
IEEE INTERNET OF THINGS JOURNAL, VOL. ?, NO. ?, ? 202? 1

FAQ: A Fuzzy-Logic-Assisted Q Learning Model
for Resource Allocation in 6G V2X
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Abstract—This research proposes a dynamic resource allo-
cation method for vehicle-to-everything (V2X) communications
in the six generation (6G) cellular networks. Cellular V2X (C-
V2X) communications empower advanced applications but at
the same time bring unprecedented challenges in how to fully
utilize the limited physical-layer resources, given the fact that
most of the applications require both ultra low latency, high
data rate and high reliability. Resource allocation plays a pivotal
role to satisfy such requirements as well as guarantee quality of
service (QoS). Based on this observation, a novel fuzzy-logic-
assisted Q learning model (FAQ) is proposed to intelligently
and dynamically allocate resources by taking advantage of the
centralized allocation mode. The proposed FAQ model reuses
the resources to maximize the network throughput while min-
imizing the interference caused by concurrent transmissions.
The fuzzy-logic module expedites the learning and improves
the performance of the Q-learning. A mathematical model is
developed to analyze the network throughput considering the
interference. To evaluate the performance, a system model for
V2X communications is built for urban areas, where various V2X
services are deployed in the network. Simulation results show
that the proposed FAQ algorithm can significantly outperform
deep reinforcement learning, Q learning and other advanced
allocation strategies regarding the convergence speed and the
network throughput.

Index Terms—Reinforcement Learning, 6G V2X, Resource
Allocation, Fuzzy Logic, Vehicular Networks.

I. INTRODUCTION

Cellular vehicular-to-everything communications (C-V2X)
are specifically for connecting vehicles and vehicles, infras-
tructure and other smart user equipment (UE) to acquire
safety, traffic and surrounding environment information. These
information are used to improve road safety, transportation
efficiency and even driving/riding comfort. To this end, four
enhanced V2X (eV2X) services (e.g., extended sensing, ve-
hicle platooning, as well as advanced and automated driving)
and many basic V2X cases have been introduced in the fifth
generation (5G) standard [1] [2].

Compared with the V2X communications in long-term
evolution (LTE) [3], 5G V2X achieves better performance
through adding more spectral and hardware resources but still
inheriting certain underlying mechanisms and architectures.
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However, with the rapid increase of autonomous vehicles in the
near future, explosive data communications will be demanded
by various digital devices and applications. Meanwhile, many
emerging services in autonomous vehicles, such as 3-D dis-
plays, holographic control display systems and immersive en-
tertainment, will bring new scientific and technical challenges
to the existing vehicular communications regarding data rate,
coverage, latency, and intelligence. Unfortunately, 5G V2X
may not well deal with the challenging situations. To address
the limitations of 5G in this domain, the recent proposed 6G
cellular communications [4], which aim to integrate terrestrial
and several non-terrestrial communication networks, introduce
several technical advancements, such as artificial intelligence
(AI) and machine learning (ML), Terahertz (THz) commu-
nication, unmanned aerial vehicles (UAVs) and intelligent
reflecting surface (IRS) [5], [6]. These will facilitate intel-
ligent and ubiquitous C-V2X communications with significant
improvements in reliability, data rate and wireless access [7].

Recent studies [7]–[10] manifest that 6G could bring sub-
stantial enhancements to V2X communications compared to its
predecessors in the following aspects: (1) Ultra-high data rate
is expected for faster data exchange in advanced applications
like ultra-high-definition video streaming and augmented re-
ality. Key technologies include millimeter-wave, visible light,
and THz communications. (2) Ultra-low latency can reduce
communication delay between V2X devices. This is crucial for
time-critical applications, such as autonomous driving, where
split-second decisions need to be made. Multiple medium
access techniques, new multi-carrier schemes, and advanced
resource allocation are the key supporting technologies. (3)
Massive device connectivity is to maintain enormous con-
nections among vehicles and other devices simultaneously.
Technologies like non-orthogonal multiple access (NOMA),
UAV communication, and satellite communication enable
seamless and ubiquitous connectivity for V2X applications.
(4) Advanced positioning and sensing can achieve centimeter-
level positioning accuracy, which may be required by certain
6G V2X applications. (5) 6G could accommodate increasing
demands for V2X communications while maintaining reliable
connectivity and performance by utilizing IRS [5], [6] to
enhance the spectral efficiency.

Evidently, many advancements in 6G V2X presented
above rely on fine-grained, intelligent resource allocation for
physical-layer resources. The resources in this study comprise
of both time resource and frequency resource. To better
understand it, we use a resource grid to denote them, as shown
in Fig. 1. The resource grid has a two-dimensional structure
at the physical layer. It consists of a control channel and a
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Fig. 1: A two-dimensional resource grid in 6G V2X.

data channel. Its basic unit is resource blocks (RBs). In the
time domain, each RB is one subframe, which corresponds
to a number of orthogonal frequency division multiplexing
(OFDM) symbols. In the frequency domain, a number of
subcarriers constitute a RB. Although one RB is the smallest
unit that can be assigned to UEs, subchannels grouped by
RBs are usually adopted in resource allocation. The number of
RBs in a subchannel is configurable. Data from UEs are sent
over data channel, while the control channel carries control
information called sidelink control information (SCI). The SCI
contains details for receiving data, such as which subchannels
are used to carry the data in the data channel, modulation and
coding scheme (MCS) used for the transmission, and other
additional information.

In 5G V2X [2], two work modes (e.g., Mode 1 and Mode
2) have been specified by the 3rd Generation Partnership
Project (3GPP) to schedule sidelink transmissions and allocate
physical-layer resources. Mode 2 is an autonomous multiple
access mode that vehicles can reserve physical-layer resources
by themselves using a sensing-based semi-persistent schedul-
ing (SPS) scheme. By contrast, in Mode 1, the resources are
managed and allocated dynamically in a centralized way by
gNodeBs.

Mode 1 facilitates satisfying massive communication de-
mands if the allocation method is well designed, thereby
ensuring the QoS and accommodating more transmissions at
the same time. Unfortunately, few existing relevant research
studies resource allocation in this mode. Instead, most of them
focused on Mode 2 [11]–[19]. These studies in the litera-
ture use either fixed rules, analytical models, or supervised
learning. For instance, the authors [12] proposed an adaptive
SPS scheme which allows each vehicle to flexibly adjust
Resource Reservation Interval (RRI) according to the available
channel resource. Machine learning has been widely leveraged
to allocate resources for V2X communications [16]–[18], [20],
[21]. Again, they are only applicable to the Mode 2. A few of
studies have taken into account resource allocation for Mode
1 [22]–[25], but their performance probably cannot meet the
more stringent requirements in 6G V2X.

To satisfy the requirements, 6G V2X embraces advanced
resource allocation schemes that are built to adjust alloca-
tions according to QoS feedback and context. Reinforcement
learning (RL), which is a machine learning training method

without the need for supervised learning and prior knowledge
of the environment/system, has the potential to provide an
intelligent resource allocation for 6G V2X. A RL system
usually includes four elements: an agent/learner, an environ-
ment for the agent interacts with, a policy for governing the
agent how to take actions and a reward given to the agent
after taking an action. Through rewarding desired behaviours
and/or punishing undesired ones, as well as sensing the state
of the environment, a learning agent is able to discover the
action policy that maximizes the cumulative reward to achieve
an optimal decision/solution. RL algorithms can in general
be classified into two types: model-free and model-based.
While the former one is not based on an explicit model of
Markov Decision Process (MDP), the latter one is based on a
MDP model with clearly defined states, actions and rewards.
Both are widely adopted in wireless communications, such as
scheduling [26]–[28] and channel estimation [29], [30].

However, it is well known that there are exploration and
exploitation issues for RL [7]. Hence, there is a need to
develop fast-converging learning solutions for RL. This study
strives for how to improve 6G V2X network performance
by intelligently allocating resources while maintaining a fast
convergence. As a consequence, a fuzzy-logic-assisted rein-
forcement learning model (named FAQ) is proposed to tackle
the problems. The proposed FAQ algorithm intelligently and
dynamically allocates physical-layer resources. It integrates
the fuzzy logic and the Q learning to accelerate the learning.
By leveraging the fuzzy logic, the FAQ allocates resources
based on comprehensive evaluations while taking into account
multiple metrics. It fully exploits the limited resources, thereby
satisfying the stringent requirements of the V2X services
orientated for low latency, ultra reliability and high data
rate in 6G epoch. The FAQ allocation algorithm not only
ensures the QoS for different V2X applications, but also has a
faster convergence in learning, compared with other ML-based
resource allocation strategies. Moreover, the algorithm also
shows good scalability and applicability for vehicular networks
with various vehicle densities and diverse V2X services.

The key contributions are as follows: 1) A novel resource
allocation approach relying on reinforcement learning has
been developed to maximize the network throughput through
maximizing the reuse of the physical-layer resources; 2)
Compared to other advanced learning, the FAQ not only has
a faster convergence, but also outperforms other resource
allocation schemes in throughput and packet delivery ratio;
3) An analytical model is developed to analyze the network
throughput; 4) With the deployment of typical V2X services, a
V2X simulation model in urban area is established to acquire
the system performance and validate the mathematical model.

The rest of this paper is organized as follows. Section
II reviews the related works for resource allocation in C-
V2X. Section III introduces the system model and formulates
the resource allocation problem. Section IV elaborates the
proposed FAQ scheme. Section V provides theoretical analysis
of the network performance for FAQ. Section VI evaluates the
network performance and compares it with a few of bench-
marks with advanced resource allocation. Finally, Section VII
concludes the whole paper.
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II. RELATED WORK

A. Centralized Resource Allocation for C-V2X

Since the 3GPP has no specific algorithm standardized
for resource allocation in Mode 1, some existing scheduling
schemes for C-V2X in this mode make use of geographical
positions of a cluster of vehicles [31]–[33]. In [31], Abanto-
Leon et al. propose a resource allocation scheme by grouping
vehicles into clusters based on their locations. The authors
indicate the transmission conflicts between vehicles related to
the intra-cluster and inter-cluster interference. Paper [33] pro-
poses a resource allocation scheme for road safety applications
for V2X communications in Mode 1. Their scheme groups
vehicles into different clusters. Each cluster is assigned an
orthogonal resource set. Two clusters reuse the same resource
set when the distance between their centroids is above a
threshold. The mobility of vehicles challenge the periodicity
of clustering and the stability of the cluster. Poor clustering
algorithms would also influence the performance of resource
allocation.

The other types of scheduling schemes in this mode consider
the location of each vehicle individually and assign resources
using the relative distance among vehicles [22]–[25], [34],
[35]. Paper [22] proposes a location-aware resource allocation
scheme (LARA) which allows limited number of concurrent
links in the network while mitigating interference at recipients.
The paper [24] showcases the benefits of network-orchestrated
radio resource allocation mode with the proposed enhance-
ments specifically targeting platooning applications. Multiple
factors including locations of vehicles are processed using
fuzzy logic to allocate resources in a comprehensive way
in [25]. The study in [23] designs a context-based resource
allocation scheduling scheme for LTE V2X Mode 3 (similar
to Mode 1 in 5G V2X) which can reduce packet collision
and half-duplex effects. By taking into consideration the
geographical location of vehicles and dynamical configuration
of the network operations based on the context condition, the
scheme seeks to ensure that all vehicles experience similar
interference level when the resources are shared. In fact,
the majority of the resource allocation approaches in Mode
3 are unable to guarantee the QoS, because a substantial
portion of requests has been declined (especially in a dense
network), which implies the corresponding UEs forfeit oppor-
tunities to exchange information with their peers. Regarding
vehicle-to-vehicle (V2V) communications in the same mode,
localization-based resource selection and scheduling scheme
are presented in [34] and [35], respectively.

B. Decentralized Resource Allocation for C-V2X

Liang et al. [16] employ multi-agent reinforcement learning
to address the spectrum sharing problem in vehicular net-
works, where multiple V2V links reuse the frequency spectrum
preoccupied by vehicle-to-infrastructure (V2I) links. Yuan et
al. develop a joint deep reinforcement learning (DRL)-based
algorithm to enhance the performance of both V2I and V2V
links [17]. To further provide the adaptiveness of resource al-
location policy, the authors include meta-learning and develop
a meta-based DRL for dynamic environments. In this work,

the spectrum selection of V2V links uses Mode 2. Kim et al.
provide a framework to measure the crash risk of a vehicle
in the dynamically changing environment [18]. To optimize
the operation of a vehicle adaptive to the environment, the
authors presented a RL algorithm. The algorithm is designed
to autonomously choose the optimal transport block size for
the sidelink shared channel in Mode 2. The authors of [36]
quantify four transmission errors and provide packet delivery
ratio (PDR) against distance in LTE C-V2X Mode 4 (similar
to Mode 2 in 5G V2X).

The authors of [20] investigated how to guarantee the QoS
in cellular V2X. A joint transmission mode selection such
as V2V or V2I communications, RB allocation and power
control is considered. A deep reinforcement learning algorithm
is proposed to maximize the capacity of V2I (i.e., vehicle-
to-base station) links. However, its model adopts a shared
resource pool between V2I and V2V links, which is evidently
different with 5G V2X communications, where V2V and V2I
have decoupled frequency bands. Wu et al. [37] designed a
reinforcement learning-based data storage protocol to keep the
information always in a specified region in vehicular Ad Hoc
networks. The protocol adopts a fuzzy logic algorithm for a
short-term assessment while choosing the next data carrier.
However, the proposed fuzzy Q-learning is designed for main-
taining the data in vehicular networks rather than improving
the network performance in V2X communications. Vemiredd
et al. [38] proposed a fuzzy reinforcement learning for the
energy efficient task offloading in vehicular fog computing.
The proposed scheduling algorithm combines reinforcement
leaning and fuzzy logic based greedy heuristic. The algorithm
aims to increase the offloading efficiency in vehicular networks
rather than improving radio resource utilization.

C. Resource Allocation for 6G V2X

There exist a few of studies about radio resource allocation
for V2X in the emerging 6G epoch. Paper [39] identifies
that as one of the three technical pillars in cellular-based
sidelink communications, resource allocation is prominent
for reliable V2X communications. In the context of a large
autonomous network, integrating space, air, ground, and un-
derwater networks with ubiquitous and unlimited wireless
connectivity, the authors in paper [40] point out that AI-
enabled resource allocation can choose the most suitable
scheduling for UEs at data-link layer for V2X and other types
of communications. To alleviate insufficient resources and
meet the demand for very high reliability and ultralow latency,
the study propose an autonomous resource allocation (i.e.,
decentralized mode) enabled by NOMA for next-generation
C-V2X [41]. It highlights the potential advantages gained
from the NOMA-based scheme. In [42], a dynamic resource
allocation method is presented for the base stations of the
next-generation fully-decoupled C-V2X network. The method
allocates appropriate bandwidth resources according to the
various QoS requirements by applying the Lyapunov stochastic
optimization method. Although the research [43] designs radio
resource management empowered by federated Q-learning
in 6G-V2X, it only considers how to choose one out of
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Fig. 2: Communication scenarios considered in the system
model.

three alternatives, e.g., Dedicated Short Range Communication
(DSRC), 5G millimeter-wave (mmWave) or 6G V2X, rather
than assigning radio resources in a specific technique.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model and Deployed Services

This study considers various V2X communication scenarios
in a cellular network, as shown in Fig. 2. A centralized
mode is considered, and the based station allocates physical
resource blocks (PRBs) upon the reception of requests from
UEs. The UEs here encompass both vehicular UE (VUE)
and other smart devices, such as roadside unit (RSU) and
cellular UEs (CUEs). The BS may decline a transmission
request if it fails to find available PRBs within its permissible
transmission window, i.e., exceeding the required latency for
that particular V2X service. For each UE, two radio interfaces
named uU and PC5 are mounted on it. The former interface is
a cellular interface to support vehicle-to-BS communications
via the uplink/downlink, whereas the latter is for direct V2X
communications via the sidelink. In addition, the interface PC5
operates in a half-duplex mode for sidelink communications,
which implies that UEs cannot send and receive data simulta-
neously via the interface.

We assume that six different V2X services are deployed in
the system, as delineated in Table V in Appendix B. The table
lists two basic V2X services, e.g., cooperative awareness mes-
sage (CAM) and dynamic traffic control and warning. Defined
by the European Telecommunications Standards Institution
(ETSI) [44], CAM is a periodical safety message broadcast
by all vehicles to maintain mutual awareness among them.
Regarding the dynamic traffic control and warning, messages
are periodically broadcast by RSUs to inform vehicles of
the current road conditions and traffic situations. Two eV2X
services, cooperative maneuver and cooperative sensing, are
considered as well. The cooperative maneuver is to coordinate
vehicles in some advanced driving cases, such as automatic
platooning and assisted lane changing. Cooperative sensing
refers to the extended sensors in eV2X. It is usually used
to exchange data generated by multiple sensors mounted in
vehicles when necessary or triggered by a certain event, to

proactively prevent accidents. In this study, the transmission
of cooperative sensing data is activated when vehicles are
passing an intersection where collisions may take place due to
complicated traffic situations. In fact, the two eV2X services
require a much higher data rate than the basic ones. The last
two use cases are both non-safety related services, which are
conducted between RSUs and VUEs. The real-time content is
widely used in social media and entertainment, such as audio-
visual online chat and video streaming, while the non-real-time
case is demanded by data downloading and uploading, such as
sending/receiving emails, and advertisement delivery. For the
convenience, we use SER1, SER2, ... , SER6 to refer to six
services in the following discussions, as noted in the Table V
in Appendix B.

TABLE I: Variable notation in the system model

Variable Definition
PL Total path loss of a wireless link

d, d0
Distance between transmitter and receiver,
Reference distance for measure

γ,Xσ Path loss exponent, Random shadowing effects
Pt, Pr Transmission power, Reception power
Gt, Gr Antenna gain for transmission, reception

z,Ω
Received signal level,
Average received signal level

m Fading depth in Nakagami fading

r, zr
Radius of UE’s transmission range,
Radius of a positioning zone

Z, PZi
The number of positioning zones,
A positioning zone

C, yi,j Conflicting matrix, Conflicting degree
X,xi,j Allocation matrix, Allocation element
R The maximum number of subchannels

THH , THM , THL Throughput of high, medium, and low-priority
services, respectively

ΥH ,ΥM ,ΥL Successful allocation ratio of high, medium,
and low-priority services, respectively

In the system, frequency division multiplexing access
(FDMA) is used. In this multiplexing mode, UEs can be
assigned subchannels at a particular subframe to access data
channel. How to allocate subchannels and subframe for all
transmission requests determines the network performance
(e.g., network throughput and spectral efficiency), especially
when the number of the transmission requests increases, result-
ing in more competitive situations for accessing the medium.
The notations in the system model are listed in Table I.

From the 3GPP V2X specifications [45], the adopted link
pathloss in this study is:

PL(d) = PL(d0) + 10γlog(d/d0) +Xσ, (1)

where PL is the total path loss measured in decibel (dB),
PL(d0) is the path loss at the reference distance d0, d is the
distance between transmitter and receiver, γ is the path loss
exponent and Xσ describes the random shadowing effects (a
zero-mean, normally distributed random variable with standard
deviation σ). Correspondingly, the received power Pr can be
denoted by:

Pr = Pt +Gt +Gr − PL(d), (2)

where Pt is the transmit power and Gt and Gr are the
antenna gains in dBi. Nakagami-m distribution is suitable for
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describing statistics of mobile radio transmission in complex
medium such as the urban environment. We assume that all
the V2X links in the system experience Nakagami fading, so
the received signal level z follows:

fz(z,Ω) =
2

Γ(m)
(
m

Ω
)mz2m−1exp(−mz2

Ω
), z > 0,m ≥ 1

2
,

(3)
where Γ(·) is the gamma function, Ω = E[z2] is average signal
power, and m is the fading depth defined by

m =
E2[z]

V ar[z2]
. (4)

B. Distribution Pattern and Conflicting Zones

When considering how the subchannels are reused, the
geographical locations among vehicles, their distances and
request types are factored in. Therefore, we use a distribution
pattern to model both the dynamics of vehicles and their
requests. First, the service area covered by the base station
is partitioned into multiple positioning zones, as shown in
Fig. 3. Then the pattern is defined as a tuples consisting of
a positioning zone’s location and the requests sent by the
vehicles in the zone. The purpose of partitioning into zones is
to represent the location of vehicles by the positioning zones
they belong to, instead of their accurate geographical locations.
Owning to the movement of vehicles, the requests for service
also keep changing, which further brings forth the changes of
distribution patterns.

We assume that the radius of each positioning zone is zr,
and that the radius of coverage area for each positioning zone
is r (zr << r), which is also transmission range of CUEs and
VUEs. The definition of conflicting zones is that their coverage
areas are overlapped. That is, any two non-conflicting zones
are at least r/zr zones apart. All vehicles’ requests issued
from the same conflicting zones will interfere with each other
if the same resources are allocated. On the other hand, when
the requests are issued from non-conflicting zones, they can
reuse the same subchannel and subframe. Fig. 4 shows the
relationship of the positioning zones, the transmission range
and the conflicting zones in a general Manhattan grid.

Assume that there are M vehicles and Z positioning zones.
Some vehicles may involve in several different conflicting
zones. We define a conflicting matrix C of all vehicles as
follows:

C =


y1,1 y1,2 ... y1,Z
y2,1 y2,2 ... y2,Z
... ...

yM,1 yM,2 ... yM,Z

 . (5)

Matrix C shows conflict relations between requests issued by
vehicles in the different zones. Ci,∗ = [yi,1, ..., yi,Z ] denotes
the i-th row of the matrix C representing the conflicting zones
for vehicle vi. A generalized format of the conflicting degree
is defined according to the distance between two zones. The
following equation shows a normalized result, in which all
values of the degree are real numbers between [0, 1]:

yi,j =

 0, dij > 2r

1− dij
2r

, dij ∈ [0, 2r]
(6)

Fig. 3: Partitioning of the entire area into multiple positioning
zones.

Fig. 4: Demonstration of conflicting zones in a general Man-
hattan grid: zone CZ1 and CZ2 in red are conflicting zones,
while the two gray zones CZ3 and CZ4 are non-conflicting
ones.

where dij is the distance between vehicle vi and the center of
a positioning zone PZj , and r is the radius of the transmission
range. Note that the minimum distance between two vehicles is
zero. If yi,j is zero, it implies that a vehicle vi does not conflict
with vehicles in PZj . Otherwise, they may have conflicts. The
shorter distance between the vehicle vi and the zone PZj is,
the larger degree of conflicting will be caused. Without losing
generality, the authors select a binary format in this study. If
the distance dij ≥ 2r, yi,j = 0. Otherwise, yi,j = 1.

Except for general road networks like Manhattan grid,
the proposed FAQ is applicable to irregular road patterns
because the partitioning method in Fig. 3 and conflicting zone
definition in Fig. 4 can be directly applied in an irregular
road network. After determining conflicting zones, the FAQ
algorithm is able to formulate a state space and allocate
resources according to their conflicting relationships.
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C. Problem Formulation

The aim is to maximize the network throughput by properly
assigning PRBs to various UEs in the network. Assume there
are M UEs, and each UE can obtain R subchannels at most.
We first define a resource allocation matrix X:

X =


x1,1 x1,2 ... x1,R

x2,1 x2,2 ... x2,R

... ...
xM,1 xM,2 ... xM,R

 . (7)

Each xi,j indicates whether the j-th subchannel (1 ≤ j ≤ R
) is allocated to the i-th UE (1 ≤ i ≤M ) as shown below:

xi,j =

{
1, if subchannel j is allocated to UE ui

0, otherwise
. (8)

Let THH , THM , and THL represent the throughput of
high, medium, and low-priority services1 in the network,
respectively. The resource allocation optimization problem can
be formulated as follows:

Xopt = arg max
xi,j∈X

THH + arg max
xi,j∈X

THM

+ arg max
xi,j∈X

THL (9)

subject to

ΥH ≥ ΥM ≥ ΥL, (10)∑
j

xi,j = ki,

xi,j = xi,j+1 = ... = xi,j+ki−1 = 1 (0 ≤ ki ≤ R), (11)

and T sch
ui
≤ ptxui

+ trequi
. (12)

The term Xopt in (9) is the optimal allocation. The equation
(10) shows the constraint that the successful allocation ratios
(i.e., ΥH ,ΥM ,ΥL) should descend from high-priority services
to low-priority services, which implies services with higher
priority have advantage to get resources against the ones
with low priority. Equation (11) is set to guarantee that ki
consecutive subchannels are assigned to UE ui. Equation (12)
ensures that the scheduled transmission moment T sch

ui
must be

no later than the allowable latency, that means it is less than
the sum of transmission period ptxui

and the request arrival time
trequi

.
To reach the maximum network throughput, optimal alloca-

tion is required. Note the matrix X in (7), if each UE requires
k subchannels (k << R), there will be (R − k)M possible
allocations. Given a vehicular network having hundreds or
even thousands of vehicles and R = 20 subchannels in
the resource pool, the possibilities are nearly infinite, which
implies that we cannot acquire an analytic form for the optimal
X . Therefore, we propose an advanced reinforcement learning
model to find the sub-optimal allocations.

1According to their properties, the considered six V2X services in this
system have different levels of priority, which will be elaborated in Table II
in section IV.

IV. FAQ MODEL FOR RESOURCE ALLOCATION

A. Overall Architecture of the Proposed FAQ Algorithm

The overall architecture of the proposed fuzzy-logic-assisted
learning model is illustrated in Fig. 5. The ultimate goal of
the learning model is to figure out the best allocation for each
vehicle distribution pattern. In this study, a Q-learning model
is embedded and trained to learn how to allocate resources.

The Q-learning model repeatedly adjusts the allocations for
all requests in the buffer until obtain an optimal resource
allocation strategy. It involves a state set S and an action
set A for each state to describe the interactions between
an agent and an environment. The environment is the base
station and the communication network among UEs. The state
represents the features or situations about the network and the
available resources. The set of actions are the options that the
base station can choose to modify the allocations. When the
base station performs an action at ∈ A in state st ∈ S, it
obtains a new network state st+1 and a reward r(st, at) as the
“feedback” of the V2X communications.

The action selector selects actions (i.e., allocate resources
by making a decision) for transmission requests using one
of the two principles: either fuzzy logic strategy or ϵ-greedy
algorithm. The fuzzy logic is able to accelerate the learning
and convergence by taking into account multiple metrics (e.g.,
timing, interference, mutual reception, priority and conflict
zones), whilst the latter explores more options and considers
the long-term learning outcomes. The reward calculation
collects data and calculates the corresponding reward (i.e.,
network throughput) induced by executing the elected actions.

To evaluate the potential long-term reward, the FAQ model
formulates Q(st, at) for each state-action combination which
is computed as the expected total rewards of all future adjust-
ments starting from the current situation. In the learning phase,
the base station adopts a trial and error training procedure
to update Q(st, at) according to the reward attained. The
action policy adjustment is responsible for dynamically tuning
parameters that determine which strategy the action selector
chooses to allocate resources. Once the updating of Q(st, at)
has converged, the agent chooses the resource allocation that
provides the highest expected future reward.

B. Fuzzy-Logic Based Action Selection

Fuzzy logic is one of the approaches leveraged for action
selection during the learning process. It is implemented in the
module Fuzzy logic process. The module considers four factors
comprehensively to judge whether a new tentative allocation
is better or worse. A quantitative result will be output at the
final stage for decision making. If the allocation is better
than the current one, it will be adopted. Otherwise, another
allocation will be assessed. The considered factors are timing,
interference, mutual reception ratio, and service priority. The
procedure is as follows:

1) Fuzzification: We use predefined linguistic variables and
membership functions to convert the above factors to fuzzy
values ranging from 0 to 1.

• Timing factor
The timing factor denotes the extent of urgency for a
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Fig. 5: Architecture of the proposed FAQ learning model.

Fig. 6: Timing factor membership function

transmission, and guarantees that the scheduled time for
a transmission request will not exceed the end-to-end
latency. Assume that the largest permissible delay for a
service is P , the timing factor is defined as:

T (w) =
w

P
, (1 ≤ w ≤ P ), (13)

where w the sequential number of the planning subframe
in the transmission window. The higher the value, more
urgent a transmission becomes. Fig. 6 illustrates its
membership function.

• Interference factor
Regarding a node n with a transmission request, the
local signal-to-interference-plus-noise ratio (SINR) at the
recipient is

SINRn =
Pn
rx

PN +
∑Ninf

i=1 P inf
i

, (14)

where Pn
rx is the received power at the recipient, PN is

the noise power and P inf
i is the interference power from

node i. They can be acquired according to (1) to (3). In
fact, interference is reciprocal. When other VUEs pose
interference to a requesting VUE, the interfered VUE also
inversely cause interference to all other VUEs at the same

time. Thus, for each VUE, we can calculate the local
SINR correspondingly. To evaluate the global interference
level for the current circumstance and assume there are
K VUEs interfering each other, the average interference
level will be the overall interference divided by K:

SINRavg =

∑K
i=1 SINRi

K
. (15)

The interference factor membership function is shown
in Fig. 7, and the corresponding expressions for high-
interference, medium-interference and low-interference
curves are:

– the low interference:

fIL(x) =


1, x ≥ fc
x−fb
fc−fb

, x ∈ [fb, fc)

0, x < fb

(16a)

– the medium interference:

fIM (x) =


x−fa
fb−fa

, x ∈ [fa, fb)

fc−x
fc−fb

, x ∈ [fb, fc)

0, other

(16b)

– the high interference:

fIH(x) =


1, x < fa
fb−x
fb−fa

, x ∈ [fa, fb)

0, x ≥ fb

(16c)

• Mutual reception factor
Some V2X services, such as CAM, require UEs receive
each other’s messages at the same time. For instance,
if two VUEs are within each other’s communication
range and broadcast CAM messages concurrently via
different subchannels, vehicles around them can receive
the information from both, but the two sending nodes
cannot receive each other’s information due to the at-
tribute of the half-duplex radio. Such a situation diverges
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Fig. 7: Interference factor membership function.

from the necessity of certain applications, such as mutual
awareness delivered by CAM messages, and should be
avoided. On the other hand, if two transmitters lie outside
each other’s transmission range and they use different
subchannels to broadcast simultaneously, other vehicles
in the overlapped area can receive the CAM messages
from both vehicles, which in turn enhances the road
safety. Suppose r is the transmission range of a UE, for
a request ς 2 from node n and a request ρ from node m
(m ̸= n), the definition of mutual reception factor is

Mς,ρ(n,m) =

{
1, d(m,n) ≤ r

rγ

d(m,n)γ , d(m,n) > r
(17)

where γ is the path loss component in the channel model.
The average value of mutual reception factor for request
ς at node n is

Mavg
ς =

∑H
ρ=1 Mς,ρ(n,m)

H
, (18)

where H represents all the requests excluding the request
ς . The average level of the mutual reception factor Mavg

ς

will be the input of the membership function, as shown
in Fig. 8.

• Priority factor
Different V2X services have different priority levels. Ac-
cording to [1], safety-related services have higher priority
than non-safety counterparts, and hence we prioritize
the eV2X services at the highest level, and non-safety
services at the lowest level. In our system model, there
is a total of six types of services coexisting in the
network. The priority factor and channel bandwidth BW
(i.e., required number of successive subchannels) are
summarized in Table II.

TABLE II: Priority factor

Service Category Priority Number of
subchannels

Cooperative manoeuvre (SER2) High 10
Enhanced sensing (SER3) 18
Cooperative awareness (SER1) Medium 3
Dynamic traffic control (SER4) 8
Non-safety non-realtime service (SER5) Low 12Non-safety realtime service (SER6)

2A node may have more than one requests with different types.

Fig. 8: Mutual reception factor membership function.

2) Inference: Apply the predefined IF/THEN rules in Table
III to reach a verdict and rank the combinations of rules
according to a min-max principle detailed in [25].

TABLE III: Applied Fuzzy Rules

Rule Timing Interference Priority Verdict/Mutual Reception
1

Non-urgent Low
Low Not Acceptable

2 Medium Acceptable
3 High Good
4

Non-urgent Medium
Low Bad

5 Medium Not Acceptable
6 High Acceptable
7

Non-urgent High
Low Bad

8 Medium Bad
9 High Not Acceptable
10

Medium Low
Low Acceptable

11 Medium Good
12 High Perfect
13

Medium Medium
Low Not Acceptable

14 Medium Acceptable
15 High Acceptable
16

Medium High
Low Bad

17 Medium Bad
18 High Not Acceptable
19

Urgent Low
Low Acceptable

20 Medium Good
21 High Perfect
22

Urgent Medium
Low Not Acceptable

23 Medium Acceptable
24 High Good
25

Urgent High
Low Bad

26 Medium Bad
27 High Not Acceptable

3) Defuzzification: Fuzzy values from the module Inference
will be converted to numerical values during the process of
defuzzification, by applying an output membership function
illustrated in Fig. 9 and a defuzzification method named center
of gravity (COG) [25]. The numerical output implies applica-
bility of the current RBs for a request. A higher value means
more appropriate. A threshold defuz is set for determining
whether the resources will be allocated to the requesting UE.

C. Fuzzy-logic-Assisted Q Learning Process

1) Initial resource allocation using fuzzy logic: We first use
the fuzzy logic approach proposed in Section IV-B to obtain an
initial resource allocation for all requests that sent by different
UEs in the same allocation session, then we employ the Q
learning to improve the initial allocations.
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Fig. 9: Output membership function for resource selection

2) State: We formulate state st as a vector describing the
existing resource allocations or available resources at the base
station for the tth transmission request stored in the buffer of
the base station. That is

st = {Xt−1, Ct,∗, (Υ
H ,ΥM ,ΥL), (THH , THM , THL)},

where Xt−1 represents resource allocation of all requests
after t− 1 times of adjustments. Xt−1 summarizes the entire
sequences of all past adjustments that led to it. X0 denotes the
initial resource allocation of all requests using the fuzzy logic
approach. Ct,∗ represents the conflicting zones of vehicle vt
issuing the tth request defined in Equation (5). By applying
resource allocation Xt−1, (ΥH ,ΥM ,ΥL) means the success-
ful allocation ratios of all requests and (THH , THM , THL)
stands for the network throughput obtained after all requested
communications have been completed.

State st matters the future allocations adjustments. It does
not matter how the allocations in st came about. Thus, the
state transitions in our model have the Markov property that
can predict the next state and expected reward based on the
knowledge of the current state and action. Fig. 10 shows an
example of state transitions. We adjust request req1 in the
subframe 1 to the subchannel ranges [4 ∼ 6]. The request
req2 is adjusted from unallocated to assigned with subchannel
ranges [1 ∼ 8] in subframe 2. The request req3 in subframe
3 is moved to subchannel ranges [7 ∼ 9].

3) Action: We formulate the action as a tuple at =
{SERreq, (sch, sfr)}. The first element indicates the type
of request being adjusted. The second element is a pair of
subchannel sch and subframe sfr that are selected by the
base station for the request, which is a new selection of
resource blocks after the adjustment. The action indicates that
the base station adjusts the subchannel and subframe allocation
of a request. The action space includes all possible pairs of
subchannels and subframes assigned to the requests. In our
model, there are 7 possible successive subchannels choices
at most for each of the 20 subframes. The action space size
is 140 allocations of resource blocks (i.e., 7 * 20 = 140).
As illustrated in Fig. 16, different types of requests have
different choices of successive subchannels. For instance, the
type of SER2 requests have at most 5 possible successive
subchannels choices. Thus, for SER2 type requests have a
total 100 allocation choices in the actions space. In the
example of Fig. 10, req1 with type of SER1 is adjusted to

subchannel 4 in subframe 1. Thus, its action is written as
a1 = {SER1, (sch : 4, sfr : 1)}. The actions of requests
req2 and req3 are a2 = {SER4, (sch : 1, sfr : 2)} and
a3 = {SER1, (sch : 7, sfr : 3)}, respectively.

Algorithm 1: The FAQ Learning Algorithm

1 Initialize all Q(s, a) values;
2 Initialize θ, γ and ϵ;
3 for each episode do
4 Initialize subchannel and subframe allocations for

all requests based on the Fuzzy logic algorithm;
5 Initialize starting state;
6 for each request do
7 if random (0,1)< ϵ then
8 choose an action at for state st depending

on the assessment results from the fuzzy
logic;

9 else if ϵ <random (0,1)< η then
10 choose an action yielding highest Q-value

for state st: at = argmax
a∈A

Q(st, a) ;

11 else
12 choose an action at for state st randomly;
13 end
14 Execute the selected action at, observe instant

reward r(st, at) and next state st+1;
15 Update Q(st, at) value using Equation (20);
16 Current state st ← st+1;
17 end
18 end

4) Instant Reward: The instant reward r(st, at) is the
network performance (i.e., network throughput) of all requests
in the buffer based on each allocation. As defined in (9), (10),
(11), and (12), the resource allocation aims at maximizing the
network throughput under the constraint of correct allocation
ratios of different priority service requests:

r(st, at) = THH + THM + THL. (19)

Here, the reward evaluates whether each request allocation
adjustment increases or reduces the entire throughput of all
requests. Unlike the traditional Q learning model, our instant
reward is attained after a communication delay rather than in
an immediate way. The performance result is obtained when
the communications of all requests have been met.

5) Update the Q-table and the learning process: In the
learning phase, the base station gradually adjusts the resource
allocations to achieve a better network performance. During
this process, the Q-value Qt is used as output for making the
decisions. In the state t, the base station selects an action at
and gets an instant reward r(st, at). The Q table is updated
for this state action pair as

Q(st, at) = (1−θ)Q(st, at)+θ{r(st, at)+γmax
a

Q(st+1, a)}.
(20)

In the above, θ and γ are the learning rate and the discount
rate, respectively.
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Fig. 10: State transitions by adjusting the allocations.

6) Action policy adjustment: Any action chosen by the base
station is within the action space. However, the conventional
strategy is the ϵ greedy so as to cover all possible actions.
That is, with ϵ probability, the base station randomly selects an
action from the action space, otherwise with 1− ϵ probability,
the agent chooses the action that has the highest Q-value based
on the previous learning iterations. This strategy allows the
base station to explore all possible selections until finding
the best one. As opposed to the conventional greedy-based
strategy, in the FAQ model, the agent will not randomly choose
one action from the corresponding action spaces. Instead, the
fuzzy logic is leveraged to intervene in the action selection,
as shown in lines 7-13 of Algorithm 1.

At each iteration of learning, instead of blindly choosing one
action from action space A, the agent applies fuzzy logic to
grade potential allocations and the results, the defuzzification
outputs, are compared. An inferior allocation will be replaced
by a better one, if the agent can find a more appropriate alloca-
tion with higher defuzzification value. If not, it will choose the
existing allocation which means no adjustment is made in the
current state. Such mechanism can rule out some unreasonable
decisions, thereby accelerating the learning, because the fuzzy
logic based action selector utilizes multiple criteria to make a
comprehensive evaluation for each tentative allocation.

The probability to choose an action is dynamically adjusted
at different learning stages based on the observation of network
throughput, rather than being kept unchanged parameters. ϵ
and η are initialized as 0.5 and 0.8, respectively. With the
learning in process, ϵ and η gradually increase but keeping
ϵ < η if a throughput increase is observed. This makes
the throughput level off at a higher value without further
fluctuations.

V. THEORETICAL ANALYSIS FOR NETWORK THROUGHPUT

In this section, we conduct the theoretical analysis for the
network throughput, based on the communication models in
Section III and inspired by [46]. We first derive the bit error
rate (BER) and then the packet error rate (PER). By con-
sidering resource allocation matrix X (see (7)), the network
throughput can be finally obtained.

A. BER Analysis for V2X

At the PHY layer, SC-FDMA is adopted for sidelink com-
munications. A transmitter precodes complex symbols (BPSK
or M-QAM) by means of a discrete Fourier transform (DFT)
operation before mapping them onto Nc allocated subcarriers
by means of the Inverse Fast Fourier transform (IFFT). The
mapping matrix L is defined as Li,j = 1 if the symbol j
is transmitted over subcarrier i and zero otherwise. At the
reception side, a receiver first discards the cyclic prefix (CP)
that has been added before transmission, and then performs the
FFT that converts each time-domain symbol into a frequency-
domain symbol before applying the M −ary DFT that yields
YM . After performing for demapping by LH , the N allocated
subcarriers YN are given

YN = LHHMLFS + LHηM , (21)

where S is the transmitted symbols, the Fourier matrix F is
defined as Fj,k = exp (2πȷ/Nc)jk/

√
Nc, ηM is the noise

vector whose elements are random variables characterized by
i.i.d. complex normal distribution CN(0, N0). Correspond-
ingly, a M×M diagonal matrix HM can be used to represent
the channel frequency response for each subcarrier. Note that
the matrix elements are complex circularly symmetric random
variables.

The expression for the recovered symbol after zero-forcing
frequency-domain equalization (ZF-FDE) yields

s̃ = WFHFS +WFHη, (22)

where W is an Nc × Nc complex matrix W =
F (HHH)−1HHF . The expression for the kth received sym-
bol after ZF-FDE is

s̃k = sk +ΣN
j=1η̂j,k = sk + η̃k, (23)

where η̂j,k =
F∗

j,kηj

hj
.

It is observed that, after ZF-FDE, a received symbol is
generated by adding the transmitted symbol to an effective
noise term η̃k. That means, the effective noise is the result
of adding an enhanced Gaussian noise η̂j,k to each assigned
subcarrier.
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As the effective SNR is conditional to the channel frequency
response, we have SNR = Esh

2

N0
, where N0 and Es are the

noise power spectral density and the transmitted energy per
symbol, respectively.

The term ηj is complex Gaussian noise, so the length of the
two-dimensional vector follows a Rayleigh distribution. After
multiplying ηj with F ∗

j,k, the joint probability density function
(PDF) is

f(x) =
1

2π

x

σ2
e

−x2

2σ2 (24)

with variance σ2 = N0√
Nc

.
Since each effective noise element is a circularly symmetric

random variable, the sum also obeys the property of circular
symmetry, and its marginal distributions share the same even
function. Taking into consideration this property, we assume
the independence among elementary noise terms and derive
the PDF η̃k as

pη̃k
(x) =

1

2π

∫ +∞

−∞
Ψη̃k

(ω)eȷωxdω. (25)

Considering σ2 = N0√
Nc

and SNR = Esh
2

N0
, we get σ2 =

Esh
2

√
NcSNR

. Thus,

Ψη̃k
(ω) =


(

Esh
2

SNR
√
Nc

)m/2

|ω|m

2m/2−1Γ(m)

(m
Ω

)m/2

Km

((
Esh

2

√
NcSNR

)1/2√
2m

Ω
|ω|

)N

.

(26)

For square M-QAM encoded modulation with Gray mapping
[46], note that the effective noise term η̃r is circularly sym-
metric, so the BER can be calculated by

BER =
L−1∑
n=1

w(n)I(n), (27)

where w(n) is the coefficient dependent on the constellation
mapping (i.e., L = 2 for BPSK, and L = log2(M) for
M-QAM). According to [47], for Gray mapping and square
QAM,

w(n) =
1

M log2(M)

[√
M−n∑
u=1

α+
u (u+ n− 1)

+ α−
u+n(u) + β+

u (u+ n− 1) + β−
u+n(u)

]
,

(28)

where

α±
u (k) = ±

1

2
Σ

log2(
√
M)

i=1 Ω(i, u)[Ω(i, k)− Ω(i,−k)] (29)

and
Ω(i, x) ≜ sign

[
cos
(
π

2i

(
x− 1

2

))]
. (30)

Denote I(n) as the components of error probability (CEPs),
which can be expressed as

I(n) = Pr{ℜ(η̃) > (2n− 1)d} = 1− Fη̃((2n− 1)d), (31)

where d is the minimum distance between each modulated
symbol and the decision boundary. According to the con-
stellation, for BPSK and M-QAM, we have d =

√
Es and

d =
√

(3Es/2(M − 1)), respectively.
The cumulative distribution function (CDF) can be calcu-

lated as [46]

Fη̃ ≈
1

2
+

1

2π

(
ωmax − ωmin

n

[
χ(x, ωmin) + χ(x, ωmax)

2

+
n−1∑
k=1

χ

(
x, ωmin + k

ωmax − ωmin

n

)])
,

(32)

where the auxiliary function χ(x, ω) is defined as

χ(x, ω) =
eȷxωΨη̃k

(−ω)− e−ȷxωΨη̃k
(ω)

ȷω
. (33)

In (32), wmin is the minimum value in the integration in-
terval, and it is set to a positive number very close to zero
(e.g., 10−15). We elect a value for wmax so that wmax =
argmax

w
(Ψη̃k

(ω) ≤ 10−9). Finally, by substituting equations

from (28) to (32) into (27), we obtain an approximate closed-
form expression for the BER

BER ≈
L−1∑
n−1

w(n)

(
1

2
− ωmax

2πn

(
1 + χ((2n− 1)d, ωmax)

2

+
n−1∑
k=1

χ
(
(2n− 1)d, k

ωmax

n

)))
.

(34)

The analytical results for BER performance are shown in
Fig. 11 (a). The BER values for QPSK, 16-QAM and 64-QAM
are acquired at different SNRs, with the number of subcarriers
Nc = 64. The BER values will be utilized to calculate the
packet error rate and network throughput.

B. Analysis of Network Throughput

To calculate the interference at a recipient vehi-
cle vj , we define a channel gain vector by G1j =(
g1j g2j g3j ... gMj

)
, where gxj (1 ≤ x ≤M) denotes

the channel gain between a sender vx and a receiver vj .
Element gjj is zero because when vj is transmitting, it cannot
receive itself at the same time due to the half-duplex property.
Thus, we define a M ×M channel gain matrix as:

GM×M =


g11 g12 ... g1M
g21 g22 ... g2M

...
...

...
...

gM1 gM2 ... gMM

 . (35)

According to the allocation matrix X in equation (7), we
define the number of UEs occupying the subchannel c (1 ≤
c ≤ R) in X as

sxc =
M∑
i=1

xic, (1 ≤ c ≤ R). (36)
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(a) Analytical results of BER performance for SC-FDMA over
Nakagami fading channels

(b) Network throughput

Fig. 11: Network throughput comparison between analytical
and simulation results

In order to obtain interference level at UE i, suppose UE i oc-
cupies n consecutive subchannels CHr, CHr+1, ..., CHr+n−1

(r ≥ 1 and r+n− 1 ≤ R), we define a vector xmax from all
relevant n columns in matrix X so that it has the largest sum
among sxr, sxr+1, ..., sxr+n−1.

xmax = argmax
r≤c≤r+n−1

(sxc). (37)

Therefore, equation (37) is to figure out, among all n sub-
channels, which one has the largest number of vehicles to
use this channel. That is, which subchannel has the most
intensive interference. The vector xmax shows the situation
that which vehicles to use this subchannel. We assume that
all VUEs and CUEs have the same transmission power Es,
and sxt has the largest value among all n vectors (e.g.,
sxr, sxr+1, ..., sxr+n−1) described in equation (37), so the

interference level 3 at node i is

Λ =EsGxmax

=Es


g11x1t + g12x2t + ...+ g1MxMt

g21x1t + g22x2t + ...+ g2MxMt

...
gM1x1t + gM2x2t + ...+ gMMxMt

 , (38)

where the vector xmax = (x1t, x2t, ..., xMt)
T is the t-th

column of the allocation matrix X .
Therefore, considering a sending node vi, the correspond-

ing SINR at a receiving node vj that may be exposed to
interference caused by multiple other sending nodes is

Fij =
Esgij

Λj + PN0
(i ̸= j), (39)

where PN0 is the noise power and Λj is the power sum of all
interference. We assume all VUEs and CUEs have the same
transmission power Es. Since the interference contributions
are overlapped, by applying the central limit theorem, we can
replace SNR in (26) with SINR Fij and use (34) to obtain
the BER.

To derive the PER, forward error correction (FEC) code
needs to be applied. 3GPP has specified Low-density parity-
check (LDPC) code for V2X communications with certain
typical coding rates, including 1/3, 1/2, and 2/3. Based on
the Gaussian approximation (GA), the BER expressions and
the thresholds for error-free decoding with LDPC codes over
i.i.d. Nakagami-m fading channels are derived [48]. With rate
1/2 (3, 6) regular LDPC code with block size set to 104 and
fading depth of m = 3, we can derive the decoding threshold
dthld (i.e., BER ≤ 10−7) for the case of QPSK, 16-QAM
and 64-QAM is 4.77dB, 7.78dB and 9.54dB, respectively, as
shown in Fig. 11(a).

Let BER denote the BER after applying the above LDPC
FEC code, so its approximate expression is

BER ≈

{
BER, if SINR ≤ dthld

10−7. otherwise
(40)

As a result, if the block length is Lb and we assume an
independent bit error, the corresponding PER is PER =
1− (1−BER)Lb for packets no longer than Lb bits. Assume
the number of incoming packets at a node vi is Ni within
duration t, the expression NCi = Ni(1−PER) then denotes
the number of successfully received packets, whose size is
PSi, 0 ≤ i ≤ NCi in bits. The network throughput becomes:

Thpt =

∑M
i=1

∑NCi

x=1 PSx

t
. (41)

To validate the proposed analytical model, both the analytical
results and the simulation results are demonstrated in Fig.
11(b). The simulation is performed in NS-3 under the same
configuration and parameters. The curve from analysis tightly

3Since multiple subchannels may be assigned to a UE, the interference
strength for different subchannel may vary. The equation (38) shows the
largest interference among all the allocated subchannels of the UE.
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TABLE IV: Key Parameters in simulation.

Parameter Value
Frequency/Band width 5.9 GHz/20 MHz
Subcarrier Space/Slot duration 15 kHz/1 ms
Number of UEs/RSUs in one cell 200 to 1200/4

Transmission range RSU: 200 m
CUEs and VUEs: 100 m

Radius of positioning zone Zr 5 m
Learning rate θ 0.85
Discount rate γ 0.95
Policy adjustment probability ϵ dynamically from 0.5 to 0.1
Policy adjustment probability η dynamically from 0.85 to 0.95
LDPC coding rate 0.5

Travel velocity VUEs: 0 to 50 km/h
CUEs: 0 to 10 km/h

Area size/Grid size 1000 m x 1000 m/10x10
Channel fading model Nakagami fading

Fading depth 0.8 if distance ≤ 80 m
1.5 otherwise

Path loss exponent 3
Defuzzification threshold defuz 0.3
Number of RBs per subchannel / 5/22Number of subchannels in data channel

Modulations 16-QAM: safety services
64-QAM: non-safety services

follows the curve from simulation. The simulation setup is
elaborated in Section VI. The narrow gap between the two
curves mainly stems from the approximate operations, such
as BER calculation in (40).

VI. PERFORMANCE EVALUATION

A. Simulation Setup

We simulate a cellular V2X network by building up the
aforementioned system model in NS-3 [49]. It comprises one
base station, a certain number of UEs, such as CUEs, VUEs
and RSUs. In order to reflect how the proposed FAQ deals
with the dynamics and high demands of V2X communications
in urban regions, in which the centralized resource allocation
method support various services, a Manhattan grid is built in
SUMO [50], and it is linked with the V2X network in NS-3.

In the simulation, a general road network, the Manhattan
Road network with 11 vertical streets and 11 horizontal streets
forming a grid with area of 1 km2 has been developed in
SUMO. Two parallel and adjacent streets are placed 100 m
apart. To make the mobility of UEs more realistic, we use a
dynamic mobility model. In this model, VUEs travel at a speed
from 0 to 50 km/h and CUEs have a speed from 0 to 10 km/h.
Random trips are set up for each UE. More specifically, UEs
start to travel from respective locations initialized randomly,
pick up their own routes and go through the Manhattan grid
and finally reach their destinations. During the whole process,
they experience acceleration, deacceleration and static stages.
They may stop at an intersection and wait for the traffic
light. The entire procedure is very similar to the real-world
situations. When one trip ends, they will start another trip until
the end of the simulation. Regarding the multiplexing mode
in the simulations, frequency division multiplexing access
(FDMA) is leveraged at the physical layer. In this mode, each
UE may be assigned different subchannels and subframes to
access the data channel.

Fig. 12: The network throughput during the process of learning
for the case of 200 VUEs in the network.

Table IV captures the simulation parameters. In the resource
pool, there are 20 subframes and 22 subchannels. To avoid
large delays, a transmission request should be approved in the
next Tsf subframes if suitable resources can be located. The
value of Tsf depends on the requirement of data rate for a
particular V2X service. For instance, regarding cooperative
manoeuvre (SER2), we have Tsf = 20, which means a
message from SER2 should be sent no later than 20 ms since
the corresponding request has been received. Otherwise, it
would be declined for transmission.

In the simulation, the proposed learning is carried out
according to Algorithm 1, and the allocated resources will
be re-adjusted on a one-by-one basis during the learning.
Since there are a large number of allocations, each iteration
consists of all adjustments for each allocation. The number
of allocations is contingent of UEs’ volume in the network
and different communication situations. For instance, all VUEs
periodically broadcast SER1 messages, while the communica-
tions of two non-safety services and SER3 only take place
when necessary, according to their respective definitions. The
learning process continues until a convergence of network
throughput is observed.

B. Simulation Results and Discussions

The performance of the proposed FAQ algorithm has been
assessed by extensive simulations with the configurations and
parameters elaborated above. With the same configurations,
other three advanced resource allocation algorithms have been
simulated as benchmarks. One is the conventional Q-learning.
It explores all possible allocations randomly to figure out
the best one. The other one is fuzzy logic based resource
allocation FUZZRA [25], which merely relies on a fuzzy-logic
based model for the resource allocation. The third one is a
deep Q learning model (DQN). It consists of a V2X network
in NS-3, an agent in OpenAI Gym [51] realized by a deep
neural network that mapping states to Q values for different
actions, and an interface (e.g., NS3-gym [52]) connecting the
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Fig. 13: Network throughput comparison between two re-
source allocation schemes with different number of VUEs in
the network.

V2X network to the agent. The deep neural network has a
construction of one input layer, 8 hidden layers and one output
layer.

Fig. 12 compares the network throughput of the four al-
location methods. The proposed FAQ outperforms the other
three peers in terms of network throughput. Moreover, the
corresponding curve quickly converges after 9 episodes of
learning and maintains a higher level than the other three
through the whole process. At episode 9, its stable throughput
is 10%, 20% and 33% higher than the DQN, the Q learning
and the FUZZRA, respectively. It is worth noting that each
episode means accomplishing adjustments for all requests. In
this simulation, one episode has 350 allocation adjustments
as there are 350 requests from all UEs. By contrast, although
the DQN performs better than the Q-learning after episode
5, both of them fail to reach a stable throughput within 13
episodes, and have a lower throughput than the FAQ. The
throughput standing for the FUZZRA always keeps steady but
with fluctuations during the process, because the FUZZRA
reconsiders the allocations each time using the same logic
without any progress resulted from learning like the other
three.

To better understand the the scalability of the FAQ, various
densities of VUEs in an urban area are studied. The number of
vehicles ranges from 200 to 1200, which covers the situations
from the sparse to the dense. Fig. 13 shows how the network
throughput changes for both FAQ and FUZZRA. As the
density of UEs increases, more transmission requests have
been sent to the base station. The network throughput is much
higher if the FAQ is applied to the V2X communications. The
gap of throughput between two algorithms is widened as the
number of UEs increases in the network. This implies that the
proposed FAQ can reuse resources more effectively yet without
affecting communications. The results representing the DQN
and the Q-learning are not included as they cannot reach a
stable stage within the same period of learning.

The average packet delivery ratio is also optimized by the
FAQ as the interference is substantially suppressed, as shown
in Fig. 14. The PDR curves for the FAQ, the DQN and the
Q learning rise during the learning process. However, only

Fig. 14: Packet delivery ratio (PDR) comparison during the
learning process.

Fig. 15: Spectral efficiency of the network during the learning
process.

the FAQ curve converges and reaches a stable values of 97%
after episode 9. The other two curves do not converge as fast
as the FAQ one, which has a similar situation in Fig. 12.
The fuzzy-logic assisted action selector in the FAQ takes into
account the interference factor to mitigate the interference
while increasing the spectrum reuse among UEs in non-
conflicting zones. Additionally, the FUZZRA curve maintain
almost the same level during the observation period.

To improve the frequency utilization and satisfy as many as
requests from vehicles, channels are reused to accommodate
as many concurrent transmissions as possible. We use network
spectral efficiency to evaluate the overall information bits
being transferred per second per Hertz in the network. The
total bandwidth of the data channel is 20 MHz. Although
all the four allocation schemes start from an approximate
value, Fig. 15 shows that the FAQ has the highest spectral
efficiency and its curve converges rapidly at episode 9. Again,
the DQN and the Q learning do not converge at that time, and
they have lower spectral efficiency. Additionally, the FUZZRA
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curve descends slightly over the observation period, which
shares the same trend in the network throughput and the PDR
simulations.

C. Computational Complexity Analysis

The computational complexity of the proposed FAQ is
O(N3), and the proof is elaborated in Appendix C.

VII. CONCLUSION

In this study, we propose a novel reinforcement learning
model to tackle how to allocate the limited resources in V2X
communications within the context of more demanding V2X
services being deployed. These services, on the one hand,
consume considerable resources, and on the other hand, have
higher requirements. The high density of vehicles in urban
areas even makes the problem more challenging. Based on
such observations, a fuzzy-logic assisted Q learning model
is developed to dynamically allocate resources. Since there
are infinite possibilities in choosing resources for requests,
the proposed FAQ strategy aims to maximize the network
throughput while considering inequalities among different
V2X services. The integration of fuzzy logic into Q learning
not only can significantly accelerate the learning process, but
also improve the learning outcome, because the fuzzy-logic
component can predict instant rewards for choosing an action,
and reinforcement learning considers long-term rewards of an
allocation. Through extensive simulations in NS-3, the results
demonstrate the advantage of the proposed algorithm over
other alternatives. Additionally, a mathematical model is built
to analyze the network throughput based on the allocation
matrix and derivation of packet error rate. In the 6G era, UAVs
may play a key role and extend the existing ground-based V2X
communications to more comprehensive three-dimensional
(3D) situations, which may involve the coexistence of vehicle-
to-UAV, UAV-to-UAV and V2V communications. The authors
will study how to model the channels, allocate resources and
improve the spectral efficiency in such scenarios, in which
UAVs flying within air corridors and vehicles moving on roads
interact with each other.
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APPENDIX

A. Action Space

The base station responds to the requests from UEs. Each
type of service request needs a different number of successive
subchannels and different latency. BW determines the required
number of successive subchannels. different types of requests
have different BWs, as illustrated in Table II. Although a
request may be assigned a number of consecutive subchannels

starting from any subchannel, the actual starting subchannel of
a request is designed to be aligned with the one dedicated types
of request (i.e., aligned with requests of SER1 that need the
minimum number of subchannels for each allocation). Such
an observation accords with the interference caused by the
inevitable channel reuse due to the limited resource, compared
to the numerous requests from UEs. For instance, a request
for SER3 needs 18 subchannels. There are only two possible
allocations at one subframe: subchannels ranging from 1 to
18, and subchannels ranging from 4 to 21. That is, we do not
consider allocating subchannels from 2 to 19 or from 3 to 20,
because subchannels 1 to 3 have or will be likely assigned to a
SER1 request, which will result in severe interference. Thus,
the starting subchannel for a request could be only chosen
from subchannel 1, 4, 7, 10 or 13. Fig. 16 lists all possible
allocations for the six types of services in a subframe.

• SER1 type of requests requiring BW=3 can be assigned 7
possible subchannel ranges (i.e., [1 ∼ 3], [4 ∼ 6], [7 ∼ 9],
[10 ∼ 12], [13 ∼ 15], [16 ∼ 18] and [19 ∼ 21]).

• SER2 type of requests requiring BW=10 can be assigned
5 possible subchannel ranges (i.e., [1 ∼ 10], [4 ∼ 13],
[7 ∼ 16], [10 ∼ 19] and [13 ∼ 22]).

• SER3 type of requests requiring BW=18 can be assigned
2 possible subchannel ranges (i.e., [1 ∼ 18], [4 ∼ 21]).

• SER4 type of requests requiring BW=8 can be assigned
5 possible subchannel ranges (i.e., [1 ∼ 8], [4 ∼ 11],
[7 ∼ 14], [10 ∼ 17], and [13 ∼ 20]).

• SER5 and SER6 type of requests requiring BW=12 can
be assigned 4 possible subchannel ranges (e.g., [1 ∼ 12],
[4 ∼ 15], [7 ∼ 18], and [10 ∼ 21]).

In this study, we consider the allocation time slot as 20
milliseconds (20 subframes). For a request with a maximum
delivery latency of 10 ms, the base station will assign it
with a number of subchannels within the 10 subframes. That
is, the base station will choose resources from 7*20=140
combinations of subchannels and subframes.

B. Details of the deployed V2X services

We deploy six different V2X services in the network. They
include four safety-related applications and two infotainment
applications. The corresponding message types, transmission
frequencies, and data rates are shown in Table V.

C. Complexity of FAQ

The computational complexity of the FAQ is O(N3), as
shown below.
Proof : We first define that Nreq = {rq1, rq2, ...} is the set
of transmission requests from all M UEs, and Nq = |Nreq|
is the total number of requests. The FAQ algorithm will try
to assign resources for each request. There are three options
to choose an action for each request in the FAQ: using the
fuzzy logic, the maximum Q-value or the random selection.
The corresponding probability of utilizing the three methods is
ρ1, ρ2 and ρ3, respectively, and ρ1 + ρ2 + ρ3 = 1. For ∀rqi ∈
Nreq, if the fuzzy-logic method is used, according to [25],
the computing time is KcNq for choosing an action, where
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Fig. 16: All possible subchannel assignments for different types of requests

TABLE V: Type of services implemented in the V2X communications.

Deployed Services Message Type Beacon End-to-End Typical Data Packet size
Frequency latency Rate (Bytes)

Cooperative awareness (SER1) Periodic broadcast 100 ms 100 ms 5-100 Kbps 300
Cooperative manoeuvre (SER2) Periodic broadcast 10 ms 20 ms 2-5 Mbps 1500
Enhanced sensing (SER3) Event-driven Broadcast N/A 20 ms 10-25 Mbps 3000
Dynamic traffic control and warning (SER4) Periodic broadcast 500 ms 500 ms 0.5-2 Mbps 1200
Non-safety non-real-time content (SER5) Non-periodic unicast N/A 300-65535 ms 1-5 Mbps 1500
Non-safety real-time content (SER6) Non-periodic unicast N/A 20 ms 5-10 Mbps 1500

Kc is a constant. If the maximum Q-value method is utilized,
the execution times is |A|, where |A| is the total number of
actions in the action space A. Likewise, the computation is a
constant Trdm for the random selection method. Therefore, the
execution time of an action selection for an arbitrary request
rqi is:

Trq = ρ1KcNq + ρ2|A|+ρ3Trdm. (42)

The steps from line 6 to line 17 in Algorithm1 is repeatedly
executed NqTrq times. Furthermore, according to study [53],
the proposed FAQ learning reaches a goal state at most
O(|A|Nq) steps. Finally, the total number of executions is
acquired:

TFAQ = |A|Nq(NqTrq)

= ρ1|A|KcN
3
q + (ρ2|A|2+ρ3|A|Trdm)N2

q .
(43)

From the above, the computational complexity of the FAQ
is O(N3 + N2), since |A|,Kc, Trdm, ρ1, ρ2 and ρ3 are all
constants. The expression O(N3+N2) can further be deemed
as O(N3).
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