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Abstract—Recent assertions of a potential advantage of Quan-
tum Neural Network (QNN) for specific Machine Learning
(ML) tasks have sparked the curiosity of a sizable number
of application researchers. The parameterized quantum circuit
(PQC), a major building block of a QNN, consists of several
layers of single-qubit rotations and multi-qubit entanglement
operations. The optimum number of PQC layers for a particular
ML task is generally unknown. A larger network often provides
better performance in noiseless simulations. However, it may
perform poorly on hardware compared to a shallower network.
Because the amount of noise varies amongst quantum devices,
the optimal depth of PQC can vary significantly. Additionally,
the gates chosen for the PQC may be suitable for one type
of hardware but not for another due to compilation overhead.
This makes it difficult to generalize a QNN design to wide
range of hardware and noise levels. An alternate approach is
to build and train multiple QNN models targeted for each
hardware which can be expensive. To circumvent these issues,
we introduce the concept of knowledge distillation in QNN using
approximate synthesis. The proposed approach will create a new
QNN network with (i) a reduced number of layers or (ii) a
different gate set without having to train it from scratch. Training
the new network for a few epochs can compensate for the loss
caused by approximation error. Through empirical analysis, we
demonstrate ~71.4% reduction in circuit layers, and still achieve
~16.2% better accuracy under noise.

I. INTRODUCTION

Quantum computing is advancing rapidly. The community
is seeking computational advantages with quantum computers
(i.e., quantum supremacy) for practical applications. Recently,
Google claimed quantum supremacy with a 53-qubit quantum
processor to complete a computational task in 200 seconds
that might take 10K years [1] (later rectified to 2.5 days
[2])) on the state-of-the-art supercomputers. Quantum machine
learning (QML) is a promising application domain to archive
quantum advantage with noisy quantum computers in the near-
term. Numerous QML models built upon parametric quantum
circuits (PQC), also referred to as quantum neural networks
(QNN), are already proposed in the literature [3], [4]], [5], [6].

A PQC is a quantum circuit with parameterized gates as
shown in Fig. [T[b). It generally consists of repeated layers of
single-qubit rotations (to explore the search space) and multi-
qubit operations (to create entanglement). The parameters of
PQC can be tuned to attain desired outputs for given inputs
(e.g., classifying data samples). QNN models are claimed to
be more expressive compared to the classical neural networks
[7], [8]]. In other words, QNN models have higher capability to
approximate a desired functionality compared to the classical

models of similar scale (e.g., with same number of tunable
parameters/weights). As a result, QNN has a high potential
for demonstrating quantum advantage in real applications.

The existing QNNs faces two major adaptability challenges:

Noise adaptability: A large number of PQC layers gen-
erally translates to a better QNN performance in noiseless
simulation [8]], [3]. However, the near-term quantum devices
have a limited number of qubits, and they suffer from various
errors such as, decoherence, gate errors, measurement errors
and crosstalk. These noises build up quickly as a circuit is
scaled up. Therefore, a deep QNN may perform poorly on
an actual hardware compared to a shallower network. On top
of that, the noise levels of a device may vary over time [9].
A trained QNN may perform differently on the same device
over time, making it difficult to select an optimal QNN depth
for a particular ML task. Training multiple QNN models with
different depths and then selecting one based on current target
hardware noise levels can be a naive solution to this problem.
But, training a QML model from scratch is expensive in terms
of time and computational resources [3], [4].

Hardware adaptability: Different quantum hardware may
exhibit varying degrees of noise [10]. Furthermore, they may
support a different set of basis gates (Fig.[T). Other gates must
be broken down into their component parts. For example, the
CX gate which is a native gate in IBM quantum computers
will break into 1 CZ gate and 6 other single-qubit gates for
Rigetti devices (Fig. [I). Similarly, a CZ gate will break down
into 1 CX and 6 single-qubit gates for IBM devices. As a
result, porting a QNN designed for one piece of hardware
(e.g., tailored with CX gates for IBM devices) to another (e.g.,
Rigetti) is problematic. Creating and training multiple device-
specific QNN models is also not a viable option.

A somewhat similar problem exists in the classical domain
where an expensively trained (e.g., in a server environment
with multiple GPU/CPU) deep neural network (DNN) cannot
be run on resource constrained mobile/edge devices. Network
pruning, weight sharing, quantization, layer fusion, etc. are
some of the techniques available in the classical domain to
reduce the size of a pre-trained DNN [11]. Knowledge distil-
lation (KD) is another popular DNN compression technique
[12]. In KD, a pre-trained large DNN is used as a guide to
train a smaller DNN without sacrificing much performance.

Inspired from the classical approach, we introduce KD in
QNN using approximate synthesis to address the adaptability
challenges in QNN. The traditional KD technique uses original
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Fig. 1. A toy QNN is shown next to two hardware coupling graphs from IBM and Rigetti. They each offer a distinct set of basis gates. A PQC with CX
gates may be a good choice for IBM devices. In Rigetti hardware, however, each CX gate is decomposed into one CZ and six additional single qubit gates.
This PQC may not be a good fit for the Rigetti devices due to the noise introduced by each gate during computation on actual hardware. Training multiple

hardware-specific QNNs from scratch can be costly.

data to train the student network with the original labels
and pre-trained model outputs guiding the training procedure.
However, this can result in a similar amount of training
time as learning a new model from scratch. The proposed
method avoids such costly training technique by employing
approximate synthesis to mimic the pre-trained QNN behavior.
Finding an equivalent unitary transformation for an existing
quantum circuit using different gates is called approximate
synthesis [13]. Once trained, the PQC of a QNN performs a
fixed unitary transformation of the input states. Using approxi-
mate synthesis, we can find a comparable PQC that has fewer
layers or an entirely different set of gates than the original.
Here, the original PQC can act as a guide to create a new
network that is more compact and noise-resistant, or that is
customized for a completely different hardware. Performance
may suffer due to approximation errors which can be recovered
by training the new network for a few epochs (far cheaper than
training a new QNN from scratch).

To the best of our knowledge this is the first work to
demonstrate approximate synthesis for knowledge distillation
in ONN to address adaptability and resilience challenges.

II. PRELIMINARIES

Qubits, Quantum Gates, Measurements & Quantum Cir-
cuit: Unlike a classical bit, a qubit can be in a superposition
state i.e., a combination of |0) and |1) at the same time.
A variety of technologies exist to realize qubits such as,
superconducting qubits, trapped-ions, to name a few. Quantum
gates (e.g., single qubit Pauli-X gate or 2-qubit CNOT gate)
modulate the state of qubits and thus perform computations.
These gates can perform a fixed computation (e.g., an X gate
flips a qubit state) or a computation based on a supplied
parameter (e.g. the RY(6) gate rotates the qubit along the Y-
axis by #). A two-qubit gate changes the state of one qubit
(target qubit) based on the current state of the other qubit
(control qubit). For example, the CNOT gate flips the target
qubit if the control qubit is in |1) state. A quantum circuit
contains many gate operations. Qubits are measured to retrieve
the final state of a quantum program.

Quantum Noise: Errors in quantum computing can be broadly
classified into, (i) Coherence errors: a qubit can retain its state
for a short period (coherence time). The computation needs to
be done well within this limit. (ii) Gate errors: quantum gates
are realized using microwave/laser pulses. It is impossible to
generate and apply these pulses precisely in actual hardware
making gate operations erroneous. (iii) Measurement errors:

a |0) state qubit can be measured as |1) (or vice versa) due
to imprecise measurement apparatus. Execution of multiple
gates in parallel can lead to crosstalk errors. Since a large/deep
quantum circuit accumulates more errors, a smaller circuit is
always preferred for noise-resilience and reliability.

Quantum Circuit Compilation: A practical quantum com-
puter generally supports a limited number of single and multi-
qubit gates known as basis gates or native gates of the
hardware. For instance, the current generation of IBM quan-
tum computers have the following basis gates: ID, RZ, SX,
X (single-qubit), CNOT (two-qubit). However, the quantum
circuit may contain gates that are not native to the target
hardware. Hence, the gates in a quantum circuit need to be
decomposed into the basis gates before execution. Besides,
the native two-qubit operation may or may not be permitted
between all the two-qubit pairs. These limitations in two-
qubit operations are also known as coupling constraints.
Conventional compilers add necessary SWAP gates to meet
the coupling constraints. Thus, a compiled circuit depth and
gate counts can be significantly higher than the original
(compilation overhead). The compilation overhead is dictated
by the native gates/connectivity of the target hardware, and
the efficiency of the compiler software.

Quantum Neural Network: QNN involves parameter op-
timization of a PQC to obtain a desired input-output rela-
tionship. QNN generally consists of three segments: (i) a
classical to quantum data encoding or embedding circuit,
(i) a parameterized circuit (PQC), and (iii) measurement
operations. A variety of encoding methods are available in
the literature [5]. For continuous variables, the most widely
used encoding scheme is angle encoding [3], [6], [8] where a
continuous variable classical feature is encoded as a rotation of
a qubit along a desired axis (X/Y/Z). For ‘n’ classical features,
we require ‘n’ qubits. For example, RZ(fl) on a qubit in
superposition (the Hadamard - H gate is used to put the qubit
in superposition) is used to encode a classical feature ‘f1’ in
Fig. 2Jb). We can also encode multiple continuous variables
in a single qubit using sequential rotations (Fig. [2[c)). States
produced by a qubit rotation along any axis will repeat in 27
intervals (Fig. [2[a)). Therefore, features are generally scaled
within O to 27 in a data pre-processing step. One can restrict
the values between -7 to 7 to accommodate features with both
negative and positive values.

The PQC consists of multiple layers of entangling opera-
tions and parameterized single-qubit rotations. The entangle-



ment operations are a set of multi-qubit operations between
the qubits to generate correlated states [6]. The following
parametric single-qubit operations search through the solution
space. This combination of entangling and rotation operations
is referred to as a parametric layer (PL) in the literature. The
optimal number of PL for any given ML task is generally
unknown. The problem is similar to choosing the number of
hidden layers/neurons in a classical DNN. In practice, one
needs to go through multiple training iterations with different
number of PL’s to come up with a compact network. A
compact network can offer better noise-resilience/reliability,
and lower latency/faster execution during inference. There
is a wide variety of choices available for PL. The work in
[14] analyzed 19 widely used PL architectures from literature.
We also use these 19 architectures to evaluate our proposed
methodologies (cX refers to circuit X in [14]). Due to the
differences in compilation overhead, a PL that works well for
one hardware platform may not be ideal for another.

A widely used PL is shown in Fig. [} Here, CNOT gates
between neighboring qubits create the entanglement, and ro-
tations along X & Z-axis using RX(#) & RZ(#) operations
define the search space.

Knowledge Distillation: This is a model compression tech-
nique [12] where a small (student) model is trained to match a
large (teacher) pre-trained model. The teacher model’s knowl-
edge is transferred to the student by minimizing a loss function
that aims to match both softened teacher logits and ground-
truth labels. The logits are softened by using a “temperature”
scaling function in the softmax, effectively smoothing out the
probability distribution and revealing the teacher-learned inter-
class relationships.

Approximate Synthesis: The intended state transformation
of a quantum gate can be represented by a unitary matrix.
An n-qubit quantum circuit can be represented by a unitary
matrix U of size 2"z2™ (tensor product of the gate matrices).
Quantum circuit synthesis is the process of finding a new
circuit with a different set of gates whose unitary matrix
representation (V') is exact (exact synthesis) or approximate
(approximate synthesis) equivalent of the original (U). A
synthesis algorithm tries to minimize the distance between
U and V (||U — V||) using metrics such as L1 norm, L2
norm, diamond norm and frobenius norm [15], [13]], [IL6].
L1 norm is the sum of the absolute element-wise differences
r 23:1 \Ui; — Vij]). L2 norm is the euclidean distance
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Fig. 2. (a) Bloch sphere representation of a qubit. A qubit can be rotated along
the X, Y, or Z axis. The states repeat in 27 intervals, (b) angle encoding 1:1
(i.e., one continuous variable encoded in a single qubit state), and (c) angle
encoding 2:1 (i.e., two continuous variables encoded in a single qubit state).

between the matrices (\/23;1 Z?:l(Uij —Vi;)?). If V is the
unitary matrix representation of a PQC, the parameters can
be updated by a conventional optimizer (e.g., Nelder-Mead,
BFGS, dual_annealing, etc. to minimize ||U — V||. Note that,
it is not guaranteed that the optimizer will converge to an
exact solution (distance = 0) for any given U and the choice
of PQC for V. More often that not, it will generate a V'
that is a close approximation of U. The outcome will largely
depend on the choice of the PQC for V, dimension of U,
chosen optimization method (local/global), and the computing
resource/time allocated for optimization.

III. RELATED WORKS

The work in [13] introduced approximate synthesis for
quantum circuit compression/depth reduction, arbitrary quan-
tum state preparation, and noise reduction. This work showed
that quantum circuits with high depth/gate-count but small
number of qubits (two/three) can often be approximated with a
smaller circuit (lesser gates/depth). Because quantum gates are
erroneous, the benefits of circuit size reduction can outweigh
the approximation error from such compression. However, the
approximation error becomes too large when the number of
qubit is increased.

Recent works have used the divide and conquer approach to
apply approximate synthesis on larger circuits [15], [17]. Here,
a large quantum circuit is divided into smaller sub-circuits (2-
4 qubits). Smaller representation of this sub-circuits are found
through approximate synthesis. Later, these smaller represen-
tations replace the original sub-circuits [17]. It’s worth noting
that most previous works have used approximate synthesis
to improve arithmetic quantum circuits or state-preparation
circuits. These circuits have a very small tolerable margin
of error. Since QNN or any other ML model approximates
a function (e.g., classification/regression), the margin of error
in synthesis can be higher. In fact, it may provide better
performance on hardware if the benefits with reduction of gate
count/depth outweighs the loss incurred due to approximation.
However, there is a lack of research on approximation synthe-
sis of QNN circuits.

IV. PROPOSED METHODOLOGY

We follow a teacher-student knowledge distillation frame-
work (Fig. B) [12] where the teacher is the PQC of a pre-
trained QNN. The teacher PQC’s unitary matrix representation
is the knowledge that is learnt during the training. The student
learns to mimic the unitary transformation of the teacher
PQC through approximate synthesis without being trained on
the original dataset. Later, the loss in performance due to
approximation error is mitigated through training the student
network for a small number of epochs.

Overview: The knowledge distillation process (Fig. ) starts
with a pre-trained QNN and a desired PQC architecture (PQC-
2). The pre-trained network can be a large/short-depth QNN
with its basic building blocks - a quantum-to-classical data
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encoding circuit, a PQC with fixed/trained parameters (PQC-
1), and measurements. PQC-1 is separated from the pre-
trained QNN. We also freeze its parameters. Note that both
these PQC’s have the same number of qubits (n) and can be
represented by unitary matrices of dimension 2"x2". Since,
PQC-1 parameters are frozen, its matrix representation is
a fixed unitary. On the other hand, PQC-2 parameters are
trainable. Therefore, its corresponding unitary transformation
is a function of its parameters. For any random set of values
of PQC-2 parameters, the distance between these two unitary
matrices can be large. This distance can be calculated as a
single scaler quantity using various types of norms, e.g., L1,
L2, etc.

After choosing a suitable norm as the distance metric, we
can use a classical optimizer to update the PQC-2 parameters
and minimize this distance. If the optimization procedure ends
with a sufficiently low value of this distance, then we have a
new PQC (PQC-2 with optimized parameters) that is a close
approximation of PQC-1. After plugging in PQC-2 in place
of PQC-1, we get a new QNN that performs approximately
similar to the original QNN. If the distance is not sufficiently
small, the new QNN performance can be inferior to the
original QNN. To recuperate this loss, we can train the new
QNN with the original dataset for a few epochs.

Distance Metric: We use following metric (based on the
Hilbert-Schmidt inner product) as cost function for approxi-
mate synthesis: d = 1— %(TUV)) where U and V are the unitary
matrix representations of PQC-1 and PQC-2. The inverse of
a unitary matrix is its conjugate transpose. Therefore, if the
synthesis succeeds and U is close to V/, the product UTV = Iy
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Fig. 4. Transferring knowledge from a pre-trained QNN to a new QNN
using approximate synthesis. Approximation error may affect the performance
which is partially recovered by training the student network for a few epochs.

where [ is the identity matrix and N = dim(U). Furthermore,
the maximum magnitude that the trace of a unitary matrix can
have is its size NV, which occurs at the identity (up to a phase).
The closer UTV is to identity, the closer Tr(UTV) is to N,
and thus, the distance (d) closer to 0. Note, existing works
on approximate synthesis have also used this metric [13l], [15]]
because (i) it has computational advantage over other methods,
(i1) the distance becomes 0 if and only if the matrices match
exactly, (iii) it scales well with the size of the problem, and
(iv) it has operational meaning.

Distance Minimization: Any classical optimizer can be
used to minimize the distance. We can choose any gradient-
based (e.g., Adam, AdaGrad, SGD, BFGS, etc.) or gradient-
free (e.g., Nelder-Mead) optimizer for this task. These algo-
rithms, however, execute local searches and are prone to get
stuck in local minima. To increase the chances of getting closer
to a global minima, one can run multiple procedures with dif-
ferent random seeds with these local optimizers. Alternatively,
one can use global optimization methods, e.g., differential
evolution, simulated annealing, etc., for better chances of
getting an optimal solution at the cost of higher runtime. We
use the dual annealing optimizer from the SciPy library which
is an extension of the classic simulated annealing.

Choice of PQC: Approximate synthesis can be used to
(1) compress a QNN (same PL architecture, lower number of
layers), and (ii) find an efficient QNN for a target hardware
platform (PL tailored for the target hardware). Therefore,
the choice of PQC depends on the user objective. A PQC
may be an excellent choice for one hardware platform but
unsuitable for another. To further illustrate this issue, we have
used two basis gate-sets (IBM & Rigetti), and compiled a
total of 19 benchmark PQC circuits from [14] with the qiskit
compiler for a hypothetical 4-qubit fully-connected hardware.
Fig [5] shows the relative depth and gate counts with identical
number of layers. Note that, c2 has the lowest-depth and
gate-count with IBM gate-set as shown in Fig. [5fa)&(b)
(we omit cl from comparison since it does not have any
entanglement). The c6 PQC can be 8.6X deeper and can have
5.6X larger gate count due to compilation overhead. Note that
c2 PQC uses CX operation between the neighboring qubits
to create entanglement which is native to the IBM gate-set,
and therefore, more suitable for this gate-set. Similarly, c9 is
suitable for Rigetti gate-set since it uses CZ for entanglement
which is native to this gate-set (Fig. [5[c)&(d)). The ¢2 PQC
with a similar number of PL can be 1.7X deeper, and the gate
count can be 1.3X higher compared to c¢9 on Rigetti gate-set.
As demonstrated by these results, a QNN optimized for one
type of hardware may perform poorly on another if executed
naively following compilation due to compilation overhead.

Approximation Error: Approximate synthesis may not
always produce an exact solution. The outcome will depend
on the choice of PQC, the size of the PQC’s in terms of qubits,
the chosen optimization procedure, and the computational re-
source/time allocated for optimization. A very shallow PQC-2
may not have sufficient expressive power to mimic the unitary
transformation of PQC-1 [14]. It is noted that approximate
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synthesis does not scale well with qubit-size [13[], [15] due
to significant approximation error. Moreover, it may search
through a local minima. If a global optimizer is terminated
after a certain number of function evaluations, it may not
be able to reach an optimal solution. Therefore, approximate
synthesis may incur approximation error and compromise the
QNN performance.

Training the Student Network: Performance loss due to
approximation error can be mitigated by training the student
model. The compressed model parameters can be used as
the initial seed. If the approximation error is minor, a small
number of training epochs with the original dataset may be
sufficient to recover the majority of the loss else a large num-
ber of epochs might be necessary. Nonetheless, the process
can be significantly less expensive than training a new model
from scratch using random seeds.

V. EVALUATION

A. Setup

Framework: We use the PennyLane and TensorFlow
packages to train the QNN models. Qiskit is used for circuit
compilations and noise simulations. SciPy package is used
for optimization. All numerical experiments are run on a
Intel Core-17-10875H CPU with 16GB of RAM. The teacher
models are trained for 10 epochs and the student models are
trained for 2 epochs using the Adam optimizer (learning rate
= 0.2, beta_1 = 0.9, beta_2 = 0.999, epsilon = e~ 97). We use
the dual_annealing optimizer as the classical optimizer in ap-
proximate synthesis (initial_temp = 5230.0, restart_temp_ratio
= 2¢7 9, visit = 2.62, accept = -5.0). The parameter values

are bounded between -7 to m and the maximum number of
function calls is restricted to 1000.

Datasets: We use the Iris, MNIST, and Fashion-MNIST
datasets. The Iris dataset has 150 samples of 3 different
classes (50/class). Each sample has 4 features. The MNIST
and Fashion-MNIST datasets both have 60000 training sam-
ples and 10000 test samples that belong to 10 different
classes. Each sample has 28x28 features. To reduce sim-
ulation time, we have created 6 smaller 3-class datasets
from the MNIST and Fashion-MNIST datasets - MNIST179,
MNIST246, MNIST358, FASHIONO12, FASHION345, and
FASHIONG678. First, we reduce the dimension of MNIST
and Fashion-MNIST datasets to 8 using a convolutional auto-
encoder [18]. Later, we pick 750 samples of 3 different classes
(250/class) to create a smaller dataset (e.g., 750 samples are
drawn from classes 0, 1, and 2 for FASHIONO12). We divide
this 750 samples to a train (600) and validation set (150).

QNN Networks, Qubits, Encoding & Loss Function:
We use 4-qubit QNN models in all the QNN’s. The 19 PQC
architectures from [14] are used in our work. We use 1 vari-
ables/qubit encoding (Fig. [2[b)) for Iris, and 2 variables/qubit
encoding (Fig. |ch)) for MNIST and Fashion-MNIST. Pauli-
Z expectation values of the qubits are taken as the QNN
outputs. We feed these outputs to a fully-connected classical
dense layer with 3 neurons to facilitate 3-class classification
problems [18]. A Softmax layer transforms the output of this
neurons to class probabilities. We use the categorical cross-
entropy loss.

Metrics: We prefer to evaluate teacher models, student
models, and trained student models using classification ac-
curacy on the training and validation sets.



B. Results

QNN Retargeting: Approximate synthesis can be used
to find an equivalent QNN to a pre-trained QNN that is more
suitable for a target quantum device. The pre-trained QNN
might have been trained for a different device. The PL of
the new PQC can be chosen based on the basis gates of the
new hardware. For example, the c6 PQC consists of several
CRX gates which are not native to IBM and Rigetti hardware.
A single-layer c6 PQC has 8.6X, and 8.4X higher number
of gates than a single-layer c2, and c9 PQC when compiled
with the IBM and Rigetti gate-sets, respectively. If a pre-
trained QNN uses ¢6 PQC, it can be approximated with c2
and c9 PQC’s for IBM and Rigetti devices. We show the
distance between a 2-layer c¢6 4-qubit PQC trained to classify
the Iris dataset and its c¢2 approximation with 1-8 layers in
Fig. [6(a). Note that, with a single-layer, the distance is quite
large (0.093) which decreases consistently with added layers
(0.023 with 8-layers). Also note that an 8-layer c2 PQC has
less than half the gates of a 2-layer c6 PQC when compiled
with the IBM gate-set. We may get to an even lower distance
(closer to exact synthesis) by increasing the c2 layer and still
maintain the number of gates lower than 2-layer c6 PQC. Note
that, with every PQC, we may not explore similar spaces in
the Hilbert-space [14]. Therefore, a PQC may perform better
over another to approximate the target PQC. For instance,
with 8-layers, the c12 PQC gets much closer to the 2-layer
¢6 PQC compared to ¢9 as shown in Fig. [f(b)&(c) (0.008 vs.
0.072). Therefore, c12 can be a better choice to approximate
c9 for Rigetti devices, both having considerably lower gate
count/depth upon compilation with Rigetti gate-set (Fig. [3).

QNN Compression: Since noise increases with the circuit
size, compression can be extremely useful to mitigate the
impact of noise during inference of the model on an actual
hardware. For example, we take 10-layer c15, and c2 PQC'’s
and trained them to classify the Iris dataset. Later, we approx-
imate these PQC’s with 1-8 layers. The results are shown in
Fig. Ekd)&(e). The distances consistently decrease with added
layers (0.095 with 1-layer to 0.013 with 8-layers for c15).
Note that, reducing a single layer can be extremely significant
because it can reduce, (i) noise accumulation, and (ii) the
latency or increase the speed during model inference. For
instance, an 8-layer c15 will require 80% of the execution
time compared to a 10-layer c15 PQC. That will translate to
reduced coherence errors. On top of that, it will have 20% less
gates that will result in lesser accumulation of gate errors.

Performance after Approximation and Training: The
approximated model performances can be inferior in noise-
less simulation. To illustrate this, we trained the MNIST
and Fashion-MNIST datasets with 2-layer C6 PQC’s and
approximated them with 6-layer c2 and c9 PQC’s (QNN
Retargeting). Similarly, we have also trained a 7-layer c15
PQC and later approximated it with 2-5 layers c15 PQC’s
(QNN Compression). The results are tabulated in Table [I| and
For some datasets (e.g., FASHION345), the approximated
models provide similar performance compared to the base
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Fig. 7. Measured average accuracy of the 7L cl5 base models, 2L/4L
approximated (Ap), and approximated & trained models (Ap/Tr) across all the
training and validation datasets on two hardware emulators - FakeMelbourne,
and FakeAlmaden available in the Qiskit framework.

model (0.91 and 0.925 accuracy over the training set with
6-layer c¢2 and c9 compared to 0.9316 with 2-layer c6).
However, in some cases (e.g., MNIST179), the performance is
significantly compromised (0.5550 and 0.6899 accuracy over
the training set with 6-layer c2 and c¢9 compared to 0.9033 with
2-layer c6). As expected, the performance loss is higher with
more compression (Table [lT). For example, with 4-layers, the
accuracy on MNIST179 training set is 0.4933 which increases
to 0.6499 with 5-layers. However, the compressed models
performance remains inferior to the 7-layer c15 model for all
the datasets. After training the retargeted/compressed models
only for two epochs (with approximated model parameters as
the initial seeds), we get closer to the base model as evident
from Table [ and

Performance under Noise: To study the performance after
approximation, we pick all the 7-layer c15 base models, 2/4
layer approximated models (Ap), and the approximated and
trained models (Ap/Tr) from Table and measured their
accuracy on two hardware emulators available in Qiskit -
FakeMelbourne and FakeAlmaden. We used emulators rather
than actual hardware because (i) access to actual hardware is
still extremely limited and (ii) generating statistically signif-
icant results would require an exorbitantly lengthy period of
access to hardware. These hardware emulators model the gate
errors (using depolarizing noise channel), decoherence errors
(using thermal relaxation), and measurement errors (using bit-
flipping probabilities) of the devices. The noise parameters
are obtained from actual hardware calibration. FakeMelbourne
has the following noise attributes - avg. single/two-qubit gate
error: 0.104%/3.14%, avg. T1: 56.07 ps, avg. T2: 55.5 us,
avg. single/two-qubit gate-execution time: 68.5715/902.9ns,
and avg. measurement error: 5.63%. FakeAlmaden - avg.
single/two-qubit gate error: 0.09%/2.38%, avg. T1: 86.78 us,
avg. T2: 64.31 ps, avg. single/two-qubit gate-execution time:
35.55n5/405.8ns, and avg. measurement error: 5.35%. We
show the average of the results over all the datasets in Fig.
Note that, for both the training and validation sets, the
approximated and trained student models provide significantly
higher accuracy compared to the base model. For example,
we get 0.726/0.737 (0.68/0.677) average accuracy with 2L/4L
models compared to 0.637 (0.573) of the base 7L model on
the training (validation) sets.

VI. DISCUSSION

Approximate synthesis does not scale well with qubit-size
[13], [L6] i.e., the approximation error can grow with qubit



TABLE I
ACCURACY OF THE TRAINED MODELS WITH TWO-LAYER C6 PQC, THEIR
APPROXIMATED COUNTERPARTS WITH SIX-LAYER C2/C12 PQC’S (AP),
AND THE APPROXIMATED & TRAINED MODELS (AP/TR)

‘ Data-set ‘ Subset ‘ Accuracy ‘

L [ s |

(L) Ap (6L) Ap/Tr (6L) | Ap (GL) Ap/Tr (6L)

| MNIST179 | Train | 09033 | 0.5550 | 0.8666 | 0.6899 | 0.8000 |
| | Val | 0.8456 | 0.5436 | 0.8590 | 0.6308 | 0.7785 |
| MNIST246 | Train | 09599 | 0.7216 | 0.8766 | 09133 | 09116 |
| | val | 09333 | 07400 | 0.7666 | 0.8933 | 09333 |
| MNIST358 | Train | 09300 | 0.8233 | 0.9333 | 0.8550 | 0.9166 |
| | val | 0.8733 | 07933 | 0.8999 | 0.8600 | 0.8733 |
\ FASHIONO12 \ Train \ 0.9533 \ 0.7200 \ 0.9116 \ 0.8949 \ 0.9333 \
| | val | 09133 | 0.6866 | 09133 | 0.8666 | 08733 |
| FASHION345 | Train | 09316 | 09100 | 09333 | 09250 | 0.9499 |
| | val | 0.8866 | 0.8600 | 0.9399 | 0.8799 | 09133 |
| FASHION678 | Train | 0.9800 | 0.8283 | 0.9566 | 09283 | 0.9666 |
| | val | 09266 | 07533 | 0.8799 | 0.8799 | 0.9266 |

size. To illustrate this issue, we took 200 instances of 2, 3, 4,
5, and 6-qubit & 6-layer c2 PQC with random parameters and
approximated them with 4-layer PQC’s (40/qubit-size). Later,
we measured the fidelity between the states prepared by the
6-layer PQC’s and their 4-layer approximations. Fidelity is a
widely used to measure the distance between two quantum
states (Fidelity(|¢a), [¥0)) = [(¥a[¥s)]?, and [¢a) = U, 0)).

We obtain very low approximation error with 2/3 qubit
PQCs, as indicated by the higher average fidelity scores of
0.999 and 0.949, respectively. Additionally, the average fidelity
scores for 4/5 qubit PQCs are moderate at 0.796 and 0.775.
However, 6-qubit PQCs show poor average fidelity score
of 0.497. The results indicate that the vanilla approximate
synthesis approach can be very useful for QNNs that have
higher depth (many PQC layers) but a smaller number of
qubits. Many NISQ-era QNN models sacrifice depth for
smaller number of qubits [19], [6]. These models encode
high-dimensional classical data into a small number of qubits
using sequential rotations. Once the data is loaded, a PQC
transforms it to a output that is used for the intended ML task.
Approximate synthesis can be extremely beneficial for such
QNNs. The vanilla approach may be less useful for QNNs
with a large number of qubits due to the large approximation
error. However, we can always choose the divide and conquer
approach in such cases [17], [13] where the PQC can be
divided into smaller (2/3-qubit) blocks with large depths, and
approximated with shorter depth. This is the topic of further
explorations.

VII. CONCLUSION

[20] We introduce knowledge distillation in QNNs using
approximate synthesis to compress a pre-trained QNN for a
target device or retarget a pre-trained QNN for a new device,
avoiding the expensive training of new networks from scratch.
Approximation error can degrade the performance of com-
pressed or retargeted QNNs which can be largely compensated
by training for a few epochs. We conduct a comprehensive
numerical analysis on 7 datasets with and without noise to
evaluate the efficacy of the proposed method.

TABLE I

ACCURACY OF THE TRAINED MODELS WITH SEVEN-LAYER C15 PQC, ITS
APPROXIMATED VERSIONS WITH 2, 4, & 5 LAYER PQC’S (AP), AND THE

APPROXIMATED & TRAINED MODELS (AP/TR)

| Subset | Accuracy (c15) |

‘ Data-set
‘ ‘ ‘ 7L ‘ 2L ‘ 2L 4L ‘ 4L 5L ‘ SL‘
Ap Ap/Tr Ap Ap/Tr Ap Ap/Tr
| MNisTi7o | Train | 08333 | 04099 | 0.7749 | 04933 | 0.7816 | 0.6499 | 0.7583 |
\ | Val | 0.8120 | 0.3557 | 0.7718 | 0.4697 | 0.7248 | 0.6375 | 0.7046 |
| MNisT2a | Train | 08383 | 0.5249 | 0.7433 | 0.5483 | 0.8483 | 04416 | 08166 |
\ | Val | 07799 | 0.5000 | 0.6466 | 0.4466 | 0.8466 | 0.3866 | 0.7400 |
| MisT3sg | Train | 08033 | 0.5083 | 0.7149 | 0.6133 | 0.8149 | 0.6549 | 0.7799 |
\ | Val | 05933 | 0.5000 | 0.6333 | 0.5799 | 0.6933 | 0.4733 | 0.6533 |
| FasHIONO12 | Train | 0.0083 | 0.5683 | 0.8433 | 0.7383 | 0.8849 | 0.8333 | 0.8866 |
\ | Val | 0.8999 | 0.5799 | 0.7466 | 0.7266 | 0.8199 | 0.8600 | 0.8666 |
| FasHION34s | Train | 08966 | 0.4383 | 0.8833 | 0.6250 | 0.9033 | 0.8316 | 0.9083 |
\ | Val | 0.8666 | 0.4600 | 0.8133 | 0.6399 | 0.8733 | 0.7333 | 0.8666 |
| FasHIONG7s | Train | 09116 | 03516 | 0.8033 | 0.7366 | 0.8999 | 0.8283 | 0.9283 |
\ | Val | 07933 | 03466 | 0.7266 | 0.6000 | 0.8199 | 0.7400 | 0.8000 |
REFERENCES
[1] F. Arute et al., “Quantum supremacy using a programmable supercon-

[6]
[7]
[8]
[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]
[17]
(18]
(19]

[20]

ducting processor,” Nature, vol. 574, no. 7779, pp. 505-510, 2019.

E. Pednault et al., “On quantum supremacy,” IBM Research Blog,
vol. 21, 2019.

E. Farhi and H. Neven, “Classification with quantum neural networks
on near term processors,” arXiv preprint arXiv:1802.06002, 2018.

N. Killoran et al., “Continuous-variable quantum neural networks,”
Physical Review Research, vol. 1, no. 3, p. 033063, 2019.

M. Schuld et al., “Effect of data encoding on the expressive power
of variational quantum-machine-learning models,” Physical Review A,
2021.

S. Lloyd et al., “Quantum embeddings for machine learning,”
preprint arXiv:2001.03622, 2020.

Y. Du et al., “Expressive power of parametrized quantum circuits,”
Physical Review Research, vol. 2, no. 3, p. 033125, 2020.

A. Abbas et al., “The power of quantum neural networks,”
Computational Science, vol. 1, no. 6, pp. 403—409, 2021.

M. Alam et al., “Addressing temporal variations in qubit quality metrics
for parameterized quantum circuits,” in 2019 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED). IEEE,
2019, pp. 1-6.

A. Ash-Saki et al., “Qure: Qubit re-allocation in noisy intermediate-scale
quantum computers,” in 56th Annual Design Automation Conference
2019, 2019.

J. O. Neill, “An overview of neural network compression,” arXiv preprint
arXiv:2006.03669, 2020.

G. Hinton et al., “Distilling the knowledge in a neural network,” arXiv
preprint arXiv:1503.02531, 2015.

S. Khatri et al., “Quantum-assisted quantum compiling,”
vol. 3, p. 140, 2019.

S. Sim et al., “Expressibility and entangling capability of parameterized
quantum circuits for hybrid quantum-classical algorithms,” Advanced
Quantum Technologies, vol. 2, no. 12, p. 1900070, 2019.

M. G. Davis et al., “Towards optimal topology aware quantum circuit
synthesis,” in IEEE International Conference on Quantum Computing
and Engineering, 2020.

V. Kliuchnikov et al., “Asymptotically optimal topological quantum
compiling,” Physical review letters, vol. 112, no. 14, p. 140504, 2014.
X.-C. Wu et al., “Qgo: Scalable quantum circuit optimization using
automated synthesis,” arXiv preprint arXiv:2012.09835, 2020.

M. Alam et al., “Quantum-classical hybrid machine learning for image
classification,” arXiv preprint arXiv:2109.02862, 2021.

A. Pérez-Salinas et al., “Data re-uploading for a universal quantum
classifier,” Quantum, vol. 4, p. 226, 2020.

tex.stackexchange.com, Last visited: 2012-03-20.

arXiv

Nature

Quantum,


tex.stackexchange.com

	I Introduction
	II Preliminaries
	III Related Works
	IV Proposed Methodology
	V Evaluation
	V-A Setup
	V-B Results

	VI Discussion
	VII Conclusion
	References

