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ABSTRACT

Given a family of sets {S1, Sz, ... Sy} over a universe Q, estimating
the size of their union in the data streaming model is a fundamental
computational problem with a wide variety of applications. The
holy grail in the field of streaming is to seek design of algorithms
that achieve (e, §)-approximation with poly(log |Q],e™1,log §71)
space and update time complexity.

Earlier investigations achieve algorithms with desired space and
update time complexity for restricted cases such as singletons (Dis-
tinct Elements problem), one-dimensional ranges, arithmetic pro-
gressions, and sub-cubes. However, techniques used in these works
fail for many other simple structured sets. A prominent example is
that of Klee’s Measure Problem (KMP), wherein every set S; is rep-
resented by an axis-parallel rectangle in d-dimensional spaces. De-
spite extensive prior work, the best-known streaming algorithms for
many of these cases depend on the size of the stream, and therefore
the problem of whether there exists a streaming algorithm for esti-
mations of size of the union of sets with poly(log |Q],e™1,log §71)
space and update time complexity has remained open.

In this work, we focus on certain general families of sets called
Delphic families (which allows efficient membership, sampling, and
cardinality queries). Such families of sets capture several well-
known problems, including KMP, test coverage, and hypervolume
estimation.

The primary contribution of our work is to resolve the above-
mentioned open problem for streams over Delphic families. In
particular, we design the first streaming algorithm for estimat-
ing |U§\il S,-| with poly(log |Q|, e71,1og §~!) space and update time
complexity (independent of M, the length of the stream) when each
S; is a member from a Delphic family of sets. We further generalize
our results to larger families of sets, called approximate-Delphic
families, for which the size of a set can be known approximately
but not exactly. Our results resolve two of the open problems listed
in Meel, Vinodchandran, Chakraborty (PODS-21).
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1 INTRODUCTION

The widespread adoption of computing has led to an explosion of
data that modern computing systems need to process efficiently.
The design of data analysis techniques with computational and
storage efficiency is of utmost importance. Consequently, the past
two decades have witnessed a sustained interest in the design of
efficient streaming algorithms.

In this paper, we focus on one of the fundamental problems in the
context of streaming: Given a stream of sets Sy, Sz, . . . Sy, estimate
their union |U{\i 1 Si | which is often referred to as zeroth frequency
moment and denoted by Fy of the stream. The goal, usually, is to
design an efficient randomized algorithm that can output an (¢, §)-
approximation of the | U?ﬁ 1 Sil- We say that a random variable Z is
an (&, 6)-approximation of Y if Pr[|Z — Y| < ¢]|Y|] > 1-6.

We will focus on general families of sets, called Delphic families!,
defined below:

Definition 1.1. Let Q be a discrete universe. A set S C Q belongs to
a Delphic family if the following queries can be done in O(log |Q|)
time.

Membership Given any x € Q check ifx € S.
Cardinality Determine the size of S, i.e. |S|.
Sampling Draw a uniform random sample from S.

The goal is to design a streaming algorithm that, given a stream
of sets S1,S2,...Sy from a Delphic family, computes an (¢, §)-
approximation of |U?ﬁ 1 Sil while minimising the worst case space
complexity and the worst case update time complexity. The (worst
case) update time complexity is the (worst case) time spent process-
ing a single item in the stream. In the setting of streams over Delphic
sets, it is proportional to the (worst case) number of queries made
to a set in the stream. This abstract computational problem over
Delphic families captures several well-known problems, including
the discrete version of Klee’s Measure Problem (KMP), test cover-
age estimation, hyper-volume estimation, and the DNF counting
problem.

!While the name Delphic sets was introduced in our prior work [33], the notion of
Delphic sets has been implicit in several works over the past three decades [5, 10, 23, 24];

to the best of our knowledge, the first work that explicitly mentions the three properties
of Delphic sets is the seminal work of Karp and Luby [23].
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The Distinct Elements problem, one of the most widely studied
problems in the streaming literature, when cast in terms of set
streams, is to estimate the size of the union of sets wherein every
set S; of the stream is a singleton element of the universe. A long
line of work culminated in the development of algorithms for Dis-
tinct Elements with optimal space complexity O(log |Q] + glz) and
O(1) update time complexity [21] (for a constant §). The design
of algorithms with poly(log ||, %, log %) space and update time
complexity for the Distinct Elements problem spurred interest in
investigations of streaming algorithms for more broader classes
of sets. One such example is that of single-dimensional ranges,
wherein every S; is encoded as [a;, b;] for a; < b; and represents
the set of all integers x; such that a; < x; < b;. For this case,
the algorithms for distinct elements problem can be used by pro-
cessing every element of S; one by one. While such algorithms
would provide optimal space complexity O(log |Q| + giz), the re-
sulting update time complexity of O(|Q|) is highly undesirable.
Bar-Yossef, Kumar, Sivakumar [3] introduced the notion of range-
efficient streaming algorithms to capture the desiderata of space
and update time complexity to be logarithmic in the size of the
range. Subsequently, Pavan and Tirthapura [29], Sun and Poon [31]
achieved range-efficient algorithms for single-dimensional ranges.

A natural question is to investigate the design of range-efficient
algorithms for multi-dimensional ranges, which can also be viewed
as a discrete version of the well-known Klee’s Measure Problem
(KMP) [32, 34]. KMP is a natural and fundamental problem stud-
ied in computational geometry resulting in a substantial body of
research. [4-8, 14, 17, 25, 28] 2 KMP also arises naturally in spatial
databases [33, 34]. Furthermore, a restricted variant of KMP, known
as the Hyper Volume Estimation problem, is an important compu-
tational problem studied in evolutionary algorithms [5]. Initial at-
tempts to design range-efficient algorithms for KMP in the stream-
ing setting, however, failed to achieve poly(log |Q],e™1,log ™)
space and update time complexity. In particular, such attempts
yielded techniques with update time complexity of O(|Q]) [32, 34].

Recently, Meel, Vinodchandran, and Chakraborty [33] took a
promising step and achieved poly(log |Q], e, 1og 671, log M) space
and update time complexity for KMP and more generally for com-
puting Fy of a stream of Delphic sets of stream-size M. However, the
scheme due to MVC? still falls short of desiderata (of obtaining a
space and update time complexity of poly(log ||, ¢™!,log §71) and
independent of the stream size) in streaming literature given its de-
pendence on the size of the stream. To summarize, despite extensive
prior work, design of algorithms with poly(log |Q],¢71,log §71)
space and update time complexity for set streams over Delphic
families remains open and is of significant interest from theoretical
and practical perspectives.

1.1 Our Results

The primary contribution of this work is to resolve the above-
mentioned open problem. In particular, we design the first stream-
ing algorithm for estimation 0f|U?£1 Sl-| with poly(log |Q], %, log %)
space and update time complexity (independent of M, the length of
the stream). Formally, we prove the following theorem:

2The formal definition on KMP is given in Definition 2.2.
3Named after the initials of authors.
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THEOREM 1.2. There is a streaming algorithm, which we call VATIC,
that given real numbers ¢,5 < 1, and a stream S = (S1,S2,- -+, Sp)
of unknown length M where each S; C Q belongs to a Delphic family,
computes an (&, §)-approximation of|U?ﬁl S,~|.

The algorithm has the worst case space complexity O(log>(|Q]) -
bgi#) and the update time complexity 5(10g4(|Q|) . bg(g#).

As a corollary to Theorem 1.2, we get an algorithm with space
and update time complexity poly(log |Q], % log %) for Klee’s Mea-
sure Problem, which is formally defined in Definition 2.2.
Corollary 1.3. There is a streaming algorithm that given real num-
berse, 8 < 1, and a stream R = (ry, 1o, - - - ryp) where each r; is a d-
dimensional rectangle over Q = A%, computes an (e, 8)-approximation
of Volume(R). The worst case space complexity of the algorithm

is O(d®log®(|A]) - bg(g#), while its update time complexity is
=~ It [
O(d*log*(|A]) - 28U/2)).

While the framework of the Delphic set is general enough to
capture many important scenarios, there are settings where it is
impossible to obtain the size of a set exactly. Similarly, getting a
sample uniformly at random from a set can also be challenging.
To handle the problem of estimating the size of the union of such
sets, we consider a natural generalization of the notion of Delphic
Families called Approximate-Delphic Families.

Definition 1.4. Let Q be a discrete universe. A set S C Q belongs
to an Approximate-Delphic family if for some constants 0 < a,y,n
there is an oracle that allows the following set of queries.

Membership Given any x check if x € S.

Approximate Cardinality Get an approximation of the size of S
which with probability > (1 —y) is between |S|/(1 + «) and
(14)|S|. We call such an approximation (e, y)-approximation
of |S|.

Approximate Sampling Draw a random sample from S where the
probability that any element x € S is sampled is between

m and (1|+r") We call such as oracle n-random sampling

oracle.
We will refer to such an oracle as an (a, y, n)-Approximate-Delphic
oracle *.

Several families of sets such as convex sets, star-shaped sets,
and Schlicht Domains (see Section 6.2) fall under the category
of Approximate-Delphic families. Thus a streaming algorithm for
estimating the union of sets when given access to an (a,y,n)-
Approximate-Delphic oracle gives a streaming algorithm for es-
timating the union of sets for the aforementioned families of sets.

Our next result is an algorithm that can approximate the size of
the union of sets given access to an («, y, n)-Approximate-Delphic
Oracle.

THEOREM 1.5. There is a streaming algorithm, which we call
ExT-VATIC that, given real numbers ¢,§ < 1, and a stream S =
(81,82, -+, Spm) of unknown length M where each S; C Q belongs to
an Approximate-Delphic family, and access to an (e, y, ) -Approximate-
Delphic oracle for some a,y, 8 for members of the family, outputs

a number in the range b@&)%' U{\il Sil, @+ +n1+

“4The reason for using the above notions of approximation is discussed in Section 2.
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a)| U?ﬁl Si|] The worst case space complexity of the algorithm is
O((log® |Q]) log(1/6) - (16;2’7)) The algorithm, while processing any
item of the stream, makes

(1+n)
62

O((log’ |0 Iog(1/9) log (=) = 5)

calls to the (a, y, n)-Approximate-Delphic Oracle in the worst case.

The techniques that we use to extend VATIC to ExT-VATIC can
also be used to extend the streaming algorithm for Delphic sets in
[33] to handle Approximate-Delphic sets. This addresses a problem
that was left open in [33]. The extension of their algorithm to
Approximate-Delphic sets is presented in Appendix D.

Remark 1.6. In the definition of the Delphic family, we do not make
any restrictions about the representations of sets. Instead, we assume
that the streaming algorithm gets a set S in some representation on the
input memory. The resource requirements are not explicitly parame-
terized by this representation but rather by the size of the universe
of the set S. This allows us to state the resource requirements of our
algorithm in line with those in the literature. Moreover, the applica-
tions we state fit this model naturally. However, in the definition of
the Approximate-Delphic family, we use the oracle formulation where
each operation takes a unit time step. This is because for applications
we present in this paper, these operations can be non-trivial and known
algorithms take polynomial time in the standard representations.

We also note here that for a family of sets for which there is an
efficient algorithm for membership testing given some representation,
there is also a succinct representation for every element in the family
in the form of Boolean circuits. To state this succinct representation
theorem, we consider the universe of Boolean strings. This is without
loss of generality, as any universe Q can be encoded in {0, 1} log |2[1,
Let {Fn}n be a series indexed by integers n > 1 where each F, is
a family of sets in {0,1}" with a set of representations R: that is
for any n, any S, € Fy, is represented by some Rs, € R. For a set
S € {0, 1}", we say that a Boolean circuit C on n inputs represents S
if for all x € {0,1}", x € S if an only if C(x) evaluates to True. The
following is a well-known theorem from Computational Complexity.
The Boolean circuits we consider are the ones with fan-in 2 AND and
OR gates and fan-in 1 NOT gates. The size of a circuit is the number
of gates in it.

THEOREM 1.7 ([9, 19]). If there is a membership testing algorithm
that on input (Rs, , x), outputs Yes if x € S, and No’ if x ¢ S, in
time T (n) where n = |x|, then for all n, there is a Boolean circuit Cp,
of size O(T(n) log T (n)) that represents Sp,. In particular if there is
a membership testing algorithm that runs in time O(n), then there
is a Boolean circuit of size O(n) that represents the set Sy, for every
member of the family.

1.2 Our Techniques

Our algorithm is based on a simple but general sampling-based
strategy. Let J; Si = {s1,82,...,s} € Q, where k = | U; Si|. The
main idea is to sample each s; independently with appropriately
chosen probability p; and store the tuple (s, p;): the element along
with the probability with which it was sampled, in a bucket X. At
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. N(p;
the end of the stream, we can compute our estimate };; %5

where N(pj) represents the number of elements in X that were
sampled with probability p;. Our objective is to obtain an algorithm
with poly(log |Q],e71,log 6~!) space and update time complexity;
therefore, the size of X is expected to be of the same order of mag-
nitude; in particular, we will maintain |X| € O(log? |Q] - bgg—fl).

There are two key challenges we need to overcome: (C1) there
may be many sets S; such that s; € S; and (C2) how do we choose
value p;.

To address the challenge C1, we borrow the simple but powerful
technique first introduced in [33]: when processing S;, remove all
elements from X that lie in S;. Therefore, whether s; € X depends
only on the last occurrence of s, i.e., the last set S; for which s; € S;

We now turn to the most critical challenge, C2. To this end,
Np))

pj

of |Uf\i 1 Si\, Since we sample each s; independently, the standard
concentration bounds would yield (¢, §)-guarantees as long as every
element is sampled with sufficiently high probability. Observe that
when the elements are sampled with a very small probability, then
central moments of the estimator are too high in comparison to the
expectation. Technically, it suffices to have p; > % However, there
is, no apriori good estimate of k; our problem is, after all, to estimate
k. One possible strategy, explored in [33], would be to start with
setting p = 1 and decrease p every time the bucket X reaches its
capacity. To ensure that every element s; is picked with p; > %
(with high probability), we would have to ensure that at every point
of the stream of length M, the value p does not fall below % which
leads to a log M factor in the performance. Our key insight is that
an element s; need not be picked with probability p > % whenever
sj occurs in the stream, as whether s; € X depends only on the last
occurrence of s;. Therefore, we only need to ensure that the last time
sj appears, it should be picked with probability p; > % A potential
obstacle is that it is not possible to determine if s; will occur in the
future or not. We resolve the issue by observing that if we decide
on the probability p with which elements of S; should be picked
based on the size of X, then we can lower bound the probability
pj for each s; without any assumptions on the stream. We give
some details. Let 7 C [M] be the set of indices corresponding to
the last occurrences for s;’s. Formally, i € I if for some s;, we
have s; € S; and there is no i’ > i such that s; € Sy. Observe that
regardless of the value of M, since |J; Si| < |Q| and there is a
surjection between | J; S; and 7, we have |I'| < |Q|. Therefore, to
bound the probability that for all s;, we have p; > %, we need to
perform union bound over at most |Q| events, thereby, leading to
a log || factor in the expression for |X]|. It is worth emphasizing
that we do not seek to process every occurrence of s j with p > %
and therefore, we allow for the possibility that except for the last
occurrence, s; was sampled with probability less than %

is an unbiased estimator

we first note that the estimate )’ ;

Organization: The rest of the paper is organized as follows. We
discuss notations and preliminaries in Section 2. In Section 3 we
describe related works. In Section 4, we present our main algorithm
Vartic and prove its correctness and establish complexity bounds,
thus proving Theorem 1.2. In Section 5, we present EXT-VATIC (an

SFor technical reasons, the estimator in our algorithm involves further resampling
step.
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extension of VaTic) that works for set streams over Approximate-
Delphic families. Finally, in Section 6 we present a number of appli-
cations of our algorithms.

2 NOTATIONS AND PRELIMINARIES
We will denote by [n] the set of natural numbers {1,2,...,n} and
by (['tl]) the set of all subsets of [n] of size t. For any t € N and
any p € [0,1] we will also use Bin(t, p) to denote the binomial
distribution over the set [t] where probability of a number 0 <
m<tis (;l)pm(l —-p)tm,

The main computational problem is the following.

Definition 2.1 (Estimating the union of (Approximate) Delphic
Sets). Given a stream of sets S1, So, . . . Spg where each S; is from an
(Approximate) Delphic family, give an (e, §)-approximation of the
union |Uf\£1 S,-|.

An important and well studied instantiation of the above generic
problem is the streaming version of the Klee’s Measure Problem
(KMP). In the following definition A could be any totally ordered
set, but without loss of generality we assume A = [n] for some n.

Definition 2.2. A d-dimensional axis aligned rectangle r over the
universe Q = A4 is defined as a set [a1, b1] X [ag, ba] X ... X [ag, ba],
where Vi, a;, b; € A and a; < b;. Given a rectangle r, let Range(r)
denote the set of tuples {(x1,...,xq)} wherea; < x; < b; andx; € A.
For a set of rectangles R = {r1, - - - rpr}, the volume of R is defined as

Volume(R) = | Uy <i<p Range(r;)|

Definition 2.3 (Streaming KMP). Given ¢,d, and a stream R =
(r1, ra, - - - rpr), where each item r; is a d-dimensional rectangle over
A, compute a (&, )-approximation Volume(R).

Note that every d-dimensional rectangle can be naturally and
succinctly represented by the tuple (ay, b1, - - - ag, bg). KMP is an
instantiation of the general framework since every rectangle r;,
defines a set S; = Range(r;), that satisfies the desired properties of
Delphic sets (see [33] for a proof) and Volume(R) = |U?;Il S,-|.

As done in the case of traditional space bounded computations,
for counting space, we will not include the space required to repre-
sent the input item. We will consider that input is available on a
read-only input tape (with random access) and do not contribute
to the space used by the algorithm. We consider unit-cost model
and assume all basic operations including arithmetic operations on
words can be performed in unit time. When the sets are Delphic
then, from the definition of Delphic sets, we know that the time
complexity for one query is O(log |Q]). So for the Delphic sets the
update time complexity (or the time complexity for processing an
item in the stream) will turn out to be O(log |Q|) times the number
of oracle queries made while processing an item in the stream.

Notions of Approximations: We use two notions of (multiplicative)
approximation of a number. When we are concerned with approx-
imation algorithms for the size of the union of sets in a stream
(as in Theorem 1.2) our goal is to design an randomized algo-
rithm that is a (¢, §)-approximation of the size of the union of
the sets, where a random variable Z (output of the algorithm) is
an (&, 6)-approximation of Y if Pr[|Z — Y| < ¢|Y|] 2 1-6. In
particular, we assume ¢ < 1. A weaker notion of approximation
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is used in the definition of Approximate-Delphic oracles. A call to
an Approximate-Delphic oracle (Definition 1.4) for cardinality of
the set is required to return an («, §)-approximation of the size of
a set S, where a random variable Z is an («, §)-approximation of

|S] if Pr[ (l‘ilx) < Z < (1+a)|S|]] = 1 - 4. Note that the second
notion of approximation is weaker (less demanding) than the first
notion of approximation. In particular, we allow the approxima-
tion parameter « to be greater than 1. Thus we design algorithms
that approximates the size of the union of sets using the stronger
notion of approximation, while when designing algorithms for set
streams over Approximate-Delphic families the algorithm can work
with queries that gives a weaker guarantee in the approximation
of the size of a set. It will be clear from the context which notion of

approximation is being referred to.

THEOREM 2.4 (CouPON COLLECTOR PROBLEM). Given access to
uniform random samples from a set T and a numberr < |T|, let Z, be
a random variable that stands for the number of independent uniform
random samples from T needed before we get r distinct samples from
T. Then forany f > 1,

Pr[Z, > prlogr] < rm(B/2)+1

The proof of Theorem 2.4 for the case when |T| = r is presented
in [27]. For completeness we present the proof of Theorem 2.4 in
the Appendix. We note that the upper bound can be improved to
r~P+1 with a more involved proof. However, for our purposes the
weaker bound suffices.

Independently picking elements from a set with a fixed probabil-
ity. A crucial operation that was used in [33] for their streaming
algorithm for Delphic sets is to sample a subset £ of a set S so that
each element of S is in £ independently with probability p for a
given probability value p. This operation is implemented by the
following sampling process P: first draw a number K according to
the Binomial distribution B(|S|, p) and then draw K distinct elements
at random from S. We will also use this operation in our algorithm.
For completeness we give the proof of correctness of this process
below.

Claim 2.5. The sampling process P samples each element of S inde-
pendently with probability p.

The proof of Claim 2.5 is presented in the Appendix.

3 RELATED WORK

Karp and Luby [23] considered the problem of determining the
cardinality of union of Delphic sets. Their setting assumed stor-
age of the entire stream, and the resulting algorithms are quite
unfriendly to streaming setting. In particular, a straightforward
adaption of Karp and Luby [23] (and the subsequent work of Karp,
Luby, and Madras [24]) would yield an algorithm with space and
time complexity O( Mloe—gzlﬂl log M log n); the linear dependence on
M is highly undesirable from a streaming perspective.

A significant breakthrough for union of sets in streaming set-
ting is due to Flajolet-Martin [13], who focused on the restricted
case of singleton sets, also known as Distinct Elements problem.
Flajolet-Martin’s proposed scheme had, however, assumed access
to hash functions with strong independence. This independence
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requirement was relaxed in the seminal work of Alon, Matias, and
Szegedy [1], who demonstrated that pairwise independent hash
functions suffice in the context of Distinct Elements. Alon, Matias,
and Szegedy kick started a long line of work on streaming algo-
rithms and Distinct Elements in particular, which culminated in the
design of algorithms with optimal space complexity O(log |Q| + g—lz)
and O(1) update time [2, 15, 21].

Spurred by the success of design of algorithms with space com-
plexity independent of M and with logarithmic dependence on
log |Q| in the context of Distinct Elements problem, subsequent
work sought to handle broader classes of sets; of which a large body
of work can be categorized under the category of range-efficient
algorithms owing to the initial focus on the cases wherein every
Si represents a range [a;, b;] ie., all x such that a; < x < b;.
As noted earlier, Pavan and Tirthapura [29], Sun and Poon [31]
achieved range-efficient algorithms for single-dimensional ranges,
which is special of KMP for one dimension. The success in attempts
to achieve range-efficient algorithms for general version of the
problem was limited in the following years. In particular, Thirtha-
pura and Woodruff [34] achieved an algorithm with optimal space
complexity but the update time of the algorithm was O(|Q][). Sub-
sequently, Pavan, Vinodchandran, Bhattacharyya, and Meel [32]
also proposed another hashing-based technique with worst case
time complexity of O(|Q]).

The state of affairs was recently improved by Meel, Vinodchan-
dran, and Chakraborty [33] who designed a sampling-based strategy
that yielded the first algorithm with poly (log |Q|, e ™!, log 671, log M)
space and update time complexity. In this context, it is worth re-
marking that while the scheme due to Meel, Vinodchandran, and
Chakraborty shares high-level similarities with our algorithm; there
are crucial technical differences. In particular, their focus is to en-
sure that every item of the stream is sampled with p > %, where
k = | U; S|, which yields a dependence of M; while we do take
a different route, as described in Section 1.2, to achieve bounds
independent of the stream size.

4 VATIC: AN ALGORITHM FOR UNKNOWN
STREAM SIZE

In this section we prove the following theorem.

THEOREM 1.2. There is a streaming algorithm, which we call VATIC,
that given real numbers e,6 < 1, and a stream S = (51,52, -+, Sp)
of unknown length M where each S; C Q belongs to a Delphic family,
computes an (&, §)-approximation of|U?£1 S,-|.

The algorithm has the worst case space complexity O(log>(|Q]) -
bgi#) and the update time complexity 5(log4(|Q|) . bgiﬁ).

The algorithm, which we call VATIC, maintains a set X of tuples
(s,p) wheres € Q and 0 < p < 1 is a probability value, which
is initialized to the empty set in the beginning. Each set of the
stream is processed by the outer for loop (lines 3 - 17). At the ‘"
iteration when the set S; arrives, the algorithm first removes all
elements from X that are in S; (lines 4-6). Then it sets the ‘correct’
sampling rate p for the set S; (lines 7- 10). During this computation,
it also generates a number N; according to the Binomial distribution

Bin(|S;|, p). The algorithm proceeds if p > %

dently samples Nj distinct elements from S; and adds to X (lines 12

and indepen-
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- 17). Since the Delphic sets framework only allows sampling with
replacement, in order to sample Nj; distinct elements, the algorithm
generates up to K; samples for an appropriate value Kj (set so that
by Coupon Collector bound we can guarantee N; distinct elements
are drawn with high probability). Finally, after all the elements in
the stream are processed, the algorithm updates X so that every
element is present in X with the lowest probability py among all
sampling probabilities (lines 18 - 20).

Algorithm 1 VaticC

1: Initialize B < 6 - (bgi# log (@))

2: Initialize X « 0

3. fori=1toMdo

4 for all (s,*) € X do

5 if s € S; then

6: remove (s, *) from X
7 Setp<—1/2”x|/3]

8: Ni — B1n(|5,|,p)

o while p > 1/2[(IXI+ND/B] ypd p > 10814/0) 4,

2
10: N; « Bin(N;,1/2) and p < p/2 1l
11 if p > lofz(lglé) then
12: Set K; « 4N; -log(%); L0
13: fork =1toK; do
14: y < Sample(S;)
15: if |£| < N; then
16: L—LU{(y.p)}
17: X—XUL

18: Let po = min{ps | 3s, (s,ps) € X}
19: for (s, ps) € X do
20: With probability (1 — po/ps) remove (s, ps) from X

21: ESTIMATOR: return %

Proor. We will now prove the correctness guarantee of VATIC.
To this end, we first prove that with high probability every element
log(4/5) .
52'—|Q| . A crucial
observation is that, since before processing any set S, we remove
all the elements of S N X from X, the event ‘y € X’ only depends
on the outcome of sampling from the last set in which y is present.

We fix an arbitrary y € 2, S;. We first define an event Good
as follows. For a element y, let S; be the last set in the stream
where y € S; and let p, be the random variable that dictates the
probability with which the elements of S; are sampled and added

e
toX.LetD =2 105t/ Note that since the range of values
taken by p is a (negative) power of 2, the event ‘p, < D’ and
log(4/6)
2|l i
‘py < D! Then the event Good is defined as: Good = Uyeu?ﬁlsi Fy

yin U2, S; is sampled with probability at least

the event ‘py < are identical. Let Fy be the event that

(the complement of | yeuM s, Fy).
We first prove the following claim.

Claim 4.1. Pr[Good] > 1 - g
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ProOF. Let X; represent the set X at line 3 when i = j. First,
observe that for the event Fy to happen, one of the following events
should happen: (C1) at the end of the while loop 7- 10, we have
p < D; we will denote this event as F}, or (C2) we fail to sample
at least N distinct elements in the for loop 13- 16; we will denote
this event as F2. This is because if we sample N ; distinct elements
from S; where N; ~ Bin(|Sjl, p), then by Claim 2.5, every element
of Sj will be independently sampled with probability p. Therefore
the event that elements of S; are sampled with probability < p
implies the event < N; samples are chosen.

Therefore, Pr[Fy] < Pr[F; U F;] We will now upper bound

1 2
both Fy and Fy.

Bounding the probability ofF;: Let Nj(D) denote the value of N;
when p = D in line 9. For F; to happen, it must be the case that
[(IX;|+ N;(D))/B] > log(1/D), which implies that

(\’j+Nj(D)ZB-10g( ! ) (1)

2D
Now observe that for every iteration k of the outer for loop 3- 17,
forall (s, ps) tuples added to X, it holds true that pg < 1/2 [(1Xk+1)/B1
(recall, Xi,1 denotes the set X at line 3 when i = k + 1; i.e., after
the end of the iteration k). In other words, during the entire run
of the algorithm, a tuple (s, ps) will not be added to X whenever
[X| > B-|log(1/ps)]. Therefore, the following invariant holds true
in the entire run of the algorithm:

{(s.ps) € X | ps = £}] < B- [log1/¢] @

Substituting £ = 4D and observing |log (%)J = log (i), in
Eq 2, we have

[{(s.ps) € Xj | ps > 4D} SB~log($). 3)

Combining Eq 1 and Eq 3, we have

[{(sp9) € X5 1 ps < 2D} + N;(D) = Blog(%) _Blog(é) -B

Let us define a random variable Z;(p) to denote the size of set
obtained by picking every element of | U{zl Si| independently with
probability p. Based on Chernoff Bound, we have Pr[Z;(2D) >

B] < ﬁ. Therefore,

Pr[Fy] < Pr[|{(s,ps) € X; | ps < 2D}| + N;(D) > B]

<Pr[Z;j(2D) > B] < —
< PrlZ;(D) 2 Bl < [
Bounding the probability ong,: To this end, observe that from the
Coupon Collector Theorem 2.4, we can bound Pr[|£| < N;] <
Therefore, we have Pr[Fy] < Pr[F;,] + Pr[Ff/] < %

log(4/6) log(4/95) . . .
fz'lU?;[l 5i| > 2 UL5i] for all j and taking union

bound over all Fy, we obtain our desired probability. O

_6_
4]1Q["
Finally, by

observing that

Now, we are ready to prove the correctness guarantee of VATIC.
To this end, we first observe that the expected value of the output

of the algorithm, E (% | Good) = |U?;11 Sii.
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Let us denote the event that ‘the output of VATIC is outside
the interval [(1 — s)lU?ﬁl Si\, (1+ €)|U?;11 Si‘]’ by Error. Then, we
can bound Pr[Error | Good] by a straightforward application of
Chernoff bound.

Pr[Error | Good] > e|UM, Si| | Good

X1
pe |20 - U,
5/2

Hence, Pr[Error] < Pr[Good] + Pr[Error | Good] < g + g =9.

IA

Correctness of the space complexity bound: From the invariant as

stated in Eq 2 and the bound that py > 27’6(—4]\,% > 1/]Q|, we
& Uj=y Vi
have that at any point of the execution of the algorithm, |X| <
log |2|B = O(log? |- 2214/2) An element of X takes O(log(|Q2]))
space to store. Hence the space complexity is O(log3 |Q] - —IOgS/ %) ).
Correctness of the update time bound: Note that for processing a set
Si, the time to sample N; distinct elements from S; (from lines 13
to 16) dominates the rest of the running time, which is invoked
at most K; times. Therefore, since each sampling operation takes
O(log Q), the total update time is 5(10g4(|Q|) . bgi#).

O

5 APPROXIMATE-DELPHIC SETS

We begin by making a few observations about («, y, )-Approximate-
Delphic Oracles. The first observation is that the probability of suc-
cess of the oracle call for the approximate cardinality of a set can be
amplified using the median trick (by making multiple queries and
outputting the median value) - the proof follows from a standard
application of Chernoff’s bounds. The second observation is on get-
ting K distinct samples from a set using the approximate sampling
oracle. The proof of the second item follows from the bound on the
Coupon Collector problem.

Observation 5.1. (1) Given access to an Approximate-Delphic
set S through the (a,y, n)-Approximate-Delphic oracle that
gives an (a, y)-approximation of |S|, by querying the oracle
O(log Ty) times we can obtain an (a, 1/T)-approximation of
|S|, for any integer T. Also, if K is an (a, 1/T)-approximation
of S| then (1 + @)K has the guarantee that with probability
> (1-1/T)

IS| < (1+a)K < (1+a)?|S|.

Given access to a set S through the (a,y,n)-Approximate-
Delphic Oracle, for any K, using O((1+1)K log(TK)) samples
from (e, y, n)-Approximate-Delphic oracle to sample from S,
with probability > (1—1/T) we can obtain at least min{K, |S|}
distinct samples of S. In particular, for the case K = |S|, with
O((1+1n)|S|1og(T|S|)) approximate sampling oracle queries,
we can compute |S| with probability > (1 —1/T).

@)

The algorithm for Approximate-Delphic families follows the
approach of VATIC. But before we present the algorithm, we need to
make some crucial observations about the implementation of VATIC
and how to adapt it to work for a set stream over Approximate-
Delphic family.
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A crucial operation that we use for the implementation of our
algorithm VATic is that drawing each element of a set S indepen-
dently with probability p for a fixed probability p. Claim 2.5 shows
that this can be implemented by sampling process #: first by draw-
ing a number K according to the Binomial distribution B(|S|, p)
and then drawing K distinct elements at random from S.

The above process crucially depends on knowing the exact size
of the set S and that one can sample uniformly at random from the
set S. These are not guaranteed in the case of Approximate-Delphic
sets. However, we argue that we can work with approximations to
implement the sampling procedure.

First, let us assume that we have |S| but we only have access
to an y-random sampling oracle. In this case, if we draw samples
(using an n-random sampling oracle) until we obtain k distinct
elements of S then probability of an element getting selected is
between k/(1 + 1)|S| and (1 + n)k/|S|. Thus if we draw a number
k according to the Binomial distribution B(|S|, p) and then draw k
distinct elements at random from S using an n-random sampling or-
acle, then the probability that an element in S is selected is between

Sk -ty Prlk ~ B(SI, p)] and Ty S0 Pr(k ~ B(IS], p)], that
is between p/(1 + 1) and p(1 + n). Now, if we only have an (a, y)-
approximation of |S| (instead of the exact value of |S]), it is still
possible to design a sampling process where each item of S is se-
lected independently with a probability that is between p/2(1 + 1)
and p(1 + 1) (1 + &), which will be sufficient for our purposes. We

detail this process in the next claim.

Claim 5.2. Let S be any set and Z be an (a, y)-approximation of
|S|. For any p < m, consider the process: first draw a number
k according to the Binomial distribution Bin(Z (1 + «), p) and then
draw k distinct samples using an n-random sampling oracle from S.
Then with probability at least (1 — y) each element of S is picked
independently and for any element x € S

p s 2
2+7) < Pr[x is picked] < (1+a)*p(1+7n),

assuming S > 3log2(1+n)/p

4)

Claim 5.2 is similar to that of Claim 2.5. The proof of Claim 5.2
is presented in the Appendix.

We will need one more claim to prove the algorithm’s correctness
that estimates the size of Approximate-Delphic Sets. The claim
follows from a standard application of Chernoff’s bound.

Claim 5.3. Let R be a set of N elements and each element of R is
selected independently with some probability that is guaranteed to be
between f1p and Pap. Let P be the random variable that counts the
number of selected items. Then, assuming f; < 1 < fa,

Pr(1-e)fipN < P < (1+¢)fapN] > 1 — 2~ PN,

Using Observation 5.1, Claim 5.2 and Claim 5.3 we now present
the generalization of VATIC to handle Approximate-Delphic sets.

The algorithm to estimate the size of the union of the sets from an
Approximate-Delphic family with access to a («, y, n)-Approximate-
Delphic Oracle is presented in ExT-VATIC. The correctness and the
space and the update time complexities of EXT- VATIC is presented
in the following theorem which is restated.
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THEOREM 1.5. There is a streaming algorithm, which we call
ExT-VATIC that, given real numbers ¢,§ < 1, and a stream S =
(51,82, -+, Sp) of unknown length M where each S; C Q belongs to
an Approximate-Delphic family, and access to an (e, y, n)-Approximate-
Delphic oracle for some a,y, for members of the family, outputs
a number in the range bﬂ&)ﬁ' U{\il Silb 1+ (1 +n)(1 +
a)l U?il Sil] The worst case space complexity of the algorithm is
0O((log® Q) log(1/6) - (1:—;7)) The algorithm, while processing any
item of the stream, makes

O((log? 102 og(1/8) log(———) L5
Y €

calls to the (a,y, n)-Approximate-Delphic Oracle in the worst case.

Algorithm 2 ExT-VATIC
log(8/5)
€2

1. Initialize L = “2(1+n)

2 Initialize B (L log (@))
3: Initialize Threshy « 3log(2(1+n)|Q|/L)

: Initialize Threshy < (1 + 1) - Thresh -log(@ - Threshy)

4

5: Initialize X « 0

6: fori=1to M do

7 for all (s,%) € X do

8: if s € S; then

9 remove (s, *) from X

10: for k = 1 to Thresh; do

11: Pick a random sample y from S (using the -sampling
oracle)

12: if y is not in Y then

13: Y=Yuly}

14: if |Y| < Thresh; then

15: Ei =|Y]|

16: else

17: Ei=(1+a)T;; [T;isan (a, %)-approximation of |S;|]

18: Reset Y to 0

19: Set p « 1/2(1+ a)?

20: Pick N; from the binomial distribution Bin(E; (1 + «), p)
21: while p > 1/2l(IXND/BT and p > L/|Q| do

22: N; « Bin(N;,1/2) and p « p/2
23: if p > L/|Q| then

24: Set K; < 4Nj ~log(%)

25: fork=1to K; do

26: y < Sample(S;)

27: if |£| < N; then

28: L—LU{(y.p)}

29: X —XUL;

30: Let po = min{ps | 3s, (s,ps) € X}

1: for (s,ps) € X do

32: With probability (1 — po/ps) remove (s, ps) from X
|X]

p(1+a)

w

33: Output
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6 APPLICATIONS

So far, we have presented key technical results in the context of
Delphic and Approximate-Delphic sets in their generality and pre-
sented algorithms VaTic and ExT-Vatic. We also demonstrated
that the streaming version of the well-known Klee’s Measure Prob-
lem fits in the Delphic family framework (this has already been
done in [33]). In this section, we discuss how algorithms VaTIC and
ExXT-VATIC can be applied to a wide range of significant computa-
tional problems.

6.1 Applications of the Delphic Family
Framework

We now briefly discuss streaming problems that fit the Delphic
family framework. The descriptions of these problems, except that
of the Hypervolume estimation problem, are based on [33], where
the significance of these problems is discussed in some detail.

Hypervolume indicator estimation: Hypervolume indicator estima-
tion is a special case of KMP wherein every rectangle has the origin
(0,0,...0) as a vertex. We define it as follows: A d-dimensional axis
aligned rectangle r over an universe Q = A9, rooted at the origin, is
defined as the set [0,b1] X [0,b2] X ... % [0, bgq]. Given a rectangle
r rooted at origin, let Range(r) denote set of tuples {(x1,...,x4)}
where 0 < x; < b; and x; € A. Such a d-dimensional rectangle can
be succinctly represented by the tuple (b1, by, -, by). Hypervol-
ume indicator estimation problem is the following: Given a stream
R of size M such that R = (ry,ry, - - - rpr), where each item r; is a
d-dimensional rectangle rooted at the origin over Q = A4, give a
(& 6)-approximation of the VolumeR, the volume of R.

Hypervolume indicator is employed to measure the quality of
Pareto sets in the context of multi-objective optimization [35]. We
point the readers to a recent survey [18] for details on this impor-
tant quality measure and computational problems and algorithms
related to it.

Test Coverage Estimation: For an n-bit string a = ajaz---a, €
{0, 1}, the t-coverage of a, denoted by Cov,(a), is defined as

Cove(a) = {(T.y) | T c [n].IT| = t,y € {0, 1}

and the restriction of a to indices in T gives y}

The input is a stream A of size M such that A = (aj,...,ap)
where a; € {0,1}", the t-coverage of A, denoted by Cov;(A), is
defined as Cov;(A) = Ui <j<pCovs(a;).

The test coverage estimation problem is: Given a stream A =
ai,- -, ay, compute an (¢, §)-approximation of |Cov; (A)| for any
givent.

Observe that corresponding to every a;, we can construct the
set S; = Cov;(a), which satisfies the desired properties of Delphic
sets.

Model Counting for DNF: Let X be a set of n Boolean variables. A
literal is a variable or its negation. A formula ¢ over X is in DNF if
it is represented as a disjunction of conjunctions of literals. Each
such conjunction is called a term, therefore, ¢ over M terms is
represented as T; V To V ... V Tys. Let Sol(¢) represent the set of
satisfying assignments of ¢. The streaming version of the DNF
model counting problem is the following: Given a DNF formula
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¢ =T1VTaV...VTy, asastream (Ty, ..

an (¢, 0)-approximation of |Sol(¢)|.
Corresponding to every term T;, we can construct the set S; =

Sol(T;), which satisfies the desired properties of Delphic sets.

., Tyr) of M terms, compute

6.2 Applications of the Approximate-Delphic
Family Framwork

We now discuss natural problems that can be framed as set union es-
timation problems over the Approximate-Delphic family. In general,
these problems are related to well-known computational problems
for which exact counting is #P-hard, but there are efficient approxi-
mate counting algorithms. We briefly discuss some of them here
without details about parameters.

Discrete volume of convex bodies: The problem is to compute a (¢, §)-
approximation of discrete volume (number of lattice points) of the
union of a set of convex bodies in a set stream. An item in the stream
is a list of vertices or facets of a polytope $. Membership checking
(i.e., to check whether x € P, i.e., whether x lies inside the polytope
%) can be accomplished in polynomial time. But, in its generality,
even approximating the number of integer points in an arbitrary
polytope is NP-hard. However, there are efficient sampling and
approximate counting algorithms for special cases. An interesting
and somewhat general case is when each polytope P is large: in
particular, % is large enough to contain a ball of radius Q(n+/log m)
where n is the dimension, and m is the number of facets. In this
case, Kannan and Vempala gave polynomial-time algorithms for
approximate uniform sampling and also to approximately count
the number of lattice points of # within a constant factor [22].

Knapsack counting problem: #KNAP is the following problem: Given
a non-negative vector a = (ay, ..., a,) and non-negative integer
b; count the number of x € {0, 1}" so that };; a;x; < b. In the set
streaming problem, each item is a #KNAP instance and goal is to
approximate the size of the union of the sets described by each
instance. It is known that the exact counting is #P-hard. A good
body of research has gone into designing approximate counting
(and sampling) algorithms for #KNAP [11, 12, 16, 26]. In particular,
[16] designed a deterministic fully polynomial time approximation
scheme for the #KNAP and an algorithm to uniformly sample from
the set described by an instance.

Boolean Circuits: As mentioned in Remark 1.6, Boolean circuits are
general enough to be able to represent a large class of sets. In the set
streaming setting, each item in the stream is a Boolean circuit C over
n-bit binary strings. The problem is to give an (¢, §)-approximation
of the union of sets represented by all the circuits in the stream.
While the problem of computing the exact size of the set represented
by a Boolean circuit is #P-hard, the («, y, )-Approximate-Delphic
oracle can be implemented with poly(|C|,log 1/y, 1/, 1/) calls to
an NP oracle [20, 30].

7 CONCLUSION

In this paper, we present the first streaming algorithm for obtaining
an (& 0)-approximation of the size of the union of Delphic sets
using only poly(log |Q],e1,log §~!) worst-case space and update
time complexity, independent of the stream size. We also extend
our result to handle Approximate-Delphic sets. These two results
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answer two of the open problems from [33]. We would like to note
that both our algorithms can be adapted to obtain approximate-
uniform sampling algorithms from the union of the sets. While we
achieved the broad goal of designing algorithms with no depen-
dence on the stream size M for a large class of problems, there are
more questions that need to be explored. A natural direction to
explore would be to improve the space and update time complexity,
in particular their dependence on log(|Q|). For special cases of Del-
phic sets such as DNF [32] and Distinct Elements [21], algorithms
with only linear dependence on log(|Q|) for space complexity with
poly(log(|Q[)) update time complexity are known (ignoring the
dependence on ¢ and ). It is worth remarking that there is lower
bound of Q((log |Q]+ %) -log(1/9)) for Distinct Elements. Trivially,
this lower bound also holds for estimating the union of Delphic Sets.
Bridging the gap between lower and upper bounds in the context
of Delphic sets remains an important open question.
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A PROOF OF CLAIM 2.5

Claim 2.5. The sampling process P samples each element of S inde-
pendently with probability p.

Proor. Forany x € S, the probability of choosing x is 3z ﬁ Pr
B(|S|, p)]. Using the definition of Binomial distribution we have

S| S|
k(SN k.. \isi-k
|S|(k)p (1-p)

Zm“ [k~B(SLp)] = )
k=0

S|
_ NEs ) S|k
= pF(1-p)
2(i-
[S]-
_ Zl (|5|k— 1)pk(1 _ p)lsi-1-k
k=0
= p

Now, to prove that each element of S is chosen independently let
us calculate the probability of choosing any specific x1, . .., x; from
S. Note that, when one picks a subset of size k from S, probability

that all xy,...,x; is picked is 0 if k < ¢ and is ( )/(| |) otherwise.
So, the probablhty that our process will of choose x1, ..., x; is
- (k)
D, sy Prlk ~B(Is|.p)]
i ('7)
S| ()
= >t Prlk ~ B(SLp)]
= (! ,)
SH0)
= D ke =p)E
= (7
S|
S _
_ (|k| )p (1= p)lSik
k=t
1S|-¢
_ it IS| =) & |S|-t—k
= p-Z( L )p(l—p)

k=0

= pt

Thus, for any set of ¢ elements in S probability that the ¢ elements
are chosen is p’. This proves that all the items of S are chosen
independently with probability p.

]

B PROOF OF CLAIM 5.2

Claim 5.2. LetS be any set and Z be an (a, y)-approximation of
|S|. For any p < m, consider the process: first draw a number
k according to the Binomial distribution Bin(Z (1 + «), p) and then
draw k distinct samples using an n-random sampling oracle from S.
Then with probability at least (1 — y) each element of S is picked
independently and for any element x € S

_r

2(1+1n)
assuming S > 3log2(1+n)/p

< Pr[x is picked] < (1+ a)zp(l +1), 4)

[k ~
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ProOF. Since Z is an (a, y)-approximation of |S|, by definition

we have with probability at least (1-y), |S|/(1+a) < Z < (1+a)|S].
In the rest of the proof we will show that Equation 4 holds assuming,

IS|/(1+a) < < (1 + @)|S|. The Claim will thus follow. We
now, prove the upper and lower bound on Pr[x is picked] in the
Equation 4.

Upper bound: For any x € S, the probability of x getting selected is
<Yk k(1+n) Pr[k ~ B(Z(1+ a), p)] which is less than or equal to

IS
p% (1+ 1) (by identical argument as in the proof of Claim 2.5).

Since Z < (1+a)|S| the above quantity is less than (1+a)?p(1+7)
with probability > (1 —y).
Lower bound: On the other hand, if it so happens that the number k
drawn from Bin(Z(1 + ), p) is bigger than the actual size of the
set S then drawing k distinct elements from S would be impossible.
But since p < 2(1+ ) and S > 3log 2(1 + n)/p then by Chernoff
bound we have that Pr[k > |S|] < p/2(1 + ). Thus the probability
that an element x is drawn is

S|

k
PN creen) Prlk ~ B(Z(1+a).p)]
Z(1+a)
k p
> 2 Sy Pk~ BEO+a).p)l - o
__ P
T2(1+7n)

The final equality follows from identical argument as in the proof of
Claim 2.5. The proof that the elements of S are picked independently
is follows from identical argument as in the proof of Claim 2.5.

[m]

C PROOF OF COUPON COLLECTOR
PROBLEM

THEOREM C.1 (CouPOoN COLLECTOR PROBLEM). Given access to
uniform random samples from a set T and a numberr < |T|, let Z, be
a random variable that stands for the number of independent uniform
random samples from T needed before we get r distinct samples from
T. Then forany > 1

Pr(Z, > prlogr] < r~ B+,

ProoF. Let us divide the elements in T into (r + 1 number of
disjoint buckets By, By, ..., By of size [|T|/r], where for all i # 0
the size of the bucket B; is [|T|/r] and the By contains the rest of
the items, that is {|T|/r} items. Here we denote by [x] the largest
integer less than or equal to x and {x} denots x — [x]. Let {|T|/r}
be t and [|T|/r] bes..Note 0 < t < r and |T| = sr + ¢, and hence
sr < |T|/2.

Let us draw a set of frlog r independent samples from the set T.
Note that this means that with probability s/|T| an element from a
bucket B; is drawm. Let A; denote the random variable indicating
whether an element from bucket B; is not drawn. Note that

s Prlogr 1 Bifilogr ﬁ
- =|- <r \T\
IT| e

So the probability that the random variable Z, is more than
Prlogr is less than the probability that some element of each of the

Pr[A;] = (1 -
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Algorithm 3 ExT- APS-ESTIMATOR

log(8/8)+log M
EZ

=

: Initialize Threshy « (

2: Initialize Threshy « 31log(2|Q|(1 + 1))

3: Initialize Threshs < (1 + 1) - Thresh; - log(|Q| - Thresh,)

4: Initialize p « 1/2(1 + @)?

5. Initialize X, Y « 0

6: fori=1toMdo

7: for all (s,*) € X do

8: if s € S; then

9: remove (s, *) from X

10: for k = 1 to Thresh3 do

11 Pick a random sample y from S (using the y-sampler)
12: if y is not in Y then

13: Y=Y uly}

14: if | Y| < Thresh, then

15: E; = Y|

16: else E; = (1+a)T;; [Tiis an (a, %)-approximation of |S;]]

17: Reset Y to 0
18: Pick a number N; from the binomial distribution B(E;, p)
19: while N; + |X| is more than Thresh; do

20: Throw away each element of X with probability 1/2
21: N; = B(N;, 1/2) andp =p/2
22: for k = 1to N; do
23: Draw a random sample y from S; such that x ¢ X
24: Adlt)i( ic to X.
25: Output m
buckets By, ..., By is not drawn when frlogr elements are drawn

uniformly and independently at random. Thus,
r
Pr(Z, > frlogr] < PrlUL,Ai] < ) Pr[A;] = r T/,
i=1

Since sr > |T|/2 so have Pr [Z, > frlogr] < r~(A/2)+1,

D EXTENSION OF THE APS-ESTIMATOR
ALGORITHM (FROM [33]) TO
APPROXIMATE-DELPHIC SETS

The technique used in the proof of Theorem 1.5 can be used to ex-
tend the algorithm APS-Estimator (from [33]) to work with (e, y, n)-
Approximate-Delphic sets. ExT- APS-ESTIMATOR is the extended
algorithm. It also uses a slightly different implementation of the
algorithm as compared to that in [33]. The proof the following
theorem follows using exactly the same arguments as used in The-
orem 1.5, and thus we skip the proof of this theorem. Note that,
as in [33], the algorithm ExT- APS-ESTIMATOR needs to know the
size of the stream in advance and the complexity depends on the
size of the stream.

THEOREM D.1. Given any reals numbers0 < ¢,6 < 1, and a stream
S =(51,S2- -+ ,Sym) whereineachS; C Q belongs to an Approximate-
Delphic family, the algorithm EXT- APS-ESTIMATOR, given access to
an (a,y, n)-Approximate-Delphic Oracle, outputs a number that is
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(1-¢)

W' U?;Il Sil and (1 +¢)(1 +n)(1 + )| U?ﬁl Sil.

For the update time the number of calls to the (a, y, n)-Approximate-
Delphic Oracle is 0 ((l +1) log?(|1Q)) - log(1/5y)).

between

The algorithm has worst case space complexity O (log (%)

E PROOF OF THEOREM 1.5

Proor. We first prove the correctness of the algorithm. Note
that the algorithm is exactly same as VATIC except following few
points:

- The constants Thresh; and Thresh; are so set such that from
Observation 5.1 we have: after the for loop in Line 10-13
is completed, while processing the set S;, the number of
elements in Y is at least min{|S;|, Thresh1} with probability
> (1-5/8|Q)).

Thus after the if-else condition in Line 14-17 E; = |S;] if
|Si| < Thresh and else with probability at least (1—35/8|Q]),

Si
il < By < ISil(1+ a).

The constant Threshy is so set that with p < 1/2(1 + )?
using Claim 5.2 one can see that in Line 20- 29 each element
in S; is added to X independently with probability that is
between p/2(1 +7) and (1 +a)?p(1+17).

Now following the same argument as in proof of Theorem 1.2 we
see that at the end of the stream for any element of x € U;S; is
(x, px) is in the set X with probability between py/2(1 + ) and
(1+a)?px(1+7n) and py > L/| U; Si|. Thus from Claim 5.3 we have
that with probability > (1 — %

00 sy < X
2(1+47n)
By using union bound over all the possible errors we bound the
total error probability to < 4.
The space complexity is obvious from the pseudocode. The up-
date time complexity also follows easily. The only thing to keep

<(A+a)2(1+n)]U; Sil.

in mind is that in Line 17 an access to an (a, %, r])—Approximate—
Delphic oracle is needed and this, as observed in Observation 5.1,
needs log(4]|Q|/8) calls to an («, y, n)-Approximate-Delphic Oracle.

[m}

F PROOF OF CASCADE BINOMIAL SAMPLING

Our sampling process involves sampling the binomial distribution
Bin(n, p) for a positive integer n (cardinality of a set in the stream)
and a probability p that is adaptively chosen. In general to sam-
ple the distribution Bin(n, pq) the process we employ a cascading
process: first sample Bin(n, p) to get a number / and then sample
Bin(/, g). Let S denote this process. For completeness we give proof
of correctness that S is same as sampling from Bin(n, pq).

THEOREM F.1. Let n be a positive integer and 0 < p,q < 1 be
probability values. Consider the following sampling process S: First
getl according toBin(n, p) and then get k according toBin(l, q). Then
the sampling process S is same as sampling Bin(n, pq).

Proor. We will show that Pr(k < 8S) = Pr(k « Bin(n, pq)) =
(1) (p* (1= pg)"*.
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Pr(k < S)

D= I D= I

Pr (k « Bin(l,q) | I « Bin(n, p)) - Pr(I « Bin(n, p))

~—

F1-g'*. (';)p’(l -p)n!

!

!
(1))t -prtdta =gt
n\(n—k nl gk I-k
R

~
Il

0

< k
. 2(7 k)plu " (- g
1>k
n—k
k
Z (n ) r+k(1 p)n r-k k( _q)r
r=0
n kn k n-— k
i (P ( . )p 1-p" " 1-q)"

"ot (": “Poraa-ara-prr
o0 (@ —gp+1-p)""
o) o) (1 - pg)™*

——— —— — —— —

|
|
|
j
|
|

Pr (k < Bin(n, pq))
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