output superposition
state is forked onto ancilla qubits and then both the original state and forked state
are multiplied by the same or different unknown unitaries. The new states then

Sensors 2023, 23, 7462 14 of 21

undergo a swap-test procedure to verify whether the applied unitaries are the same or
different [27,51].

• Storage of classical data: as mentioned previously, works such as [29,30] have used a
PQC-based QRAM circuit to store classical data such as data from a normal distribu-
tion, images, and binary data into quantum Hilbert space by training the PQC in a
similar way to a machine learning model.

4. Practicality of QRAM

Follow-up papers [25,26] have provided possible physical implementations of bucket-
brigade QRAM and fan-out QRAM. We first explain these implementations, followed
by implementation details on FF-QRAM, qudit-based storage, and trainable PQC-based
QRAM. We present a detailed tabular comparison of different QRAM approaches in Table 4.

4.1. Bucket-Brigade QRAM Implementation

To physically implement bucket-brigade QRAM, the authors of [26] incorporated
(i) address qubits in the input register as photons that can be sent sequentially, and (ii) qutrits
as trapped atoms inside cavities. The qubits encoded in the photons traverse the cavity by
encountering the trapped atom-based qutrits. The three states of the qutrits are realized
as three different energy levels, with the |·〉 being the lowest energy state along with two
higher energy levels: |zero〉, coupled along the left spatial path, i.e., with the left qutrit
along the bifurcation graph, and |one〉, coupled along the right spatial path with the right
qutrit. This coupling is represented using further higher energy states |←〉 (for left spatial
path) and |→〉 (for right spatial path). The energy diagram of these qutrit switches is shown
in Figure 10.

⟩⟩
⟩⟩

⟩01

𝒚𝒚

𝟎𝟎 ⟩

𝟎𝟎 ⟩
𝒚𝒚

𝟏𝟏 ⟩

𝟏𝟏 ⟩
𝒚𝒚

𝟐𝟐 ⟩

𝟐𝟐 ⟩
𝒚𝒚

𝟑𝟑 ⟩

𝟑𝟑 ⟩
⟩𝟎𝟎 𝑹𝑹

| ⟩∙

| ⟩← | ⟩→
| ⟩zero | ⟩one

| ⟩0 | ⟩1
Figure 10. Energy levels of trapped atom-based qutrit switches in bucket-brigade QRAM. 1© Initial-

ized state of qutrit. 2© First incoming photon being absorbed, changing the state of the qutrit, and

routing it in either the |zero〉 or |one〉 direction based on the state of the qubit encoded in the photon.

3© Subsequent photons being absorbed into |←〉 or |→〉 and remitted to the next qutrit based on the

state of the previous qubit.

Sensors 2023, 23, 7462 15 of 21

Table 4. Table showing comparison between different QRAM technologies.

Feature/QRAM
Bucket-Brigade

QRAM [25]
Fanout QRAM [26] Flip-Flop QRAM [27] Qudits-Based Memory [28]

Approximate PQC-Based [29]
& EQGAN QRAM [30]

Structure Bifurcation graph Bifurcation graph Quantum circuit Higher states
Parametric Quantum

Circuit

Circuit width
(n = #address
lines)

O(2n) O(2n) O(n) Dependent on
d (# qudit states)

O(n)

Circuit depth
(n = #address
lines)

O(2n) O(2n) O(2n) Dependent on
d (# qudit state)

O(1)

Unique qualities
Qubits are routed

in a sequential
fashion

Qubits controlling
exponential quantum

switches
Quantum circuit-based Reduces requirements

of ancillary qubits to 0

Can be trained similarly
to a machine learning

model

Implementation
technology

Photons, trapped
atoms

Photons, microwave
cavities

Superconducting qubits,
trapped ion qubits

Superconducting qudits,
trapped ion qudits, OAM

photonic qudits

Superconducting qubits,
trapped ion qubits

Drawbacks
Exponential circuit
width and depth

Exponential circuit
width and depth,

susceptible to
decoherence

Exponential circuit
depth Unstable higher states

Performance degradation under
noise (approx. QRAM), store

only simple dataset (EQGAN)

Sensors 2023, 23, 7462 16 of 21

Initially, all the qutrits are initialized to the lowest energy state |·〉. When the first
photon traverses the cavity and reaches the root node switch, it is absorbed into the higher
energy state of the qutrit, either |zero〉 or |one〉, thereby changing the state of the qutrit
depending on the quantum state encoded in the photon. This process is often referred to as
the Raman transition, where a photon is scattered by a molecule, resulting in a change in
the energy of the photon and the vibrational state of the molecule [52]. This is achieved
with the help of strong laser fields [53] that help in changing the state of the qutrit from |·〉
to |zero〉 if the photon state is |0〉 and from |·〉 to |one〉 if the photon state is |1〉. After this,
when the second photon arrives at the root node switch it is again absorbed and undergoes
a Raman transition, this time either from |zero〉 to |←〉 or from |one〉 to |→〉, and is remitted
to the qutrit along the correct spatial path based on the state of the qutrit (|zero〉, left path;
|one〉, right path). In this way, all the photons of the input register set the qutrit switches
one by one until a path from the root node switch to the desired memory cell is created.
The output register then either loads contents from the memory cell or stores new data in
it via the created path of qutrit switches. When the load/store operation is complete, all
the qutrits sequentially undergo a final Raman transition, starting from the last node to the
root node, to return to the |·〉 state.

A recent work [47] proposed a quantum circuit-based implementation of bucket-
brigade QRAM. For n address lines, the quantum circuit requires O(n) qubits for the
address, O(2n) ancillary qubits to incorporate the quantum switches, O(2n) qubits for
memory cells, and one qubit for the readout of the memory cell. Figure 4 shows an
implementation of quantum circuit-based bucket-brigade QRAM for two address lines
and four memory cells in which the memory cell in address |01〉 is being accessed. First,
|a1〉 = |0〉 changes the state of the first ancillary qubit, which then changes the state of the
next ancillary qubit. Based on the output, the path is then routed to the left child switch,
where |a0〉 = |1〉 is used to switch the right ancillary qubit to the |1〉 state. Finally, a set of
Toffoli gates with the ancillary qubit as one control and the memory cell qubit as another
control are used to perform the readout. Depending on the address state, only the Toffoli
gate controlled by the corresponding memory cell is triggered. In this case, the Toffoli
gate’s corresponding memory cell |m01〉 is triggered to perform a readout operation on the
readout qubit.

4.2. Fan-Out QRAM Implementation

Two implementations, namely, optical implementation and phase gate implementation,
have been proposed for the fan-out QRAM [26]. Understanding the implementations in the
original paper may be challenging, as it assumes knowledge of optical and cavity-based
quantum systems.

In the phase gate implementation, (i) the address qubits in the input register are
photons and (ii) the quantum switches are photonic qubits trapped inside microwave
cavities. Overall, for n address qubits there are O(2n) microwave cavities, with each cavity
containing a photonic qubit. As mentioned earlier, the kth index qubit fans out and controls
2k quantum switches. This is achieved using conditional phase shifters. The MSB address
qubit only polarizes the root node photon inside the microwave cavity via the conditional
phase shifter attached to it. The next address qubit polarizes two child photons through
a conditional phase shifter. This continues until all of the photons inside the microwave
cavity are polarized. As a result of this, a resonant path is created from the root cavity to the
desired memory cell. Each memory cell consists of two superconducting qubits such that
one is for storing information and one is for extracting information. Using a SWAP gate,
the contents of the memory cell are then transferred back to the output register through an
outgoing photon from the memory cell with the help of the extraction qubit.

Next, we discuss the optical implementation. Here, (i) the address qubits are atoms
trapped in a magneto-optical trap and (ii) the quantum switches are photonic qubits that
hit the trapped atomic address qubits one-by-one. When the first quantum switch photon
hits the first address qubit inside the trapped atom, the trapped atom acts as a controller

Sensors 2023, 23, 7462 17 of 21

for changing the polarization state of the photon. This photon then passes through a
polarization beam splitter and a half-wave plate to transfer this information to another
spatial degree of freedom and create two spatial modes. The two spatial modes are two
photonic quantum switches for the next address qubit. Again, each spatial mode transfers
the state of the address qubit through a change of polarization and creates two new modes.
This continues until 2n spatial modes are created, one for each memory cell. Out of these,
only one spatial mode is active depending on the address, and the contents of the desired
memory cell corresponding to the active spatial mode are swapped out with the contents
of the output register using a SWAP gate.

4.3. EQGAN QRAM Implementation

Because EQGAN QRAM is a quantum circuit-based QRAM, it can be implemented on
superconducting and trapped ion qubits. The authors of [30] implemented EQGAN QRAM
on 5 qubits of Google’s Sycamore superconducting processor such that the readout qubit
(the top qubit in Figure 7) was the center physical qubit and the rest of the qubits were
physically coupled with the readout qubit in the shape of a (+) sign on a grid of qubits.

4.4. Qudit Implementation

Qudits are implementable on physical quantum systems that have an infinite spectrum
of states, such as superconducting qubits (magnetic flux spectrum) [54], trapped ion qubits
(energy band spectrum) [55], and Orbital Angular Momentum (OAM spectrum)-based
photonic qubits [56]. For example, in bucket-brigade QRAM the qutrit switches are imple-
mented using trapped atoms in a cavity, with the |·〉 state at a lower energy level and the
|zero〉 and |one〉 states at a higher energy level.

4.5. Approximate PQC-Based QRAM and Flip-Flop QRAM Implementations

Similar to the EQGAN QRAM, because both of these QRAM approaches are quantum
circuit-based they can be implemented on superconducting and trapped ion qubits. As the
quantum circuit is known, the QRAM architectures can be replicated on known quantum
computing platforms such as Qiskit [57] from IBM, Pennylane [58] from Xanadu, IonQ [59],
and many more. Users can replicate the quantum circuit and send either it for simulation on
a noiseless/noisy simulator (better for approximate PQC-based QRAM [29], as it is iterative)
or run it on actual quantum hardware (better for FF-QRAM [27], as it is non-iterative).

5. Challenges and Future Direction

In this section, we examine the current limitations and future directions of various
QRAM architectures along with their related challenges. Among the common challenges
are:

• Scalability: a major challenge in QRAM designs due to constraints in terms of qubit
interactions, quantum memory, and coherence. Increasing memory elements in the
bucket-brigade, fan-out, and FF-QRAM approaches lead to exponential growth in
circuit width and depth. Thus, scalability remains a significant hurdle for large-scale
QRAM implementations.

• Noise Resilience: a crucial challenge in QRAM architectures, as quantum systems
are sensitive to environmental noise. In various QRAM types, increasing memory
elements results in a higher circuit depth and qubit count, making the system more
vulnerable to noise. Bucket-brigade QRAM is comparatively more resilient to noise
than fan-out QRAM [45], while FF-QRAM is susceptible to noise as the number
of address lines increases. While PQC-based QRAM has a constant circuit depth,
it remains prone to noise-related errors that affect performance on real hardware
compared to simulations.

• No-Cloning Theorem: the no-cloning theorem [42,60] is a fundamental quantum me-
chanics principle that prohibits exact copying of unknown quantum states, which
poses challenges for various QRAM designs. In bucket-brigade and fan-out QRAM,

Sensors 2023, 23, 7462 18 of 21

the theorem limits duplication of quantum states during memory readout. Although
solutions such as CNOT and SWAP gates are available, the no-cloning theorem com-
plicates error correction and redundancy schemes in most QRAM designs, presenting
a significant challenge [23].

• Instability of Qudits: qudit instability primarily affects qudit-based quantum memory,
where the qudits are quantum systems with d > 2 levels. While qudit-based memory
can store more information than qubit-based systems, higher qudit states are unstable
and prone to errors [61,62]. For example, the energy gap between higher states in
superconducting qubits is less [1]. While this issue is not directly relevant to qubit-
based QRAM designs, incorporating qudits for increased storage would introduce
similar challenges related to qudit instability.

• Limited Applicability: certain QRAM architectures face limitations due to their nov-
elty, experimental difficulties, or specific focus. For example, FF-QRAM has limited
applicability beyond quantum forking due to its targeted design. Similarly, qudits
face challenges arising from limited research and their increased complexity com-
pared to qubits. Addressing these challenges is essential in order to advance broader
applications in quantum computing.

While current QRAM designs face these challenges, ongoing research strives to over-
come them. Several recent works have made significant progress in the implementation
of bucket-brigade QRAM. In one recent study [63], researchers constructed a circuit im-
plementation of the aforementioned QRAM, demonstrating that when used with classical
data it can quickly and repeatedly prepare arbitrary quantum states when the data are
already present in memory. Another work [64] discussed the parallelization of queries in
bucket-brigade QRAM, showing that the parallelization method is compatible with surface
code quantum error correction. In theory, fault-tolerant bucket-brigade QRAM queries can
be performed at speeds comparable to classical RAM. A separate article [47] addressed
the robustness of bucket-brigade QRAM, revealing that when quantum error correction is
applied to the bucket-brigade QRAM circuit, the circuit loses the advantage of having a
small number of active gates, as the error correction operates on all of its components.

The precise evaluation of the hardware expenditure associated with QRAM designs,
especially in the realm of fault-tolerant systems, may constitute a significant subject of
forthcoming research [23]. It is reasonable to anticipate that, compared to conventional
surface code implementations [65], the hardware expenses and intricacy will be substan-
tially reduced owing to the noise resilience inherent in bucket-brigade QRAM and the
implementation of low-overhead fault tolerance techniques utilizing qubits. While there
have been notable advancements in hardware efficiency, in the near future it remains a
challenge to develop a QRAM capable of addressing millions or billions of individual
memory elements. Exploring applications in which smaller QRAMs can provide value
and conducting tailored resource estimations for these use cases could be a key to future
progress and development.

6. Conclusions

Quantum Random Access Memory (QRAM) serves as a specialized form of mem-
ory that enables direct access and manipulation of quantum states, thereby facilitating
expedited and efficient data retrieval and storage within quantum systems. Unlike con-
ventional RAM structures that store information in classical bits, (which are incompatible
with quantum systems), QRAM operates on the principles of quantum computing. This
enables QRAM to store and manipulate quantum data effectively, resulting in considerable
acceleration of known quantum algorithms. This review provides a thorough assessment
of QRAM, emphasizing its importance and practicality within the context of contemporary
quantum computing. We explain the fundamentals of quantum computing and conven-
tional RAM before delving into the foundations of QRAM. Five notable types of QRAM
designs are outlined: bucket-brigade QRAM, fan-out QRAM, flip-flop QRAM, qudit-based
quantum memory, and approximate PQC-based QRAM. By comparing these diverse archi-

Sensors 2023, 23, 7462 19 of 21

tectural approaches and carefully analyzing their implementation, the feasibility of QRAM
is thoroughly explored. This analysis concludes by discussing the primary challenges and
future directions associated with QRAM development.

Author Contributions: Analysis, K.P. and A.C.; Writing-Editing, K.P. and A.C.; Writing—Review,

S.G.; Supervision, S.G. All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported in parts by the National Science Foundation (NSF) (CNS-1722557,

CCF-1718474, OIA-2040667, DGE-1723687, and DGE-1821766).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is

not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or

in the decision to publish the results.

References

1. Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. A quantum engineer’s guide to superconducting

qubits. Appl. Phys. Rev. 2019, 6, 021318. [CrossRef]

2. Bruzewicz, C.D.; Chiaverini, J.; McConnell, R.; Sage, J.M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys.

Rev. 2019, 6, 021314. [CrossRef]

3. Slussarenko, S.; Pryde, G.J. Photonic quantum information processing: A concise review. Appl. Phys. Rev. 2019, 6, 041303.

[CrossRef]

4. Arakawa, Y.; Holmes, M.J. Progress in quantum-dot single photon sources for quantum information technologies: A broad

spectrum overview. Appl. Phys. Rev. 2020, 7, 021309. [CrossRef]

5. Pezzagna, S.; Meijer, J. Quantum computer based on color centers in diamond. Appl. Phys. Rev. 2021, 8, 011308. [CrossRef]

6. Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2015, 56, 172–185.

[CrossRef]

7. Herman, D.; Googin, C.; Liu, X.; Galda, A.; Safro, I.; Sun, Y.; Pistoia, M.; Alexeev, Y. A survey of quantum computing for finance.

arXiv 2022, arXiv:2201.02773.

8. Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya,

N.P.; et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 2019, 119, 10856–10915. [CrossRef]

9. Wallden, P.; Kashefi, E. Cyber security in the quantum era. Commun. ACM 2019, 62, 120. [CrossRef]

10. Bova, F.; Goldfarb, A.; Melko, R.G. Commercial applications of quantum computing. EPJ Quantum Technol. 2021, 8, 2. [CrossRef]

11. Zhou, S.; Loke, T.; Izaac, J.A.; Wang, J. Quantum Fourier transform in computational basis. Quantum Inf. Process. 2017, 16, 1–19.

[CrossRef]

12. Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual

Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; IEEE: Piscataway, NJ, USA, 1994;

pp. 124–134.

13. Schützhold, R. Pattern recognition on a quantum computer. Phys. Rev. A 2003, 67, 062311. [CrossRef]

14. Schaller, G.; Schützhold, R. Quantum algorithm for optical-template recognition with noise filtering. Phys. Rev. A 2006, 74, 012303.

[CrossRef]

15. Trugenberger, C.A. Probabilistic quantum memories. Phys. Rev. Lett. 2001, 87, 067901. [CrossRef]

16. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.

17. Brassard, G.; Hoyer, P.; Mosca, M.; Tapp, A. Quantum amplitude amplification and estimation. Contemp. Math. 2002, 305, 53–74.

18. Brassard, G.; Høyer, P.; Tapp, A. Quantum cryptanalysis of hash and claw-free functions. ACM Sigact News 1997, 28, 14–19.

[CrossRef]

19. Ambainis, A. Quantum walk algorithm for element distinctness. SIAM J. Comput. 2007, 37, 210–239. [CrossRef]

20. Childs, A.M.; Harrow, A.W.; Wocjan, P. Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision

problem. In Proceedings of the STACS 2007: 24th Annual Symposium on Theoretical Aspects of Computer Science, Aachen,

Germany, 22–24 February 2007; Proceedings 24; Springer: Berlin/Heidelberg, Germany, 2007; pp. 598–609.

21. Schuld, M.; Petruccione, F. Supervised Learning with Quantum Computers; Springer: Berlin/Heidelberg, Germany, 2018; Volume 17.

22. Di Matteo, O.; Gheorghiu, V.; Mosca, M. Fault-tolerant resource estimation of quantum random-access memories. IEEE Trans.

Quantum Eng. 2020, 1, 1–13. [CrossRef]

23. Hann, C.T. Practicality of Quantum Random Access Memory. Ph.D. Thesis, Yale University, New Haven, CT, USA, 2021.

Sensors 2023, 23, 7462 20 of 21

24. Nielsen, M.A.; Chuang, I. Quantum computation and quantum information. Phys. Today 2002, 54, 60. [CrossRef]

25. Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum random access memory. Phys. Rev. Lett. 2008, 100, 160501. [CrossRef]

26. Giovannetti, V.; Lloyd, S.; Maccone, L. Architectures for a quantum random access memory. Phys. Rev. A 2008, 78, 052310.

[CrossRef]

27. Park, D.K.; Petruccione, F.; Rhee, J.K.K. Circuit-based quantum random access memory for classical data. Sci. Rep. 2019, 9, 3949.

[CrossRef]

28. Baker, J.M.; Duckering, C.; Chong, F.T. Efficient quantum circuit decompositions via intermediate qudits. In Proceedings of the

2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL), Miyazaki, Japan, 9–11 November 2020; pp. 303–308.

29. Phalak, K.; Li, J.; Ghosh, S. Approximate Quantum Random Access Memory Architectures. arXiv 2022, arXiv:2210.14804.

30. Niu, M.Y.; Zlokapa, A.; Broughton, M.; Boixo, S.; Mohseni, M.; Smelyanskyi, V.; Neven, H. Entangling quantum generative

adversarial networks. Phys. Rev. Lett. 2022, 128, 220505. [CrossRef] [PubMed]

31. Rieffel, E.G.; Polak, W.H. Quantum Computing: A Gentle Introduction; MIT Press: Cambridge, MA, USA, 2011.

32. Kitaev, A.Y.; Shen, A.; Vyalyi, M.N.; Vyalyi, M.N. Classical and Quantum Computation; Number 47; American Mathematical Soc.:

Providence, RI, USA, 2002.

33. Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual

classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895. [CrossRef]

34. Lloyd, S. Universal quantum simulators. Science 1996, 273, 1073–1078. [CrossRef]

35. Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv 2014, arXiv:1411.4028.

36. Tilly, J.; Chen, H.; Cao, S.; Picozzi, D.; Setia, K.; Li, Y.; Grant, E.; Wossnig, L.; Rungger, I.; Booth, G.H.; et al. The variational

quantum eigensolver: A review of methods and best practices. Phys. Rep. 2022, 986, 1–128. [CrossRef]

37. Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014,

113, 130503. [CrossRef] [PubMed]

38. Hey, T. Richard Feynman and computation. Contemp. Phys. 1999, 40, 257–265. [CrossRef]

39. Jaeger, R.C.; Blalock, T.N.; Blalock, B.J. Microelectronic Circuit Design; McGraw-Hill: New York, NY, USA, 1997.

40. Patterson, D.A.; Hennessy, J.L. Computer Organization and Design ARM Edition: The Hardware Software Interface; Morgan Kaufmann:

Burlington, MA, USA, 2016.

41. Stallings, W. Computer Organization and Architecture: Designing for Performance; Pearson Education India: Noida, India, 2003.

42. Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802–803. [CrossRef]

43. Schlosshauer, M. Quantum decoherence. Phys. Rep. 2019, 831, 1–57. [CrossRef]

44. Von Neumann, J. Mathematical Foundations of Quantum Mechanics: New Edition; Princeton University Press: Princeton, NJ, USA,

2018; Volume 53.

45. Hann, C.T.; Lee, G.; Girvin, S.; Jiang, L. Resilience of quantum random access memory to generic noise. PRX Quantum 2021,

2, 020311. [CrossRef]

46. Horowitz, P.; Hill, W.; Robinson, I. The Art of Electronics; Cambridge University Press: Cambridge, UK, 1989; Volume 2.

47. Arunachalam, S.; Gheorghiu, V.; Jochym-O’Connor, T.; Mosca, M.; Srinivasan, P.V. On the robustness of bucket brigade quantum

RAM. New J. Phys. 2015, 17, 123010. [CrossRef]

48. De Veras, T.M.; De Araujo, I.C.; Park, D.K.; Da Silva, A.J. Circuit-based quantum random access memory for classical data with

continuous amplitudes. IEEE Trans. Comput. 2020, 70, 2125–2135. [CrossRef]

49. Gokhale, P.; Baker, J.M.; Duckering, C.; Brown, N.C.; Brown, K.R.; Chong, F.T. Asymptotic improvements to quantum circuits via

qutrits. In Proceedings of the 46th International Symposium on Computer Architecture, Phoenix, AZ, USA, 22–26 June 2019;

pp. 554–566.

50. Childs, A.M.; Reichardt, B.W.; Spalek, R.; Zhang, S. Every NAND formula of size N can be evaluated in time Nˆ{1/2+ o (1)} on a

quantum computer. arXiv 2007, arXiv:quant-ph/0703015.

51. Park, D.K.; Sinayskiy, I.; Fingerhuth, M.; Petruccione, F.; Rhee, J.K.K. Parallel quantum trajectories via forking for sampling

without redundancy. New J. Phys. 2019, 21, 083024. [CrossRef]

52. Feng, M. Quantum computing with trapped ions in an optical cavity via Raman transition. Phys. Rev. A 2002, 66, 054303.

[CrossRef]

53. Moy, G.; Hope, J.; Savage, C. Atom laser based on Raman transitions. Phys. Rev. A 1997, 55, 3631. [CrossRef]

54. Liu, T.; Su, Q.P.; Yang, J.H.; Zhang, Y.; Xiong, S.J.; Liu, J.M.; Yang, C.P. Transferring arbitrary d-dimensional quantum states of a

superconducting transmon qudit in circuit QED. Sci. Rep. 2017, 7, 7039. [CrossRef]

55. Low, P.J.; White, B.M.; Cox, A.A.; Day, M.L.; Senko, C. Practical trapped-ion protocols for universal qudit-based quantum

computing. Phys. Rev. Res. 2020, 2, 033128. [CrossRef]

56. Bent, N.; Qassim, H.; Tahir, A.; Sych, D.; Leuchs, G.; Sánchez-Soto, L.L.; Karimi, E.; Boyd, R. Experimental realization of quantum

tomography of photonic qudits via symmetric informationally complete positive operator-valued measures. Phys. Rev. X 2015,

5, 041006. [CrossRef]

57. Qiskit, IBM Quantum. 2023. Available online: https://qiskit.org/ (accessed on 19 August 2023).

58. Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M.S.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi,

A.; et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv 2018, arXiv:1811.04968.

59. IonQ, 2023. Available online: https://ionq.com/ (accessed on 19 August 2023).

Sensors 2023, 23, 7462 21 of 21

60. Dieks, D. Communication by EPR devices. Phys. Lett. A 1982, 92, 271–272. [CrossRef]

61. Grassl, M.; Kong, L.; Wei, Z.; Yin, Z.Q.; Zeng, B. Quantum error-correcting codes for qudit amplitude damping. IEEE Trans. Inf.

Theory 2018, 64, 4674–4685. [CrossRef]

62. Lanyon, B.P.; Weinhold, T.J.; Langford, N.K.; O’Brien, J.L.; Resch, K.J.; Gilchrist, A.; White, A. Manipulating biphotonic qutrits.

Phys. Rev. Lett. 2008, 100, 060504. [CrossRef] [PubMed]

63. Casares, P.A.M. Circuit implementation of bucket brigade qRAM for quantum state preparation. arXiv 2020, arXiv:2006.11761.

64. Paler, A.; Oumarou, O.; Basmadjian, R. Parallelizing the queries in a bucket-brigade quantum random access memory. Phys. Rev.

A 2020, 102, 032608. [CrossRef]

65. Dennis, E.; Kitaev, A.; Landahl, A.; Preskill, J. Topological quantum memory. J. Math. Phys. 2002, 43, 4452–4505. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Preliminaries
	An Overview of Quantum Computing
	Qubits
	Quantum Gates
	Quantum Circuit
	Quantum Entanglement
	Quantum Superposition
	Quantum Algorithms and Applications

	Classical RAM

	Fundamentals of QRAM
	Why Do We Need QRAM?
	What Is the Structure of a QRAM?
	Bucket-Brigade QRAM
	Fan-Out QRAM
	Flip-Flop QRAM
	Entangling Quantum Generative Adversarial Network (EQGAN) QRAM
	Qudits-Based Memory
	Approximate PQC-Based QRAM

	Where Is QRAM Used?

	Practicality of QRAM
	Bucket-Brigade QRAM Implementation
	Fan-Out QRAM Implementation
	EQGAN QRAM Implementation
	Qudit Implementation
	Approximate PQC-Based QRAM and Flip-Flop QRAM Implementations

	Challenges and Future Direction
	Conclusions
	References

