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ABSTRACT

Given a family of sets {𝑆1, 𝑆2, . . . 𝑆𝑀 } over a universe Ω, estimating
the size of their union in the data streaming model is a fundamental
computational problem with a wide variety of applications. The
holy grail in the field of streaming is to seek design of algorithms
that achieve (𝜀, 𝛿)-approximation with poly(log |Ω |, 𝜀−1, log𝛿−1)

space and update time complexity.
Earlier investigations achieve algorithms with desired space and

update time complexity for restricted cases such as singletons (Dis-
tinct Elements problem), one-dimensional ranges, arithmetic pro-
gressions, and sub-cubes. However, techniques used in these works
fail for many other simple structured sets. A prominent example is
that of Klee’s Measure Problem (KMP), wherein every set 𝑆𝑖 is rep-
resented by an axis-parallel rectangle in 𝑑-dimensional spaces. De-
spite extensive prior work, the best-known streaming algorithms for
many of these cases depend on the size of the stream, and therefore
the problem of whether there exists a streaming algorithm for esti-
mations of size of the union of sets with poly(log |Ω |, 𝜀−1, log𝛿−1)

space and update time complexity has remained open.
In this work, we focus on certain general families of sets called

Delphic families (which allows efficient membership, sampling, and
cardinality queries). Such families of sets capture several well-
known problems, including KMP, test coverage, and hypervolume
estimation.

The primary contribution of our work is to resolve the above-
mentioned open problem for streams over Delphic families. In
particular, we design the first streaming algorithm for estimat-
ing

��⋃𝑀
𝑖=1 𝑆𝑖

�� with poly(log |Ω |, 𝜀−1, log𝛿−1) space and update time
complexity (independent of𝑀 , the length of the stream) when each
𝑆𝑖 is a member from a Delphic family of sets. We further generalize
our results to larger families of sets, called approximate-Delphic

families, for which the size of a set can be known approximately
but not exactly. Our results resolve two of the open problems listed
in Meel, Vinodchandran, Chakraborty (PODS-21).
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1 INTRODUCTION

The widespread adoption of computing has led to an explosion of
data that modern computing systems need to process efficiently.
The design of data analysis techniques with computational and
storage efficiency is of utmost importance. Consequently, the past
two decades have witnessed a sustained interest in the design of
efficient streaming algorithms.

In this paper, we focus on one of the fundamental problems in the
context of streaming: Given a stream of sets 𝑆1, 𝑆2, . . . 𝑆𝑀 , estimate
their union

��⋃𝑀
𝑖=1 𝑆𝑖

��, which is often referred to as zeroth frequency
moment and denoted by 𝐹0 of the stream. The goal, usually, is to
design an efficient randomized algorithm that can output an (𝜀, 𝛿)-
approximation of the |

⋃𝑀
𝑖=1 𝑆𝑖 |. We say that a random variable 𝑍 is

an (𝜀, 𝛿)-approximation of 𝑌 if Pr[|𝑍 − 𝑌 | ≤ 𝜀 |𝑌 |] ≥ 1 − 𝛿 .
We will focus on general families of sets, called Delphic families1,

defined below:

Definition 1.1. Let Ω be a discrete universe. A set 𝑆 ⊆ Ω belongs to

a Delphic family if the following queries can be done in 𝑂 (log |Ω |)

time.

Membership Given any 𝑥 ∈ Ω check if 𝑥 ∈ 𝑆 .

Cardinality Determine the size of 𝑆 , i.e. |𝑆 |.

Sampling Draw a uniform random sample from 𝑆 .

The goal is to design a streaming algorithm that, given a stream
of sets 𝑆1, 𝑆2, . . . 𝑆𝑀 from a Delphic family, computes an (𝜀, 𝛿)-
approximation of

��⋃𝑀
𝑖=1 𝑆𝑖

�� while minimising the worst case space
complexity and the worst case update time complexity. The (worst
case) update time complexity is the (worst case) time spent process-
ing a single item in the stream. In the setting of streams over Delphic
sets, it is proportional to the (worst case) number of queries made
to a set in the stream. This abstract computational problem over
Delphic families captures several well-known problems, including
the discrete version of Klee’s Measure Problem (KMP), test cover-
age estimation, hyper-volume estimation, and the DNF counting
problem.

1While the name Delphic sets was introduced in our prior work [33], the notion of
Delphic sets has been implicit in several works over the past three decades [5, 10, 23, 24];
to the best of our knowledge, the first work that explicitly mentions the three properties
of Delphic sets is the seminal work of Karp and Luby [23].
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The Distinct Elements problem, one of the most widely studied
problems in the streaming literature, when cast in terms of set
streams, is to estimate the size of the union of sets wherein every
set 𝑆𝑖 of the stream is a singleton element of the universe. A long
line of work culminated in the development of algorithms for Dis-
tinct Elements with optimal space complexity 𝑂 (log |Ω | + 1

𝜀2
) and

𝑂 (1) update time complexity [21] (for a constant 𝛿). The design
of algorithms with poly(log |Ω |, 1𝜀 , log

1
𝛿
) space and update time

complexity for the Distinct Elements problem spurred interest in
investigations of streaming algorithms for more broader classes
of sets. One such example is that of single-dimensional ranges,
wherein every 𝑆𝑖 is encoded as [𝑎𝑖 , 𝑏𝑖 ] for 𝑎𝑖 ≤ 𝑏𝑖 and represents
the set of all integers 𝑥𝑖 such that 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 . For this case,
the algorithms for distinct elements problem can be used by pro-
cessing every element of 𝑆𝑖 one by one. While such algorithms
would provide optimal space complexity 𝑂 (log |Ω | + 1

𝜀2
), the re-

sulting update time complexity of 𝑂 ( |Ω |) is highly undesirable.
Bar-Yossef, Kumar, Sivakumar [3] introduced the notion of range-
efficient streaming algorithms to capture the desiderata of space
and update time complexity to be logarithmic in the size of the
range. Subsequently, Pavan and Tirthapura [29], Sun and Poon [31]
achieved range-efficient algorithms for single-dimensional ranges.

A natural question is to investigate the design of range-efficient
algorithms for multi-dimensional ranges, which can also be viewed
as a discrete version of the well-known Klee’s Measure Problem
(KMP) [32, 34]. KMP is a natural and fundamental problem stud-
ied in computational geometry resulting in a substantial body of
research. [4ś8, 14, 17, 25, 28] 2. KMP also arises naturally in spatial
databases [33, 34]. Furthermore, a restricted variant of KMP, known
as the Hyper Volume Estimation problem, is an important compu-
tational problem studied in evolutionary algorithms [5]. Initial at-
tempts to design range-efficient algorithms for KMP in the stream-
ing setting, however, failed to achieve poly(log |Ω |, 𝜀−1, log𝛿−1)

space and update time complexity. In particular, such attempts
yielded techniques with update time complexity of 𝑂 ( |Ω |) [32, 34].

Recently, Meel, Vinodchandran, and Chakraborty [33] took a
promising step and achieved poly(log |Ω |, 𝜀−1, log𝛿−1, log𝑀) space
and update time complexity for KMP and more generally for com-
puting 𝐹0 of a stream of Delphic sets of stream-size𝑀 . However, the
scheme due to MVC3 still falls short of desiderata (of obtaining a
space and update time complexity of poly(log |Ω |, 𝜀−1, log𝛿−1) and
independent of the stream size) in streaming literature given its de-
pendence on the size of the stream. To summarize, despite extensive
prior work, design of algorithms with poly(log |Ω |, 𝜀−1, log𝛿−1)

space and update time complexity for set streams over Delphic
families remains open and is of significant interest from theoretical
and practical perspectives.

1.1 Our Results

The primary contribution of this work is to resolve the above-
mentioned open problem. In particular, we design the first stream-
ing algorithm for estimation of

��⋃𝑀
𝑖=1 𝑆𝑖

��with poly(log |Ω |, 1𝜀 , log
1
𝛿
)

space and update time complexity (independent of𝑀 , the length of
the stream). Formally, we prove the following theorem:

2The formal definition on KMP is given in Definition 2.2.
3Named after the initials of authors.

Theorem 1.2. There is a streaming algorithm, which we callVatic,

that given real numbers 𝜀, 𝛿 < 1, and a stream S = ⟨𝑆1, 𝑆2, · · · , 𝑆𝑀 ⟩

of unknown length𝑀 where each 𝑆𝑖 ⊆ Ω belongs to a Delphic family,

computes an (𝜀, 𝛿)-approximation of
��⋃𝑀

𝑖=1 𝑆𝑖
��.

The algorithm has the worst case space complexity 𝑂 (log3 ( |Ω |) ·
log(1/𝛿)

𝜀2
) and the update time complexity 𝑂 (log4 ( |Ω |) ·

log(1/𝛿)
𝜀2
).

As a corollary to Theorem 1.2, we get an algorithm with space
and update time complexity poly(log |Ω |, 1𝜀 , log

1
𝛿
) for Klee’s Mea-

sure Problem, which is formally defined in Definition 2.2.

Corollary 1.3. There is a streaming algorithm that given real num-

bers 𝜀, 𝛿 < 1, and a stream R = ⟨r1, r2, · · · r𝑀 ⟩ where each r𝑖 is a d-

dimensional rectangle overΩ = Δ
𝑑 , computes an (𝜀, 𝛿)-approximation

of Volume(R). The worst case space complexity of the algorithm

is 𝑂 (𝑑3 log3 ( |Δ|) ·
log(1/𝛿)

𝜀2
), while its update time complexity is

𝑂 (𝑑4 log4 ( |Δ|) ·
log(1/𝛿)

𝜀2
).

While the framework of the Delphic set is general enough to
capture many important scenarios, there are settings where it is
impossible to obtain the size of a set exactly. Similarly, getting a
sample uniformly at random from a set can also be challenging.
To handle the problem of estimating the size of the union of such
sets, we consider a natural generalization of the notion of Delphic
Families called Approximate-Delphic Families.

Definition 1.4. Let Ω be a discrete universe. A set 𝑆 ⊆ Ω belongs

to an Approximate-Delphic family if for some constants 0 ≤ 𝛼,𝛾, 𝜂

there is an oracle that allows the following set of queries.

Membership Given any 𝑥 check if 𝑥 ∈ 𝑆 .

Approximate Cardinality Get an approximation of the size of 𝑆

which with probability ≥ (1 − 𝛾) is between |𝑆 |/(1 + 𝛼) and

(1+𝛼) |𝑆 |. We call such an approximation (𝛼,𝛾)-approximation

of |𝑆 |.

Approximate Sampling Draw a random sample from 𝑆 where the

probability that any element 𝑥 ∈ 𝑆 is sampled is between
1

(1+𝜂) |𝑆 |
and

(1+𝜂)
|𝑆 |

. We call such as oracle 𝜂-random sampling

oracle.

We will refer to such an oracle as an (𝛼,𝛾, 𝜂)-Approximate-Delphic

oracle 4.

Several families of sets such as convex sets, star-shaped sets,
and Schlicht Domains (see Section 6.2) fall under the category
of Approximate-Delphic families. Thus a streaming algorithm for
estimating the union of sets when given access to an (𝛼,𝛾, 𝜂)-
Approximate-Delphic oracle gives a streaming algorithm for es-
timating the union of sets for the aforementioned families of sets.

Our next result is an algorithm that can approximate the size of
the union of sets given access to an (𝛼,𝛾, 𝜂)-Approximate-Delphic
Oracle.

Theorem 1.5. There is a streaming algorithm, which we call

Ext-Vatic that, given real numbers 𝜀, 𝛿 < 1, and a stream S =

⟨𝑆1, 𝑆2, · · · , 𝑆𝑀 ⟩ of unknown length𝑀 where each 𝑆𝑖 ⊆ Ω belongs to

anApproximate-Delphic family, and access to an (𝛼,𝛾, 𝜂)-Approximate-

Delphic oracle for some 𝛼,𝛾, 𝛿 for members of the family, outputs

a number in the range [
(1−𝜀)

2(1+𝜂) (1+𝛼)
|
⋃𝑀

𝑖=1 𝑆𝑖 |, (1 + 𝜀) (1 + 𝜂) (1 +

4The reason for using the above notions of approximation is discussed in Section 2.
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𝛼) |
⋃𝑀

𝑖=1 𝑆𝑖 |] The worst case space complexity of the algorithm is

𝑂 ((log3 |Ω |) log(1/𝛿) ·
(1+𝜂)
𝜖2
). The algorithm, while processing any

item of the stream, makes

𝑂̃ ((log3 |Ω |) log(1/𝛿) log(
1

1 − 𝛾
)
(1 + 𝜂)

𝜖2
)

calls to the (𝛼,𝛾, 𝜂)-Approximate-Delphic Oracle in the worst case.

The techniques that we use to extend Vatic to Ext-Vatic can
also be used to extend the streaming algorithm for Delphic sets in
[33] to handle Approximate-Delphic sets. This addresses a problem
that was left open in [33]. The extension of their algorithm to
Approximate-Delphic sets is presented in Appendix D.

Remark 1.6. In the definition of the Delphic family, we do not make

any restrictions about the representations of sets. Instead, we assume

that the streaming algorithm gets a set 𝑆 in some representation on the

input memory. The resource requirements are not explicitly parame-

terized by this representation but rather by the size of the universe

of the set 𝑆 . This allows us to state the resource requirements of our

algorithm in line with those in the literature. Moreover, the applica-

tions we state fit this model naturally. However, in the definition of

the Approximate-Delphic family, we use the oracle formulation where

each operation takes a unit time step. This is because for applications

we present in this paper, these operations can be non-trivial and known

algorithms take polynomial time in the standard representations.

We also note here that for a family of sets for which there is an

efficient algorithm for membership testing given some representation,

there is also a succinct representation for every element in the family

in the form of Boolean circuits. To state this succinct representation

theorem, we consider the universe of Boolean strings. This is without

loss of generality, as any universe Ω can be encoded in {0, 1} ⌈log |Ω | ⌉ .

Let {F𝑛}𝑛 be a series indexed by integers 𝑛 ≥ 1 where each F𝑛 is

a family of sets in {0, 1}𝑛 with a set of representations R: that is

for any 𝑛, any 𝑆𝑛 ∈ F𝑛 is represented by some 𝑅𝑆𝑛 ∈ R. For a set

𝑆 ⊆ {0, 1}𝑛 , we say that a Boolean circuit 𝐶 on 𝑛 inputs represents 𝑆

if for all 𝑥 ∈ {0, 1}𝑛 , 𝑥 ∈ 𝑆 if an only if 𝐶 (𝑥) evaluates to True. The

following is a well-known theorem from Computational Complexity.

The Boolean circuits we consider are the ones with fan-in 2 AND and

OR gates and fan-in 1 NOT gates. The size of a circuit is the number

of gates in it.

Theorem 1.7 ([9, 19]). If there is a membership testing algorithm

that on input ⟨𝑅𝑆𝑛 , 𝑥⟩, outputs ‘Yes’ if 𝑥 ∈ 𝑆𝑛 and ‘No’ if 𝑥 ∉ 𝑆𝑛 in

time 𝑇 (𝑛) where 𝑛 = |𝑥 |, then for all 𝑛, there is a Boolean circuit 𝐶𝑛
of size 𝑂 (𝑇 (𝑛) log𝑇 (𝑛)) that represents 𝑆𝑛 . In particular if there is

a membership testing algorithm that runs in time 𝑂 (𝑛), then there

is a Boolean circuit of size 𝑂̃ (𝑛) that represents the set 𝑆𝑛 for every

member of the family.

1.2 Our Techniques

Our algorithm is based on a simple but general sampling-based
strategy. Let

⋃
𝑖 𝑆𝑖 = {𝑠1, 𝑠2, . . . , 𝑠𝑘 } ⊆ Ω, where 𝑘 = |

⋃
𝑖 𝑆𝑖 |. The

main idea is to sample each 𝑠 𝑗 independently with appropriately
chosen probability 𝑝 𝑗 and store the tuple (𝑠 𝑗 , 𝑝 𝑗 ): the element along
with the probability with which it was sampled, in a bucket X. At

the end of the stream, we can compute our estimate
∑

𝑗
𝑁 (𝑝 𝑗 )
𝑝 𝑗

5

where 𝑁 (𝑝 𝑗 ) represents the number of elements in X that were
sampled with probability 𝑝 𝑗 . Our objective is to obtain an algorithm
with poly(log |Ω |, 𝜀−1, log𝛿−1) space and update time complexity;
therefore, the size of X is expected to be of the same order of mag-

nitude; in particular, we will maintain |X| ∈ 𝑂 (log2 |Ω | ·
log𝛿−1

𝜀2
).

There are two key challenges we need to overcome: (C1) there
may be many sets 𝑆𝑖 such that 𝑠 𝑗 ∈ 𝑆𝑖 and (C2) how do we choose
value 𝑝 𝑗 .

To address the challenge C1, we borrow the simple but powerful
technique first introduced in [33]: when processing 𝑆𝑖 , remove all
elements from X that lie in 𝑆𝑖 . Therefore, whether 𝑠 𝑗 ∈ X depends
only on the last occurrence of 𝑠 𝑗 , i.e., the last set 𝑆𝑖 for which 𝑠 𝑗 ∈ 𝑆𝑖

We now turn to the most critical challenge, C2. To this end,

we first note that the estimate
∑

𝑗
𝑁 (𝑝 𝑗 )
𝑝 𝑗

is an unbiased estimator

of
��⋃𝑀

𝑖=1 𝑆𝑖
��. Since we sample each 𝑠𝑖 independently, the standard

concentration bounds would yield (𝜀, 𝛿)-guarantees as long as every
element is sampled with sufficiently high probability. Observe that
when the elements are sampled with a very small probability, then
central moments of the estimator are too high in comparison to the
expectation. Technically, it suffices to have 𝑝 𝑗 ≥

1
𝑘
. However, there

is, no apriori good estimate of 𝑘 ; our problem is, after all, to estimate
𝑘 . One possible strategy, explored in [33], would be to start with
setting 𝑝 = 1 and decrease 𝑝 every time the bucket X reaches its
capacity. To ensure that every element 𝑠 𝑗 is picked with 𝑝 𝑗 ≥

1
𝑘

(with high probability), we would have to ensure that at every point
of the stream of length𝑀 , the value 𝑝 does not fall below 1

𝑘
, which

leads to a log𝑀 factor in the performance. Our key insight is that
an element 𝑠 𝑗 need not be picked with probability 𝑝 ≥ 1

𝑘
whenever

𝑠 𝑗 occurs in the stream, as whether 𝑠 𝑗 ∈ X depends only on the last
occurrence of 𝑠 𝑗 . Therefore, we only need to ensure that the last time

𝑠 𝑗 appears, it should be picked with probability 𝑝 𝑗 ≥
1
𝑘
. A potential

obstacle is that it is not possible to determine if 𝑠 𝑗 will occur in the
future or not. We resolve the issue by observing that if we decide
on the probability 𝑝 with which elements of 𝑆𝑖 should be picked
based on the size of X, then we can lower bound the probability
𝑝 𝑗 for each 𝑠 𝑗 without any assumptions on the stream. We give
some details. Let I ⊆ [𝑀] be the set of indices corresponding to
the last occurrences for 𝑠 𝑗 ’s. Formally, 𝑖 ∈ I if for some 𝑠 𝑗 , we
have 𝑠 𝑗 ∈ 𝑆𝑖 and there is no 𝑖 ′ > 𝑖 such that 𝑠 𝑗 ∈ 𝑆𝑖′ . Observe that
regardless of the value of 𝑀 , since |

⋃
𝑖 𝑆𝑖 | ≤ |Ω | and there is a

surjection between
⋃

𝑖 𝑆𝑖 and I, we have |I | ≤ |Ω |. Therefore, to
bound the probability that for all 𝑠 𝑗 , we have 𝑝 𝑗 ≥

1
𝑘
, we need to

perform union bound over at most |Ω | events, thereby, leading to
a log |Ω | factor in the expression for |X|. It is worth emphasizing
that we do not seek to process every occurrence of 𝑠 𝑗 with 𝑝 ≥

1
𝑘

and therefore, we allow for the possibility that except for the last
occurrence, 𝑠 𝑗 was sampled with probability less than 1

𝑘
.

Organization: The rest of the paper is organized as follows. We
discuss notations and preliminaries in Section 2. In Section 3 we
describe related works. In Section 4, we present our main algorithm
Vatic and prove its correctness and establish complexity bounds,
thus proving Theorem 1.2. In Section 5, we present Ext-Vatic (an

5For technical reasons, the estimator in our algorithm involves further resampling
step.
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extension of Vatic) that works for set streams over Approximate-
Delphic families. Finally, in Section 6 we present a number of appli-
cations of our algorithms.

2 NOTATIONS AND PRELIMINARIES

We will denote by [𝑛] the set of natural numbers {1, 2, . . . , 𝑛} and

by
( [𝑛]
𝑡

)
the set of all subsets of [𝑛] of size 𝑡 . For any 𝑡 ∈ N and

any 𝑝 ∈ [0, 1] we will also use Bin(𝑡, 𝑝) to denote the binomial
distribution over the set [𝑡] where probability of a number 0 ≤
𝑚 ≤ 𝑡 is

( 𝑡
𝑚

)
𝑝𝑚 (1 − 𝑝)𝑡−𝑚 .

The main computational problem is the following.

Definition 2.1 (Estimating the union of (Approximate) Delphic
Sets). Given a stream of sets 𝑆1, 𝑆2, . . . 𝑆𝑀 where each 𝑆𝑖 is from an

(Approximate) Delphic family, give an (𝜀, 𝛿)-approximation of the

union
��⋃𝑀

𝑖=1 𝑆𝑖
��.

An important and well studied instantiation of the above generic
problem is the streaming version of the Klee’s Measure Problem
(KMP). In the following definition Δ could be any totally ordered
set, but without loss of generality we assume Δ = [𝑛] for some 𝑛.

Definition 2.2. A 𝑑-dimensional axis aligned rectangle r over the

universe Ω = Δ
𝑑 is defined as a set [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × . . .× [𝑎𝑑 , 𝑏𝑑 ],

where ∀𝑖 , 𝑎𝑖 , 𝑏𝑖 ∈ Δ and 𝑎𝑖 ≤ 𝑏𝑖 . Given a rectangle r, let Range(r)

denote the set of tuples {(𝑥1, . . . , 𝑥𝑑 )} where 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 and 𝑥𝑖 ∈ Δ.

For a set of rectangles R = {r1, · · · r𝑀 }, the volume of R is defined as

Volume(R) = | ∪1≤𝑖≤𝑀 Range(r𝑖 ) |

Definition 2.3 (Streaming KMP). Given 𝜀, 𝛿 , and a stream R =

⟨r1, r2, · · · r𝑀 ⟩, where each item r𝑖 is a d-dimensional rectangle over

Δ
𝑑 , compute a (𝜀, 𝛿)-approximation Volume(R).

Note that every 𝑑-dimensional rectangle can be naturally and
succinctly represented by the tuple (𝑎1, 𝑏1, · · ·𝑎𝑑 , 𝑏𝑑 ). KMP is an
instantiation of the general framework since every rectangle r𝑖 ,
defines a set 𝑆𝑖 = Range(r𝑖 ), that satisfies the desired properties of
Delphic sets (see [33] for a proof) and Volume(R) =

��⋃𝑀
𝑖=1 𝑆𝑖

��.
As done in the case of traditional space bounded computations,

for counting space, we will not include the space required to repre-
sent the input item. We will consider that input is available on a
read-only input tape (with random access) and do not contribute
to the space used by the algorithm. We consider unit-cost model
and assume all basic operations including arithmetic operations on
words can be performed in unit time. When the sets are Delphic
then, from the definition of Delphic sets, we know that the time
complexity for one query is 𝑂 (log |Ω |). So for the Delphic sets the
update time complexity (or the time complexity for processing an
item in the stream) will turn out to be𝑂 (log |Ω |) times the number
of oracle queries made while processing an item in the stream.

Notions of Approximations:We use two notions of (multiplicative)
approximation of a number. When we are concerned with approx-
imation algorithms for the size of the union of sets in a stream
(as in Theorem 1.2) our goal is to design an randomized algo-
rithm that is a (𝜀, 𝛿)-approximation of the size of the union of
the sets, where a random variable 𝑍 (output of the algorithm) is
an (𝜀, 𝛿)-approximation of 𝑌 if Pr[|𝑍 − 𝑌 | ≤ 𝜀 |𝑌 |] ≥ 1 − 𝛿. In
particular, we assume 𝜀 < 1. A weaker notion of approximation

is used in the definition of Approximate-Delphic oracles. A call to
an Approximate-Delphic oracle (Definition 1.4) for cardinality of
the set is required to return an (𝛼, 𝛿)-approximation of the size of
a set 𝑆 , where a random variable 𝑍 is an (𝛼, 𝛿)-approximation of

|𝑆 | if Pr[ |𝑆 |
(1+𝛼)

≤ 𝑍 ≤ (1 + 𝛼) |𝑆 |] ≥ 1 − 𝛿. Note that the second

notion of approximation is weaker (less demanding) than the first
notion of approximation. In particular, we allow the approxima-
tion parameter 𝛼 to be greater than 1. Thus we design algorithms
that approximates the size of the union of sets using the stronger
notion of approximation, while when designing algorithms for set
streams over Approximate-Delphic families the algorithm can work
with queries that gives a weaker guarantee in the approximation
of the size of a set. It will be clear from the context which notion of
approximation is being referred to.

Theorem 2.4 (Coupon Collector Problem). Given access to

uniform random samples from a set𝑇 and a number 𝑟 ≤ |𝑇 |, let 𝑍𝑟 be

a random variable that stands for the number of independent uniform

random samples from 𝑇 needed before we get 𝑟 distinct samples from

𝑇 . Then for any 𝛽 ≥ 1,

Pr [𝑍𝑟 > 𝛽𝑟 log 𝑟 ] ≤ 𝑟−(𝛽/2)+1 .

The proof of Theorem 2.4 for the case when |𝑇 | = 𝑟 is presented
in [27]. For completeness we present the proof of Theorem 2.4 in
the Appendix. We note that the upper bound can be improved to
𝑟−𝛽+1 with a more involved proof. However, for our purposes the
weaker bound suffices.

Independently picking elements from a set with a fixed probabil-

ity. A crucial operation that was used in [33] for their streaming
algorithm for Delphic sets is to sample a subset L of a set 𝑆 so that
each element of 𝑆 is in L independently with probability 𝑝 for a
given probability value 𝑝 . This operation is implemented by the
following sampling process P: first draw a number 𝐾 according to

the Binomial distribution 𝐵( |𝑆 |, 𝑝) and then draw 𝐾 distinct elements

at random from 𝑆 . We will also use this operation in our algorithm.
For completeness we give the proof of correctness of this process
below.

Claim 2.5. The sampling process P samples each element of 𝑆 inde-

pendently with probability 𝑝 .

The proof of Claim 2.5 is presented in the Appendix.

3 RELATEDWORK

Karp and Luby [23] considered the problem of determining the
cardinality of union of Delphic sets. Their setting assumed stor-
age of the entire stream, and the resulting algorithms are quite
unfriendly to streaming setting. In particular, a straightforward
adaption of Karp and Luby [23] (and the subsequent work of Karp,
Luby, and Madras [24]) would yield an algorithm with space and

time complexity𝑂 (
𝑀 log |Ω |

𝜖2
log𝑀 log𝑛); the linear dependence on

𝑀 is highly undesirable from a streaming perspective.
A significant breakthrough for union of sets in streaming set-

ting is due to FlajoletśMartin [13], who focused on the restricted
case of singleton sets, also known as Distinct Elements problem.
FlajoletśMartin’s proposed scheme had, however, assumed access
to hash functions with strong independence. This independence
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requirement was relaxed in the seminal work of Alon, Matias, and
Szegedy [1], who demonstrated that pairwise independent hash
functions suffice in the context of Distinct Elements. Alon, Matias,
and Szegedy kick started a long line of work on streaming algo-
rithms and Distinct Elements in particular, which culminated in the
design of algorithms with optimal space complexity𝑂 (log |Ω | + 1

𝜀2
)

and 𝑂 (1) update time [2, 15, 21].
Spurred by the success of design of algorithms with space com-

plexity independent of 𝑀 and with logarithmic dependence on
log |Ω | in the context of Distinct Elements problem, subsequent
work sought to handle broader classes of sets; of which a large body
of work can be categorized under the category of range-efficient

algorithms owing to the initial focus on the cases wherein every
𝑆𝑖 represents a range [𝑎𝑖 , 𝑏𝑖 ] i.e., all 𝑥 such that 𝑎𝑖 ≤ 𝑥 ≤ 𝑏𝑖 .
As noted earlier, Pavan and Tirthapura [29], Sun and Poon [31]
achieved range-efficient algorithms for single-dimensional ranges,
which is special of KMP for one dimension. The success in attempts
to achieve range-efficient algorithms for general version of the
problem was limited in the following years. In particular, Thirtha-
pura and Woodruff [34] achieved an algorithm with optimal space
complexity but the update time of the algorithm was 𝑂 ( |Ω |). Sub-
sequently, Pavan, Vinodchandran, Bhattacharyya, and Meel [32]
also proposed another hashing-based technique with worst case
time complexity of 𝑂 ( |Ω |).

The state of affairs was recently improved by Meel, Vinodchan-
dran, and Chakraborty [33]who designed a sampling-based strategy
that yielded the first algorithmwith poly(log |Ω |, 𝜀−1, log𝛿−1, log𝑀)
space and update time complexity. In this context, it is worth re-
marking that while the scheme due to Meel, Vinodchandran, and
Chakraborty shares high-level similarities with our algorithm; there
are crucial technical differences. In particular, their focus is to en-
sure that every item of the stream is sampled with 𝑝 ≥ 1

𝑘
, where

𝑘 = | ∪𝑖 𝑆𝑖 |, which yields a dependence of 𝑀 ; while we do take
a different route, as described in Section 1.2, to achieve bounds
independent of the stream size.

4 VATIC: AN ALGORITHM FOR UNKNOWN
STREAM SIZE

In this section we prove the following theorem.

Theorem 1.2. There is a streaming algorithm, which we callVatic,

that given real numbers 𝜀, 𝛿 < 1, and a stream S = ⟨𝑆1, 𝑆2, · · · , 𝑆𝑀 ⟩

of unknown length𝑀 where each 𝑆𝑖 ⊆ Ω belongs to a Delphic family,

computes an (𝜀, 𝛿)-approximation of
��⋃𝑀

𝑖=1 𝑆𝑖
��.

The algorithm has the worst case space complexity 𝑂 (log3 ( |Ω |) ·
log(1/𝛿)

𝜀2
) and the update time complexity 𝑂 (log4 ( |Ω |) ·

log(1/𝛿)
𝜀2
).

The algorithm, which we call Vatic, maintains a set X of tuples
(𝑠, 𝑝) where 𝑠 ∈ Ω and 0 < 𝑝 ≤ 1 is a probability value, which
is initialized to the empty set in the beginning. Each set of the
stream is processed by the outer for loop (lines 3 - 17). At the 𝑖𝑡ℎ

iteration when the set 𝑆𝑖 arrives, the algorithm first removes all
elements from X that are in 𝑆𝑖 (lines 4-6). Then it sets the ‘correct’
sampling rate 𝑝 for the set 𝑆𝑖 (lines 7- 10). During this computation,
it also generates a number𝑁𝑖 according to the Binomial distribution

Bin( |𝑆𝑖 |, 𝑝). The algorithm proceeds if 𝑝 ≥
log(4/𝛿)
𝜀2 |Ω |

and indepen-

dently samples 𝑁𝑖 distinct elements from 𝑆𝑖 and adds to X (lines 12

- 17). Since the Delphic sets framework only allows sampling with
replacement, in order to sample 𝑁𝑖 distinct elements, the algorithm
generates up to 𝐾𝑖 samples for an appropriate value 𝐾𝑖 (set so that
by Coupon Collector bound we can guarantee 𝑁𝑖 distinct elements
are drawn with high probability). Finally, after all the elements in
the stream are processed, the algorithm updates X so that every
element is present in X with the lowest probability 𝑝0 among all
sampling probabilities (lines 18 - 20).

Algorithm 1 Vatic

1: Initialize 𝐵 ← 6 ·
(
log(4/𝛿)

𝜀2
log

(
4 |Ω |
𝛿

))

2: Initialize X ← ∅
3: for 𝑖 = 1 to𝑀 do

4: for all (𝑠, ∗) ∈ X do

5: if 𝑠 ∈ 𝑆𝑖 then

6: remove (𝑠, ∗) from X

7: Set 𝑝 ← 1/2 ⌈ |X |/𝐵⌉

8: 𝑁𝑖 ← Bin( |𝑆𝑖 |, 𝑝)

9: while 𝑝 > 1/2 ⌈( |X |+𝑁𝑖 )/𝐵⌉ and 𝑝 ≥
log(4/𝛿)
𝜀2 |Ω |

do

10: 𝑁𝑖 ← Bin(𝑁𝑖 , 1/2) and 𝑝 ← 𝑝/2

11: if 𝑝 ≥
log(4/𝛿)
𝜀2 |Ω |

then

12: Set 𝐾𝑖 ← 4𝑁𝑖 · log(
4Ω
𝛿
); L ← ∅

13: for k = 1 to 𝐾𝑖 do
14: 𝑦 ← Sample(𝑆𝑖 )

15: if |L| < 𝑁𝑖 then

16: L ← L ∪ {(𝑦, 𝑝)}

17: X ← X ∪ L;

18: Let 𝑝0 = min{𝑝𝑠 | ∃𝑠, (𝑠, 𝑝𝑠 ) ∈ X}

19: for (𝑠, 𝑝𝑠 ) ∈ X do

20: With probability (1 − 𝑝0/𝑝𝑠 ) remove (𝑠, 𝑝𝑠 ) from X

21: Estimator: return
|X |
𝑝0

Proof. We will now prove the correctness guarantee of Vatic.
To this end, we first prove that with high probability every element

𝑦 in
⋃𝑚

𝑖=1 𝑆𝑖 is sampled with probability at least
log(4/𝛿)
𝜀2 · |Ω |

. A crucial

observation is that, since before processing any set 𝑆 , we remove
all the elements of 𝑆 ∩ X from X, the event ‘𝑦 ∈ X′ only depends
on the outcome of sampling from the last set in which 𝑦 is present.

We fix an arbitrary 𝑦 ∈
⋃𝑚

𝑖=1 𝑆𝑖 . We first define an event Good
as follows. For a element 𝑦, let 𝑆 𝑗 be the last set in the stream
where 𝑦 ∈ 𝑆 𝑗 and let 𝑝𝑦 be the random variable that dictates the
probability with which the elements of 𝑆 𝑗 are sampled and added

to X. Let 𝐷 = 2

⌈
log

(
log(4/𝛿 )

𝜀2 ·|∪
𝑗
𝑖=1

𝑆𝑖 |

)⌉

. Note that since the range of values
taken by 𝑝𝑦 is a (negative) power of 2, the event ‘𝑝𝑦 < 𝐷’ and

the event ‘𝑝𝑦 <
log(4/𝛿)

𝜀2 · |∪
𝑗
𝑖=1𝑆𝑖 |

’ are identical. Let 𝐹𝑦 be the event that

‘𝑝𝑦 < 𝐷 .’ Then the event Good is defined as: Good =
⋃

𝑦∈∪𝑀𝑖=1𝑆𝑖
𝐹𝑦

(the complement of
⋃

𝑦∈∪𝑀𝑖=1𝑆𝑖
𝐹𝑦 ).

We first prove the following claim.

Claim 4.1. Pr[Good] ≥ 1 − 𝛿
2

Session 1: PODS Opening, Keynote Talk, and Streaming PODS ’22, June 12–17, 2022, Philadelphia, PA, USA

45



Proof. Let X𝑗 represent the set X at line 3 when 𝑖 = 𝑗 . First,
observe that for the event 𝐹𝑦 to happen, one of the following events
should happen: (C1) at the end of the while loop 7ś 10, we have
𝑝 < 𝐷 ; we will denote this event as 𝐹 1𝑦 , or (C2) we fail to sample
at least 𝑁 𝑗 distinct elements in the for loop 13ś 16; we will denote
this event as 𝐹 2𝑦 . This is because if we sample 𝑁 𝑗 distinct elements
from 𝑆 𝑗 where 𝑁 𝑗 ∼ Bin( |𝑆 𝑗 |, 𝑝), then by Claim 2.5, every element
of 𝑆 𝑗 will be independently sampled with probability 𝑝 . Therefore
the event that elements of 𝑆 𝑗 are sampled with probability < 𝑝

implies the event < 𝑁 𝑗 samples are chosen.
Therefore, Pr[𝐹𝑦] ≤ Pr[𝐹 1𝑦 ∪ 𝐹

2
𝑦]. We will now upper bound

both 𝐹 1𝑦 and 𝐹 2𝑦 .

Bounding the probability of 𝐹 1𝑦 : Let 𝑁 𝑗 (𝐷) denote the value of 𝑁 𝑗

when 𝑝 = 𝐷 in line 9. For 𝐹 1𝑦 to happen, it must be the case that
⌈(|X𝑗 | + 𝑁 𝑗 (𝐷))/𝐵⌉ > log(1/𝐷), which implies that

X𝑗 + 𝑁 𝑗 (𝐷) ≥ 𝐵 · log

(
1

2𝐷

)
(1)

Now observe that for every iteration𝑘 of the outer for loop 3ś 17,
for all (𝑠, 𝑝𝑠 ) tuples added toX, it holds true that 𝑝𝑠 < 1/2 ⌈( |X𝑘+1 |)/𝐵⌉

(recall, X𝑘+1 denotes the set X at line 3 when 𝑖 = 𝑘 + 1; i.e., after
the end of the iteration 𝑘). In other words, during the entire run
of the algorithm, a tuple (𝑠, 𝑝𝑠 ) will not be added to X whenever
|X| > 𝐵 · ⌊log(1/𝑝𝑠 )⌋. Therefore, the following invariant holds true
in the entire run of the algorithm:

|{(𝑠, 𝑝𝑠 ) ∈ X | 𝑝𝑠 ≥ ℓ}| ≤ 𝐵 · ⌊log 1/ℓ⌋ (2)

Substituting ℓ = 4𝐷 and observing ⌊log
(

1
4𝐷

)
⌋ = log

(
1
4𝐷

)
, in

Eq 2, we have

��{(𝑠, 𝑝𝑠 ) ∈ X𝑗 | 𝑝𝑠 ≥ 4𝐷
}�� ≤ 𝐵 · log

(
1

4𝐷

)
. (3)

Combining Eq 1 and Eq 3, we have

��{(𝑠, 𝑝𝑠 ) ∈ X𝑗 | 𝑝𝑠 ≤ 2𝐷
}�� + 𝑁 𝑗 (𝐷) ≥ 𝐵 log

(
1

2𝐷

)
− 𝐵 log

(
1

4𝐷

)
= 𝐵

Let us define a random variable 𝑍 𝑗 (𝑝) to denote the size of set

obtained by picking every element of | ∪𝑗𝑖=1 𝑆𝑖 | independently with
probability 𝑝 . Based on Chernoff Bound, we have Pr[𝑍 𝑗 (2𝐷) ≥

𝐵] ≤ 𝛿
4 |Ω |

. Therefore,

Pr[𝐹 1𝑦] ≤ Pr[
��{(𝑠, 𝑝𝑠 ) ∈ X𝑗 | 𝑝𝑠 < 2𝐷

}�� + 𝑁 𝑗 (𝐷) ≥ 𝐵]

≤ Pr[𝑍 𝑗 (2𝐷) ≥ 𝐵] ≤
𝛿

4|Ω |

Bounding the probability of 𝐹 2𝑦 : To this end, observe that from the

Coupon Collector Theorem 2.4, we can bound Pr[|L| < 𝑁𝑖 ] ≤
𝛿

4 |Ω |
.

Therefore, we have Pr[𝐹𝑦] ≤ Pr[𝐹 1𝑦] + Pr[𝐹
2
𝑦] ≤

𝛿
2 |Ω |

. Finally, by

observing that
log(4/𝛿)

𝜀2 ·
��⋃𝑀

𝑖=1 𝑆𝑖
�� ≥

log(4/𝛿)

𝜀2 · |∪
𝑗
𝑖=1𝑆𝑖 |

for all 𝑗 and taking union

bound over all 𝐹𝑦 , we obtain our desired probability. □

Now, we are ready to prove the correctness guarantee of Vatic.
To this end, we first observe that the expected value of the output

of the algorithm, E
(
|X |
𝑝0
| Good

)
=
��⋃𝑀

𝑖=1 𝑆𝑖
��.

Let us denote the event that ‘the output of Vatic is outside
the interval [(1 − 𝜀)

��⋃𝑀
𝑖=1 𝑆𝑖

��, (1 + 𝜀)
��⋃𝑀

𝑖=1 𝑆𝑖
��]’ by Error. Then, we

can bound Pr[Error | Good] by a straightforward application of
Chernoff bound.

Pr[Error | Good] = Pr

[����
|X|

𝑝0
−
��⋃𝑀

𝑖=1 𝑆𝑖
��
���� ≥ 𝜀

��⋃𝑀
𝑖=1 𝑆𝑖

�� | Good
]

≤ 𝛿/2

Hence, Pr[Error] ≤ Pr[Good] + Pr[Error | Good] ≤ 𝛿
2 +

𝛿
2 = 𝛿 .

Correctness of the space complexity bound: From the invariant as

stated in Eq 2 and the bound that 𝑝0 ≥
log(4/𝛿)

𝜀2 ·
��⋃𝑀

𝑖=1 𝑆𝑖
�� ≥ 1/|Ω |, we

have that at any point of the execution of the algorithm, |X| ≤

log |Ω |·𝐵 = 𝑂 (log2 |Ω |·
log(1/𝛿)

𝜀2
). An element ofX takes𝑂 (log( |Ω |))

space to store. Hence the space complexity is𝑂 (log3 |Ω | ·
log(1/𝛿)

𝜀2
).

Correctness of the update time bound: Note that for processing a set
𝑆𝑖 , the time to sample 𝑁𝑖 distinct elements from 𝑆𝑖 (from lines 13
to 16) dominates the rest of the running time, which is invoked
at most 𝐾𝑖 times. Therefore, since each sampling operation takes

𝑂 (logΩ), the total update time is 𝑂 (log4 ( |Ω |) ·
log(1/𝛿)

𝜀2
).

□

5 APPROXIMATE-DELPHIC SETS

Webegin bymaking a few observations about (𝛼,𝛾, 𝜂)-Approximate-
Delphic Oracles. The first observation is that the probability of suc-
cess of the oracle call for the approximate cardinality of a set can be
amplified using the median trick (by making multiple queries and
outputting the median value) - the proof follows from a standard
application of Chernoff’s bounds. The second observation is on get-
ting 𝐾 distinct samples from a set using the approximate sampling
oracle. The proof of the second item follows from the bound on the
Coupon Collector problem.

Observation 5.1. (1) Given access to an Approximate-Delphic

set 𝑆 through the (𝛼,𝛾, 𝜂)-Approximate-Delphic oracle that

gives an (𝛼,𝛾)-approximation of |𝑆 |, by querying the oracle

𝑂 (log𝑇𝛾) times we can obtain an (𝛼, 1/𝑇 )-approximation of

|𝑆 |, for any integer 𝑇 . Also, if 𝐾 is an (𝛼, 1/𝑇 )-approximation

of |𝑆 | then (1 + 𝛼)𝐾 has the guarantee that with probability

≥ (1 − 1/𝑇 )

|𝑆 | ≤ (1 + 𝛼)𝐾 ≤ (1 + 𝛼)2 |𝑆 |.

(2) Given access to a set 𝑆 through the (𝛼,𝛾, 𝜂)-Approximate-

Delphic Oracle, for any𝐾 , using𝑂 ((1+𝜂)𝐾 log(𝑇𝐾)) samples

from (𝛼,𝛾, 𝜂)-Approximate-Delphic oracle to sample from 𝑆 ,

with probability ≥ (1−1/𝑇 ) we can obtain at leastmin{𝐾, |𝑆 |}

distinct samples of 𝑆 . In particular, for the case 𝐾 = |𝑆 |, with

𝑂 ((1 + 𝜂) |𝑆 | log(𝑇 |𝑆 |)) approximate sampling oracle queries,

we can compute |𝑆 | with probability ≥ (1 − 1/𝑇 ).

The algorithm for Approximate-Delphic families follows the
approach of Vatic. But before we present the algorithm, we need to
make some crucial observations about the implementation of Vatic
and how to adapt it to work for a set stream over Approximate-
Delphic family.
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A crucial operation that we use for the implementation of our
algorithm Vatic is that drawing each element of a set 𝑆 indepen-
dently with probability 𝑝 for a fixed probability 𝑝 . Claim 2.5 shows
that this can be implemented by sampling process P: first by draw-
ing a number 𝐾 according to the Binomial distribution 𝐵( |𝑆 |, 𝑝)
and then drawing 𝐾 distinct elements at random from 𝑆 .

The above process crucially depends on knowing the exact size
of the set 𝑆 and that one can sample uniformly at random from the
set 𝑆 . These are not guaranteed in the case of Approximate-Delphic
sets. However, we argue that we can work with approximations to
implement the sampling procedure.

First, let us assume that we have |𝑆 | but we only have access
to an 𝜂-random sampling oracle. In this case, if we draw samples
(using an 𝜂-random sampling oracle) until we obtain 𝑘 distinct
elements of 𝑆 then probability of an element getting selected is
between 𝑘/(1 + 𝜂) |𝑆 | and (1 + 𝜂)𝑘/|𝑆 |. Thus if we draw a number
𝑘 according to the Binomial distribution 𝐵( |𝑆 |, 𝑝) and then draw 𝑘

distinct elements at random from 𝑆 using an 𝜂-random sampling or-
acle, then the probability that an element in 𝑆 is selected is between
∑
𝑘

𝑘
(1+𝜂) |𝑆 |

Pr[𝑘 ∼ 𝐵( |𝑆 |, 𝑝)] and
∑
𝑘
𝑘 (1+𝜂)
|𝑆 |

Pr[𝑘 ∼ 𝐵( |𝑆 |, 𝑝)], that

is between 𝑝/(1 + 𝜂) and 𝑝 (1 + 𝜂). Now, if we only have an (𝛼,𝛾)-
approximation of |𝑆 | (instead of the exact value of |𝑆 |), it is still
possible to design a sampling process where each item of 𝑆 is se-
lected independently with a probability that is between 𝑝/2(1 + 𝜂)
and 𝑝 (1 + 𝜂) (1 + 𝛼)2, which will be sufficient for our purposes. We
detail this process in the next claim.

Claim 5.2. Let 𝑆 be any set and 𝑍 be an (𝛼,𝛾)-approximation of

|𝑆 |. For any 𝑝 ≤ 1
2(1+𝛼)2

, consider the process: first draw a number

𝑘 according to the Binomial distribution Bin(𝑍 (1 + 𝛼), 𝑝) and then

draw 𝑘 distinct samples using an 𝜂-random sampling oracle from 𝑆 .

Then with probability at least (1 − 𝛾) each element of 𝑆 is picked

independently and for any element 𝑥 ∈ 𝑆

𝑝

2(1 + 𝜂)
≤ Pr[𝑥 is picked] ≤ (1 + 𝛼)2𝑝 (1 + 𝜂), (4)

assuming 𝑆 ≥ 3 log 2(1 + 𝜂)/𝑝

Claim 5.2 is similar to that of Claim 2.5. The proof of Claim 5.2
is presented in the Appendix.

Wewill need onemore claim to prove the algorithm’s correctness
that estimates the size of Approximate-Delphic Sets. The claim
follows from a standard application of Chernoff’s bound.

Claim 5.3. Let 𝑅 be a set of 𝑁 elements and each element of 𝑅 is

selected independently with some probability that is guaranteed to be

between 𝛽1𝑝 and 𝛽2𝑝 . Let 𝑃 be the random variable that counts the

number of selected items. Then, assuming 𝛽1 ≤ 1 ≤ 𝛽2,

Pr [(1 − 𝜀)𝛽1𝑝𝑁 ≤ 𝑃 ≤ (1 + 𝜀)𝛽2𝑝𝑁 ] ≥ 1 − 2𝑒−𝜀
2𝑝𝑁𝛽1 .

Using Observation 5.1, Claim 5.2 and Claim 5.3 we now present
the generalization of Vatic to handle Approximate-Delphic sets.

The algorithm to estimate the size of the union of the sets from an
Approximate-Delphic family with access to a (𝛼,𝛾, 𝜂)-Approximate-
Delphic Oracle is presented in Ext-Vatic. The correctness and the
space and the update time complexities of Ext-Vatic is presented
in the following theorem which is restated.

Theorem 1.5. There is a streaming algorithm, which we call

Ext-Vatic that, given real numbers 𝜀, 𝛿 < 1, and a stream S =

⟨𝑆1, 𝑆2, · · · , 𝑆𝑀 ⟩ of unknown length𝑀 where each 𝑆𝑖 ⊆ Ω belongs to

anApproximate-Delphic family, and access to an (𝛼,𝛾, 𝜂)-Approximate-

Delphic oracle for some 𝛼,𝛾, 𝛿 for members of the family, outputs

a number in the range [
(1−𝜀)

2(1+𝜂) (1+𝛼)
|
⋃𝑀

𝑖=1 𝑆𝑖 |, (1 + 𝜀) (1 + 𝜂) (1 +

𝛼) |
⋃𝑀

𝑖=1 𝑆𝑖 |] The worst case space complexity of the algorithm is

𝑂 ((log3 |Ω |) log(1/𝛿) ·
(1+𝜂)
𝜖2
). The algorithm, while processing any

item of the stream, makes

𝑂̃ ((log3 |Ω |) log(1/𝛿) log(
1

1 − 𝛾
)
(1 + 𝜂)

𝜖2
)

calls to the (𝛼,𝛾, 𝜂)-Approximate-Delphic Oracle in the worst case.

Algorithm 2 Ext-Vatic

1: Initialize 𝐿 =
log(8/𝛿)

𝜀2
· 2(1 + 𝜂)

2: Initialize 𝐵 ←
(
𝐿 log

(
2 |Ω |
𝛿

))

3: Initialize Thresh1 ← 3 log(2(1 + 𝜂) |Ω |/𝐿)

4: Initialize Thresh2 ← (1 + 𝜂) · Thresh1 · log(
8 |Ω |
𝛿
· Thresh1)

5: Initialize X ← ∅
6: for 𝑖 = 1 to𝑀 do

7: for all (𝑠, ∗) ∈ X do

8: if 𝑠 ∈ 𝑆𝑖 then

9: remove (𝑠, ∗) from X

10: for k = 1 to Thresh2 do

11: Pick a random sample 𝑦 from 𝑆 (using the 𝜂-sampling
oracle)

12: if 𝑦 is not in Y then

13: Y = Y ∪ {𝑦}

14: if |Y| ≤ Thresh1 then

15: 𝐸𝑖 = |Y|

16: else

17: 𝐸𝑖 = (1 +𝛼)𝑇𝑖 ; [𝑇𝑖 is an (𝛼,
𝛿/4
|Ω |
)-approximation of |𝑆𝑖 |]

18: Reset Y to ∅
19: Set 𝑝 ← 1/2(1 + 𝛼)2

20: Pick 𝑁𝑖 from the binomial distribution Bin(𝐸𝑖 (1 + 𝛼), 𝑝)

21: while 𝑝 > 1/2 ⌈( |X |+𝑁𝑖 )/𝐵⌉ and 𝑝 ≥ 𝐿/|Ω | do
22: 𝑁𝑖 ← Bin(𝑁𝑖 , 1/2) and 𝑝 ← 𝑝/2

23: if 𝑝 > 𝐿/|Ω | then

24: Set 𝐾𝑖 ← 4𝑁𝑖 · log(
4Ω
𝛿
)

25: for k = 1 to 𝐾𝑖 do
26: 𝑦 ← Sample(𝑆𝑖 )

27: if |L| < 𝑁𝑖 then

28: L ← L ∪ {(𝑦, 𝑝)}

29: X ← X ∪ L;

30: Let 𝑝0 = min{𝑝𝑠 | ∃𝑠, (𝑠, 𝑝𝑠 ) ∈ X}

31: for (𝑠, 𝑝𝑠 ) ∈ X do

32: With probability (1 − 𝑝0/𝑝𝑠 ) remove (𝑠, 𝑝𝑠 ) from X

33: Output |X |
𝑝 (1+𝛼)
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6 APPLICATIONS

So far, we have presented key technical results in the context of
Delphic and Approximate-Delphic sets in their generality and pre-
sented algorithms Vatic and Ext-Vatic. We also demonstrated
that the streaming version of the well-known Klee’s Measure Prob-
lem fits in the Delphic family framework (this has already been
done in [33]). In this section, we discuss how algorithms Vatic and
Ext-Vatic can be applied to a wide range of significant computa-
tional problems.

6.1 Applications of the Delphic Family
Framework

We now briefly discuss streaming problems that fit the Delphic
family framework. The descriptions of these problems, except that
of the Hypervolume estimation problem, are based on [33], where
the significance of these problems is discussed in some detail.

Hypervolume indicator estimation: Hypervolume indicator estima-
tion is a special case of KMP wherein every rectangle has the origin
(0, 0, . . . 0) as a vertex. We define it as follows: A 𝑑-dimensional axis
aligned rectangle r over an universe Ω = Δ

𝑑 , rooted at the origin, is
defined as the set [0, 𝑏1] × [0, 𝑏2] × . . . × [0, 𝑏𝑑 ]. Given a rectangle
r rooted at origin, let Range(r) denote set of tuples {(𝑥1, . . . , 𝑥𝑑 )}
where 0 ≤ 𝑥𝑖 ≤ 𝑏𝑖 and 𝑥𝑖 ∈ Δ. Such a 𝑑-dimensional rectangle can
be succinctly represented by the tuple (𝑏1, 𝑏2, · · · , 𝑏𝑑 ). Hypervol-
ume indicator estimation problem is the following: Given a stream
R of size𝑀 such that R = ⟨r1, r2, · · · r𝑀 ⟩, where each item r𝑖 is a
𝑑-dimensional rectangle rooted at the origin over Ω = Δ

𝑑 , give a
(𝜀, 𝛿)-approximation of the VolumeR, the volume of R.

Hypervolume indicator is employed to measure the quality of
Pareto sets in the context of multi-objective optimization [35]. We
point the readers to a recent survey [18] for details on this impor-
tant quality measure and computational problems and algorithms
related to it.

Test Coverage Estimation: For an 𝑛-bit string a = 𝑎1𝑎2 · · ·𝑎𝑛 ∈

{0, 1}𝑛 , the 𝑡-coverage of a, denoted by Cov𝑡 (a), is defined as

Cov𝑡 (a) =
{
(𝑇, y) | 𝑇 ⊂ [𝑛], |𝑇 | = 𝑡, y ∈ {0, 1}𝑡

and the restriction of a to indices in 𝑇 gives y}

The input is a stream A of size 𝑀 such that A = ⟨a1, . . . , a𝑀 ⟩

where a𝑖 ∈ {0, 1}𝑛 , the 𝑡-coverage of A, denoted by Cov𝑡 (A), is
defined as Cov𝑡 (A) = ∪1≤𝑖≤𝑀Cov𝑡 (a𝑖 ).

The test coverage estimation problem is: Given a stream A =

a1, · · · , a𝑀 , compute an (𝜀, 𝛿)-approximation of |Cov𝑡 (A)| for any

given 𝑡 .
Observe that corresponding to every a𝑖 , we can construct the

set 𝑆𝑖 = Cov𝑡 (a), which satisfies the desired properties of Delphic
sets.

Model Counting for DNF: Let 𝑋 be a set of 𝑛 Boolean variables. A
literal is a variable or its negation. A formula 𝜑 over 𝑋 is in DNF if
it is represented as a disjunction of conjunctions of literals. Each
such conjunction is called a term, therefore, 𝜑 over 𝑀 terms is
represented as 𝑇1 ∨𝑇2 ∨ . . . ∨𝑇𝑀 . Let Sol(𝜑) represent the set of
satisfying assignments of 𝜑 . The streaming version of the DNF
model counting problem is the following: Given a DNF formula

𝜑 = 𝑇1∨𝑇2∨ . . .∨𝑇𝑀 , as a stream ⟨𝑇1, . . . ,𝑇𝑀 ⟩ of𝑀 terms, compute
an (𝜀, 𝛿)-approximation of |Sol(𝜑) |.

Corresponding to every term 𝑇𝑖 , we can construct the set 𝑆𝑖 =
Sol(𝑇𝑖 ), which satisfies the desired properties of Delphic sets.

6.2 Applications of the Approximate-Delphic
Family Framwork

We now discuss natural problems that can be framed as set union es-
timation problems over the Approximate-Delphic family. In general,
these problems are related to well-known computational problems
for which exact counting is #P-hard, but there are efficient approxi-
mate counting algorithms. We briefly discuss some of them here
without details about parameters.

Discrete volume of convex bodies: The problem is to compute a (𝜀, 𝛿)-
approximation of discrete volume (number of lattice points) of the
union of a set of convex bodies in a set stream. An item in the stream
is a list of vertices or facets of a polytope P. Membership checking
(i.e., to check whether 𝑥 ∈ P, i.e., whether x lies inside the polytope
P) can be accomplished in polynomial time. But, in its generality,
even approximating the number of integer points in an arbitrary
polytope is NP-hard. However, there are efficient sampling and
approximate counting algorithms for special cases. An interesting
and somewhat general case is when each polytope P is large: in
particular, P is large enough to contain a ball of radius Ω(𝑛

√
log𝑚)

where 𝑛 is the dimension, and𝑚 is the number of facets. In this
case, Kannan and Vempala gave polynomial-time algorithms for
approximate uniform sampling and also to approximately count
the number of lattice points of P within a constant factor [22].

Knapsack counting problem: #KNAP is the following problem: Given
a non-negative vector a = (𝑎1, . . . , 𝑎𝑛) and non-negative integer
𝑏; count the number of 𝑥 ∈ {0, 1}𝑛 so that

∑
𝑖 𝑎𝑖𝑥𝑖 ≤ 𝑏. In the set

streaming problem, each item is a #KNAP instance and goal is to
approximate the size of the union of the sets described by each
instance. It is known that the exact counting is #P-hard. A good
body of research has gone into designing approximate counting
(and sampling) algorithms for #KNAP [11, 12, 16, 26]. In particular,
[16] designed a deterministic fully polynomial time approximation
scheme for the #KNAP and an algorithm to uniformly sample from
the set described by an instance.

Boolean Circuits: As mentioned in Remark 1.6, Boolean circuits are
general enough to be able to represent a large class of sets. In the set
streaming setting, each item in the stream is a Boolean circuit𝐶 over
𝑛-bit binary strings. The problem is to give an (𝜀, 𝛿)-approximation
of the union of sets represented by all the circuits in the stream.
While the problem of computing the exact size of the set represented
by a Boolean circuit is #P-hard, the (𝛼,𝛾, 𝜂)-Approximate-Delphic
oracle can be implemented with poly( |𝐶 |, log 1/𝛾, 1/𝛼, 1/𝜂) calls to
an NP oracle [20, 30].

7 CONCLUSION

In this paper, we present the first streaming algorithm for obtaining
an (𝜀, 𝛿)-approximation of the size of the union of Delphic sets
using only poly(log |Ω |, 𝜀−1, log𝛿−1) worst-case space and update
time complexity, independent of the stream size. We also extend
our result to handle Approximate-Delphic sets. These two results
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answer two of the open problems from [33]. We would like to note
that both our algorithms can be adapted to obtain approximate-
uniform sampling algorithms from the union of the sets. While we
achieved the broad goal of designing algorithms with no depen-
dence on the stream size𝑀 for a large class of problems, there are
more questions that need to be explored. A natural direction to
explore would be to improve the space and update time complexity,
in particular their dependence on log( |Ω |). For special cases of Del-
phic sets such as DNF [32] and Distinct Elements [21], algorithms
with only linear dependence on log( |Ω |) for space complexity with
poly(log( |Ω |)) update time complexity are known (ignoring the
dependence on 𝜀 and 𝛿). It is worth remarking that there is lower
bound of Ω((log |Ω | + 1

𝜀 ) · log(1/𝛿)) for Distinct Elements. Trivially,
this lower bound also holds for estimating the union of Delphic Sets.
Bridging the gap between lower and upper bounds in the context
of Delphic sets remains an important open question.
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A PROOF OF CLAIM 2.5

Claim 2.5. The sampling process P samples each element of 𝑆 inde-

pendently with probability 𝑝 .

Proof. For any𝑥 ∈ 𝑆 , the probability of choosing𝑥 is
∑
𝑘

𝑘
|𝑆 |

Pr[𝑘 ∼

𝐵( |𝑆 |, 𝑝)]. Using the definition of Binomial distribution we have

|𝑆 |∑

𝑘=0

𝑘

|𝑆 |
Pr [𝑘 ∼ 𝐵( |𝑆 |, 𝑝)] =

|𝑆 |∑

𝑘=0

𝑘

|𝑆 |

(
|𝑆 |

𝑘

)
𝑝𝑘 (1 − 𝑝) |𝑆 |−𝑘

=

|𝑆 |∑

𝑘=1

(
|𝑆 | − 1

𝑘 − 1

)
𝑝𝑘 (1 − 𝑝) |𝑆 |−𝑘

= 𝑝 ·

|𝑆 |−1∑

𝑘=0

(
|𝑆 | − 1

𝑘

)
𝑝𝑘 (1 − 𝑝) |𝑆 |−1−𝑘

= 𝑝

Now, to prove that each element of 𝑆 is chosen independently let
us calculate the probability of choosing any specific 𝑥1, . . . , 𝑥𝑡 from
𝑆 . Note that, when one picks a subset of size 𝑘 from 𝑆 , probability

that all 𝑥1, . . . , 𝑥𝑡 is picked is 0 if 𝑘 < 𝑡 and is
(𝑘
𝑡

)
/
( |𝑆 |
𝑡

)
otherwise.

So, the probability that our process will of choose 𝑥1, . . . , 𝑥𝑡 is

|𝑆 |∑

𝑘=0

(𝑘
𝑡

)
( |𝑆 |
𝑡

) Pr [𝑘 ∼ 𝐵( |𝑆 |, 𝑝)]

=

|𝑆 |∑

𝑘=𝑡

(𝑘
𝑡

)
( |𝑆 |
𝑡

) Pr [𝑘 ∼ 𝐵( |𝑆 |, 𝑝)]

=

|𝑆 |∑

𝑘=𝑡

(𝑘
𝑡

)
( |𝑆 |
𝑡

) 𝑘𝑝𝑘 (1 − 𝑝) |𝑆 |−𝑘

=

|𝑆 |∑

𝑘=𝑡

(
|𝑆 | − 𝑡

𝑘 − 𝑡

)
𝑝𝑘 (1 − 𝑝) |𝑆 |−𝑘

= 𝑝𝑡 ·

|𝑆 |−𝑡∑

𝑘=0

(
|𝑆 | − 𝑡

𝑘

)
𝑝𝑘 (1 − 𝑝) |𝑆 |−𝑡−𝑘

= 𝑝𝑡

Thus, for any set of 𝑡 elements in 𝑆 probability that the 𝑡 elements
are chosen is 𝑝𝑡 . This proves that all the items of 𝑆 are chosen
independently with probability 𝑝 .

□

B PROOF OF CLAIM 5.2

Claim 5.2. Let 𝑆 be any set and 𝑍 be an (𝛼,𝛾)-approximation of

|𝑆 |. For any 𝑝 ≤ 1
2(1+𝛼)2

, consider the process: first draw a number

𝑘 according to the Binomial distribution Bin(𝑍 (1 + 𝛼), 𝑝) and then

draw 𝑘 distinct samples using an 𝜂-random sampling oracle from 𝑆 .

Then with probability at least (1 − 𝛾) each element of 𝑆 is picked

independently and for any element 𝑥 ∈ 𝑆

𝑝

2(1 + 𝜂)
≤ Pr[𝑥 is picked] ≤ (1 + 𝛼)2𝑝 (1 + 𝜂), (4)

assuming 𝑆 ≥ 3 log 2(1 + 𝜂)/𝑝

Proof. Since 𝑍 is an (𝛼,𝛾)-approximation of |𝑆 |, by definition
we have with probability at least (1−𝛾), |𝑆 |/(1+𝛼) ≤ 𝑍 ≤ (1+𝛼) |𝑆 |.
In the rest of the proof we will show that Equation 4 holds assuming,
|𝑆 |/(1 + 𝛼) ≤ 𝑍 ≤ (1 + 𝛼) |𝑆 |. The Claim will thus follow. We
now, prove the upper and lower bound on Pr[𝑥 is picked] in the
Equation 4.
Upper bound: For any 𝑥 ∈ 𝑆 , the probability of 𝑥 getting selected is

≤
∑
𝑘
𝑘 (1+𝜂)
|𝑆 |

Pr[𝑘 ∼ 𝐵(𝑍 (1 + 𝛼), 𝑝)] which is less than or equal to

𝑝
𝑍 (1+𝛼)
|𝑆 |
(1 +𝜂) (by identical argument as in the proof of Claim 2.5).

Since 𝑍 ≤ (1+𝛼) |𝑆 | the above quantity is less than (1+𝛼)2𝑝 (1+𝜂)
with probability ≥ (1 − 𝛾).

Lower bound: On the other hand, if it so happens that the number 𝑘
drawn from Bin(𝑍 (1 + 𝛼), 𝑝) is bigger than the actual size of the
set 𝑆 then drawing 𝑘 distinct elements from 𝑆 would be impossible.
But since 𝑝 ≤ 1

2(1+𝛼)2
and 𝑆 ≥ 3 log 2(1 + 𝜂)/𝑝 then by Chernoff

bound we have that Pr[𝑘 > |𝑆 |] < 𝑝/2(1 + 𝜂). Thus the probability
that an element 𝑥 is drawn is

≥

|𝑆 |∑

𝑘=0

𝑘

|𝑆 | (1 + 𝜂)
Pr[𝑘 ∼ 𝐵(𝑍 (1 + 𝛼), 𝑝)]

≥

𝑍 (1+𝛼)∑

𝑘=0

𝑘

|𝑆 | (1 + 𝜂)
Pr[𝑘 ∼ 𝐵(𝑍 (1 + 𝛼), 𝑝)] −

𝑝

2(1 + 𝜂)

=
𝑝

2(1 + 𝜂)

The final equality follows from identical argument as in the proof of
Claim 2.5. The proof that the elements of 𝑆 are picked independently
is follows from identical argument as in the proof of Claim 2.5.

□

C PROOF OF COUPON COLLECTOR
PROBLEM

Theorem C.1 (Coupon Collector Problem). Given access to

uniform random samples from a set𝑇 and a number 𝑟 ≤ |𝑇 |, let 𝑍𝑟 be

a random variable that stands for the number of independent uniform

random samples from 𝑇 needed before we get 𝑟 distinct samples from

𝑇 . Then for any 𝛽 ≥ 1

Pr [𝑍𝑟 > 𝛽𝑟 log 𝑟 ] ≤ 𝑟−(𝛽/2)+1 .

Proof. Let us divide the elements in 𝑇 into (𝑟 + 1 number of
disjoint buckets 𝐵0, 𝐵1, . . . , 𝐵𝑟 of size [|𝑇 |/𝑟 ], where for all 𝑖 ≠ 0

the size of the bucket 𝐵𝑖 is [|𝑇 |/𝑟 ] and the 𝐵0 contains the rest of
the items, that is {|𝑇 |/𝑟 } items. Here we denote by [𝑥] the largest
integer less than or equal to 𝑥 and {𝑥} denots 𝑥 − [𝑥]. Let {|𝑇 |/𝑟 }
be 𝑡 and [|𝑇 |/𝑟 ] be 𝑠 . . Note 0 ≤ 𝑡 < 𝑟 and |𝑇 | = 𝑠𝑟 + 𝑡 , and hence
𝑠𝑟 ≤ |𝑇 |/2.

Let us draw a set of 𝛽𝑟 log 𝑟 independent samples from the set𝑇 .
Note that this means that with probability 𝑠/|𝑇 | an element from a
bucket 𝐵𝑖 is drawm. Let 𝐴𝑖 denote the random variable indicating
whether an element from bucket 𝐵𝑖 is not drawn. Note that

Pr[𝐴𝑖 ] =

(
1 −

𝑠

|𝑇 |

)𝛽𝑟 log 𝑟
=

(
1

𝑒

)𝛽 𝑠𝑟
|𝑇 |

log 𝑟

≤ 𝑟
− 𝑠𝑟
|𝑇 |

𝛽
.

So the probability that the random variable 𝑍𝑟 is more than
𝛽𝑟 log 𝑟 is less than the probability that some element of each of the
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Algorithm 3 Ext-APS-Estimator

1: Initialize Thresh1 ←
(
log(8/𝛿)+log𝑀

𝜀2

)

2: Initialize Thresh2 ← 3 log(2|Ω | (1 + 𝜂))

3: Initialize Thresh3 ← (1 + 𝜂) · Thresh2 · log( |Ω | · Thresh2)
4: Initialize 𝑝 ← 1/2(1 + 𝛼)2

5: Initialize X,Y ← ∅
6: for 𝑖 = 1 to𝑀 do

7: for all (𝑠, ∗) ∈ X do

8: if 𝑠 ∈ 𝑆𝑖 then

9: remove (𝑠, ∗) from X

10: for k = 1 to Thresh3 do

11: Pick a random sample 𝑦 from 𝑆 (using the 𝜂-sampler)
12: if 𝑦 is not in Y then

13: Y = Y ∪ {𝑦}

14: if |Y| ≤ Thresh2 then

15: 𝐸𝑖 = |Y|

16: else 𝐸𝑖 = (1+𝛼)𝑇𝑖 ; [𝑇𝑖 is an (𝛼,
𝛿/2
|Ω |
)-approximation of |𝑆𝑖 |]

17: Reset Y to ∅
18: Pick a number 𝑁𝑖 from the binomial distribution 𝐵(𝐸𝑖 , 𝑝)
19: while 𝑁𝑖 + |X| is more than Thresh1 do

20: Throw away each element of X with probability 1/2

21: 𝑁𝑖 = 𝐵(𝑁𝑖 , 1/2) and 𝑝 = 𝑝/2

22: for k = 1 to 𝑁𝑖 do

23: Draw a random sample 𝑦 from 𝑆𝑖 such that 𝑥 ∉ X

24: Add 𝑥 to X.
25: Output |X |

𝑝 (1+𝛼)

buckets 𝐵1, . . . , 𝐵𝑟 is not drawn when 𝛽𝑟 log 𝑟 elements are drawn
uniformly and independently at random. Thus,

Pr [𝑍𝑟 > 𝛽𝑟 log 𝑟 ] ≤ Pr[∪𝑟𝑖=1𝐴𝑖 ] ≤

𝑟∑

𝑖=1

Pr[𝐴𝑖 ] = 𝑟
− 𝑠𝑟
|𝑇 |
|𝛽+1

.

Since 𝑠𝑟 ≥ |𝑇 |/2 so have Pr [𝑍𝑟 > 𝛽𝑟 log 𝑟 ] ≤ 𝑟−(𝛽/2)+1 .

□

D EXTENSION OF THE APS-ESTIMATOR

ALGORITHM (FROM [33]) TO
APPROXIMATE-DELPHIC SETS

The technique used in the proof of Theorem 1.5 can be used to ex-
tend the algorithmAPS-Estimator (from [33]) to workwith (𝛼,𝛾, 𝜂)-
Approximate-Delphic sets. Ext-APS-Estimator is the extended
algorithm. It also uses a slightly different implementation of the
algorithm as compared to that in [33]. The proof the following
theorem follows using exactly the same arguments as used in The-
orem 1.5, and thus we skip the proof of this theorem. Note that,
as in [33], the algorithm Ext-APS-Estimator needs to know the
size of the stream in advance and the complexity depends on the
size of the stream.

TheoremD.1. Given any reals numbers 0 < 𝜀, 𝛿 < 1, and a stream

S = ⟨𝑆1, 𝑆2 · · · , 𝑆𝑀 ⟩ wherein each 𝑆𝑖 ⊆ Ω belongs to anApproximate-

Delphic family, the algorithm Ext-APS-Estimator, given access to

an (𝛼,𝛾, 𝜂)-Approximate-Delphic Oracle, outputs a number that is

between
(1−𝜀)

2(1+𝜂) (1+𝛼)
|
⋃𝑀

𝑖=1 𝑆𝑖 | and (1 + 𝜀) (1 + 𝜂) (1 + 𝛼) |
⋃𝑀

𝑖=1 𝑆𝑖 |.

The algorithm has worst case space complexity𝑂
(
log

(
|Ω |
𝛿

)
·
(1+𝜂)
𝜖2

)
.

For the update time the number of calls to the (𝛼,𝛾, 𝜂)-Approximate-

Delphic Oracle is 𝑂̃
(
(1 + 𝜂) log2 ( |Ω |) · log(1/𝛿𝛾)

)
.

E PROOF OF THEOREM 1.5

Proof. We first prove the correctness of the algorithm. Note
that the algorithm is exactly same as Vatic except following few
points:

- The constants Thresh1 and Thresh2 are so set such that from
Observation 5.1 we have: after the for loop in Line 10-13
is completed, while processing the set 𝑆𝑖 , the number of
elements inY is at least min{|𝑆𝑖 |, Thresh1} with probability
≥ (1 − 𝛿/8|Ω |).

- Thus after the if-else condition in Line 14-17 𝐸𝑖 = |𝑆𝑖 | if
|𝑆𝑖 | ≤ Thresh1 and else with probability at least (1−𝛿/8|Ω |),
|𝑆𝑖 |
(1+𝛼)

≤ 𝐸𝑖 ≤ |𝑆𝑖 | (1 + 𝛼).

- The constant Thresh1 is so set that with 𝑝 ≤ 1/2(1 + 𝛼)2

using Claim 5.2 one can see that in Line 20- 29 each element
in 𝑆𝑖 is added to X independently with probability that is
between 𝑝/2(1 + 𝜂) and (1 + 𝛼)2𝑝 (1 + 𝜂).

Now following the same argument as in proof of Theorem 1.2 we
see that at the end of the stream for any element of 𝑥 ∈ ∪𝑖𝑆𝑖 is
(𝑥, 𝑝𝑥 ) is in the set X with probability between 𝑝𝑥/2(1 + 𝜂) and
(1+𝛼)2𝑝𝑥 (1+𝜂) and 𝑝𝑥 ≥ 𝐿/| ∪𝑖 𝑆𝑖 |. Thus from Claim 5.3 we have
that with probability ≥ (1 − 𝛿

4

(1 − 𝜀)

2(1 + 𝜂)
| ∪𝑖 𝑆𝑖 | ≤

|X|

𝑝
≤ (1 + 𝛼)2 (1 + 𝜂) | ∪𝑖 𝑆𝑖 |.

By using union bound over all the possible errors we bound the
total error probability to ≤ 𝛿 .

The space complexity is obvious from the pseudocode. The up-
date time complexity also follows easily. The only thing to keep

in mind is that in Line 17 an access to an
(
𝛼,

𝛿/4
|Ω |
, 𝜂
)
-Approximate-

Delphic oracle is needed and this, as observed in Observation 5.1,
needs log(4|Ω |/𝛿) calls to an (𝛼,𝛾, 𝜂)-Approximate-Delphic Oracle.

□

F PROOF OF CASCADE BINOMIAL SAMPLING

Our sampling process involves sampling the binomial distribution
Bin(𝑛, 𝑝) for a positive integer 𝑛 (cardinality of a set in the stream)
and a probability 𝑝 that is adaptively chosen. In general to sam-
ple the distribution Bin(𝑛, 𝑝𝑞) the process we employ a cascading
process: first sample Bin(𝑛, 𝑝) to get a number 𝑙 and then sample
Bin(𝑙, 𝑞). Let S denote this process. For completeness we give proof
of correctness that S is same as sampling from Bin(𝑛, 𝑝𝑞).

Theorem F.1. Let 𝑛 be a positive integer and 0 ≤ 𝑝, 𝑞 ≤ 1 be

probability values. Consider the following sampling process S: First

get 𝑙 according to Bin(𝑛, 𝑝) and then get 𝑘 according to Bin(𝑙, 𝑞). Then

the sampling process S is same as sampling Bin(𝑛, 𝑝𝑞).

Proof. We will show that Pr(𝑘 ← S) = Pr(𝑘 ← Bin(𝑛, 𝑝𝑞)) =(𝑛
𝑘

)
(𝑝𝑞)𝑘 (1 − 𝑝𝑞)𝑛−𝑘 .
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Pr(𝑘 ← S) =

𝑛∑

𝑙=0

Pr
(
𝑘 ← Bin(𝑙, 𝑞) | 𝑙 ← Bin(𝑛, 𝑝)

)
· Pr(𝑙 ← Bin(𝑛, 𝑝))

=

𝑛∑

𝑙=0

(
𝑙

𝑘

)
𝑞𝑘 (1 − 𝑞)𝑙−𝑘 ·

(
𝑛

𝑙

)
𝑝𝑙 (1 − 𝑝)𝑛−𝑙

=

𝑛∑

𝑙=0

(
𝑛

𝑙

) (
𝑙

𝑘

)
𝑝𝑙 (1 − 𝑝)𝑛−𝑙𝑞𝑘 (1 − 𝑞)𝑙−𝑘

=

𝑛∑

𝑙=0

(
𝑛

𝑘

) (
𝑛 − 𝑘

𝑙 − 𝑘

)
𝑝𝑙 (1 − 𝑝)𝑛−𝑙𝑞𝑘 (1 − 𝑞)𝑙−𝑘

=

(
𝑛

𝑘

) 𝑛∑

𝑙≥𝑘

(
𝑛 − 𝑘

𝑙 − 𝑘

)
𝑝𝑙 (1 − 𝑝)𝑛−𝑙𝑞𝑘 (1 − 𝑞)𝑙−𝑘

=

(
𝑛

𝑘

) 𝑛−𝑘∑

𝑟=0

(
𝑛 − 𝑘

𝑟

)
𝑝𝑟+𝑘 (1 − 𝑝)𝑛−𝑟−𝑘𝑞𝑘 (1 − 𝑞)𝑟

=

(
𝑛

𝑘

)
(𝑝𝑞)𝑘

𝑛−𝑘∑

𝑟=0

(
𝑛 − 𝑘

𝑟

)
𝑝𝑟 (1 − 𝑝)𝑛−𝑟−𝑘 (1 − 𝑞)𝑟

=

(
𝑛

𝑘

)
(𝑝𝑞)𝑘

𝑛−𝑘∑

𝑟=0

(
𝑛 − 𝑘

𝑟

)
𝑝𝑟 (1 − 𝑞)𝑟 (1 − 𝑝)𝑛−𝑟−𝑘

=

(
𝑛

𝑘

)
(𝑝𝑞)𝑘

(
(1 − 𝑞)𝑝 + 1 − 𝑝

)𝑛−𝑘

=

(
𝑛

𝑘

)
(𝑝𝑞)𝑘 (1 − 𝑝𝑞)𝑛−𝑘

= Pr
(
𝑘 ← Bin(𝑛, 𝑝𝑞)

)

□
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