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ABSTRACT

In collaborative learning, learners coordinate to enhance each of their learning performances. From the
perspective of any learner, a critical challenge is to filter out unqualified collaborators. We propose a
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framework named meta clustering to address the challenge. Unlike the classical problem of clustering data

points, meta clustering categorizes learners. Assuming each learner performs a supervised regression on
a standalone local dataset, we propose a Select-Exchange-Cluster (SEC) method to classify the learners
by their underlying supervised functions. We theoretically show that the SEC can cluster learners into
accurate collaboration sets. Empirical studies corroborate the theoretical analysis and demonstrate that SEC
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can be computationally efficient, robust against learner heterogeneity, and effective in enhancing single-
learner performance. Also, we show how the proposed approach may be used to enhance data fairness.

Supplementary materials for this article are available online.

1. Introduction

Collaborative learning has been an increasingly important area
that aims to build a higher-level, simpler, and more accurate
global model by combining various sources. The data from
each source can be regarded as a sub-dataset of an overar-
ching dataset. These sub-datasets are usually heterogeneous
and stored in decentralized locations for various reasons. For
example, each sub-dataset is from a unique research activity
with domain-specific features, data are too large to be stored
in one location, or the data privacy concern entails separate
access to sub-datasets. Suppose each sub-dataset is handled by a
learner. A natural way to improve the modeling performance is
to integrate these learners to leverage the distributed computing
resources and enlarged sample size.

The general question of “how to collaborate” has led to
several recent research on collaborative learning, which we will
elaborate in Section 1.1. This article aims to answer the following
question: Whom to collaborate with? Selecting collaborators is
crucial when not all learners are qualified, such as learners with
incapable models or irrelevant sub-datasets. In particular, we
suppose each sub-dataset is of a supervised nature, consisting of
predictor-response pairs (X, Y). A learner tends to collaborate
with those whose data exhibit the same or similar underlying
X-Y relationship. To that end, we propose to study the problem
of clustering for supervised relationships. The idea is that sub-
datasets exhibiting similar function relationships (between X
and Y) should fall into the same cluster. An alternative view
of such clustering is categorizing sub-datasets into fewer meta-
datasets, offering better learning quality without inducing many
estimation biases. As such, we name the problem “meta clus-

tering” Unlike the classical learning problem of data-level clus-
tering, our goal here is to cluster datasets instead of single
data points. In this framework, learners should collaborate with
those in the same cluster. We focus on the regression scenario,
where each sub-dataset can be modeled by f(X) = E(Y|X)
for some function f, and sub-datasets in the same cluster share
the same (latent) function f. We propose a computationally
efficient algorithm for meta clustering, consisting of three steps:
select, exchange, and cluster. Figure 1 illustrates the main idea of
the proposed method. In summary, we first train local models
for each learner and select the best model. Then, each pair of
learners exchange their already-learned best models. We then
calculate the similarity between each pair of two learners by
evaluating one’s model on the other’s dataset. Finally, spectral
clustering is performed based on the similarity matrix.

The contribution of our work is 3-fold. First, we propose to
study the problem of clustering for datasets based on the under-
lying supervision relationships. The problem of meta clustering
naturally fits the emerging need for robust collaborations in
adversarial learning scenarios. We propose a general approach
named Select-Exchange-Cluster (SEC). Second, the proposed
SEC method is both computationally efficient and theoretically
guaranteed. We show that when the sample size of each sub-
dataset is sufficiently large, the sub-datasets with the same gen-
erating function can be accurately categorized into the same
cluster. Moreover, the number of clusters does not need to be
specified in advance, and it can be appropriately identified in a
data-driven manner. Third, we can use the proposed method
in general supervised regression tasks that involve nonlinear
and nonparametric learning models. It can be used for various
learning tasks even if learners are not sure about the existence
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Figure 1. lllustration of meta clustering for learners/datasets, based on supervised relationships.

of latent functions. For example, we show its use to signifi-
cantly enhance the prediction performance under data fairness
constraints, where a reduction of approximated 50% prediction
error is achieved without using any sensitive variable.

1.1. Related Work

We briefly describe the connection between meta clustering and
existing research.

1.1.1. Collaborative Learning

When data are stored across distributed clients such as edge
devices, directly sharing local datasets compromises data
privacy. Federated learning (Konecny et al. 2016; McMahan
et al. 2017; Ding et al. 2022) is a popular collaborative learning
framework that aims to train a global model on distributed
datasets without sharing local data. The main idea is to exchange
model parameters updated from local data and iteratively
update the globally trained model (assuming the same model for
all clients). More general federated learning frameworks beyond
exchanging parameters have been recently developed (Diao,
Ding, and Tarokh 2021b, 2021c). Our proposed meta clustering
framework may serve as a preliminary analysis tool for selecting
“qualified” collaborators before applying any federated learning
algorithm. Assisted learning (Xian et al. 2020; Diao, Ding, and
Tarokh 2021a; Diao, Tarokh, and Ding 2022) is another recently
developed collaborative learning framework for decentralized
organizations, where any organization being assisted or assisting
others does not share its local data, model, or learning objective.
In assisted learning, data variables held by participants are often
distinct and assumed to be linked by a non-private identifier. In
contrast, our article focuses on the scenario where participants
have the same variables, but the supervised relationships are
possibly heterogeneous.

1.1.2. Data Integration

Data integration aims to improve statistical performance by
sharing model parameters or combining datasets. Many meth-
ods have been proposed in this research direction. For example,
Tang and Song (2016) developed a fused lasso approach to learn
parameter heterogeneity in linear models on different datasets.
Li and Li (2018) proposed an integrative method of linear dis-
criminant analysis (LDA) for multi-type data, which was shown
to improve classification accuracy over the performance on a
single dataset. Jensen, Chen, and Stoeckert Jr (2007) proposed
a Bayesian hierarchical model in a variable selection frame-

work that integrates three types of data in gene regulatory net-
works: gene expression, ChIP binding, and promoter sequence.
Yang, Yan, and Huang (2019) studied the problem of integrating
regression data from different sources by pooling data for cen-
tralized learning. They proposed an objective function that esti-
mates regression coeflicients by penalizing pairwise differences
between coefficients of the same covariate to identify hetero-
geneous and homogeneous coefficients automatically. Hector
and Song (2020b) proposed a method for joint integrative anal-
ysis of multiple data sources with correlated vector outcomes
under a distributed quadratic inference function framework.
They assume the clustering of data sources is known. In that
regard, our approach may be used as a preliminary step before
applying their method when the underlying clustering structure
is unknown.

In comparison with most data integration methods where
statistical models are specified in each sub-dataset, our proposed
meta clustering framework is model-free in the sense that it
allows each learner to use different local models without sharing
the form of those models. For example, one learner can use
a linear model to fit a sub-dataset, while another can use a
random forest. The proposed SEC algorithm only exchanges the
predicted values for clustering without exchanging the param-
eters or the models. It is worth noting that with our meta
clustering, a learner considers a binary decision whether to
collaborate with another learner or not. A similar setup was also
considered by Zhou et al. (2021), where the authors proposed
the notion of model linkage selection for learners who share
parameters of common interest. Alternatively, a learner may
use a soft decision-based collaboration with others. In that
direction, Shen, Liu, and Xie (2020) developed an approach that
summarizes inference results from other learners as confidence
density functions and then combines them using a weighting
scheme. Tan, Chang, and Tang (2021) proposed a tree-based
ensemble approach that integrates the prediction results from
other learners as feature variables.

1.1.3. Divide-and-Conquer

Divide-and-conquer in the context of distributed learning often
refers to the procedure that partitions a large dataset into sub-
datasets and then combines results (e.g., p-values, coeflicients)
obtained from each sub-dataset. For example, Zhang, Duchi,
and Wainwright (2015) proposed a method that randomly parti-
tions the dataset into sub-datasets and fits a kernel ridge regres-
sion estimator in each sub-dataset. A simple average of local pre-
dictors is used as the global estimator, achieving minimax opti-



mal convergence rates. Mackey, Talwalkar, and Jordan (2015)
proposed the Divide-Factor-Combine (DFC) framework for
noisy matrix factorization, which improves the scalability and
enjoys estimation guarantees. Fan et al. (2019) proposed a dis-
tributed Principle Component Analysis (PCA) algorithm for
data stored across multiple locations, which performs similarly
to the PCA estimator based on the whole dataset. Different
assumptions of the distributed sub-datasets were also inves-
tigated, such as independent cross-sectional data (Xie, Singh,
and Strawderman 2011), independent sources/studies (Claggett,
Xie, and Tian 2014; Battey et al. 2015), network meta-analysis
(Yang et al. 2014), high-dimensional correlated data (Hector
and Song 2020a), and multi-measurements data from different
experiments (Gao and Carroll 2017).

The primary goal of divide-and-conquer is to reduce compu-
tational costs via parallel computing across sub-datasets. One
learner may or may not have access to all the sub-datasets.
In our framework, each learner can only access its local sub-
dataset. Also, divide-and-conquer methods assume the under-
lying relationship between the response and the predictors for
each sub-dataset is the same, so combining results from all the
sub-datasets is reasonable. However, the datasets in distributed
storage may be heterogeneous in distributions. Identifying the
potential clustering of the subs-datasets is important for bias
reduction and robust modeling. For divide-and-conquer meth-
ods, meta clustering can be applied to analyze whether there are
potential cluster structures on the whole dataset. If there exist
cluster structures, a random splitting in divide-and-conquer
may lead to a modeling bias.

The remainder of the article is outlined below. We describe
the meta clustering problem in Section 2 and propose our
method, together with its theoretical properties, in Section 3.
In Section 4, we demonstrated a potential use of the method
in fairness learning scenarios. In Sections 5 and 6, we show the
performance of our method through more experimental studies.
The proofs are included in the supplementary materials.

2. Problem

Suppose the dataset D := {D,-}{.“:1 is the union of L sub-
datasets. For example, D; can represent the sub-dataset stored
in the ith location/server, the sub-dataset from the ith study
in a meta-analysis, or the sub-dataset from the ith patient in
the same research project. We assume each sub-dataset D; is
handled by a learner [; who considers a set of available methods
M; = Mf U M°" for data analysis. Here /\/lf (M) denotes
the parametric (nonparametric) models in M;. Briefly speak-
ing, we assume a parametric model (e.g., a linear regression
model) has a better convergence rate than a nonparametric one
(e.g., a decision tree), and the latter is consistent in estimation.
More detailed assumptions are included in the supplementary
materials. The notions of parametric and nonparametric are
made only for technical convenience. It is practically hard to
distinguish them with finite samples, even in linear models. We
refer to (Ding, Tarokh, and Yang 2018) for more discussions
on this. Parallel computing can be regarded as a particular case
when all sub-datasets use the same learner. Throughout the
article, we will use lowercase letters (e.g., x, x, a,) to denote
observed data or constants, uppercase letters to denote random
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variables or vectors (e.g., X, X), typewriter uppercase letters
(e.g., A) to represent matrices, and calligraphy uppercase letters
(e.g., A) to represent sets.

Suppose the sub-dataset D; consists of n; independent data
points, denoted by D; = {(yij, xij) : yij € R, x;; € Rp};il,from
the underlying model Y; = fi(X;) + ¢;, where X;,..., X are
independent p-dimensional random variables with a distribu-
tion function Px(-), and the noise &; ~ N (0, aiz) is independent
of X;. Moreover, for any i,i; € {1,...,L}, &; is independent
of X;,. We suppose the L sub-datasets consist of the same p
predictors.

Let n := n; + --- + np denote the overall sample size.
Throughout the article, we assume there are K (fixed but
unknown) data generating functions, namely f; € F =
ro,... ,f(K)} fori = 1,...,L. Let || - || denote the Euclidean

norm. Define the L, norm ||f||, = /[ f(x)*Px(dx) and the

Lo norm ||f]lec = esssup |f| = inf{c > 0 : [f(X)| < cas.}.
We say two underlying models f and f0) are different if
Hf(i) _f(i)”OO > 0.

Our goal is to accurately cluster the L sub-datasets into K
clusters, where the underlying regression functions correspond-
ing to the sub-datasets in the same cluster are similar.

3. Method

The intuition of our method is that if two sub-datasets are
from the same or similar data generating function, a model-
ing procedure should produce similar results on the two sub-
datasets. We propose the following three-step method named
Select-Exchange-Cluster (SEC), where learners communicate
with their estimated regression functions.

Step 1 [Select]: Each learner uses its own sub-dataset to learn
a model from a set of candidate methods M;. Suppose each
learner conducts the half-half cross-validation to perform
model selection. In particular, learner I; splits the data D;
into two parts D;; and D;, of equal size n;; = njp = n;/2
(assuming an even #; for simplicity). The learner applies each
candidate method § € M, to the training set D;; and obtains
the corresponding estimator S”i,l‘ For learner [;, denote the best
method §; as the one that minimizes the mean squared error
(MSE) on the test set D;, , namely

‘ A 2
8 = argming, . Z (y — 8y ) /i 1
(yx)€Di>

The “best” method §; is then applied to the whole data D;
to estimate the underlying function f;. Denote the resulting
estimated function as f‘, and its fitted mean squared error as
e = Z(y,x)eD,» (v —ﬁ-(x))z/ni. To summarize, for each learner
li, we have the non-shared data D; and the shareable information
{0 fi» &}

Step 2 [Exchange]: For any two learners, they exchange the
sharable information {8,-,f,-, é;}. In particular, denote v;; as the
dissimilarity between any two learners (I;, ];), i # j. We apply the
ith learner’s best estimator f‘, to the jth learner’s dataset D; and
obtain its prediction loss &;_,j = njfl Y wen, (0 — F®)%,
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Algorithm 1 Pseudocode for the Step 3 of SEC algorithm

Input: Number of learners L, learners/datasets {D;}-_ |, the
number of clusters K (optional).

Output: The number of clusters K (if not given), and the cluster
labels¢; € {1,...,K},i=1,...,L.

1. Calculate the similarity matrix S € RiXL » where each S;; =
exp(—avjj) and vj; is given by (2).
2. If K is given, conduct the spectral clustering:

(a) Calculate the Laplacian Lg of S:

Lg = D Y/28D7Y2 where D := diag(X:jL=1 Sijp--es
ZJ‘Lzl SLj)'

(b) Compute the K largest eigenvectors of Lg: uy, ..., uxg.
Denote U = [uy,. .., ux] € RIXK,

(c) Standardize each row of U to have unit £, norm. Denote
the standardized matrix as Us.

(d) Apply k-means clustering to the rows of U, into K clus-
ters, and record the labels ¢;,i = 1, ..., L.

3. If K is not given:

(a) Sort the eigenvalues of S from small to large and deter-
mine K (Remark 2).
(b) Go back to Step 2.

where the subscript i — j denotes the information flow from
li to I;. Similarly, we apply f; to the dataset D; and obtain the
prediction loss &;_, ;. The dissimilarity v;; is then defined as the
difference between their best estimators:

Vij = |ez%] éj| + |2j»i —&l, (2)

where v;j = vj; for any i # j. When i = j, the self-dissimilarity
of alearner [; is v;; :== 0.

Step 3 [Cluster]: Based on the dissimilarity v;;, a similarity matrix
is constructed, which is used to cluster the L learners. In par-
ticular, we calculate a symmetric matrix S whose (i, j)th com-
ponent is S;; := exp(—av;;). Here, a is a tuning parameter for
computational convenience. For example, when min; ; v;; is large
and a = 1, Sjj’s can be negligibly small for all (i) and thus
become not distinguishable by the computer (due to its limited
precision). Let P = {1,..., L} denote the set of labels of the L
learners. For a given K, we will find a collection of sets {Si}le 1
that forms a partition of P. The partition is obtained by applying
a spectral clustering algorithm to the matrix S and dividing the
L learners into K groups. For completeness, we summarize the
clustering step (Step 3) in Algorithm 1.

Remark 1 (Spectral clustering). There are different variants of
spectral clustering in the literature. Due to technical conve-
nience, we build on the work of (Ng, Jordan, and Weiss 2002).
We will show that the spectral clustering algorithm based on
the constructed similarity matrix can guarantee desirable per-
formance.

Remark 2 (Selection of K). When K is unknown, we may add a
penalty term K - A, in to the k-means clustering in Step 2(d) of
Algorithm 1 to minimize

ZZ |S||| o —ujll> + K- Ay 3)

t=1 ijeS;

over all possible partitions of P and a grid of values of K.
Here, u(; denotes the ith row of U, defined in Algorithm 1.
The minimization problem (3) is equivalent to comparing the
within-cluster distance over a grid of K values. We suggest
An = O(max(n~!,u})), where u, is an upper bound of the
convergence rates of non-parametric estimators (elaborated in
the supplementary document). In practice, picking an appro-
priate penalty term may be complex because of the known
convergence rates of nonparametric methods in Step 1. An alter-
native approach we suggest is using the gap statistics (Tibshirani,
Walther, and Hastie 2001) that searches for the so-called “elbow
point” in the curve of the sum of within-cluster mean-squared
errors (namely the first term in (3)) against different K’s. We will
also show in the supplementary document that an adequately
chosen penalty can select the correct K with a high probability.

Remark 3 (Future prediction). The clustering results may also
be used for downstream collaborative learning methods, where
a learner only interacts with others in the same cluster. Though
prediction is not the main focus of this article, we discuss two
use cases to perform prediction based on the clustering results
from SEC. For any particular learner /;, suppose it belongs to the
cluster S;. In the first case, the sub-datasets cannot be pooled
due to communication bandwidths or privacy regulations. To
collaborate, other learners in the same cluster may transmit their
learned models fnj (G € St,j # i) to the learner ;. Then, to
predict for a future observation x, the learner [; uses the weighted
average of the fitted models from learners in the same cluster, for
example,

. 4
Z ZjeSt Jf(x) ( )

ieS;

where the weights are proportional to the sample size. In this
way, the above case does not require direct data-sharing among
learners. It is worth mentioning that the weights in (4) may
not be optimal for a statistical gain of prediction accuracy.
We include further discussions on the statistical gain in the
supplementary material. The second use case is when the sub-
datasets are allowed to be pooled. Then, the learner ; pools all
the sub-datasets in a cluster S; and fits one model to make future
predictions. In this case, the learner i directly obtains a larger
sample and thus tends to learn a better model. Nevertheless, this
case requires the learners to share data, which may violate the
purpose of collaborative learning.

The following theorem shows that the SEC can accurately
identify the correct clusters when the overall sample size goes
to infinity. Its proof is included in the supplementary materials.

Theorem 4. Under some assumptions (elaborated in the sup-
plementary document), the labels ¢, . .., c; produced by SEC
satisfy ¢; = ¢; if and only if f; = f;, for any i, j, with probability
going to one as n — Q.

Remark 5 (Data independence). The clustering accuracy in the
theorem may no longer hold if the independence of y;;’s breaks



down. For longitudinal settings, for example, we may assume
additional conditions on y;; (e.g., a @-mixing sequence) for the
proof to hold. We leave the more sophisticated analysis for
dependent data as future work.

4. Application to Data Fairness

One promising application of the proposed method is to
enhance data fairness. Biases inherent in data collection and
techniques based on these data will not address (sometimes
even worsen) the inequity for disadvantaged groups. In
recent years, there have been many works to define fairness,
discover unfairness, and apply algorithms to promote fairness.
For example, based on the maximum likelihood principle,
Kamishima, Akaho, and Sakuma (2011) proposed a prejudice
remover regularizer (based on the mutual information between
response and sensitive variables) for classification models.
Hardt, Price, and Srebro (2016) proposed a criterion called
equal opportunity (or equalized odds) for a particular sensitive
variable and demonstrated how to adjust a predictor to alleviate
discrimination. Zafar et al. (2017) devised a notion called
positive rate disparity and proposed a method to reduce
disparities in mistreatment and treatment. Verma and Rubin
(2018) compared the differences among 20 fairness definitions
for classification problems.

We consider a linear regression setting where the sensitive
variable is independent of other variables. In particular, we
generate a dataset D that consists of 50 sub-datasets {D,»}fﬁl,
each with size n; = 50 from the linear model: Y; = Xy, +2X5; —
2X3; + 2X4; + bR; + €;, where (X1;, X5i, X34, Xai) ~ N (0, I4) are
the nonsensitive variables, €; ~ AN(0, 1) is the random noise,
and R; is the sensitive variable that may induce unfairness if it
were known. We consider different scales of the coeflicient of the
sensitive variable, b € {0.01,0.5,1, 2, 3,4, 5, 6,20}. The sensitive
variable R; is generated from a standard normal A/ (0, 1) distri-
bution and is set to be fixed for each given i. Using a fixed value
as a sensitive variable is reasonable for data fairness problems
where multiple measurements exist for the same subject. For
example, if D represents longitudinal data and each sub-dataset
represents a person, then the subject-specific sensitive variable
(e.g., gender, race, age, home location) is fixed for each person.
We set R; as a continuous variable in this example. We split the
dataset into a training set of 30 sub-datasets (e.g., {D;};°,) and
a test set of 20 sub-datasets (e.g., {D,-}?£31). For each learner
in the test set, we further split it into two parts of the same
size (e.g, D; = D} U D?). The splitting is because we need
extra data points to cluster the learners in the test set. Then,
the dataset D is reorganized into the following three sets: the
training set {Di}?gl, the test set {Di1 }?231, and the validation set
{Di2 15231 .The random data splitting is repeated 100 times.

For the training set, in the existence of a sensitive vari-
able, we consider three methods of building a model: Oracle,
Fairness, SEC-Fairness. The Oracle method directly builds a
linear regression model from the training set using the sensi-
tive variable (namely without considering fairness constraints),
which is expected to have the best predictive performance.
The Fairness method builds a linear regression model on the
training set without using the sensitive variable since using
the sensitive variable is not allowed or even available in the
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Table 1. Predictive performances of the three methods for the data fairness
example.

SEC-Fairness Fairness Oracle

b MSE k MSE MSE

0.01 1.03(0.005) 1(0) 1.03(0.005) 1.03(0.005)
0.5 1.12(0.007) 2.25(0.59) 1.20(0.007) 1.03(0.005)
1 1.41(0.02) 2.65(0.59) 2.04(0.03) 0.92(0.005)
2 1.96(0.04) 2.64(0.48) 5.19(0.09) 1.06(0.005)
3 4.31(0.22) 2.77(0.44) 12.55(0.27) 0.96(0.005)
4 4.79(0.28) 2.86(0.37) 15.16(0.36) 1.00(0.005)
5 4.21(0.12) 2.97(0.17) 18.89(0.36) 0.99(0.005)
6 12.03(0.60) 2.81(0.39) 50.58(1.04) 1.06(0.004)
20 80.47(4.90) 2.91(0.29) 438.64(9.38) 1.07(0.006)

NOTE: The values in the parentheses are the standard error of the averaged MSE and

the standard deviation of the estimated number of clusters K, respectively, over
100 replications.

modeling procedure. The SEC-Fairness method finds potential
groupings among the sub-datasets in the training set before
building models without the sensitive variable. In particular, it
first uses the SEC algorithm on the training set to cluster these 30
learners {D;}3, into groups. Then, it uses the similarity between
alearner and a cluster to identify which cluster (identified from
the training set) each of these 20 learners in the test set belongs
to. To measure the similarity between a learner /; and a cluster,
we use the sum of the similarities between [; with each learner
in that cluster. Then, the learner /; belongs to a cluster if its
similarity to the cluster is larger than any other cluster. In the
SEC algorithm, for simplicity, each learner I; considers two
candidate modeling methods: Random Forest (Breiman 2001)
(RF) and linear regression (LR), namely M; = {RF,LR} in the
“select” step. For the validation set, we evaluate the predictive
performances of the models by the mean square error (MSE),
which are presented in Table 1. As shown in the table, when
the importance (coefficient b) of the sensitive variable is high,
the SEC-Fairness reduces the MSE of Fairness by about 50%
overall. One possible reason is as follows. The linear relationship
between y and the variables {Xi,...,X4} only differs in the
intercept per learner. The similarity between two learners, as in
the SEC algorithm, will be small if the difference between their
sensitive variables |R;—R;| is large. It is then more likely that SEC
divides those with similar values of the sensitive variable into
the same cluster. It is worth mentioning that the SEC-fairness
method satisfies the fairness constraint since it does not use the
sensitive variable at all, and the nonsensitive variables used for
clustering are independent of the sensitive variable.

The Oracle method, as expected, is very stable in MSE
(around 1) over different values of b. When b is large, SEC-
Fairness is comparable to the oracle method, though it performs
better than the Fairness method. One reason is that the
estimated number of clusters K is in the interval [2, 3]. In this
example, we select K by the gap statistic. We note that there
exists no “true” value of K since every learner/sub-dataset
has a unique sensitive value. In the case b = 20, we have
K = 291. But if we force K = 10 in the SEC algorithm,
the MSE performance of SEC-Fairness is much improved.
One reason that the gap statistic selects a small K is that it
chooses the value of K that most reduces the gap compared
with K — 1 instead of selecting K that achieves the global
minimum. Consequently, the gap statistic tends to select K
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as 3 or 4 in this example. An alternative way to estimate K is
cross-validation. Specifically, we can split each sub-dataset into
a training set and a test set. Then, on the collection of the test
sets, we can compare the MSE performance based on a list of K’s
and select the most appropriate K. The cross-validation splitting
ratio for each sub-dataset will likely affect the selection of K.
We recommend using half-half splitting for each sub-dataset.
Because the sample size n;, the modeling methods M;, and the
existence of data heterogeneity are different across learners, it
will be nontrivial and interesting to study how to decide the
splitting ratios of cross-validation. We leave that as future work
and refer interested readers to (Ding, Tarokh, and Yang 2018;
Zhang, Ding, and Yang 2022) for related discussions on cross-
validation.

5. Simulated Data Experiments

In this section, we present two simulation settings. Each exam-
ple is repeated 100 times. From a theoretical view, no standard-
ization of the data is required since only the function relation-
ship between Y and X matters. So one cluster may contain two
sub-datasets/learners whose responses or predictors are not on
the same scale. However, the nonparametric method usually
requires compact support, which may cause some computa-
tional issues. In the experiments, we standardize x and y in each
sub-dataset/learner.

5.1. Simulation 1: Clustering Accuracy

This example is to demonstrate the clustering accuracy of our
method. A clustering result is accurate if the number of clusters
is accurately identified, and each learner’s label matches the
underlying truth (up to a permutation). Suppose there are 20
learners, {li}fgl, each with a sub-dataset D; containing n; =
50 observations and p = 5,10,20 predictors. The data of
the first 10 learners are generated from the underlying model
Y = A(X) + &1 = BIX + &1, where X ~ N0, Ip), €1 ~
N(0,0?%), and B, € RP. The data of the remaining 10 learners
are generated from Y = f1,(X) + & = ,B;X + &, with &5 ~
N(0,0%), and B, € RP. We randomly generate 8, and S,
from the standard Gaussian distribution (both 8, and B, are
set as fixed in each replicated experiment such that 8, # B,).
The signal-to-noise ratio (SNR) is defined by E(||8]%)/E(&?),
which reduces to p?/o? in this case. We set the SNR level
to be one of the following: 2°,...,27, and the corresponding
noise level 02 = p?/SNR falls into the range of 25/128 to
400. In the SEC algorithm, let each learner consider two candi-
date methods: LASSO (Tibshirani 1996), with built-in half-half
cross-validation to select the tuning parameter, and Random
Forest, with 50 trees and depth 3. We apply the SEC algorithm
to cluster the 20 sub-datasets. The averaged clustering accuracy
over 100 replications is presented in Figure 2. We can see that
the clustering accuracy increases as the SNR increases. Also,
for a fixed SNR, a smaller p tends to lead to better clustering
accuracy. It is mainly because a less parsimonious model suffers
from more estimation variance given the same amount of data.
We also see that for a fixed p, the accuracy curve tends to be
flat when SNR is larger than 2°, showing the SEC algorithm’s
robustness against high noise levels. In Figure 3, we also present
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Figure 2. Clustering accuracy of the SEC algorithm for Simulation 1.

the result of a replication of the simulation with p = 5 and
SNR= 2%, with clustering accuracy near 100%. The eigenvalues
used to apply the gap statistic are plotted in Figure 3(a). The
eigenvectors in the spectral clustering algorithm are shown in
Figure 3(b).

5.2. Simulation 2: Robustness against Candidate Models

In this example, we demonstrate that our method is robust
against candidate models in the cross-validation part of the
“select” step. Suppose there are 20 learners, {/;}2°,, each with
a sub-dataset D; containing n; = 100 observations and p =
500 predictors. We use the following two benchmark datasets
described in (Friedman 1991; Breiman 1996). The sub-datasets
of the first 10 learners are generated from ¥ = fi(X) + &; =

\/Xf + (X3X3 — 1/(X2X4))? + €1, and the sub-datasets of the
remaining 10 learners are generated from ¥ = £(X) + &, =
arctan(X, X3 — 1/(X2X4)/X1 + &2, where X7 ~ U(0, 100),
X, ~ U@M40m,560m), X3 ~ U(0,1), X4 ~ U(,11), and
1,62 ~ N(0,0.01) are independent. The remaining 496 pre-
dictors {Xs,. .., X500} follow a standard multivariate gaussian
distribution N (0, I496).

For each learner, we consider the candidate methods: Ran-
dom Forest (RF), k-nearest neighbors (KNN), Support Vec-
tor Regression (SVR) (Drucker et al. 1997), Neural Network
(NN), Gradient Boosting (Friedman 2001) (GB), LASSO, Least
Angler Regression (Efron et al. 2004) (LARS), Elastic Net (Zou
and Hastie 2005) (EN), Ridge Regression (Ridge). To show
the robustness of our procedure against the number of can-
didate models and against the types of candidate models, we
consider four different choices of M;: {RE, KNN, SVR, NN,
GB, LASSO, LARS, EN, Ridge}, {RF,KNN, SVR, GB, LASSO,
LARS, EN}, {RE KNN, GB, LASSO, LARS}, {RE GB, LASSO},
and {GB}. The results are presented in Table 2. The clustering
accuracy is stable over different choices of M;. We can see the
robustness of our method against both the number of candidate
models and the type of candidate models.
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Figure 3. Aniillustration of the clustering results for Simulation 1, based on a realization withp = 5, SNR=24.

Table 2. Prediction performance with collaboration and without collaboration,
under various sets of candidate methods (rows).

| M| Proportion being selected Accuracy K Collaboration No collaboration

(GB, RE, LASSO) MSE MSE
1 (1,0,0) 66.0 2 0.100(0.0056) 0.133(0.0038)
3 (0.56,0.11,0.33) 740 2 0.095(0.0053) 0.131(0.0042)
5 (0.56,0.10,0.34) 58.0 2 0.087(0.0049) 0.125(0.0044)
7 (0.57,0.11,0.32) 700 2 0.096(0.0056) 0.134(0.0051)
9 (0.57,0.10,0.33) 64.0 2 0.060(0.0018) 0.112(0.0034)

NOTE: The column “Proportion being selected” is the proportion of each method
being selected as the best method. The column “Accuracy” is the clustering
accuracy of the SEC algorithm. The standard error of the averaged MSE over 100

replications is reported in parentheses. The K denotes the estimated number of
clusters.

Without loss of generality, we focus on the first learner [
to evaluate whether the SEC algorithm improves prediction
accuracy. We generate a test set Diest = {(y1, x11)}1% gen-
erated from the model Y = f;(X) + &;. We consider two
modeling methods: No collaboration and Collaboration. The
“Collaboration” method first applies the SEC algorithm and
identifies learners in the same cluster as I;. Then, we obtain
the prediction for the test set Diest based on the simple average
of the estimated predictors from those learners, as described
in the formula (4). The “No Collaboration” method simply fits
I;’s favored method on its own sub-dataset D; and applies the
estimator on the test set Diest to make predictions. The mean
squared errors of the above two methods’ predictions are also
shown in Table 2. Overall, “Collaboration” has a smaller MSE
than “No Collaboration” For |M;| = 1, a right-sided t-test of
the MSE’s of “No Collaboration” to that of “Collaboration” pro-
duces a p-value of 2.1 x 107, We also observe significantly small
p-values for other cases of | M;|. When the number of candidate
models in M; is larger, the MSE of the “Collaboration” method
is smaller. The above is because more candidate models in the
cross-validation part of the “select” step enable us to understand
better the function relationship between the response and the
predictors so that the similarity matrix can better capture the
true underlying clusters. The prediction accuracy of the two

methods is also stable across different choices of M;, in terms
of both the size of M;, | M| and the methods in M;.

6. Real Data Applications

In this section, we apply the SEC algorithm in two real data
examples.

6.1. Application 1: CT Image Data

We investigate the CT Image dataset in (Graf et al. 2011) that
consists of 53500 CT slices and 385 variables. These 53500 CT
slices are obtained from 97 CT scans, where 74 patients (43 male
and 31 female) took at most a thorax scan and a neck scan. The
response variable is the relative location of the CT slice on the
axial axis. The relative location of the CT slice on the axial axis
is critical for registering CT scans in a body atlas (Graf et al.
2011), which enables the comparison of different CT scans. This
dataset has a natural sub-dataset structure since many CT slices
are from the same CT scan that can be treated as a sub-dataset.

We divide the dataset into 97 sub-dataset/learners, each con-
taining all the CT slices from a single CT scan. Our goal is to find
any potential clustering structure (and the corresponding vari-
able) that improves both scientific understanding and predictive
performance. We randomly divide these 97 learners into two
parts: the training set (64 learners) and the test set (33 learners).
Similar to the data fairness example, for each of the 33 learners
in the test set, we divide the sub-dataset into two sets of equal
size.

For the training set, we consider three methods: “clustering
(pooled)”, “clustering (unpooled)”, and “no clustering”. The “no
clustering” method directly trains a Random Forest model on
the training set. The “clustering (pooled)” method first applies
the SEC algorithm to classify the learner in the training set
into clusters, with M; = {RF,LASSO} for i = 1,...,64.
Then it trains a Random Forest model separately in each iden-
tified cluster (with all the within-cluster sub-datasets pooled).
In contrast, the “clustering (unpooled)” does not pool the sub-
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Table 3. Results for the CT image data.

Clustering (pooled) Clustering (unpooled) No clustering
MSE

94.09 (4.18) 103.07(3.79) 150.52 (2.10)
K 2 (6 times) and 3 (94 times) N/A

NOTE: The value in the parenthesis is the standard error of the averaged MSE over
100 replications, and K denotes the estimated clusters.

datasets in the cluster but trains a Random Forest in each
sub-dataset. For sub-datasets/learners in the validation set, the
“no clustering” method directly applies the trained random
forest model to all the learners and obtains the overall mean
squared error. The “clustering (pooled)” method first deter-
mines to cluster each learner belongs to and then applies the
cluster-level trained random forest model. In contrast, the “clus-
tering (unpooled)” method applied a weighted average as in
Equation (4). We repeat the data splitting 100 times and sum-
marize the results in Table 3. The results show that both options
(unpooled and pooled) can significantly outperform that of
the “no clustering” method. A right-sided paired t-test that
compares the MSE of “clustering (unpooled)” and “clustering
(pooled)” with that of “no clustering” produces p-values of
1.43 x 10713 and 1.77 x 107!, respectively. The “clustering
(unpooled)” improves the MSE by 31% than “no clustering,” and
the “clustering (unpooled)” has a slightly worse MSE compared
with “clustering (pooled)” This demonstrates the promising
performance of collaborative learning even without pooling
data. We also looked for a scientific understanding of the iden-
tified clusters on the training set. So we investigated possible
variables related to the cluster structure discovered by the SEC.
Unfortunately, either the gender of the patient or whether the
CT scan is from the thorax or neck is not available in the
dataset (Graf et al. 2011). However, this example does show the
possibility of finding essential variables related to the cluster
structure if further information is provided. Additionally, we
can significantly improve the predictive performance without
assessing any patient private information but the CT images
themselves.

6.2. Application 2: Electrical Grid Stability Data

This example is to demonstrate the performance of the SEC
algorithm when the data are under adversarial attacks. The
Electrical Grid Stability Data (Arzamasov, Bohm and Jochem
2018) consists of 10,000 observations and 14 variables. Among
the 14 variables, two variables describe the system stability: one
is categorical (stable/unstable), and the other is continuous (a
positive value means a linearly unstable system). We use the
continuous variable as the response. The other 12 variables are
the input of the Decentral Smart Grid Control system.

We first divide the data into training set (n; = 8000) and
the test set (1, = 2000). The training set is randomly divided
into 50 learners, each with 160 observations. We may assume
the data are stored in 50 servers, and some servers get attacked
by hackers. Let d = 0, 1,. . .,49 denote the number of attacked
learners. We set that the first d out of 50 learners are attacked.
Each time a sub-dataset is “attacked,” we change the response
variable to the negative of its original value. We also assume that
the 50th learner knows that its dataset is not attacked.
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Figure 4. Prediction error (evaluated by MSE) as an increasing function of attack
severity.

Under potential attacks, we consider four options of the
50th learner to perform data analysis, denoted as “Collabora-
tion with all”, “No collaboration,” “Our approach,” and “Oracle”
The “Collaboration with all” option ignores the fact that some
learners/sub-datasets are attacked and insist on collaborating
with all the other learners. In the “No collaboration” option,
a learner (say the 50th) trusts nobody but itself and uses its
sub-dataset for learning. In the “Our approach” option, the 50
learners are clustered by SEC into “attacked” and “intact” Then
the learners classified as intact will collaborate. The “Oracle”
option means that an oracle knows which learners are attacked
and collaborates with those intact ones. In collaboration, we
allow the learners to share datasets. In other words, once a
learner identifies collaborators, the learner pools the data and
fits a linear regression.

The trained linear model is then applied to the test set to
evaluate its performance (MSE). We plot the predictive per-
formance against the number of attacked learners in Figure 4.
We only present part of the red curve since it explodes as the
level of attacks increases. The value of the red curve increases
from —7.65 to —5.25 when the number of attacked learners
increases from 0 to 49. As the proposed method accurately
clusters all the intact learners, the performance curve of “Our
approach” overlaps with that of “Oracle” We also see that the
predictive performance of “Our approach” decreases when the
level of attack (meaning the number of the attacked learners)
increases. In particular, the decrease becomes very sharp when
the number of attacked learners is greater than 45. One reason
is that the linear model based on the information of one sub-
dataset (with a sample size of 160 and 12 predictors) or two is
enough to capture the underlying relationship. Indeed, the scale
of MSE is very small (10~*). So collaborating with more than five
intact learners may not improve the prediction accuracy much
compared with collaborating with only two intact learners.

The proposed SEC algorithm can be applied even though
each learner can only access its own sub-dataset. Neverthe-
less, the SEC algorithm can be applied when each learner has
access to all the sub-datasets. In such cases, we envision it as a
pre-screening method to screen out contaminated sub-datasets,
which improves modeling and prediction accuracy.



7. Conclusion

This article proposed a framework of meta clustering for select-
ing “qualified” collaborators for collaborative learning. If two
datasets exhibit a similar underlying relationship between the
response and predictors, they fall in the same cluster. We devel-
oped a clustering algorithm named SEC to perform meta clus-
tering efficiently. It only requires the exchange of fitted functions
instead of raw data to evaluate the similarity among datasets.
We showed promising applications of the framework to enhance
data fairness, improve single-learner prediction accuracy, and
discover potential grouping structures of a dataset.

Supplementary Materials

The supplement materials include (i) a document that contains the techni-
cal proofs and additional discussions and (ii) Python-based codes used for
the numerical studies.
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