
1536-1284/23/$25.00 © 2023 IEEE IEEE Wireless Communications • February 202370

Abstract
Openness and intelligence are two enabling 

features to be introduced in next generation wire-
less networks, for example, Beyond 5G and 6G, 
to support service heterogeneity, open hardware, 
optimal resource utilization, and on-demand ser-
vice deployment. The open radio access network 
(O-RAN) is a promising RAN architecture to 
achieve both openness and intelligence through 
virtualized network elements and well-defined 
interfaces. While deploying artificial intelligence 
(AI) models is becoming easier in O-RAN, one 
significant challenge that has been long neglected 
is the comprehensive testing of their performance 
in realistic environments. This article presents a 
general automated, distributed and AI-enabled 
testing framework to test AI models deployed in 
O-RAN in terms of their decision-making perfor-
mance, vulnerability and security. This framework 
adopts a master-actor architecture to manage a 
number of end devices for distributed testing. 
More importantly, it leverages AI to automatically 
and intelligently explore the decision space of AI 
models in O-RAN. Both software simulation test-
ing and software-defined radio hardware testing 
are supported, enabling rapid proof of concept 
research and experimental research on wireless 
research platforms.

Introduction
Cellular communications networks have evolved 
from an inflexible and monolithic system to a flexi-
ble, agile, and disaggregated architecture. Leverag-
ing research innovations, next generation (Next-G) 
networks are expected to be built and operated 
based on the openness and intelligence principles. 
Furthermore, Beyond 5G and future 6G networks 
will incorporate artificial intelligence (AI) into the 
deployment, operation, and maintenance of the 
network [1, 2]. AI is well suited for communica-
tions; it is useful for estimating near-optimal settings 
in situations that have a large search space, it can 
generalize a solution to respond to new situations, 
it can optimize the network’s operation when 
resources are limited, and it can interpolate when 
insufficient information is available.

Modern networks can be classified by the 
degree of integration of AI. The European Tele-

communications Standards Institute (ETSI) defines 
six stages for network automation based on the 
use of AI, from no AI (i.e., manual control) to 
fully AI-driven systems (i.e., cognitive AI) [3]. The 
Global System for Mobile Communications Asso-
ciation (GSMA) supported the development of 
two major applied AI initiatives in 2019, aimed 
at sharing insight and developing an expert com-
munity: Applied AI Forum and the GSMA Glob-
al AI Challenge. The open radio access network 
(O-RAN) is an industry-driven architecture with 
open interfaces and open-source implementa-
tions [4]. The O-RAN Alliance is considering AI as 
an integral part of its open architecture and RAN 
control framework.

While AI models are enablers to achieve intel-
ligent Next-G wireless networks, comprehensive 
testing of their performance is cumbersome and in 
many cases non-existent. This is mainly due to the 
inability of the current theory to explain or prevent 
failures in the AI models. Hence, it is necessary to 
have a framework and appropriate environment 
for testing AI models in their capacity of cellular 
RAN controllers. From the ongoing research and 
development and expected deployment of O-RAN 
components in Next-G networks, there is an urgent 
need for methods, platforms, and tools that facili-
tate testing various AI models in the radio network 
in a production like environment [5].

The Third Generation Partnership Project 
(3GPP) standardizes cellular communications. It 
defines the architecture, protocols, parameters, sig-
nals, and so forth. It also defines test procedures 
and expected outcomes for building 3GPP compli-
ant networks. These can be generally categorized 
as performance and compliance tests, which are 
related to signal processing and radio frequency 
(RF) transmission, among others. The O-RAN spec-
ifications provide different options where and how 
to train the AI models, but not how to test the oper-
ations of the RAN Intelligent Controllers (RICs).

This article presents a testing framework design 
(https://github.com/openaicellular) to help opti-
mize the evaluation of AI controlled O-RAN sys-
tems under variations of the input data in realistic 
and, possibly, changing conditions. This framework 
supports automated and distributed testing by 
managing a number of test actors which are able  
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AI-POWERED TELCO NETWORK AUTOMATION: 5G EVOLUTION AND 6G to transmit testing signals in parallel. Given the 
large input space of an AI-controlled system, it may 
be impossible to exhaustively and comprehensive-
ly test the performance of AI models without the 
help of AI. Our framework integrates AI-enabled 
testing methods to explore the decision space of 
AI models as cellular RAN controllers.

Cellular Network Testing Standards and 
Research

Cellular Network Testing Standards

Several standardization bodies work on establish-
ing standards for Next-G cellular network testing, 
including 3GPP, O-RAN Alliance, and ETSI.

3GPP: Testing procedures are outlined in the 
3GPP specifications which cover functional, per-
formance, and conformance tests by establishing 
RF transmission masks, signaling requirements, 
and expected performance figures, among oth-
ers. These procedures are adopted by network 
and device manufacturers using purpose-built test 
instruments and test user equipment (UEs), and 
are leveraged by other stakeholders, including 
the O-RAN Alliance, providing new features and 
services on top of 3GPP protocols.

O-RAN Alliance: The O-RAN Alliance is a con-
sortium that develops standards for open cellular 
networks. It was formed by merging the C-RAN 
Alliance and the xRAN Forum. Its mission is to 
extend the current RAN standards and facilitate 
open, intelligent, virtualized, and fully interop-
erable Next-G RANs [4]. The O-RAN Alliance 
extends the 3GPP standards with new interfaces 
and intelligent controllers, creating a framework 
for developing and deploying intelligent, soft-
ware-defined networking (SDN) based, and virtu-
alized cellular networks while leveraging 3GPP’s 
4G and 5G protocols and network components, 
encompassing the RAN, UE, and core network.

Similar to the 3GPP, the O-RAN Alliance’s 
WG4 defines test cases, parameters, and proce-
dures for testing the conformance and perfor-
mance of the O-RAN distributed unit (O-RU), 
control unit (O-CU), and radio unit (O-RU). The 
O-RAN Alliance Test and Integration Focus Group 
(FG), furthermore, recently published specifica-
tions that establish the scope, goals, and process-
es for end-to-end network testing, where the 
O-RAN system under test is treated as a black 
box [6]. These specification cover functional, per-
formance, service, security, load, and stress tests. 
However, they do not specify how to evaluate the 
AI models or network intelligence.

In addition to test procedures, the O-RAN Alli-
ance has established O-RAN Test and Integration 
Centers (OTICs), which are independent test plat-
forms/sites where vendors can test their O-RAN 
systems. This is in an early stage and vendor-neutral 
institutes are encouraged to apply and become an 
OTIC, following the O-RAN guidelines. The Test 
and Integration FG also establishes certification 
and badging processes and procedures to be used 
by OTICs to certify vendor products.

ETSI: A work item on AI in testing systems and 
testing AI models has been published by ETSI [7]. 
It is publicly available and introduced in their 5G 
Proof of Concept (PoC) White Paper #5. This is 

part of ETSI’s Generic Autonomic Network Archi-
tecture program and defines a generic framework 
for testing AI models/systems, from the validation 
of AI model to network optimization. It includes 
data, algorithm and model validation, as well as 
non-functional and integration testing. ETSI and its 
stakeholders conceptualize an offline training and 
test environment and envisage it to interface with 
production networks for obtaining network data 
and providing non-real time feedback. They intro-
duce slow and fast control loops as part of the 
production network knowledge plane and the pro-
duction network itself. The PoC White Paper #5 
proposes components and process flows for testing 
AI systems/networks, without providing specifics 
about the networks, management tasks, or AI mod-
els. While ETSI emphasizes the need for AI system 
testing and defines a general framework and sample 
processes, it does not specify how to test and verify 
the RAN specific interfaces, AI models, individual or 
compound network functions, or RAN controllers.

RAN Testing Research, Methods, and Technologies

Research has shown deficiencies in the 4G and 
5G wireless protocols by means of non-standard 
and innovative testing in controlled laboratory envi-
ronments. For example, security vulnerabilities of 
4G and 5G networks have been discovered by 
jamming, spoofing, eavesdropping, and other types 
of systematic attacks applied on network modules 
or interfaces using software-defined radios (SDRs). 
SDR hardware and open-source software facilitate 
demonstrating specific wireless protocol vulner-
abilities as well as implementing and evaluating 
fixes for these [8]. Systematic radio attacks to a 
commercial 4G radio access network for mission 
critical applications have been demonstrated in [9]. 
The article shows loss in system performance with 
targeted radio interference, implemented in soft-
ware and transmitted from SDRs. It also proposes 
machine learning (ML) techniques to process per-
formance measurement counters and key perfor-
mance indicators (KPIs) collected by the network 
to detect and classify attacks.

Byrd et al. [10] introduce an open-source cel-
lular security analysis instrument which provides 
a practical tool to observe and analyze control 
messages between the cell towers and UEs. It uses 
open-source software and commercial off-the-
shelf (COTS) SDR hardware and can, for instance, 
observe the use and lifetime of Temporary Mobile 
Subscriber Identities that are meant to be used 
as temporary identifiers to authenticate users and 
protect their identities. ProChecker [11] combines 
dynamic testing with static instrumentation to 
extract a semantic model of 4G protocol interac-
tions. It uses a symbolic model checker together 
with a cryptographic protocol verifier to verify the 
properties against the extracted model and to ana-
lyze 4G control plane protocol implementations 
against a variety of security attacks.

The O-RAN Context and Requirements

The O-RAN Architecture
O-RAN is an emerging, transformational RAN 
architecture that emphasizes openness, intelli-
gence, virtualization, softwarization, disaggrega-
tion, and multi-vendor support. This can provide 

Research has shown 
deficiencies in the 

4G and 5G wireless 
protocols by means 
of non-standard and 
innovative testing in 

controlled laboratory 
environments. For 
example, security 

vulnerabilities of 4G 
and 5G networks have 

been discovered by 
jamming, spoofing, 

eavesdropping, and 
other types of system-
atic attacks applied on 

network modules or 
interfaces using soft-
ware-defined radios

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on September 11,2023 at 23:56:22 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Wireless Communications • February 202372

several benefits, such as reduced cost of mainte-
nance, dynamic services, quicker time to market 
for new user and network management services, as 
well as other innovations transforming the telecom 
industry. O-RAN adopts functional splits 2 and 7.2x 
to disaggregate base station functionalities into the 
O-CU, O-DU, and O-RU. Whereas, the O-RU may 
be implemented in hardware, O-RAN supports 
software-based O-DU and O-CU implementations 
that may be hosted as virtual network functions 
on edge or cloud servers. These RAN components 
are connected via open interfaces standardized by 
3GPP and the O-RAN Alliance.

The O-RAN architecture features two logical 
controllers to facilitate the management, control, 
and orchestration of the network with closed-loop 
control. The near-real time RIC (near-RT RIC) is 
deployed at the edge of the network and operates 
on a timescale between 10 ms and 1 s. It establish-
es the means for monitoring, management, con-
trol, and orchestration of the O-DUs and O-CUs in 
the RAN. The non-real time RIC (non-RT RIC) oper-
ates at a time scale of 1 s and above. It facilitates 
the orchestration of network resources at the infra-
structure level through policies that may impact 
network operations and users. O-RAN therefore 
establishes additional open interfaces: A1 between 
the non-RT RIC and near-RT RIC and E2 between 
the near-RT RIC and the O-CU/O-DU. 

The near-RT RIC can host multiple xApps and 
the required services to manage their life cycle. An 
xApp is a microservice that may collect data from 
the RAN (e.g., user and cell key performance mea-
surements, such as number of users, load, through-
put, and resource utilization) process the data, and 

send back control actions to the RAN through stan-
dardized interfaces. Examples of xApps for near-RT 
RAN control applications include scheduling, traffic 
shaping, and handover management.

The non-RT RIC supports the execution of 
rApps, which facilitate RAN optimization and oper-
ation, including policy guidance, enrichment infor-
mation, and configuration management. Although 
rApps can support the same RAN control func-
tionalities provided by xApps (e.g., traffic shaping, 
scheduling, and handover management) at larger 
timescales, they have been standardized to derive 
control and management policies that operate at 
a higher level and affect a large number of RAN 
nodes and users. Examples of rApps for non-RT 
RAN control applications include frequency man-
agement, network slicing, and policy management.

Both xApps and rApps may be data-driven and 
employ AI/ML. The O-RAN Alliance defines differ-
ent deployment options for the training and infer-
ence of such AI controllers [12]. The non-RT RIC 
hosts the ML training and the non-RT RIC or near-
RT RIC can host the ML inference.

AI Integration in O-RAN
 The O-RAN architecture (Fig. 1) enables the 
integration of AI models to perform intelligence 
decisions based on network and environmental 
conditions. The use of AI, leveraging the collect-
ed information, helps to enhance both cellular 
performance per cell and user performance per 
UE, such as long-term traffic congestion, latency, 
cell coverage, radio interference, among many 
other KPIs. This can be achieved by deploying a 
number of AI models including, but not limited 

FIGURE 1. O-RAN architecture.
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to, supervised learning, unsupervised learning, 
reinforcement learning, federated learning, and 
transfer learning [12]. We summarize possible AI 
models to be integrated in O-RAN for different 
applications in Table 1.

Testing Framework Requirements
Empowered by openness and intelligence, O-RAN 
is now gaining its importance and popularity 
in both industry and academia, and many new 
xApps/rApps have been developed or are being 
under development. However, how to compre-
hensively test these new AI-enabled features (i.e., 
xApps/rApps) becomes a pressing question. We 
envision that an automated and AI-enhanced test-
ing (AI testing for AI) platform is of great essence 
and value to test new O-RAN capabilities. On the 
one hand, automated testing involves automated 
setup of the testing environment, automated test 
execution, and automated generation of testing 
performance reports. On the other hand, for large 
search spaces, AI methods can be useful to con-
trol the inputs and parameters to the system under 
test. In particular, we identify the following require-
ments for testing AI-enabled RAN controllers:
•	 Software-defined and modular to enable cus-

tomization.
•	 Invasive/non-invasive testing during O-RAN 

operation in isolated or production environment 
to capture data in relevant operating conditions.

•	 Open test interfaces to enable the development 
of new test methods and processes.

•	 Test configuration files that enable specifying 
and reproducing a test.

•	 Support for automated and AI-enhanced testing to 
assess the operation of AI-enabled cellular radio 
network controllers under a myriad of channel 
and contextual conditions (large search spaces).

•	  Facilitate the acquisition of data for the training 
of AI models that generate the test signals.

•	 Support for multitasking and distributed testing 
to enable a multi-user testing environment.

Proposed Open AI Cellular Testing Framework
We illustrate the architecture of the proposed 
framework in Fig. 2, which consists of three major 
components: test input, which includes both test 
configuration and test script files; server, which sets 
up the testing environment as described in test 
configuration files and orchestrates the test exe-
cution as defined in test scripts; and actor, which 
executes test actions as instructed by the server.

We detail the three major components of our 
proposed testing framework as follows:

Test Input: For each task, this framework takes 
test configuration and test scripts as inputs. While 
the test configuration file is used to automatically set 
up the testing environment, a test script defines the 
automated test procedure, which consists of a set of 
test actions to be executed (e.g., an actor sending 
an Attach Request or responding with feedback). 
The framework performs the known “keyword-driv-
en” testing, that is, each test action is referred to as 
a “keyword” and test actions execute sequentially. 
A test action can be either an “atomic” or a “run-
ning” action. Only the running actions will be exe-
cuted sequentially, while a set of sequential atomic 
actions can be grouped as a new test action. This 
multi-level granularity of actions enables user-de-
fined test scripts for various applications (e.g., pro-
tocol, functional, performance, or integrating tests). 
The structure of a test script is illustrated in Fig. 3.

Server: The server manages a number of 
remote testing actors, including maintaining the 
socket connection to each actor and monitoring its 
resource usage (e.g., CPU, memory, disk, and SDR 
hardware) and test status. Before a test starts with 
one or more test scripts, it first checks the integrity 
of each test script (i.e., whether all necessary ele-
ments are included) and extracts the sequence of 

TABLE 1. Integration of various AI models in O-RAN.

Type of AI Application Network Layer RIC

Supervised 
Learning

Prediction of traffic, e.g., type and volume, using regression algorithms. MAC Near-RT RIC

Prediction of available bandwidth at different times and locations using regression 
algorithms.

MAC Near-RT RIC

Identification of a set of predefined modulations using classification algorithms to 
quickly classify the modulation type of the interference signal.

PHY RT RIC

Identification of a set of certain intrusions using classification algorithms to detect 
network born attacks such as denial of service attacks, flooding, and twin-evil intruders.

MAC Near-RT RIC

Unsupervised 
Learning

Detection of abnormal traffic using anomaly detection algorithms to identify potential 
attacks.

MAC Near-RT RIC

Clustering of traffic, e.g., type and demand, to identify similar interests or behaviors 
in a network using clustering algorithms and achieve network-level and cluster-level 
enhancements.

MAC Non-RT RIC

Reinforcement 
Learning

Optimal allocation of radio resources in high mobility networks, e.g., UAVs, using 
reinforcement learning-based control algorithms.

MAC Near-RT RIC

Optimal configuration of massive MIMO beamforming parameters for performance 
optimization using reinforcement learning algorithms.

PHY RT RIC

Federated Learning Real-time spectrum sensing and sharing for dynamic access. MAC Near-RT

Transfer Learning
Adaption of pre-trained AI models to a new learning task (e.g., new environment) where 
limited training data is available using domain adaption algorithms.

MAC/PHY Near-/Non-RT RIC
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test actions. These test actions are then sent to spe-
cific test actors, together with the test data if it is 
included. The server also continuously monitors the 
status of all running tests which can be displayed to 
users. Once a test completes, the server collects all 
test parameters from the actor, generates a report 
of the test results, and stores them in a database.

Actor: An actor consists of the actor manager, 
AI core, and test executor, as well as two adapters
to interface with the unit under test (i.e., a cellu-
lar radio network controller). The actor manager 
is able to monitor the health of the actor (e.g., 
resource utilization and hardware check) and 
configure the testing environment for a specific 
task. The actor also includes a number of AI cores 
which implement AI-enabled testing algorithms to 
facilitate the testing with the help of AI. The test 
executor is responsible for running sequential test 
actions as instructed by the server and for mon-
itoring their statuses which are reported to the 
server. Each actor can interact with xApps/rApps 
under test through either the SIM Adapter or the 
SDR Adapter. The SIM Adapter acts as a testing 
xApp/rApp which can be deployed in a non-RT, 
near-RT, or future RT RIC to send testing data and 
receive responses from the RAN through sockets. 
The SDR Adapter acts as a UE which leverages an 
SDR-based software suite (e.g., srsRAN) to send 
radio testing signals to the RAN.

Whereas most tests can be performed on a 
single machine, multiple actors deployed on dif-
ferent machines in the network can be involved 
in the same test to support distributed testing. For 
example, when testing an AI-enabled scheduler 
for radio resource allocation, a number of distrib-
uted actors can be confi gured to request various 
radio resources with different quality of service 
(QoS) requirements or priority levels. The number 
of actors and their associated Internet protocol 
addresses are defined in the test configuration 
file that the server can use to set up the testing 
environment. Figure 4 shows a sample workfl ow 
for testing schedulers in O-RAN.

After a test is done, the framework automati-
cally generates a test report which details the test 
setup and result of each individual test action (fail 
or pass), and summarizes various performance 
metrics of the network under test. In addition to 

the overall success rate of the test actions, the 
proposed framework can also summarize and 
visualize network KPIs, such as data rate, latency, 
and packet loss.

enAblIng technologIes — AI testIng Methods
With the use of various AI models for wireless 
networks, measuring the performance of the 
deployed models is a necessity for quality and 
security assurance (e.g., service delivery, response 
time, resource allocation optimization, vulnerabili-
ty assessment, and mitigation). This is due to the 
fact that the effectiveness of AI systems in their 
decision making processes mainly depends on the 
quality of the training data which might not cover 
all possible practical conditions. To bridge this 
gap, the proposed open AI cellular testing frame-
work introduces AI (i.e., AI core in the actor) in 
the test automation system to generate dynamic 
test actions and autonomously explore the deci-
sion making capabilities of AI-controlled RANs. 
The generation of test actions will be guided by 
specific AI testing methods (e.g., Fuzz testing, 
reinforcement learning, and adversarial learning) 
as defined in the test script, and all details (i.e., 
parameters, states, and actions) of this automated 
exploratory process will be recorded as part of 
the output report which further allows to replicate 
experiments for regression testing. Here, we high-
light the following enabling technologies for AI 
testing to be integrated into the framework.

Sensitivity Analysis: The sensitivity analysis 
assesses the O-RAN processes with controlled 
changes in the operating conditions using expert 
knowledge. More precisely, given a parameter 
space, each test varies only one or a few variables 
at a time. This may trigger system adaptation and 
the response of the system is compared to the 
expected system response. Some environmental 
eff ects should trigger changes while others should 
not, and the goal is to observe the sensitivity of 
the xApps/rApps at diff erent levels or perturbation. 
Such testing may allow to interpret the behavior 
of the black box AI models used in the xApps or 
rApps and provide insights on the stability of the 
system. It can be considered as a vulnerability anal-
ysis and can serve to evaluate the security and reli-
ability of the network.

FIGURE 2. Architecture of the proposed open AI cellular testing framework.
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AI Fuzzing: Fuzz testing, or Fuzzing, has been 
widely used in automated software testing [13] 
which autonomously generates input data with per-
turbation to find software defects and faults (e.g., 
an unhandled exception or memory leak). Cou-
pling AI methods (e.g., genetic algorithms) with 
Fuzzing, that is, AI-Fuzzing (AIF), has great poten-
tial to effectively and intelligently evaluate the per-
formance of AI-controlled systems. It works on the 
principles of dynamic test generation to explore 
the large input space and decision boundaries of 
the system. For example, consider the multi-class 
support vector machine (SVM)-based demodulator 
used in carrier frequency offset (CFO)-impaired sys-
tems [14]. For each CFO value, the CFO-impaired 
received data symbols are used to train the SVM 
classifier to learn the optimal decision boundaries 
for each quadrature amplitude modulation (QAM) 
constellation point. To test this module using the 
proposed testing framework, the test parameters, 
such as initial CFO values, the number of data 
symbols, and Fuzzing parameters, are specified in 
the test script and parsed by the test script inter-
preter. Instead of only using initial CFO values, AIF 
generates a sequence of test signals with differ-
ent impaired CFO values to explore the decision 
boundaries of the trained SVM classifier.

Adversarial Learning: For the testing of AI-con-
trollers for physical layer modules, adversarial 
learning [15] enables automated generation of 
test signals which are able to capture similar char-
acteristics of real-world channel conditions (e.g., 
I/Q imbalance or non-Gaussian interference). This 
offers the capability of intelligent stress testing of 
a wireless cellular system using inputs which may 
violate the statistical assumption of AI methods 
under test. Moreover, motivated by the recent 
success of generative adversarial networks, it is 
also possible to enable AI-testing of system secu-
rity against various cyber-attacks, for instance, 
spoofing attacks, which mimic channel state infor-
mation and RF fingerprints of legitimate radio sig-
nals, and denial of service attacks which flood the 
target network with a significant amount of traffic.

Reinforcement Learning: Reinforcement 
learning models learn how to take actions, or 
adjustments, in an environment to maximize a 
predefined cumulative reward, for example, the 
negative QoS requirement in case of a scheduler, 
so that its vulnerability surface can be effective-
ly explored. For each traffic under test, the rein-
forcement learning-based procedure will parse 
the response of the system under test (e.g., AI-en-
abled scheduler) as a reward and decide how 
to allocate radio resources in the next step. This 
will enable the AI testing platform to learn during 
the process of testing (under several test envi-
ronments), and optimize its testing strategies on 
the fly so that the performance of the AI-enabled 
scheduler can be exhaustively analyzed.

It is worth noting that the above mentioned AI 
modules can be designed in a way that each of 
them can be used for standalone testing. Combining 
them can make the testing framework more pow-
erful. Moreover, instead of testing the AI-controlled 
RAN as a black box, this framework allows to add 
white box embedding components in the RAN 
under test to monitor and record all detailed behav-
iors when testing inputs are applied. New learning 
capability can be easily added to the AI library.

Challenges and Research Opportunities
With the increasing popularity of O-RAN, it is 
expected that many more advanced AI-controlled 
functions, such as xApps and rApps, will be devel-
oped by the community. The proposed testing 
framework enables the comprehensive testing 
of these functions in an automated, distributed, 
and AI-enabled manner. This opens up a num-
ber of research opportunities to facilitate the pro-
totyping, deployment, and operation of Next-G 
networks. Here we briefly discuss the critical 
research needed and enabled by the proposed 
testing framework and its limitations that will be 
addressed in our future work.

AI Security
The benefits of using AI models are obvious in 
wireless networks: they enable faster analysis of 
large scale data (e.g., traffic or RF signals) and can 
make better (optimal or near-optimal) decisions 
than a human. These benefits come from the 
unique value of AI models which learn from data. 
However, this also happens to make them more 
vulnerable and less trustworthy from a security 
perspective. When an unexpected behavior or 
decision is observed, an AI model is not as easily 
fixed by hand-editing as are traditional algorithms 
or formulas. This problem might be addressable 
today if we had explainable AI, but coming up 
with general approaches for explaining AI solu-
tions has alluded researchers for decades. Given 
the high value of commercial cellular wireless 
networks, there is a growing incentive for mali-
cious attackers to explore and exploit possible 
vulnerabilities in AI models. There are three types 
of attacks that adversaries could launch: model 
evasion attack, model poisoning attack, and 
confidentiality attack. The model evasion attack 
aims to feed adversarial samples which are care-
fully perturbed into a ML model (e.g., anomaly 
detection) so that a wrong decision will be made. 
While great harm can be caused by model eva-
sion attacks, they do not alter the behavior of the 
trained model for future inputs. On the contrary, 
the poisoning attack aims to intentionally and 
maliciously adjust decision boundaries of a model 
so that it always misclassifies specific inputs. This 
can typically be done during the training stage 
of the model by feeding “poisoned” data. Last-
ly, the confidentiality attack aims to replicate a 
model and/or reveal sensitive data used to train 
the model, both of which are protected by intel-
lectual property rights. This can be typically done 
by recursively querying the model with different 

FIGURE 3. The structure of a test script.

Test Script
Test Mode: SIM or SDR
Test Action

Name
Type: Atomic or
Running
Action Parameters

Test Action
...
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input. Using the proposed testing framework, 
new research in AI vulnerabilities are enabled 
to improve the understanding of behaviors of 
AI models for diff erent inputs, or to evaluate the 
effectiveness of new attack and defense mecha-
nisms, among others.

AI testIng
Before the emergence of advanced AI algorithms 
that are more interpretable and trustworthy, it is 
very diffi  cult to fully understand behaviors of cur-
rent data-driven AI models without the help of AI. 
It has been demonstrated that a comprehensive 
test is one of the most effective ways to expose 
vulnerabilities and potentially help improve the 
trustworthiness of AI models. The proposed test-
ing framework supports the deployment of both 
off line and online AI testing methods and has the 
potential to be extended to test various perfor-
mances, including correctness, robustness, and 
efficiency. The correctness measures the proba-
bility that the AI model makes correct decisions. 
The robustness measures the performance of the 
AI model in the presence of invalid inputs or valid 
inputs but perturbed with noise, which represent 
different environmental conditions. The efficien-
cy measures the speed of an AI model to make 
effective decisions after an input or condition is 
presented. While the proposed testing frame-
work integrates some existing AI testing meth-
ods, such as AIF, we expect a number of new 
AI testing methods to be developed in the near 
future. For example, testing methods that leverage 
advanced generative models are able to gener-
ate more realistic data inputs that locate around 
decision boundaries of an AI model to explore 
its correctness and robustness performances. A 
major challenge is the availability of training data 
to train the AI testing models. Similar to industry 

and academia using RAN simulators or emulators 
to develop the xApps or rApps and collect perfor-
mance data, the testing framework needs to facil-
itate the integration of tools for the generation 
and collection of data under various experimental 
conditions. In addition, the system overhead per-
taining to training AI models is another challenge 
for an AI testing framework since it needs to gen-
erate test signals while performing the testing.

coordInAted testIng
Wireless networks could become much more vul-
nerable when multiple malicious nodes launch 
coordinated attacks, for example, denial of ser-
vice attacks. Such coordinated attacks are hard 
to detect using existing defense methods which 
are mainly developed for detecting single node 
attacks, and they become more challenging partic-
ularly when attack data samples are unbalanced, 
high dimensional, and noisy. This requires a better 
understanding of how a wireless network behaves 
in the presence of such coordinated attacks. The 
proposed testing framework can be extended to 
support coordinated execution of test actions from 
a number of distributed actors. This can be done 
by allowing message communications among dif-
ferent actors. The coordinated testing capability will 
enable the prototyping and evaluation of various 
cooperative attack and defense mechanisms tar-
geting O-RAN based wireless networks.

conclusIons
AI is the enabling technology to achieve intelligent 
Next-G wireless networks. However, the perfor-
mance of AI models heavily depends on the qual-
ity and quantity of their training data, as well as 
their generalization capability. There is a lack of 
a general testing framework to comprehensively 
test the performance of AI models deployed in the 
RAN. This article presents an automated, distribut-
ed, and AI-enabled testing framework which has 
the potential to fully evaluate the performance of 
AI models in terms of their decision-making per-
formance, vulnerability, and security in the context 
of O-RAN. The proposed framework leverages AI 
to generate testing signals in an automated and 
intelligent manner so that the decision space of the 
AI models used in O-RAN can be explored. Under 
the umbrella of the proposed testing framework, 
this article also discusses enabling techniques for AI 
testing and important research opportunities in the 
fi eld of AI, wireless communications, cyber securi-
ty, and coordinated testing. 
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