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Abstract—Open Radio Access Network (O-RAN) has intro-
duced an emerging RAN architecture that enables openness,
intelligence, and automated control. The RAN Intelligent Con-
troller (RIC) provides the platform to design and deploy RAN
controllers. xApps are the applications which will take this
responsibility by leveraging machine learning (ML) algorithms
and acting in near-real time. Despite the opportunities provided
by this new architecture, the progress of practical artificial intel-
ligence (AI)-based solutions for network control and automation
has been slow. This is mostly because of the lack of an end-
to-end solution for designing, deploying, and testing AI-based
xApps fully executable in real O-RAN network. In this paper we
introduce an end-to-end O-RAN design and evaluation procedure
and provide a detailed discussion of developing a Reinforcement
Learning (RL) based xApp by using two different RL approaches
and considering the latest released O-RAN architecture and
interfaces.

Index Terms—O-RAN, Near Real-Time RIC, xApp, Resource
Allocation, Reinforcement Learning, Actor-Critic, AI.

I. INTRODUCTION

Telecommunication networks will soon provide wireless
connectivity and facilitate tiny and huge data transactions
among 10s of billions of smart devices. Resource, data,
and network management is becoming more challenging and
artificial intelligence (AI) solutions are being researched for
facilitating future wireless network operations. The major ob-
stacles are the resource restrictions and the lack of a proficient
platform to handle AI solutions completely independently
from the network hardware, decreasing the cost of changes to
new third-party software solutions [1]. The hardware, software,
and interfaces of traditional radio access networks (RANs) are
tightly coupled. Recent advancements of RAN technology can
help breaking such closed designs and vendor monopoly [2].
A new architecture introduced by the Open-RAN (O-RAN)
Alliance can bring this idea into reality and change the future
of RAN deployment, operation, and maintenance [3].

The O-RAN Alliance defines specifications to facilitate AI
integration and allow machines and software to function intel-
ligently in a cellular network. The O-RAN architecture enables
intelligence and openness by providing an infrastructure for
integrating RANs on open hardware with embedded AI-based
software [4]. This architecture supports the Third Generation
Partnership Project (3GPP) and other industry standards. 3GPP
defines the radio and network protocols for the user equipment,
RAN, and core network. O-RAN leverages those and the Radio
Unit (RU), Distributed Unit (DU), and Centralized Unit (CU)
that 3GPP defines and specifies particular RAN functional

splits and open interfaces facilitating practical disaggregation
of functionalities and integration from different vendors. O-
RAN also introduces new architectural components: the Near-
Real Time (RT) RAN Intelligent Controller (RIC), the Non-RT
RIC, and additional interfaces which pave the way for insert-
ing intelligent network control and optimization applications
called xApps [5].

The challenges for developing xApps and deploying them
on real networks include: finding the most efficient AI models
suitable for very large real-world networks, adopting the most
proficient network parameters, and testing the AI models in an
environment that accurately represents the behavior of real-
world networks. I light of these concerns, this paper details
the development and testing flow of a reinforcement learning
(RL) based xApp based on O-RAN architecture. We discuss
a O-RAN architectural components, interfaces, and workflow
to design an xApp. We investigate and simulate different AI
solutions to analyze the performance of various RL methods
for designing the xApp.

The rest of this paper is organized as follow: Section II
introduces the O-RAN architecture and the main components
that are relevant to the AI controller design. Section III
presents the related work. Section IV discusses the design
procedure and the challenges for developing xApps. Section
V analyzes different AI models to select the most efficient
solution. Sections VI describes the xApp development and
Section VII the deployment and results. Section VIII draws
the conclusions.

II. O-RAN ARCHITECTURE AND KEY COMPONENTS FOR
XAPP DEVELOPMENT

The network architecture needs to provide a platform for
deploying AI/ML-based applications and provide the required
infrastructure for data transactions from the RAN nodes to the
AI model, data storage, transmission of the model decision and
control commands to the network, and the AI model training
process. The O-RAN architecture shown in Fig. 1 is based on
open interfaces to enable interactions between the RAN and
the RAN controller. The RAN is split into three logical units:
CU, DU, and RU. The CU is a centralized unit developed
to handle the higher layer RAN protocols, such as the radio
resource control (RRC), the service data adaptation protocol
(SDAP), and the packet data convergence protocol (PDCP).
It interfaces with the DUs through the mid-haul. The DU is
a logical node that handles the lower protocol layers, which
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Fig. 1. O-RAN architecture for RIC application layer.

are the radio link control (RLC), the medium access control
(MAC), and part of the physical layer (PHY). It interfaces
with the RUs through the fronthaul. The RU implements the
lower part of the PHY.

Data is transmitted from the RAN to the non-RT RIC
through the O1 interface and is stored in a database for
offline training and testing of the AI/ML model. The model
training will take place at the non-RT RIC which is also
responsible for performing non-RT control operations in O-
RAN and for providing and managing higher layer policies.
After training, the xApp will run on the near-RT RIC and
interact with the RAN through the E2 interface to perform
online optimization and control of the network. An xApp can
communicate with other parts of the near-RT RIC through
internal interfaces which are introduced in Section IV. There
is an internal messaging infrastructure called RIC Message
Router (RMR) and a shared data layer (SDL) for data sharing.
The near-RT RIC provides the framework to handle conflicts,
subscriptions, applications, security, and logging.

III. RELATED WORK

Several ML based schedulers have been introduced in the
literature to address the most challenging problem of resource
allocation in cellular networks. Gosal et al. introduce a cen-
tralized RL-based scheduler based on the Deep Deterministic
Policy Gradient (DDPG) considering pricing rate of resources
[6]. Elsayed et al. discuss challenges of AI-enabled solutions
for optimizing network resource orchestration [7]. Polese et
al. propose an ML-based edge-controller architecture for the
5G network and use generated data in a testbed to evaluate the
model [8]. Niknam et al. propose an ML based resource allo-
cation scheme for controlling O-RAN network congestion and
evaluate the model using published real-world data from an op-
erator [9]. Mollahasani et al. introduce an optimization method
for RL based solutions of resource allocation function in O-
RAN [10]. They investigate the effects of observation nodes on
the performance of the resource allocation. Mollahasani, at al.
design a RL based scheduler for allocating resource blocks in
a reconfigurable wireless network considering mobility [11].

Bonati et al. introduce an open experimental toolbox which
provides an open testbed for AI/ML xApps and present an
ML based scheduler and test results [12].

The prior works focus on the ML application, testing, and
evaluation parameters. This paper presents the detailed process
for designing and deploying AI/ML based xApps on the
RIC. The O-RAN Software Community (OSC) has published
several xApps developed by its members [13].

IV. XAPP DEVELOPMENT

To write any AI/ML solution in the format of an xApp to
be deployed in the RIC, two main steps should be considered.
The first is to write an xApp with the essential libraries and
functions based on the RIC requirements. For this purpose,
developers can use the RIC utility libraries, such as the RMR,
SDL, logging, or use a predefined xApp frameworks that have
been developed based on the RIC platform requirements. The
xApp frameworks simplifies developing xApps in Python, go,
or C++ [13]. We have used the ricxappframe 3.2.0 provided
by PyPi for our development to facilitate adding essential
features such as communication functions with RMR and SDL.
The second step is building and deploying the application
on Kubernetes since the RIC cluster is developed on the
Kubernetes platform.

Kubernetes is an open-source platform for deploying and
managing containerized applications across clusters of nodes.
Fig. 2 shows the high-level Kubernetes architecture which
consists of a control plane, a master node, and a number
of worker nodes that execute the deployed applications. The
master node hosts the API server, scheduler for assigning
worker nodes to applications, etcd as a key-value distributed
storage system, and a controller manager.

The worker nodes which are running containerized applica-
tions are built of different components. The deployment unit
of Kubernetes is Pod, which is a group of containers with
shared resources. Pod with all of its containers is deployable
through a Yaml file that determine the Pod configurations such
as ports, name, the number of replicas and is implemented on
one machine that has a single IP address shared among all of
its containers. The next component is the container runtime
(e.g., Docker) that is responsible for running containers. The
Kubeproxy unit routes traffic coming into a node from the ser-
vice and forwards work requests to the correct containers. To
provide communication with the master node and containers
of the worker node, kubernetes uses kubelet service that also
traces the states of a pod to check whether all the containers
are running.

After developing the main application code in Python within
the xApp framework, we need to deploy it as an containerized
application on Kubernetes. In RIC To deploy our containerized
application we use the ricxapp Pod in the Kubernetes node.
For xApp deployment we have four main steps: First we
should containerize the application to create a container image.
This facilitates porting an application and executing it on any
machine. To create a container image, we wrote a Docker file
that includes the instructions to run our Python code and built



Fig. 2. Kubernetes Architecture

our Docker image with that. In the next step we should tag
and push the container image to a cloud repository such as
Dockerhub. Then, In order to deploy the xApp we need to
create an xApp descriptor that is a JSON file contains the
main configuration parameters required by RIC platform.

V. PROPOSED XAPP ARCHITECTURE

The next step in designing an xApp is to determine the
network nodes, main data-flows, and the architecture. The
main concern is designing a deployable platform for data
transactions between the near-RT RIC and the RAN via control
messages. Since all the needed data related to the RAN are
available on the E2 interface and the xApp can send decision
to the RAN through E2 Control Messages, the E2 termination
is the main node and E2 messaging procedure will be the main
data transaction procedure in the near-RT RIC for our design.

E2 Messaging Procedure: E2 messages are divided into
two classes of support and service types. The interface man-
agement functions E2 Setup, E2 Update, and Reset are related
to the support class. The RAN CONTROL and REPORT
functions are related to the service class. The E2 messages are
provided in the Abstract Syntax Notation One (ASN.1) format
which is a standard interface description language. Since
ASN.1 format is the final encoding format of the messages,
any other system that employs the same ASN.1 can easily
decode it. This specification has removed the dependency of
the system to any specific vendor or language.

The KPIMON xApp enables collect metrics from E2 nodes.
The RAN nodes’ metrics, such as the number of used and
available Physical Resource Blocks (PRBs), the number of
connected UEs, the downlink and uplink data rates, and so
on are collected by the E2 agent. These metrics are packaged
in containers. Each container has its own ID with a header
to determine the related RAN node (CU, DU, . . . ). These
metrics are compiled to form the indication message and
will be encoded using ASN.1 encoding. The KPIMON xApp
periodically receives these indication messages and uses the
same ASN.1 and service model definitions to decode them and

Fig. 3. xApp architecture with implemented O-RAN modules and interfaces.

get the metrics. KPIMON uses Redis for data storage. Redis
is an open-source in-memory data storage that is used as the
RIC database. In order to share metrics between KPIMON
and the new xApps, a time series database like influxDB can
play the role of the sharing layer. Fig. 3 shows the designed
architecture for the resource allocation xApp.

InfluxDB is a time series (TS) open source database. It
makes it possible for developers to store, retrieve, and work
with TS data that is used for real-time analysis. These kind of
DBs are especially useful in situations such as monitoring and
operations on the logs and metrics of large networks. For our
purpose we use the influxdb-client module in Python that is
supported by InfluxDB 1.8 and Python 3.6 or later versions.

VI. AI MODEL SELECTION AND FORMULATION FOR
DESIGNING XAPPS

The next step is to find an AI/ML model that suits the
problem. Generally, AI/ML solutions are divided into three
classes: Supervised learning, where a set of labeled data is
available, unsupervised Learning, where the task is to find a
structure of similarity among unlabeled data, and RL, where
the learning is based on trial and error while facing with an
unknown environment. The best method should be selected
based on the problem that the AI/ML model needs to solve.
The RAN operates in a dynamic environment of variable char-
acteristics, where mobile users with non-stationary channels
generate service requests. This can lead to different sets of
undefined resource allocation actions for which RL would be
the appropriate solution.

RL is a learning model designed based on interactions
between the agent and the environment. It is often used in
control or resource management problems because it can learn
from direct interactions with the environment. Each time the
RF agent applies an action to the environment, the new state
will determine the reward of the system. RL is based on the
Markov decision process (MDP). It has a state space that
defines a series of states s with a distribution ppsq, a series of
actions a, state transitions:

T pSt`1 | St, Atq

from time slot t to time slot t` 1, a reward function which is
a function of the current state-action and the next state RpSt,



At, St`1q, and a discount factor γ defined between 0 and 1.
The policy π captures the probability distribution of actions
and is used by an agent to decide which action is performed
in the given state. In other words, it is a function that has state
s as the input and returns an action a as the output: π(s) → a.
In every execution of the policy, the system gathers rewards
from the environment. The goal of the RL model is to find
an optimum policy π˚ to earn the maximum reward from the
environment across all states:

π˚ “ max
π

E

„

ÿ

t

Rrt`1|πpstqs



. (1)

RL algorithms are categorized in two main classes: value
function and policy search. For the value function approaches,
the model tries to maximize the value function V or the
equivalent Q function by finding some policy π. Based on the
MDP, if the optimal policy is π˚, the model will act optimally
and the best policy in each state can be found by choosing the
action with the maximum value in each state:

a˚ “ argmax
a

Qπ˚ps, aq. (2)

For the direct policy search, the model searches in the policy
space to find the optimal policy π˚ without the value function
model. π will be chosen by the system as the policy that the
RL model updates to maximize the expected return ErR|θs.

One concerns with the direct policy search approach is the
slow convergence when the data is noisy. This usually happens
in episodic processes as the case for resource allocation that
is a continuous process where the variance can be large [10].
We can combine the value-function with the policy method
to overcome the problem. It is a tradeoff for the variance
reduction of policy gradients by introducing bias from the
value function. The method is named actor-critic in which the
actor network learns the policy using feedback from the critic
network that learns the value function.

As described above the states, actions, and return function
play important roles in any RL model along with determining
the environment accurately. The first step in designing an
RL solution is thus to decide about the environment and
its characteristics, which is the action and observation place,
that must be understood to design a high-fidelty model that
contains the exact definition of states, actions, reward function,
and the flows.

A. Reward Function

Defining a reward function play a very important role in
any RL solution since RL models try to maximize the reward.
So, designing an appropriate reward system can establish an
efficient RL model to reach the main goals. In our proposed
scenario in an environment with multi base Stations (BSs)
and multi users, system should decide to connect which User
Equipment (UE) to which BS to maximize the global Quality
of Experience (QoE). From UE point of view to increase the
QoE, any UE intend to get as many resources of available BSs
as possible in order to increase its data rate. But, from BS point
of view, there is a restricted resource blocks that should be

scheduled to different competitive UEs with different network
states, which will be discussed in the following, to maximize
the network’s QoE. In our QoE-based scheduling model where
the UEs are moving, the target of the model is to connect
as many UEs as possible (C) to the most suitable BSs to
maximize the overall data rate and fairness (fa). Now, we
can write the reward function as:

rueps, aq “ RuerC, fas ˚ pmin fa{max faq (3)

In each time slots, if model could achieve the target we will
return a full reward but for any partially achievements we will
assign a degraded reward to the action and for any failure
system will feedback a penalty.

B. States

Since the task of our xApp is scheduling of resources
to maximize the network’s QoE, the xApp needs to decide
which Resource Group Block (RGB) to dedicate to which
UE from the group of UEs with active resource requests.
Here we assume four important network parameters: Channel
request, Channel Quality Indicator (CQIs) from the Channel
State Information (CSI), data rate, and UE fairness (fa). These
are the observation to decide about the resource allocation.

Modulation and Coding Scheme (MCS) defines the number
of useful bits that can be transmitted on a Resource Element
(RE). It depends on the channel, i.e. CQI, and determines the
data rate. We use the MCS table from the 5G physical layer
specification version 16.2.0 for mapping.

For UE fairness a matrix will be constructed to trace the
history of each UE and update it when new resources are
allocated. So, we have a log for all the UEs and their allocated
resources. The model tries to keep all UEs in an approximate
equality in terms of allocated RGBs in the long term for
maximum fairness.

C. Advantage Actor-critic (A2C)

The Actor-critic model is a temporal difference (TD) learn-
ing algorithm. In this approach, the actor network sets the
policy that represents a set of possible actions for a given state,
and the critic network embodies the estimated value function
that evaluates actions. A series of rewards in each time slot t
are gathered and multiplied by a discount factor γ P p0, 1q to
build a series of expected return

Gt “
ÿ

t

γtrt. (4)

The loss function of the actor-critic model is a combination
of losses of both the actor and critic network:

L “ La ` Lc. (5)

By proposing st and at as the state and action at time slot t,
πθ as the policy parameterized by θ, V θπ as the value function
(critic) parameterized by θ, the policy gradient based actor loss
can be written as

La “ ´
ÿ

t

lgπθ pat | stqrGpst, atq ´ V
π
θ pstqs. (6)



TABLE I
PPO ALGORITHM USED IN OUR MODEL.

PPO Algorithm

1. Initial guess of the policy parameters (θ) and find value function
parameters (φ)

2. For iteration k = 0, 1, 2, ... do:

1. Collect set of trajectories Dk “ rτis by running policy πk “ πpθkq

2. Compute reward-to-go R̂t

3. Compute Advantage estimates Â1, Â2, ...

4. Update policy by maximizing PPO objective through stochastic
gradient ascent:

θk`1 “ argmax
θ

1

DkT

ÿ

τ

ÿ

t

min
“ πθpat|stq

πθkpat|stq
Aπθkpst,atq

,

Gpε, Aπθkpst,atq
qs

5. Fit value function by regression on mean squared error and via
gradient descent algorithm:

φk`1 “ argmin 1
DkT

ř

τ

ř

t

“

Vφpstq ´ R̂ts
2

3. end For

The term pG´V q is called advantage which indicates how
much is earned in each state by selecting a random action
based on policy π. By assuming critic as the baseline, the
system is trained to decrease pG ´ V q, which leads to lower
variance.

D. Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a policy gradient
algorithm that uses the actor-critic model to train a stochastic
policy. We propose the PPO method as the second method
to compare the solutions and analyze its performance in
our actor-critic based resource allocation model. Similar to
the actor-critic model, actor represents the actions and the
critic gives provides the estimations of the value function for
evaluating the actions and predicting the rewards. The PPO
algorithm collects a series of trajectories in each episode by
sampling from the stochastic policy. Then, the policy and
value functions are updated based on the rewards-to-go and
advantage estimation. Generally, the policy uses a stochastic
gradient ascent as an optimizer to be updated but the value
function which uses the gradient descent to be fitted. Table I
shows the main algorithm we propose for employing the PPO
method.

VII. DEPLOYMENT AND RESULTS

The AI model is developed using Tensorflow2 and expanded
to the format of xApp using the ricxappframe framework.
We deploy the near-RT RIC as Kubernetes pods with related
interfaces provided by OSC to interact with the E2 nodes and
the SMO. The proposed xApp and KPIMON are both deployed

Fig. 4. Simulated RAN environment, which shows the UE positions,
connection states, and data rates in the 10th (top) and 20th (bottom) time
slot of the training process.

in the near-RT RIC and influxDB is used for implementing
the shared database. The implementation is done on Intel
i7 11th Gen Processor, with 32 GB of RAM, an Nvidia
RTX-3070 Ti GPU to handle AI/ML functionality, 1 TB of
storage capacity, and Ubuntu 20.04 operating system. For
the training, testing, and evaluation of the xApp, we use the
simulated RAN environment designed by Mobile-env [14] that
implements an openAI Gym interface. It is written in Python
and can be installed through PyPi. It provides a simulated RAN
environment with different customizable scenarios featuring
different network configuration such as moving users, multiple
base stations, different frequencies, and so on. For our testing
scenario, we customize the environment to have 5 BSs and
10 moving UEs. Fig. 4 shows the five BS towers with their
coverage ranges. The movement of the users can be observed
from the two snapshots that representing different time slots.
The lines between UEs and BSs indicate the connection and
the colors the user’s QoE, where green represents good and
red poor QoE.

Table II provide the details of designed A2C network and
simulation parameters. The scheduling executes every TTI.
The results are related to an average of 500 to 700 runs



TABLE II
TESTING NETWORK PARAMETERS.

Network Parameters Value

Number of Hidden Layers 4
Number of Neurons 384
Number of gNB 5
Number of Ues 10
Maximum Traffic load per
UE(Downlink)r 1 Mbps
Frequency 3.5 GHz
Bandwidth 10 MHz
Tx 30 dBm
Discount factor 0.9
Actor learning-rate 0.01
Critic learning-rate 0.04
Optmizer Adam
Number of Timeslots per Episode 1000
Number of Episodes 500-700

Fig. 5. Average normalized reward over period for both RL models.

Fig. 6. Average sum data rate for both RL models.

with 1000 iterations. In order to evaluate the performance of
the proposed xApp, since the model is designed to maximize
the QoE based on the reward function, we consider the sum
of average data rate and rewards as the two metrics for
our evaluation. Since reaching convergence in fewer number
of iterations is especially important for online training, the
required time for convergence should also be considered in
selecting the best model. Fig. 5 and Fig. 6 show the results.

The results of Fig. 5 and Fig. 6 show that both the A2C and
PPO models converge successfully. A2C performs better at the
early steps the PPO model converges quicker and reaches the
maximum reward in fewer steps. The results also illustrate the
better stability of the PPO model in comparison to A2C.

We will integrate this xApp development framework into
our open AI cellular testbed and share the open-source code

and installation instructions through Github [15].

VIII. CONCLUSIONS

In this work we illustrate a step-by-step design, develop-
ment, and testing of an AI based resource allocation xApp for
the near-RT RIC of the O-RAN architecture. The designed
xApp leverages RL. The basic version is designed using
the A2C algorithm, which is further optimized using PPO
method. The results shows improvements in returned values,
metrics, and stability of the system. We plan to extend this
work by expanding our test network, and neighboring cell
parameters. Also we have plan to handle more tasks through
one xApp using new AI/ML methods to increase efficiency
while considering task management optimization.

ACKNOWLEDGMENT

This work was supported in part by NSF award CNS-2120442.

REFERENCES

1 Mohammadi, H. and Marojevic, V., “Artificial neuronal networks for
empowering radio transceivers: Opportunities and challenges,” in 2021
IEEE VTC2021-Fall, 2021, pp. 1–5.

2 Saad, W., Bennis, M., and Chen, M., “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Network, vol. 34, no. 3, pp. 134–142, 2020.

3 Abdalla, A. S., Upadhyaya, P. S., Shah, V. K., and Marojevic, V., “Toward
next generation open radio access network–what O-RAN can and cannot
do!” arXiv preprint arXiv:2111.13754, 2021.

4 Bonati, L., Oro, S., Polese, M., Basagni, S., and Melodia, T., “Intelligence
and learning in O-RAN for data-driven nextg cellular networks,” IEEE
Communications Magazine, vol. 59, no. 10, pp. 21–27, 2021.

5 O-RAN Alliance, “O-RAN Minimum Viable Plan and Acceleration
towards Commercialization,” https://static1.squarespace.com/
static/5ad774cce74940d7115044b0/t/60f9b144abdc902712f43475/
1626976585796/O-RAN+Minimum+Viable+Plan+and+Acceleration+
towards+Commercialization+White+Paper+29+June+2021.pdf, 2021,
[Online; accessed, June 2021].

6 Ghosal, G. R., Ghosal, D., Sim, A., Thakur, A. V., and Wu, K., “A deep
deterministic policy gradient based network scheduler for deadline-driven
data transfers,” in 2020 IFIP Networking Conference, 2020, pp. 253–261.

7 Elsayed, M. and Erol-Kantarci, M., “AI-enabled future wireless networks:
Challenges, opportunities, and open issues,” IEEE Vehicular Technology
Magazine, vol. 14, no. 3, pp. 70–77, 2019.

8 Polese, M., Jana, R., Kounev, V., Zhang, K., Deb, S., and Zorzi, M., “Ma-
chine learning at the edge: A data-driven architecture with applications to
5g cellular networks,” IEEE Transactions on Mobile Computing, vol. 20,
no. 12, pp. 3367–3382, 2021.

9 Niknam, S. et al., “Intelligent O-RAN for beyond 5G and 6G wireless
networks,” 10.48550/arXiv.2005.08374, 2020.

10 Mollahasani, S., Erol-Kantarci, M., and Wilson, R., “Dynamic cu-du
selection for resource allocation in o-ran using actor-critic learning,” in
2021 IEEE GLOBECOM, 2021, pp. 1–6.

11 Mollahasani, S., Erol-Kantarci, M., Hirab, M., Dehghan, H., and Wil-
son, R., “Actor-critic learning based qos-aware scheduler for reconfig-
urable wireless networks,” IEEE Transactions on Network Science and
Engineering, vol. 9, no. 1, pp. 45–54, 2022.

12 Bonati, L., Polese, M., Oro, S., Basagni, S., and Melodia, T., “OpenRAN
Gym: An open toolbox for data collection and experimentation with AI
in O-RAN,” in 2022 IEEE WCNC, 2022, pp. 518–523.

13 O-RAN Software Community, “O-RAN Software Community F Re-
lease,” https://wiki.o-ran-sc.org/display/REL/F+Release, 2022, [Online;
accessed, O-RAN SC, June 2022].

14 Schneider, S., Werner, S., Khalili, R., Hecker, A., and Karl, H., “mobile-
env: An open platform for reinforcement learning in wireless mobile
networks,” in IEEE/IFIP NOMS, 2022.

15 Upadhyaya, P. S., Abdalla, A. S., Marojevic, V., Shah, V. K., and
Reed, J. H., “Prototyping next-generation O-RAN research testbeds with
SDRs,” arXiv preprint arXiv:2205.13178, 2022.


