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ABSTRACT

Openness and intelligence are two enabling
features to be introduced in next generation wire-
less networks, for example, Beyond 5G and 6G,
to support service heterogeneity, open hardware,
optimal resource utilization, and on-demand ser-
vice deployment. The open radio access network
(O-RAN) is a promising RAN architecture to
achieve both openness and intelligence through
virtualized network elements and well-defined
interfaces. While deploying artificial intelligence
(Al) models is becoming easier in O-RAN, one
significant challenge that has been long neglected
is the comprehensive testing of their performance
in realistic environments. This article presents a
general automated, distributed and Al-enabled
testing framework to test Al models deployed in
O-RAN in terms of their decision-making perfor-
mance, vulnerability and security. This framework
adopts a master-actor architecture to manage a
number of end devices for distributed testing.
More importantly, it leverages Al to automatically
and intelligently explore the decision space of Al
models in O-RAN. Both software simulation test-
ing and software-defined radio hardware testing
are supported, enabling rapid proof of concept
research and experimental research on wireless
research platforms.

INTRODUCTION

Cellular communications networks have evolved
from an inflexible and monolithic system to a flexi-
ble, agile, and disaggregated architecture. Leverag-
ing research innovations, next generation (Next-G)
networks are expected to be built and operated
based on the openness and intelligence principles.
Furthermore, Beyond 5G and future 6G networks
will incorporate artificial intelligence (Al) into the
deployment, operation, and maintenance of the
network [1, 2]. Al is well suited for communica-
tions; it is useful for estimating near-optimal settings
in situations that have a large search space, it can
generalize a solution to respond to new situations,
it can optimize the network’s operation when
resources are limited, and it can interpolate when
insufficient information is available.

Modern networks can be classified by the
degree of integration of Al. The European Tele-

communications Standards Institute (ETSI) defines
six stages for network automation based on the
use of Al, from no Al (i.e., manual control) to
fully Al-driven systems (i.e., cognitive Al) [3]. The
Global System for Mobile Communications Asso-
ciation (GSMA) supported the development of
two major applied Al initiatives in 2019, aimed
at sharing insight and developing an expert com-
munity: Applied Al Forum and the GSMA Glob-
al Al Challenge. The open radio access network
(O-RAN) is an industry-driven architecture with
open interfaces and open-source implementa-
tions [4]. The O-RAN Alliance is considering Al as
an integral part of its open architecture and RAN
control framework.

While Al models are enablers to achieve intel-
ligent Next-G wireless networks, comprehensive
testing of their performance is cumbersome and in
many cases non-existent. This is mainly due to the
inability of the current theory to explain or prevent
failures in the Al models. Hence, it is necessary to
have a framework and appropriate environment
for testing Al models in their capacity of cellular
RAN controllers. From the ongoing research and
development and expected deployment of O-RAN
components in Next-G networks, there is an urgent
need for methods, platforms, and tools that facili-
tate testing various Al models in the radio network
in a production like environment [5].

The Third Generation Partnership Project
(3GPP) standardizes cellular communications. It
defines the architecture, protocols, parameters, sig-
nals, and so forth. It also defines test procedures
and expected outcomes for building 3GPP compli-
ant networks. These can be generally categorized
as performance and compliance tests, which are
related to signal processing and radio frequency
(RF) transmission, among others. The O-RAN spec-
ifications provide different options where and how
to train the Al models, but not how to test the oper-
ations of the RAN Intelligent Controllers (RICs).

This article presents a testing framework design
(https://github.com/openaicellular) to help opti-
mize the evaluation of Al controlled O-RAN sys-
tems under variations of the input data in realistic
and, possibly, changing conditions. This framework
supports automated and distributed testing by
managing a number of test actors which are able
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to transmit testing signals in parallel. Given the
large input space of an Al-controlled system, it may
be impossible to exhaustively and comprehensive-
ly test the performance of Al models without the
help of Al. Our framework integrates Al-enabled
testing methods to explore the decision space of
Al models as cellular RAN controllers.

CELLULAR NETWORK TESTING STANDARDS AND
RESEARCH

CELLULAR NETWORK TESTING STANDARDS

Several standardization bodies work on establish-
ing standards for Next-G cellular network testing,
including 3GPP, O-RAN Alliance, and ETSI.

3GPP: Testing procedures are outlined in the
3GPP specifications which cover functional, per-
formance, and conformance tests by establishing
RF transmission masks, signaling requirements,
and expected performance figures, among oth-
ers. These procedures are adopted by network
and device manufacturers using purpose-built test
instruments and test user equipment (UEs), and
are leveraged by other stakeholders, including
the O-RAN Alliance, providing new features and
services on top of 3GPP protocols.

O-RAN Alliance: The O-RAN Alliance is a con-
sortium that develops standards for open cellular
networks. It was formed by merging the C-RAN
Alliance and the xRAN Forum. Its mission is to
extend the current RAN standards and facilitate
open, intelligent, virtualized, and fully interop-
erable Next-G RANs [4]. The O-RAN Alliance
extends the 3GPP standards with new interfaces
and intelligent controllers, creating a framework
for developing and deploying intelligent, soft-
ware-defined networking (SDN) based, and virtu-
alized cellular networks while leveraging 3GPP’s
4G and 5G protocols and network components,
encompassing the RAN, UE, and core network.

Similar to the 3GPP, the O-RAN Alliance’s
WG4 defines test cases, parameters, and proce-
dures for testing the conformance and perfor-
mance of the O-RAN distributed unit (O-RU),
control unit (O-CU), and radio unit (O-RU). The
O-RAN Alliance Test and Integration Focus Group
(FG), furthermore, recently published specifica-
tions that establish the scope, goals, and process-
es for end-to-end network testing, where the
O-RAN system under test is treated as a black
box [6]. These specification cover functional, per-
formance, service, security, load, and stress tests.
However, they do not specify how to evaluate the
Al models or network intelligence.

In addition to test procedures, the O-RAN Alli-
ance has established O-RAN Test and Integration
Centers (OTICs), which are independent test plat-
forms/sites where vendors can test their O-RAN
systems. This is in an early stage and vendor-neutral
institutes are encouraged to apply and become an
OTIC, following the O-RAN guidelines. The Test
and Integration FG also establishes certification
and badging processes and procedures to be used
by OTICs to certify vendor products.

ETSI: A work item on Al in testing systems and
testing Al models has been published by ETSI [7].
It is publicly available and introduced in their 5G
Proof of Concept (PoC) White Paper #5. This is

part of ETSI’s Generic Autonomic Network Archi-
tecture program and defines a generic framework
for testing Al models/systems, from the validation
of Al model to network optimization. It includes
data, algorithm and model validation, as well as
non-functional and integration testing. ETSI and its
stakeholders conceptualize an offline training and
test environment and envisage it to interface with
production networks for obtaining network data
and providing non-real time feedback. They intro-
duce slow and fast control loops as part of the
production network knowledge plane and the pro-
duction network itself. The PoC White Paper #5
proposes components and process flows for testing
Al systems/networks, without providing specifics
about the networks, management tasks, or Al mod-
els. While ETSI emphasizes the need for Al system
testing and defines a general framework and sample
processes, it does not specify how to test and verify
the RAN specific interfaces, Al models, individual or
compound network functions, or RAN controllers.

RAN TESTING RESEARCH, METHODS, AND TECHNOLOGIES

Research has shown deficiencies in the 4G and
5G wireless protocols by means of non-standard
and innovative testing in controlled laboratory envi-
ronments. For example, security vulnerabilities of
4G and 5G networks have been discovered by
jamming, spoofing, eavesdropping, and other types
of systematic attacks applied on network modules
or interfaces using software-defined radios (SDRs).
SDR hardware and open-source software facilitate
demonstrating specific wireless protocol vulner-
abilities as well as implementing and evaluating
fixes for these [8]. Systematic radio attacks to a
commercial 4G radio access network for mission
critical applications have been demonstrated in [9].
The article shows loss in system performance with
targeted radio interference, implemented in soft-
ware and transmitted from SDRs. It also proposes
machine learning (ML) techniques to process per-
formance measurement counters and key perfor-
mance indicators (KPlIs) collected by the network
to detect and classify attacks.

Byrd et al. [10] introduce an open-source cel-
lular security analysis instrument which provides
a practical tool to observe and analyze control
messages between the cell towers and UEs. It uses
open-source software and commercial off-the-
shelf (COTS) SDR hardware and can, for instance,
observe the use and lifetime of Temporary Mobile
Subscriber Identities that are meant to be used
as temporary identifiers to authenticate users and
protect their identities. ProChecker [11] combines
dynamic testing with static instrumentation to
extract a semantic model of 4G protocol interac-
tions. It uses a symbolic model checker together
with a cryptographic protocol verifier to verify the
properties against the extracted model and to ana-
lyze 4G control plane protocol implementations
against a variety of security attacks.

THE 0-RAN CONTEXT AND REQUIREMENTS
THE 0-RAN ARCHITECTURE

O-RAN is an emerging, transformational RAN
architecture that emphasizes openness, intelli-
gence, virtualization, softwarization, disaggrega-
tion, and multi-vendor support. This can provide
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FIGURE 1. O-RAN architecture.

several benefits, such as reduced cost of mainte-
nance, dynamic services, quicker time to market
for new user and network management services, as
well as other innovations transforming the telecom
industry. O-RAN adopts functional splits 2 and 7.2x
to disaggregate base station functionalities into the
O-CU, O-DU, and O-RU. Whereas, the O-RU may
be implemented in hardware, O-RAN supports
software-based O-DU and O-CU implementations
that may be hosted as virtual network functions
on edge or cloud servers. These RAN components
are connected via open interfaces standardized by
3GPP and the O-RAN Alliance.

The O-RAN architecture features two logical
controllers to facilitate the management, control,
and orchestration of the network with closed-loop
control. The near-real time RIC (near-RT RIC) is
deployed at the edge of the network and operates
on a timescale between 10 ms and 1 s. It establish-
es the means for monitoring, management, con-
trol, and orchestration of the O-DUs and O-CUs in
the RAN. The non-real time RIC (non-RT RIC) oper-
ates at a time scale of 1 s and above. It facilitates
the orchestration of network resources at the infra-
structure level through policies that may impact
network operations and users. O-RAN therefore
establishes additional open interfaces: A1 between
the non-RT RIC and near-RT RIC and E2 between
the near-RT RIC and the O-CU/O-DU.

The near-RT RIC can host multiple xApps and
the required services to manage their life cycle. An
XApp is a microservice that may collect data from
the RAN (e.g., user and cell key performance mea-
surements, such as number of users, load, through-
put, and resource utilization) process the data, and

send back control actions to the RAN through stan-
dardized interfaces. Examples of xApps for near-RT
RAN control applications include scheduling, traffic
shaping, and handover management.

The non-RT RIC supports the execution of
rApps, which facilitate RAN optimization and oper-
ation, including policy guidance, enrichment infor-
mation, and configuration management. Although
rApps can support the same RAN control func-
tionalities provided by xApps (e.g., traffic shaping,
scheduling, and handover management) at larger
timescales, they have been standardized to derive
control and management policies that operate at
a higher level and affect a large number of RAN
nodes and users. Examples of rApps for non-RT
RAN control applications include frequency man-
agement, network slicing, and policy management.

Both xApps and rApps may be data-driven and
employ Al/ML. The O-RAN Alliance defines differ-
ent deployment options for the training and infer-
ence of such Al controllers [12]. The non-RT RIC
hosts the ML training and the non-RT RIC or near-
RT RIC can host the ML inference.

Al INTEGRATION IN 0-RAN
The O-RAN architecture (Fig. 1) enables the
integration of Al models to perform intelligence
decisions based on network and environmental
conditions. The use of Al, leveraging the collect-
ed information, helps to enhance both cellular
performance per cell and user performance per
UE, such as long-term traffic congestion, latency,
cell coverage, radio interference, among many
other KPIs. This can be achieved by deploying a
number of Al models including, but not limited

n
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Type of Al Application Network Layer RIC
Prediction of traffic, e.g., type and volume, using regression algorithms. MAC Near-RT RIC
Prediction of available bandwidth at different times and locations using regression
. e MAC Near-RT RIC
algorithms.
Supervised
Learning Identification of a set of predefined modulations using classification algorithms to PHY RT RIC
quickly classify the modulation type of the interference signal.
Identification of a set of certain intrusions using classification algorithms to detect
S . e ¢ SR MAC Near-RT RIC
network born attacks such as denial of service attacks, flooding, and twin-evil intruders.
Detection of abnormal traffic using anomaly detection algorithms to identify potential
5 5 Y 5 yp MAC Near-RT RIC
attacks.
Unsupervised
Learning Clustering of traffic, e.g., type and demand, to identify similar interests or behaviors
in a network using clustering algorithms and achieve network-level and cluster-level MAC Non-RT RIC
enhancements.
Optimal allocation of radio resources in high mobility networks, e.g.. UAVs, usin
pam AHom O radic , &t Y & 8 MAC Near-RT RIC
el reama reinforcement learning-based control algorithms.
Learning Optimal configuration of massive MIMO beamforming parameters for performance PHY RTRIC
optimization using reinforcement learning algorithms.
Federated Learning ~ Real-time spectrum sensing and sharing for dynamic access. MAC Near-RT
: Adaption of pre-trained Al models to a new learning task (e.g.. new environment) where
Transfer Learning P p g task (eg ) MAC/PHY Near-/Non-RT RIC

TABLE 1. Integration of various Al models in O-RAN.

to, supervised learning, unsupervised learning,
reinforcement learning, federated learning, and
transfer learning [12]. We summarize possible Al
models to be integrated in O-RAN for different
applications in Table 1.

TESTING FRAMEWORK REQUIREMENTS
Empowered by openness and intelligence, O-RAN
is now gaining its importance and popularity
in both industry and academia, and many new
XApps/rApps have been developed or are being
under development. However, how to compre-
hensively test these new Al-enabled features (i.e.,
xApps/rApps) becomes a pressing question. We
envision that an automated and Al-enhanced test-
ing (Al testing for Al) platform is of great essence
and value to test new O-RAN capabilities. On the
one hand, automated testing involves automated
setup of the testing environment, automated test
execution, and automated generation of testing
performance reports. On the other hand, for large
search spaces, Al methods can be useful to con-
trol the inputs and parameters to the system under
test. In particular, we identify the following require-
ments for testing Al-enabled RAN controllers:

+ Software-defined and modular to enable cus-
tomization.

* Invasive/non-invasive testing during O-RAN
operation in isolated or production environment
to capture data in relevant operating conditions.

+ Open test interfaces to enable the development
of new test methods and processes.

+ Test configuration files that enable specifying
and reproducing a test.

+ Support for automated and Al-enhanced testing to
assess the operation of Al-enabled cellular radio
network controllers under a myriad of channel
and contextual conditions (large search spaces).

+ Facilitate the acquisition of data for the training
of Al models that generate the test signals.

limited training data is available using domain adaption algorithms.

+ Support for multitasking and distributed testing
to enable a multi-user testing environment.

PROPOSED OPEN Al CELLULAR TESTING FRAMEWORK

We illustrate the architecture of the proposed
framework in Fig. 2, which consists of three major
components: test input, which includes both test
configuration and test script files; server, which sets
up the testing environment as described in test
configuration files and orchestrates the test exe-
cution as defined in test scripts; and actor, which
executes test actions as instructed by the server.

We detail the three major components of our
proposed testing framework as follows:

Test Input: For each task, this framework takes
test configuration and test scripts as inputs. While
the test configuration file is used to automatically set
up the testing environment, a test script defines the
automated test procedure, which consists of a set of
test actions to be executed (e.g., an actor sending
an Attach Request or responding with feedback).
The framework performs the known “keyword-driv-
en” testing, that is, each test action is referred to as
a “keyword” and test actions execute sequentially.
A test action can be either an “atomic” or a “run-
ning” action. Only the running actions will be exe-
cuted sequentially, while a set of sequential atomic
actions can be grouped as a new test action. This
multi-level granularity of actions enables user-de-
fined test scripts for various applications (e.g., pro-
tocol, functional, performance, or integrating tests).
The structure of a test script is illustrated in Fig. 3.

Server: The server manages a number of
remote testing actors, including maintaining the
socket connection to each actor and monitoring its
resource usage (e.g., CPU, memory, disk, and SDR
hardware) and test status. Before a test starts with
one or more test scripts, it first checks the integrity
of each test script (i.e., whether all necessary ele-
ments are included) and extracts the sequence of
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FIGURE 2. Architecture of the proposed open Al cellular testing framework.

test actions. These test actions are then sent to spe-
cific test actors, together with the test data if it is
included. The server also continuously monitors the
status of all running tests which can be displayed to
users. Once a test completes, the server collects all
test parameters from the actor, generates a report
of the test results, and stores them in a database.

Actor: An actor consists of the actor manager,
Al core, and test executor, as well as two adapters
to interface with the unit under test (i.e., a cellu-
lar radio network controller). The actor manager
is able to monitor the health of the actor (e.g.,
resource utilization and hardware check) and
configure the testing environment for a specific
task. The actor also includes a number of Al cores
which implement Al-enabled testing algorithms to
facilitate the testing with the help of Al. The test
executor is responsible for running sequential test
actions as instructed by the server and for mon-
itoring their statuses which are reported to the
server. Each actor can interact with xApps/rApps
under test through either the SIM Adapter or the
SDR Adapter. The SIM Adapter acts as a testing
xApp/rApp which can be deployed in a non-RT,
near-RT, or future RT RIC to send testing data and
receive responses from the RAN through sockets.
The SDR Adapter acts as a UE which leverages an
SDR-based software suite (e.g., srsSRAN) to send
radio testing signals to the RAN.

Whereas most tests can be performed on a
single machine, multiple actors deployed on dif-
ferent machines in the network can be involved
in the same test to support distributed testing. For
example, when testing an Al-enabled scheduler
for radio resource allocation, a number of distrib-
uted actors can be configured to request various
radio resources with different quality of service
(QoS) requirements or priority levels. The number
of actors and their associated Internet protocol
addresses are defined in the test configuration
file that the server can use to set up the testing
environment. Figure 4 shows a sample workflow
for testing schedulers in O-RAN.

After a test is done, the framework automati-
cally generates a test report which details the test
setup and result of each individual test action (fail
or pass), and summarizes various performance
metrics of the network under test. In addition to

the overall success rate of the test actions, the
proposed framework can also summarize and
visualize network KPIs, such as data rate, latency,
and packet loss.

ENABLING TECHNOLOGIES — Al TESTING METHODS

With the use of various Al models for wireless
networks, measuring the performance of the
deployed models is a necessity for quality and
security assurance (e.g., service delivery, response
time, resource allocation optimization, vulnerabili-
ty assessment, and mitigation). This is due to the
fact that the effectiveness of Al systems in their
decision making processes mainly depends on the
quality of the training data which might not cover
all possible practical conditions. To bridge this
gap, the proposed open Al cellular testing frame-
work introduces Al (i.e., Al core in the actor) in
the test automation system to generate dynamic
test actions and autonomously explore the deci-
sion making capabilities of Al-controlled RANs.
The generation of test actions will be guided by
specific Al testing methods (e.g., Fuzz testing,
reinforcement learning, and adversarial learning)
as defined in the test script, and all details (i.e.,
parameters, states, and actions) of this automated
exploratory process will be recorded as part of
the output report which further allows to replicate
experiments for regression testing. Here, we high-
light the following enabling technologies for Al
testing to be integrated into the framework.

Sensitivity Analysis: The sensitivity analysis
assesses the O-RAN processes with controlled
changes in the operating conditions using expert
knowledge. More precisely, given a parameter
space, each test varies only one or a few variables
at a time. This may trigger system adaptation and
the response of the system is compared to the
expected system response. Some environmental
effects should trigger changes while others should
not, and the goal is to observe the sensitivity of
the xApps/rApps at different levels or perturbation.
Such testing may allow to interpret the behavior
of the black box Al models used in the xApps or
rApps and provide insights on the stability of the
system. It can be considered as a vulnerability anal-
ysis and can serve to evaluate the security and reli-
ability of the network.

14
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Al Fuzzing: Fuzz testing, or Fuzzing, has been
widely used in automated software testing [13]
which autonomously generates input data with per-
turbation to find software defects and faults (e.g.,
an unhandled exception or memory leak). Cou-
pling Al methods (e.g., genetic algorithms) with
Fuzzing, that is, Al-Fuzzing (AIF), has great poten-
tial to effectively and intelligently evaluate the per-
formance of Al-controlled systems. It works on the
principles of dynamic test generation to explore
the large input space and decision boundaries of
the system. For example, consider the multi-class
support vector machine (SVM)-based demodulator
used in carrier frequency offset (CFO)-impaired sys-
tems [14]. For each CFO value, the CFO-impaired
received data symbols are used to train the SYM
classifier to learn the optimal decision boundaries
for each quadrature amplitude modulation (QAM)
constellation point. To test this module using the
proposed testing framework, the test parameters,
such as initial CFO values, the number of data
symbols, and Fuzzing parameters, are specified in
the test script and parsed by the test script inter-
preter. Instead of only using initial CFO values, AIF
generates a sequence of test signals with differ-
ent impaired CFO values to explore the decision
boundaries of the trained SVM classifier.

Adversarial Learning: For the testing of Al-con-
trollers for physical layer modules, adversarial
learning [15] enables automated generation of
test signals which are able to capture similar char-
acteristics of real-world channel conditions (e.g.,
1/Q imbalance or non-Gaussian interference). This
offers the capability of intelligent stress testing of
a wireless cellular system using inputs which may
violate the statistical assumption of Al methods
under test. Moreover, motivated by the recent
success of generative adversarial networks, it is
also possible to enable Al-testing of system secu-
rity against various cyber-attacks, for instance,
spoofing attacks, which mimic channel state infor-
mation and RF fingerprints of legitimate radio sig-
nals, and denial of service attacks which flood the
target network with a significant amount of traffic.

Reinforcement Learning: Reinforcement
learning models learn how to take actions, or
adjustments, in an environment to maximize a
predefined cumulative reward, for example, the
negative QoS requirement in case of a scheduler,
so that its vulnerability surface can be effective-
ly explored. For each traffic under test, the rein-
forcement learning-based procedure will parse
the response of the system under test (e.g., Al-en-
abled scheduler) as a reward and decide how
to allocate radio resources in the next step. This
will enable the Al testing platform to learn during
the process of testing (under several test envi-
ronments), and optimize its testing strategies on
the fly so that the performance of the Al-enabled
scheduler can be exhaustively analyzed.

It is worth noting that the above mentioned Al
modules can be designed in a way that each of
them can be used for standalone testing. Combining
them can make the testing framework more pow-
erful. Moreover, instead of testing the Al-controlled
RAN as a black box, this framework allows to add
white box embedding components in the RAN
under test to monitor and record all detailed behav-
iors when testing inputs are applied. New learning
capability can be easily added to the Al library.

Test Script
| Test Mode: SIM or SDR
| Test Action
Name
Type: Atomic or
Running
Action Parameters
| Test Action

FIGURE 3. The structure of a test script.

CHALLENGES AND RESEARCH OPPORTUNITIES

With the increasing popularity of O-RAN, it is
expected that many more advanced Al-controlled
functions, such as xApps and rApps, will be devel-
oped by the community. The proposed testing
framework enables the comprehensive testing
of these functions in an automated, distributed,
and Al-enabled manner. This opens up a num-
ber of research opportunities to facilitate the pro-
totyping, deployment, and operation of Next-G
networks. Here we briefly discuss the critical
research needed and enabled by the proposed
testing framework and its limitations that will be
addressed in our future work.

Al SECURITY

The benefits of using Al models are obvious in
wireless networks: they enable faster analysis of
large scale data (e.g., traffic or RF signals) and can
make better (optimal or near-optimal) decisions
than a human. These benefits come from the
unique value of Al models which learn from data.
However, this also happens to make them more
vulnerable and less trustworthy from a security
perspective. When an unexpected behavior or
decision is observed, an Al model is not as easily
fixed by hand-editing as are traditional algorithms
or formulas. This problem might be addressable
today if we had explainable Al, but coming up
with general approaches for explaining Al solu-
tions has alluded researchers for decades. Given
the high value of commercial cellular wireless
networks, there is a growing incentive for mali-
cious attackers to explore and exploit possible
vulnerabilities in Al models. There are three types
of attacks that adversaries could launch: model
evasion attack, model poisoning attack, and
confidentiality attack. The model evasion attack
aims to feed adversarial samples which are care-
fully perturbed into a ML model (e.g., anomaly
detection) so that a wrong decision will be made.
While great harm can be caused by model eva-
sion attacks, they do not alter the behavior of the
trained model for future inputs. On the contrary,
the poisoning attack aims to intentionally and
maliciously adjust decision boundaries of a model
so that it always misclassifies specific inputs. This
can typically be done during the training stage
of the model by feeding “poisoned” data. Last-
ly, the confidentiality attack aims to replicate a
model and/or reveal sensitive data used to train
the model, both of which are protected by intel-
lectual property rights. This can be typically done
by recursively querying the model with different
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FIGURE 4. A sample workflow for testing schedulers in O-RAN.

input. Using the proposed testing framework,
new research in Al vulnerabilities are enabled
to improve the understanding of behaviors of
Al models for different inputs, or to evaluate the
effectiveness of new attack and defense mecha-
nisms, among others.

Al TESTING

Before the emergence of advanced Al algorithms
that are more interpretable and trustworthy, it is
very difficult to fully understand behaviors of cur-
rent data-driven Al models without the help of Al.
It has been demonstrated that a comprehensive
test is one of the most effective ways to expose
vulnerabilities and potentially help improve the
trustworthiness of Al models. The proposed test-
ing framework supports the deployment of both
offline and online Al testing methods and has the
potential to be extended to test various perfor-
mances, including correctness, robustness, and
efficiency. The correctness measures the proba-
bility that the Al model makes correct decisions.
The robustness measures the performance of the
Al model in the presence of invalid inputs or valid
inputs but perturbed with noise, which represent
different environmental conditions. The efficien-
cy measures the speed of an Al model to make
effective decisions after an input or condition is
presented. While the proposed testing frame-
work integrates some existing Al testing meth-
ods, such as AIF, we expect a number of new
Al testing methods to be developed in the near
future. For example, testing methods that leverage
advanced generative models are able to gener-
ate more realistic data inputs that locate around
decision boundaries of an Al model to explore
its correctness and robustness performances. A
major challenge is the availability of training data
to train the Al testing models. Similar to industry

and academia using RAN simulators or emulators
to develop the xApps or rApps and collect perfor-
mance data, the testing framework needs to facil-
itate the integration of tools for the generation
and collection of data under various experimental
conditions. In addition, the system overhead per-
taining to training Al models is another challenge
for an Al testing framework since it needs to gen-
erate test signals while performing the testing.

COORDINATED TESTING

Wireless networks could become much more vul-
nerable when multiple malicious nodes launch
coordinated attacks, for example, denial of ser-
vice attacks. Such coordinated attacks are hard
to detect using existing defense methods which
are mainly developed for detecting single node
attacks, and they become more challenging partic-
ularly when attack data samples are unbalanced,
high dimensional, and noisy. This requires a better
understanding of how a wireless network behaves
in the presence of such coordinated attacks. The
proposed testing framework can be extended to
support coordinated execution of test actions from
a number of distributed actors. This can be done
by allowing message communications among dif-
ferent actors. The coordinated testing capability will
enable the prototyping and evaluation of various
cooperative attack and defense mechanisms tar-
geting O-RAN based wireless networks.

CONCLUSIONS

Al is the enabling technology to achieve intelligent
Next-G wireless networks. However, the perfor-
mance of Al models heavily depends on the qual-
ity and quantity of their training data, as well as
their generalization capability. There is a lack of
a general testing framework to comprehensively
test the performance of Al models deployed in the
RAN. This article presents an automated, distribut-
ed, and Al-enabled testing framework which has
the potential to fully evaluate the performance of
Al models in terms of their decision-making per-
formance, vulnerability, and security in the context
of O-RAN. The proposed framework leverages Al
to generate testing signals in an automated and
intelligent manner so that the decision space of the
Al models used in O-RAN can be explored. Under
the umbrella of the proposed testing framework,
this article also discusses enabling techniques for Al
testing and important research opportunities in the
field of Al, wireless communications, cyber securi-
ty, and coordinated testing.
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