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AbstractÐThe increasing uncertainty of distributed energy
resources promotes the risks of transient events for power
systems. To capture event dynamics, Phasor Measurement Unit
(PMU) data is widely utilized due to its high resolutions. Notably,
Machine Learning (ML) methods can process PMU data with
feature learning techniques to identify events. However, existing
ML-based methods face the following challenges due to salient
characteristics from both the measurement and the label sides: (1)
PMU streams have a large size with redundancy and correlations
across temporal, spatial, and measurement type dimensions. Nev-
ertheless, existing work cannot effectively uncover the structural
correlations to remove redundancy and learn useful features. (2)
The number of event labels is limited, but most models focus
on learning with labeled data, suffering risks of non-robustness
to different system conditions. To overcome the above issues, we
propose an approach called Kernelized Tensor Decomposition
and Classification with Semi-supervision (KTDC-Se). Firstly, we
show that the key is to tensorize data storage, information
filtering via decomposition, and discriminative feature learning
via classification. This leads to an efficient exploration of struc-
tural correlations via high-dimensional tensors. Secondly, the
proposed KTDC-Se can incorporate rich unlabeled data to seek
decomposed tensors invariant to varying operational conditions.
Thirdly, we make KTDC-Se a joint model of decomposition
and classification so that there are no biased selections of
the two steps. Finally, to boost the model accuracy, we add
kernels for non-linear feature learning. We demonstrate the
KTDC-Se superiority over the state-of-the-art methods for event
identification using PMU data.

Index TermsÐEvent identification, large PMU streams, limited
labels, tensor learning, semi-supervised learning, kernel method.

I. INTRODUCTION

Modern power systems significantly incorporate highly un-

certain generations and loads to facilitate clean and low-

cost productions and consumptions. To better accommodate

the growing uncertainty and maintain the system stability,

the power system requires advanced tools for system event

identification. To capture the event dynamics, Phasor Mea-

surement Units (PMUs) provide synchronized phasor mea-

surements with high-granularity (e.g., 30 or 60 samples per

second) [1], [2]. Therefore, the PMU-based power system

event identification is one of the central topics to improve

the system reliability. With synchrophasors to record system

dynamics, many efforts analyze measurement patterns and

Haoran Li, Zhiaho Ma, and Yang Weng are with the Department of Electri-
cal, Computer and Energy Engineering, Arizona State University, Tempe, AZ,
85281, USA. E-mail: {lhaoran,zhihaoma,yang.weng}@asu.edu. Erik Blasch
is with Air Force Research Laboratory, Arlington, VA, 22203, USA. E-mail:
erik.blasch@gmail.com. Surya Santoso is with The University of Texas at
Austin, Austin, TX, 78712, USA. E-mail: ssantoso@mail.utexas.edu.

identify when, where, and what type of events are. To find the

event initialization time, methods like change point detection

[3] can detect abnormal intervals that imply events. However,

to know more information about event types and locations,

how to analyze PMU streams in the best way becomes

challenging.

One idea to find event types and locations is to use expert

information. For example, one can use signal transformation

or filtering to map the time series data into some physi-

cally meaningful domain for comparing with some predefined

thresholds. These methods use wavelet transformation [4],

Kalman filtering [5], and Swing Door Trending (SDT) [6],

etc. For example, [6] utilizes a swing door to compress data

with a pre-defined door width, and the detectable events must

have a certain level of slope rate. However, as these methods

need to pre-define some measures or thresholds, the usage

may be biased because of the specific design and test cases.

Therefore, can we have a general model?

For obtaining a general form, previous work proposes to

use existing events and their labels to train in a Supervised

Learning (SL) manner. Such Machine Learning (ML) models

typically extract features for minimizing the loss function. For

instance, Decision Tree (DT) [7] treats each measurement as

a factor to determine the final decision. Although transpar-

ent, such a method is inefficient to make use of complex

measurement correlations. Therefore, [8] proposes Support

Vector Machine (SVM) to assign each input measurement

a weight to form the final feature. There are also more

complex and powerful models such as Convolutional Neural

Network (CNN) [9] and Graph Neural Network (GNN) [1].

They consider the spatial correlations with square and graph

convolutions, respectively. One can also couple the temporal

information in Long Short-Term Memory (LSTM) units. For

example, [10] uses LSTM to extract periodic patterns and data

inertia in time. However, for PMU data, it’s desirable to simul-

taneously consider correlations among spatial, temporal, and

measurement type dimensions. So, one can keep on increasing

the model complexity. But, PMU streams accumulate quickly

into terabyte (TB) level for training due to high volumes, large

dimensionality, and complex correlations among the space,

time, and measurement type (e.g., voltage magnitude, angle,

frequency, etc.) dimensions.

To make the computation feasible, e.g., for real-time analy-

sis, past work pre-processes PMU data with various dimension

reduction techniques before the learning phase [11], [12], e,g.,

Principal Component Analysis (PCA) [13] and Independent

Component Analysis (ICA) [14]. The pre-processing can also
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Fig. 1: KTDC-Se flowchart to tackle data (1) correlation, (2) volume, and (3) unlabeled processing.

select core statistics. For instances, [15] selects the mean

values of segments via Symbolic Aggregation approXimation

(SAX). [16] converts PMU signals to wavelet basis coeffi-

cients via Discrete Wavelet Transformation (DWT). These two

methods filter information along with the time domain. On

the other hand, [9] finds the compact vectors by considering

both the time and the space domains using Markov Transition

Field (MTF). However, they not only ignore the dimension

of measurement type but also have their biases on how to

compress the data.

In this paper, we propose to merge the two steps of

dimension reduction and supervised learning into one step to

avoid bias and improve efficiency. The key idea is to define a

structure to hold key information in different dimensions, e.g.,

the measurement types ignored by [9], [15], [16]. Based on

such an idea, we design a tensor learning framework to extract

physically meaningful features with simple computations. Fig.

1 shows the design that easily includes the temporal, spatial,

and measurement type dimensions. The classification process

in the tensor learning can directly provide the classification

results while the dimension reduction process for efficiency

is done inexplicitly. This is because the tensor unfolding can

covert the decomposed core tensor to vectors for classification,

enabling an end-to-end model in Fig. 1. While such a process

can extract key information quickly and systematically, we

also want to preserve the nice property of nonlinear feature

extraction, like the property in CNN and LSTM. For such

a purpose, we mathematically derive kernalization of the

classifier to process non-linear physical relationships in power

systems.

While the proposed model is highly efficient, many realistic

cases do not have enough labels for training. For example, [17]

notes that out of 1, 013 PMU events recorded by a utility, only

84 events are labeled. But, limited labeled data will decrease

the learning accuracy. One idea is to employ Semi-supervised

learning for taking advantages of widely available unlabeled

data in power systems, shown in the middle part of Fig. 1. But,

there are challenges of integrating Semi-supervised learning

and kernel-based tensor learning. For example, we need to re-

strict the same decomposition model for labeled and unlabeled

data. We achieve the integration by aggregating all 3-D PMU

tensors into a 4-D tensor. Then, a direct tensor decomposition

of the 4-D tensor can maintain the same decomposition param-

eters for all 3-D tensors, no matter if the data is with a label or

not. To train the proposed Kernelized Tensor Decomposition

and Classification with Semi-supervision (KTDC-Se) from the

above, we develop an efficient coordinate descent method.

Finally, when the tensor number is significantly large, we

modify our training method based on a mini-batch-based

training scheme to save the computational storage.

For the numerical verification, the KTDC-Se method is

tested extensively at various conditions on the Illinois 200-

bus system, South Carolina 500-bus system [18], [19], and

realistic data sets from our utility partners. These conditions

include different loading conditions and PMU penetrations,

etc. The benchmark methods include various supervised and

semi-supervised learning approaches and cross-validation is

used for evaluating model accuracy. The results show that our

proposed method can efficiently obtain highly accurate event

identification and localization in large systems with many data

streams coming from PMUs. In general, we have the following

contributions:

• We design KTDC-Se model to incorporate massive la-

beled and unlabeled PMU streams, where we employ

tensors to uncover the complex multi-dimensional cor-

relations and create compact and informative features to

identify events.

• We derive a fast coordinate descent algorithm and its

variational mini-batch version to train our KTDC-Se.

• We implement extensive experiments to demonstrate the

high performance of KTDC-Se over other models with

synthetic and real-world datasets.

To emphasize our contributions, we summarize the basic

principles of our designs as follows. (1) The proposed model

employs tensors to explore high-dimensional correlations and

create more compact and informative features for accurate

and fast inference. (2) The proposed model is a unified

framework for dimension reduction and supervised learning,

which prevents the bias induced by separate steps and metrics.

(3) The proposed model can take in rich unlabeled data for

better performance.

The remainder of the paper is organized as follows: Section

II introduces the notations and tensor preliminaries for the

model. Section III defines the problem. Section IV proposes

our KTDC-Se. SectionV illustrates the learning algorithm.

Section VI conducts experiments for baselines and KTDC-Se,

and Section VII concludes the paper.

II. NOTATIONS AND PRELIMINARIES

To integrate PMU data reduction and machine learning in

one tensorized framework, we first introduce basics of tensor

algebra [20] and the corresponding notations. To summarize,
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TABLE I: Overview of tensor notations and operators.

Notation Interpretation

α scalar
a vector
A matrix
X tensor, set, or space
X(n) unfolding of tensor X along mode n

◦ outer product
×n mode-n product
⊗ Kronecker product
∥·∥2 l2 norm of a vector
∥·∥

F
l2 Frobenius norm of a matrix or a high-order tensor

Table I presents the basic notations for different types of

variables and operations.

A. Tensor Notations

Multi-mode data can be stored in the so-called tensor [21],

the multi-dimensional arrays. The number of dimensions for

a tensor is referred to as order. For example, scalar (0-order

tensor), vector (1-order tensor) and matrix (2-order tensor).

Then, for a D-order tensor X , I1 × I2 × · · · × ID are denoted

as the dimensions, i.e., X ∈ R
I1×I2×···×ID or X I1×I2×···×ID ,

where Ii (∀1 ≤ i ≤ D) is the dimensionality of the ith

dimension of X .

B. Tensor Operations

There are many types of operations for a tensor like fold-

ing, unfolding, product, etc. This subsection provides some

operations used in the KTDC-Se method.

mode-n unfolding of a tensor. A tensor can be unfolded

to a matrix, a process that is also known as matrization.

Specifically, for X I1×I2×···×ID , one can unfold it along the

n-dimension (mode) to obtain X(n) ∈ R
In×

∏
i=1,i ̸=n

Ii . Math-

ematically, the result is:

X (i1, i2, · · · , iD) = X(n)(in, j),

j = 1 +

D∑

k=1,k ̸=n

(ik − 1)Jk, Jk =

k−1∏

m−1,m ̸=n

Im,

where X (i1, · · · , in) is denoted as the (i1, · · · , in)
th entry of

tensor X .

n-mode product. For a tensor X ∈ R
I1×I2×···×ID and a

matrix U ∈ R
K×In , the n-mode product is denoted as:

(X ×n U)(i1, · · · , in−1, k, in+1, · · · , iD)

=

In∑

in=1

X (i1, i2, · · · , iD)U(k, in),

where X ×n U ∈ R
I1×···In−1×K×In+1···×IN is a tensor.

Tensor Tucker Decomposition. For a D-order tensor X ∈
R

I1×···×ID , one key research topic is to find the approximation

using a set of small tensors. For example, PMU data is of

high volume and low rank [22]. Thus, the low-rank approxi-

mation is preferred to efficiently represent the PMU data and

remove the redundant information. The target can be achieved

via tensor decomposition. Specifically, the so-called Tucker

decomposition is [20]:

X ≈ G ×1 U1 ×2 U2 · · · ×D UD

≈

R1∑

r1=1

· · ·

RD∑

rJ=1

G(r1, · · · , rD)ur1
1 ◦ · · · ◦ urD

D ,

where G ∈ R
R1×···×RD is a core tensor in the factorization,

and U i ∈ R
Ii×Ri is a base matrix along mode i. uri

i is the

rthi column of U i and ◦ is the outer product.

Finally, the Tucker decomposition can be rewritten in a

matrix format:

X(n) = UnG(n)(UD ⊗ · · · ⊗Un+1 ⊗Un−1 ⊗ · · · ⊗U1)
⊤,

where ⊗ is the so-called Kronecker product and ⊤ repre-

sents the matrix transpose. In summary, the introduced tensor

operations lay foundations for our integrated model with

certain physical interpretations. Specifically, tensor decompo-

sition provides efficient feature extraction while maintaining

certain physical structures in the core tensor G. Further, tensor

unfolding converts G to vectors that can be input to a classifier,

which enables an end-to-end model of decomposition and

classification.

III. PROBLEM FORMULATION

In this section, we define the target problem using the above

notation. Before introducing the formulation, we first identify

the study scope with the following points.

Data Preparation of PMU Tensors. For PMU streams,

we follow the idea of [1], [15], [23] to extract a window

of PMU signals with sufficient information to indicate the

event dynamics for training a classifier. As shown in Fig. 2,

each window of data can be formalized into a PMU tensor

X
′

∈ R
T×L×M where T denotes the number of time slots for

each window, L denotes the number of PMUs, and M denotes

the number of measurement types (e.g., Voltage Magnitude

(VM), Voltage Angle (VA), Frequency (F), etc.). Further, with

a slight abuse of notation, the total N PMU tensors are denoted

as the total event tensor X ∈ R
N×T×L×M and assume the first

H (H < N ) sub-tensors along the first dimension have labels.

Correspondingly, the label vector is denoted as y ∈ Z
H×1.

In addition, to make the tensor data comparable between

different measurement types, we implement normalization to

restrict each entry of the tensor within the range [0, 1]. More

specifically, the normalization happens for each entry of the

tensor in the total N tensors in Fig. 2. Then, among the N
values, the maximum value of the specific entry is assigned

to be 1, the minimum value is assigned to be 0, and the

intermediate value is corresponding transformed to be an entry

within (0, 1).
Data Labels: Event Types and Locations. We focus on

the tasks of distinguishing event types and locating events.

Since we are proposing data-driven approaches without the

requirement of domain knowledge, a diversified set of system

event types and locations can be considered. For example,

in the experiment, we consider five event types, including

line trip, generator trip, single-phase-to-ground fault, phase-

to-phase fault, and three-phase fault. Further, for each event
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type, we randomly create 2 different locations in the system.

Similar treatments are implemented in many related studies

[15], [16], [18], [23].

Treatment for Multiple Events: Our proposed method can

handle multiple events. First, we admit that in the following

modeling process, each of our trained classifier is binary

to make better use of kernel methods with hinge loss for

high accuracy, which is similar to Support Vector Machine

(SVM) [24]. Nevertheless, power system event identification

is essentially a multi-class classification problem, i.e., each

unique combination of an event type and an event location

can indicate a unique label. Thus, the one-against-one method

is utilized to train multiple classifiers. Specifically, we train

multiple binary models at the same time, and their majority

vote leads to the final event label that can be an arbitrary

integer. One can refer to [25] for this method which has better

performances than other multi-class SVMs.

Treatment for New Data. If other types of events come

without label information and if they never appear in the

historical dataset, our model can not directly output the event

type and location since this scenario is beyond our study scope.

However, we can assign these new events a new label that

means ªto be determinedº. By doing this, we can view these

new events as labeled data and input them into our model.

This procedure is helpful in providing guidance.

Treatment for Imbalanced Dataset. Our model can suc-

cessfully handle the imbalanced dataset due to the following

reasons. First, as described above, each of our proposed

models is binary with the focus on two classes of events.

Thus, in the training process, we only select the data of two

different labels for training. This mitigates the data-imbalance

issue across different classes. Namely, the binary classifier will

not be affected too much as long as the selected two classes of

events have similar data numbers. Second, if the selected two

classes of events are imbalanced to train the binary model,

our proposed hinge loss can still guide the learning of an

accurate decision boundary. This is because by minimizing

hinge loss, the formulation of the decision boundary will

only be determined by the so-called support vectors. These

support vectors are data points that lie close to the decision

boundary and can determine the equations of the boundary.

However, for many interior points that are far from the decision

boundary, they don’t affect the final decision. To summarize,

for imbalanced datasets, the hinge loss enables a small group

of data to determine the parameters for the decision boundary,

which resolves the issue of the imbalanced dataset.

Above notations and treatments summarize the common

scenarios for power system event identification and how our

proposed model can handle them. In general, we define our

problem as follows.

• Problem type: semi-supervised event identification using

PMU data.

• Given: a total event tensor X and a label vector y.

• Find: an abstract mapping f(X ) = y to compress the

information in X and use the compressed information to

identify event labels in y.

Fig. 2: Illustration of the moving window-based division to

generate PMU tensors.

IV. PROPOSED MODEL

The design of the above mapping f can be diversified.

However, existing work suffers a key challenge of biased

selections of data compression and event identification without

proper integration. In this section, we design an end-to-end

model that makes full use of tensor structure to achieve

fast computations, physical interpretations, high capacity with

non-linear feature extractions, and high accuracy under semi-

supervision.

A. An Integrated Model with Efficiency and Physical Mean-

ings

For an efficient model, we need to remove the redundancy

in PMU measurements. Section I shows the drawback of tradi-

tional methods: they can hardly explore the high-dimensional

correlations. Further, Section II illustrates that tensor is a

natural container of high-dimensional data and tensor Tucker

decomposition is an excellent approach to uncover the cross-

dimension correlations. However, it is still unclear how we can

design an efficient model to remove redundancy and capture

event information for different PMU event tensors, and how we

can guarantee the model robustness by tackling some labeled

and rich unlabeled tensors.

For a detailed design, we show the motivation in Fig. 3.

We utilize different colors to represent different components

of data. More specifically, we utilize light blue to represent

tensor data X
′

and G. Then, we utilize orange, blue, red,

and green colors to represent the decomposed parameter

matrices A,B,C and D, respectively. These colors can help

to distinguish the types of decomposed tensors. Second, to

emphasize the dimension of the decomposed tensors, we bold

the corresponding lines in G
′

and utilize different colors in B,

C, and D to distinguish the bold lines. Then, the reader can

easily understand how the dimensions match. (3) We change

the figures for output y1, y2, and y3 to circles, where the solid

line represents y1 = 1, the two types of dotted lines represent

y2 = −1 and y3 =? (i.e., unknown).

For each PMU tensor X
′

, the left part of Fig. 3 visualizes

the process of a Tucker decomposition into base matrices

B, C, and D and a core tensor G. G can maintain the

structure as the PMU tensor X
′

, leading to specific physical

interpretations. Specifically, the base matrices can be viewed

as the bases along different dimensions, and the core tensor G
represents the interactions among these bases [12]. Thus, we
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Fig. 3: The motivation of the KTDC-Se model.

can assume bases for different PMU tensors are similar as long

as the number of bases is sufficiently enough. In contrast, the

interaction tensor G contains discriminative event information.

Then, to maximally remove the redundancy, we directly

keep the same bases B, C, and D for different PMU tensors

during the decomposition, shown in the middle part of Fig.

3. Namely, we utilize a direct Tucker decomposition for a 4-

D total event tensor X . Then, B, C, and D are naturally

kept to be the same. Further, we want the core tensor G
to contain distinguished event information. Therefore, we

employ the event labels to conduct a supervised learning-

based classification for dissimilarity maximization. The above

procedure is for labeled tensors. For unlabeled tensors, only

the decomposition procedure is implemented to increase the

model robustness to different loading conditions. The concrete

mathematical model of joint optimization is formulated in the

following subsection.

B. Semi-supervised Optimization for the Joint Model

In the semi-supervised learning setting, the 4-D total event

tensor X in Section IV-A contains all labeled and unlabeled

data. Mathematically, we implement the Tucker decomposition

for X as follows:

X ≈ G ×1 A×2 B ×3 C ×4 D

≈

N∑

r1=1

R2∑

r2=1

R3∑

r3=1

R4∑

r4=1

G(r1, r2, r3, r4)a
r1 ◦ br2 ◦ cr3 ◦ dr4 ,

(1)

where G ∈ R
N×R2×R3×R4 is the core tensor, i.e., the com-

pressed tensor with small information redundancy. The matri-

ces to scale the core tensors are A ∈ R
N×N , B ∈ R

T×R2 ,

C ∈ R
L×R3 , and D ∈ R

M×R4 . ar1 , br2 , cr3 , and dr4

are the rth1 , rth2 , rth3 , and rth4 columns of A, B, C, and

D, respectively. R2 < T , R3 < L, and R4 < M are the

pre-defined dimensions of the reduced tensors to achieve the

information compression.

In the decomposition of Equation (1), the first dimension is

fixed of the core tensor G to be N so that the decomposition

can still bring N features to represent different PMU tensors.

Furthermore, the decomposition can be rewritten as:

X(1) ≈ AG(1)(D ⊗C ⊗B)⊤, (2)

where X(1) ∈ R
N×(T ·L·M) and G(1) ∈ R

N×(R2·R3·R4)

represent the mode-1 unfolding matrix of tensors X and G, re-

spectively. Clearly, columns in G(1) represent the compressed

features that can be utilized for the classifier training. Under

semi-supervision, we utilize the labeled tensors with labels for

the classification. Then, we propose a joint decomposition-

classification model.

min
G(1),A,B,C,D,w,b

J = ||X − G ×1 A×2 B ×3 C ×4 D||2F
︸ ︷︷ ︸

J1, Reconstruction Loss

+ γ1 l(EG(1) ·w + b,y)
︸ ︷︷ ︸

J2, Classification Loss

+γ2 ||w||22
︸ ︷︷ ︸

J3, l2 Norm

,

(3)

where J , J1, J2, and J3 denote the total loss, reconstruction

loss, classification loss and regularization terms, respectively.

E = [IH×H ,0H×(N−H)] ∈ R
H×N denotes a selection matrix

to select the first H feature instances (i.e., the instances with

labels) in G(1) for the classification. ||·||F and ||·||2 denote the

Frobenius norm and the l2 norm, respectively. l(·, ·) represents

the classification loss function. The hinge loss of Support Vec-

tor Machine (SVM) is considered in this paper, i.e., l(EG(1) ·

w,y) =
∑H

i=1[1−yi(f
⊤
i w+b)]+, where f i ∈ R

(R2·R3·R4)×1

is the ith instance of the transformed features and yi is the

ith label in y. Namely, F = [f1,f2, · · · ,fH ]⊤ = EG(1).

Further, the hinge loss is defined as [1− t]+ = max(0, 1− t)p.

Usually, one can treat p = 1 or p = 2 for l1- or l2-SVM

[11], respectively. γ1 and γ2 are positive hyper-parameters to

reweight the three terms in Equation (3).

C. Efficient Kernelization for Powerful Non-linear Feature

Extractions

In the last two subsections, we successfully merge the data

reduction and machine learning model into one optimization

under semi-supervision. However, many PMU measurements

have non-linear correlations. It is challenging to add non-

linearity due to the computational cost. For example, adding

sigmoid or polynomial functions to the loss function l in

Equation (3) significantly increases the computations. This

motivates the usage of kernel trick for nonlinear feature

calculations [26]. Specifically, (i) the kernel trick shows that

we can find a kernel function k(f1,f2) such that k(f1,f2) =
ϕ(f1)

⊤ϕ(f2) = g(f⊤
1 f2). The inner product computations,

i.e., the main calculation procedure for the loss in Equation

(3), can be conducted in the original feature space rather

than the features transformed from polynomial or sigmoid

functions. (ii) Further, the input features of the classifier

in Equation (3) is a feature vector f with the dimension

r = R2 · R3 · R4. Then, if we consider to utilize d-degree
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polynomial features to represent the original features, we can

obtain a rd-dimensional feature vector ϕ(f). Then, the inner

product over the rd-dimensional features can incorporate r2d

multiplications and r2d − 1 summations. In general, we need

2r2d − 1 operations, which is expensive. (iii) However, the

kernel trick enables another procedure of computations with

a much smaller computational cost. Basically, let f1 and f2

denote two r-dimensional features. Then, one only need to

consider the inner product within the original r-dimensional

space with r2 multiplications and r2 − 1 summations. Then,

based on the kernel trick, only extra d multiplications are

needed to bring the same result as in (ii). In general, the

total operation number is 2r2 − 1 + d, which saves a lot

of computational resources compared to the computations in

(ii). Thus, we propose to utilize kernel function to lift the

data to high-dimensional or even infinite-dimensional feature

space, and the kernel trick can enable the calculation to happen

in the original data space, which easily maintains efficient

calculations [27].

Specifically, due to the Representer theorem [28], the inner

product of the classification model can be rewritten as f⊤w =
∑H

i=1 αik(f ,f i), where k(·, ·) is the kernel function and f ∈
R

(R2·R3·R4)×1 is a variable in the feature space. Based on this

equation, the kernelized learning process is:

min
G(1),A,B,C,D,α,b

J = ||X − G ×1 A×2 B ×3 C ×4 D||2F
︸ ︷︷ ︸

J1, Reconstruction Loss

+ γ1

H∑

i=1

[
1− yi(

H∑

j=1

αjk(f i,f j) + b)
]

+

︸ ︷︷ ︸

J2, Classification Loss

+ γ2

H∑

i=1

H∑

j=1

αiαjk(f i,f j)

︸ ︷︷ ︸

J3, Regularization

,

(4)

where α is the vector of all αis. Eventually, we re-emphasize

the nice properties of KTDC-Se by (1) using tensors to capture

multi-dimensional correlations, (2) proposing a joint model for

decomposition and classification, (3) introducing kernels for

non-linear features, and (4) conveniently tackling both labeled

and unlabeled data.

V. LEARNING ALGORITHM

The optimization in Equation (4) is non-convex. Thus,

an alternative optimization algorithm is proposed to update

the individual variable in the optimization while fixing other

variables, i.e., the so-called coordinate descent method. This

method is prevailing in the domain of tensor learning due

to its efficiency and good convergence property [11], [20],

[29]. Further, to calculate the gradient and avoid the non-

differentiable scenario, the l2 SVM [11], [30] is utilized, i.e.,

p = 2 in the loss function l(·, ·). Then, to update each variable,

KTDC-Se only needs to calculate the gradients with respect

to every single variable and utilize the gradient descent for

updating. Thus, the calculation of the gradients is shown as

follows.

A. Gradients of Matrices A, B, C, and D

Gradient of A. Based on matrix format of Tucker decompo-

sition and for the convenience of later derivations, we define

H1 = G(1)(D ⊗ C ⊗ B)⊤. Then, the gradient of the loss

function in Equation (4) is calculated with respect to A.

Mathematically, the gradient is:

∇AJ = ∇AJ1 = ∇Atr
(
(X(1) −AH1)

⊤ · (X(1) −AH1)
)

= 2(AH1H
⊤
1 −X(1)H

⊤
1 ),

(5)

where tr(·) represents the operation to obtain the matrix trace.

Gradients of B, C, and D. By symmetry, H2 = G(2)(D⊗
C ⊗A)⊤, H3 = G(3)(D⊗B⊗A)⊤, and H4 = G(4)(C ⊗
B ⊗A)⊤ can be defined. Then, ∇BJ , ∇CJ , and ∇DJ are

calculated as follows:

∇BJ = 2(BH2H
⊤
2 −X(2)H

⊤
2 ),

∇CJ = 2(CH3H
⊤
3 −X(3)H

⊤
3 ),

∇DJ = 2(DH4H
⊤
4 −X(4)H

⊤
4 ).

(6)

B. Gradient of Mode-1 Unfolding Matrix G(1) of the Core

Tensor

To update G(1), the following gradients are separately

derived. For the reconstruction loss, H̃ = (D ⊗ C ⊗ B)⊤

is denoted. Then, the gradient is:

∇G(1)
J1 = ∇G(1)

tr
(
(X(1) −AG(1)H̃)⊤ · (X(1) −AG(1)H̃)

)

= 2(A⊤AG(1)H̃H̃
⊤
−A⊤X(1)H̃

⊤
).

(7)

For the classification loss, ŷi =
∑H

j=1 αjk(f i,f j) + b
is denoted for simplification. Based on the chain rule, the

gradient is:

∇f i
J2 =







2(ŷi − yi)
∑H

j=1 αj
∂k(f i,fj)

∂f i

+2αi

∑H
j ̸=i(ŷj − yj)

∂k(f i,fj)

∂f i
, if yiŷi < 1 ,

0, if yiŷi ≥ 1 .
(8)

To elaborate on the above equation, polynomial and Radial

Basis Function (RBF) kernels are utilized as examples. For

the polynomial kernel k(f i,f j) = (f⊤
i f j + c)d, where c is a

constant and d is the degree of the polynomial function, then

∂k(f i,f j)

∂f i

=







d(f⊤
i f j + c)d−1f j , if i ̸= j ,

2d(f⊤
i f j + c)d−1f i, if i = j .

(9)

For the RBF kernel k(f i,f j) = exp(−λ||f i−f j ||
2
2), where

λ is a positive constant:

∂k(f i,f j)

∂f i

= 2λk(f i,f j)(f j − f i). (10)

Recall that F = [f1,f2, · · · ,fH ]⊤ = EG(1),

∇F J2 = [∇f1
J2,∇f2

J2, · · · ,∇fH
J2]

⊤ can be obtained.

Thus, ∇G(1)
J2 = [∇f1

J2,∇f2
J2, · · · ,∇fH

J2,0, · · · ,0]
⊤.
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For the Regularization term, the result is:

∇f i
J3 = α2

i

∂k(f i,f i)

∂f i

+ 2αi

∑

j ̸=i

αj

∂k(f i,f j)

∂f i

. (11)

Similarly, ∇G(1)
J3 = [∇f1

J3,∇f2
J3, · · · ,∇fH

J3,0, · · · ,0]
⊤

can be obtained. Summing the gradients of the

three loss functions can bring the total gradient, i.e.,

∇G(1)
J = ∇G(1)

J1 + γ1∇G(1)
J2 + γ2∇G(1)

J3.

C. Gradients of Classifier Parameters α and b

Gradient of α. The learning weight α is coupled with the

classification loss and the regularization. For the classification

loss, then

∇αi
J2 =







∑H
j=1 2(ŷj − yj)k(f i,f j), if yiŷi < 1 ,

0, if yiŷi ≥ 1 .

(12)

Note that ŷj can be explicitly expressed by α, i.e., ŷj =
k⊤
j α+b, where ki is the ith column vector of the kernel matrix

K, and the kernel matrix is defined as K(i, j) = k(f i,f j).
Thus, the above equation can be written to a matrix format.

Specifically, if yiŷi < 1, ∇αi
J2 = 2k⊤

i ·Kα+2k⊤
i ·(b−yi)1

can be written, where 1 is an all-one column vector. Further,

one can obtain a general format:

∇αJ2 = 2KI0(Kα+ b1− y), (13)

where I0 satisfies

I0(i, j) =







1, if i = j and yiŷi < 1 ,

0, otherwise.

(14)

Further, for the regularization, it’s easy to find that

∇αJ3 = 2Kα. (15)

Finally, the total gradient is ∇αJ = γ1∇αJ2 + γ2∇αJ3.

Gradient of b. Similarly, we calculate the gradient with

respect to b:
∇bJ = 1

⊤I0(ŷ − y), (16)

where ŷ is the vector of all ŷis. With the above derivations,

the final learning algorithm and flowchart are presented in

Algorithm 1 and Fig. 4.

D. Training on Mini-batches

The above learning process may suffer storage issues when

the number of training data N is large. Specifically, when

updating B, C, and D in Equations (6), the Kronecker product

to calculate H2, H3, and H4 requires a large cost of storage

as A ∈ R
N×N for a large N . To mitigate this issue, we modify

Algorithm 1 to train on mini-batches to save the memory [31].

Mathematically, we divide the training tensor X and labels

y into K mini-batches {X i}Ki=1 and {yi}Ki=1, respectively.

Each X i contains some labeled data with labels to be yi

and many unlabeled data. Then, in each iteration, we up-

date the mini-batch-independent weights Ã,B,C,D and b.
Ã ∈ R

Ñ×Ñ is the matrix along the first dimension of each

Algorithm 1 Train-KTDC-Se(X ,y).

Input: Training tensor X and labels y.

Hyper-parameters: number of labeled data H , core tensor

dimensions R2, R3, and R4, regularization parameters γ1
and γ2, polynomial kernel parameters d and c, RBF kernel

parameters λ, and learning rate lr.

Output: Parameters Gk
(1),A,B,C,D,α, and b.

1: Initialize G(1),A,B,C,D,α, and b.
2: repeat

3: Calculate ∇AJ , ∇BJ , ∇CJ , and ∇DJ by Equations (5)

and (6).

4: A = A− lr · ∇AJ .

5: B = B − lr · ∇BJ .

6: C = C − lr · ∇CJ .

7: D = D − lr · ∇DJ .

8: Calculate ∇G(1)
J1 by Equation (7).

9: for i = 1 to H do

10: Calculate ∇f i
J2 and ∇f i

J3 by Equations (8) and (11)

while fixing other parameters.

11: end for

12: Formalize ∇G(1)
J2 and ∇G(1)

J3. Then, obtain ∇G(1)
J .

13: G(1) = G(1) − lr · ∇G(1)
J .

14: Build matrix I0 by Equation (14).

15: Calculate ∇αJ2 and ∇αJ3 by Equations (13) and (15).

Then, obtain ∇αJ .

16: α = α− lr · ∇αJ .

17: Calculate ∇bJ by Equation (16).

18: b = b− lr · ∇bJ .

19: until convergence

Fig. 4: The Flowchart of the KTDC-SE algorithm.
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mini-batch tensor, where Ñ = ⌊N/K⌋ and ⌊·⌋ represents the

floor function. Notably, keeping Ã the same for different mini-

batches is an additional restriction to maintain similarity of

A, which doesn’t appear in the direct training of Algorithm 1.

However, this restriction further guarantees that the discrimi-

native information is contained in core tensors.

Further, KTDC-Se uses mini-batch-dependent parameters

Gi
(1) ∈ R

Ñ×(R2·R3·R4) and αi for the ith mini-batch, where

αi ∈ R
H̃×1 and H̃ = ⌊H/K⌋. Especially, Gi

(1) is a

sub-block of G(1), i.e., G(1) = [(G1
(1))

⊤, · · · , (GK
(1))

⊤]⊤.

Correspondingly, we have F = [(F 1)⊤, · · · , (FK)⊤]⊤, where

F i = EiGi
(1) and Ei = [IH̃×H̃ ,0H̃×(Ñ−H̃)]. Essen-

tially, αi is a sub vector of the final weight vector α =
[(α1)⊤, · · · , (αK)⊤]⊤.

Then, for the ith mini-batch, our training algorithm should

obtain features Gi
(1), check the support vectors in these

features, and update their corresponding weights in αi. To

maintain the coupling between Gi
(1)(α

i) and the rest G
j

(1)s

(αjs), where j ̸= i, all the information in F , y and α

should be utilized to obtain ∇Gi
(1)
J2, ∇Gi

(1)
J3, ∇αiJ2, and

∇αiJ3 by Equations (8), (11), (13), and (15), respectively.

Then, we can fix the correspondingly gradients with respect

to support vectors in other mini-batches to 0s. Consequently,

the complete algorithm can be seen in Algorithm 2.

Algorithm 2 Train-mini-batch-KTDC-Se(X ,y).

Input: Training tensor X = {X i}Ki=1 and labels y =
{yi}Ki=1.

Output: Parameters {Gi
(1)}

K
i=1, Ã,B,C,D,α, and b.

1: repeat

2: for i = 1 to K do

3: Utilize the complete information in G, y, and α and

the mini-batch data to obtain: Gi
(1), Ã,B,C,D,αi, b =

Train-KTDC-Se(X i,yi|F ,y,α).
4: F = [(F 1)⊤, · · · , (FK)⊤]⊤.

5: α = [(α1)⊤, · · · , (αK)⊤]⊤.

6: end for

7: until convergence

E. Testing on Mini-batches

For the cross-validation process or online testing, we have

another total test tensor X̃ ∈ R
Ñ×T×L×M that needs to

experience the decomposition and classification to obtain the

label ỹ ∈ Z
Ñ×1, where we fix Ñ to be the number of PMU

tensors in one mini-batch. The reason of fixing Ñ is that our

mini-batch training yields a parameter matrix Ã ∈ R
Ñ×Ñ that

must be utilized for the test tensor decomposition. Therefore,

there should be Ñ PMU tensors in the total test tensor. For

real-time testing, if the testing PMU tensor number is not

sufficient, we can repeat the testing tensor or utilize some data

from the historical dataset to complete the testing mini-batch.

Thus the testing procedures are as follows.

Obtain Test Feature Matrix G̃(1). To obtain G̃(1), we utilize

the learned parameters Ã,B,C and D. By setting the gradient

in Equation (7) to 0, we can obtain

G̃(1) = (Ã
⊤
Ã)−1 · (Ã

⊤
X̃(1)H̃

⊤
) · (H̃H̃

⊤
)−1, (17)

where X̃(1) represents mode-1 unfolding of tensor X̃ .

Predict label vector ỹ. Based on the Representer theorem,

we need the learned weights α and b, historical features in

F = G(1), and test features in G̃(1) = [f̃
⊤

1 , · · · , f̃
⊤

Ñ ]⊤ to

predict labels. Specifically, we can first calculate a test kernel

matrix K̃(i, j) = k(f̃ i,f j), where f̃ i ∈ G̃(1) and f j ∈ F .

Then, the predicted label can be obtained by:

ỹ = K̃α+ b. (18)

VI. EXPERIMENTS

For validation, we test over synthetic data sets such as the

Illinois 200-bus system South Carolina 500-bus system [18].

We also test our result with realistic data from our utility

partners.

A. Dataset Description

We utilize Illinois 200-bus system and South Carolina 500-

bus system [18] to generate event data. Five event types are

considered, including line trip, generator trip, single-phase-to-

ground fault, phase-to-phase fault, and three-phase fault. For

each event type, we consider 2 different event locations. Thus,

there are 10 unique combinations of event types and locations,

i.e., 10 event labels.

Then, we vary the loading conditions for the simulation to

generate diversified event files. Totally, we have 80 event files

each of which has 10s event data. Further, we consider the

data resolution to be 60 samples per second, yielding 600
samples for each event file. To extract tensors from these

streams, we utilize the moving window with the length to be

0.5s (i.e., 30 samples) and the moving gap to be 0.083s (i.e., 5
samples) to cut the PMU streams. We utilize a small moving

window to obtain data points. In our experiment, each window

covers 0.5s (i.e., 30 samples of PMU measurements). Fig. 5

illustrates why we select 0.5s as an appropriate window length.

Specifically, the plot is a visualization of the PMU streams

over time, where the x-axis represents the time and the y-axis

represents the measurements (VM denotes voltage magnitude,

VA denotes voltage angle, and F denotes frequency). We

find that using 0.5s as the window length can appropriately

include partial event information to identify events. Next, the

length is not too long to prevent fast and real-time detection.

Finally, the determination of the window length can be further

studied by treating the window length as a hyper-parameter

and conducting the cross-validation. However, this won’t affect

our main result and we treat this procedure as future work.
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Fig. 5: The demonstration for window length selection.

Therefore, we have 5840 PMU tensors in total. For each

PMU tensor, we have T = 30 for the time dimension,

L = 200η1 or L = 500η1 for the 200-bus and the 500-

bus system, respectively, where η1 ∈ {0.05, 0.1, 0.15, 0.2}
represents the PMU penetrations for the grid. For each fixed

η1, PMU locations are randomly chosen for 5 times. Then,

we set M = 3 for the measurement types, i.e., voltage mag-

nitude, voltage angle, and frequency. To summarize, we have

X ∈ R
5840×30×200η1×3 or X ∈ R

5840×30×500η1×3 for training

and testing. To mimic a semi-supervised setting, we consider

labeled data with the ratio of η2 = {0.1, 0.2, 0.3, 0.4, 0.5},

leading to a label vector y ∈ Z
5840η2×1.

Finally, we also test our proposed method using real-world

PMU data from our partner in Arizona, USA. These files

totally have 5 labels covering 3 types of line faults at 2
locations. After tensorization of data in 35 PMUs, we can

obtain X ∈ R
511×30×35×3 and y ∈ Z

511×1.

Software For the simulation, we employ a commercial-

grade simulator, Positive Sequence Load Flow (PSLF) [32]

from General Electric (GE) company. For the model develop-

ment and validation, we use Python with Pycharm IDE.

Summary of data and feature dimensions

• For Illinois 200-bus system, the total event tensor is

X ∈ R
5840×30×200η1×3 and the input data dimensions are

{900, 1800, 2700, 3600}. Subsequently, we set R2 = 6,

R3 ∈ {5, 5, 6, 8}, and R4 = 2, and the feature dimen-

sions are {60, 60, 72, 96}. For other benchmark methods,

we employ PCA to reduce the dimensionality of the

raw data and obtain features with the dimension of

{120, 140, 150, 180}.

• For South Carolina 500-bus system, the total event tensor

is X ∈ R
5840×30×500η1×3 and the input data dimen-

sions are {2250, 4500, 6750, 9000}. Subsequently, we set

R2 = 6, R3 ∈ {5, 6, 8, 10}, and R4 = 2, and the feature

dimensions are {60, 72, 96, 120}. For other benchmark

methods, we employ PCA to reduce the dimensionality

of the raw data and obtain features with the dimension

of {140, 180, 200, 240}.

• For datasets of the utility in Arizona, USA, the total

event tensor is X ∈ R
511×30×35×3 and the input data

dimension is 3150. Subsequently, we set R2 = 6, R3 = 6,

and R4 = 2, and the feature dimension is 72. For

other benchmark methods, we employ PCA to reduce the

dimensionality of the raw data and obtain features with

the dimension of 160.

B. Benchmark Methods

First, we train our KTDC-Se within the labeled data as a

benchmark to demonstrate the impacts of the unlabeled data.

Further, we employ state-of-the-art Semi-Supervised Learning

(SSL) methods as benchmarks. The details of these methods

are shown as follows.

• Deep Residual Network (Resnet) [33]: Resnet is an

efficient deep learning model for classification. For this

supervised learning model, we utilize only labeled data as

comparison. As PMU data have high dimensionality (e.g.,

9000 for the 500-bus system with η1 = 0.2), Principal

Component Analysis (PCA) is utilized to pre-process data

before training the Resnet.

• KTDC-Se-L: KTDC-Se-L is to train a KTDC-Se model

with only labeled data by setting N = H in the model,

which demonstrates the effectiveness of employing unla-

beled data for training a classifier.

• MixMatch [34]: MixMatch can guess low-entropy labels

for unlabeled instances with data augmentation. Then,

MixMatch develops a probabilistic procedure to mix

the labeled and unlabeled data to train a deep learning

classifier. Similarly, we employ PCA to reduce the di-

mensionality of the mixed dataset from MixMatch and

input them into a Resnet [33] as the final classifier. For

a fair comparison, the Resnet has the same architecture

as the first benchmark.

• FixMatch [35]: FixMatch first generates pseudo labels

for data with weak data augmentation. Then, FixMatch

develops a criterion to decide the pseudo label is retained

or not. Finally, data with retained pseudo labels experi-

ence a strong data augmentation for the classifier training.

Similar to MixMatch, we utilize PCA + Resnet as the

final classifier. For fair comparison, the Resnet has the

same architecture as the first benchmark.

• Semi-supervised Ladder Network (SSLN) [36]: SSLN

combines supervised and unsupervised learning in deep

neural networks with a joint loss function in a ladder

network with an auto-encoder model structure. Similarly,

we pre-process the data with the PCA method.

During the testing, the hyper-parameters for all models are

fine-tuned in the 3-fold cross-validation to achieve the best

accuracy. In general, by comparing the testing accuracy of

KTDC-Se with Resnet, and KTDC-Se-L, we can illustrate

the effectiveness of using unlabeled data. By comparing the

testing accuracy of KTDC-Se and other methods, we can

evaluate the performance of using an integrated model and

two-stage models. Especially, Resnet, MixMatch, FixMatch,

and SSLN have two separate steps of data pre-processing and

learning, which have their biased selections. By comparing the

label predicting time of KTDC-Se and other methods, we can

evaluate the efficiency of the methods for real-time inference.
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TABLE II: Testing accuracy (%) (mean ± standard deviation) for real-world PMU data.

KTDC-SE RESNET KTDC-SE-L MIXMATCH FIXMATCH SSLN

ACCURACY 92.3 ± 0.8 77.1± 0.6 80.5± 1.1 82.6± 0.8 83.3± 1.6 83.5± 2.1

(a) Testing accuracy (%) for the 200-bus system. (b) Testing accuracy (%) for the 500-bus system.

(c) F1 score (%) for the 200-bus system. (d) F1 score (%) for the 500-bus system.

Fig. 6: Performances of event identification using different methods.

Finally, by comparing the choice of kernel selection, we can

understand how the non-linear kernels boost the performance.

C. Joint Optimization of KTDC-Se is Better Than Two-stage

Models

In this subsection, we evaluate the integration design by

comparing our KTDC-Se and other two-stage models. Thanks

to the integration without biased selection for the two-stage

compression and classification, our model performs much

better than benchmarks. Specifically, we report the results of

simulated and real-world data as follows.

For the simulated data, we first fix η2 = 0.3 to divide the

labeled and unlabeled datasets for training and testing. Fig. 6a

and 6b demonstrate the results for the two systems. Since for

each η1 of one system, we conduct 5 times randomization and

3-fold cross validation of the PMU location selection, there

can be multiple different values of the testing accuracy for

each testing scenario. Thus, we present the box plot in Fig.

6a and 6b to show the average and the variance.

We find that our KTDC-Se has an average accuracy pro-

motion of 13.3%, 13.6%, and 9.3%, compared to MixMatch,

FixMatch, and SSLN, respectively. Notably, the latter 3 bench-

mark models utilize PCA to pre-process data so that they

can be trained with a reasonable cost. Even though these

4 methods utilize the same labeled and unlabeled data for

training, the better performance of KTDC-Se shows that an

integrated model can be better than the two-stage models.

This is because that the integrated model avoids the biased

selection of the two separate models. Further, the joint model

enables the identification of discriminative core tensors that

are sensitive to the event labels.

In our experiment, we implement 5 times random sampling

for PMU locations for a given PMU penetration η1 for two

systems. Intuitively, if the PMUs are closer to the event, the

accuracy should be higher. Then, for a fixed η1 and fixed

event locations, the relative PMU locations with respect to the

event location cause the accuracy variance. Therefore, 500-

bus system usually has higher accuracy variance than that of

200-bus system since 500-bus system has a larger range.

This information is also validated from Fig. 4 in the

manuscript when η1 ∈ {0.05, 0.1, 0.15}. However, when

η2 = 0.2, we find that the 500-bus system has a higher

accuracy mean and lower accuracy variance. After careful

checking, we find the reason is that 5 is a small number

for random sampling of PMU locations. Specifically, when

η2 = 0.2, there are 4 out of 5 tests in the 500-bus system to
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have PMU locations close to the event location. However, for

the 200-bus system, there are only 2 tests when PMU locations

are close to the event locations. This shows that we may meet

the situation when the 500-bus system data brings a better

performance.

We also utilize F1 score to evaluate the performance for

200- and 500-bus systems. F1 score is the harmonic mean

of precision and recall metrics, which gives a much better

evaluation for datasets of imbalanced classes than accuracy

[37]. Under this setting, we re-evaluate Section VI-D using

F1 score. Fig. 6c and 6c illustrate that our proposed KTDC-

Se model still has the best performance in different scenarios

under F1 score, which demonstrates the superiority of our

model. Compared to test accuracy, the result of F1 score for

all methods is relatively lower. This is because F1 score has

an overall consideration of the precision and the recall rate.

However, under the metric of F1 score, KDTC-Se is still the

best method.

For the real-world data, we report the testing accuracy in

Table II. We observe that the average accuracy promotions of

KTDC-Se are 9.7%, 9%, and 8.8%, compared to MixMatch,

FixMatch, and SSLN, respectively. This still supports the

advantage of using an integrated model.

We further evaluate the accuracy for each event type for

the 200-bus system with η1 = 0.1. The results can be seen

in Table III. Other scenarios can bring similar results. We

denote LT to represent line trip, GT to represent generator trip,

SP to represent single-phase fault, PP to represent phase-to-

phase fault, and TP to represent three-phase fault. Next, the

numbers 1 and 2 represent the two different locations. The

result illustrates that three-phase faults are easier to identify

since they are more severe than others. On the other hand, the

single-phase and phase-to-phase faults have lower accuracy

since they have similar fault behaviors.

D. Semi-supervised Learning Boosts KTDC-Se Model Perfor-

mance

In this subsection, we compare KTDC-Se, Resnet, and

KTDC-Se-L to illustrate the effectiveness of semi-supervised

learning. Specifically, for synthetic data, the average accuracy

promotions are 18% and 13.3%, compared to Resnet and

KTDC-Se-L, respectively. For real-world data, the correspond-

ing accuracy promotions are 15.2% and 11.8%. These results

show that there is a significant improvement when using

unlabeled data.

The performance can be explained as follows. First, we can

compare KTDC-Se and KTDC-Se-L. When doing the tensor

decomposition of the PMU tensors, the unlabeled tensors

in KDTC-Se enable the core tensors to understand differ-

ent loading conditions and maintain similarity for different

conditions as long as the event label is the same. Then, the

trained classifier can successfully tackle different operational

scenarios. Second, we can compare KTDC-Se-L and Resnet.

We find that Resnet has an even worse performance as Resnet

also employs PCA to pre-process data. As illustrated in Section

VI-C, the two-stage model performs worse.

To further understand how many labeled data are needed for

a good performance of KTDC-Se, we utilize the simulated data

to test and fix η1 = 0.1 and vary η2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
for the number of labeled data. As a comparison, we also

implement KTDC-Se-L for the labeled data. Further, we also

present the optimal testing accuracy via employing labels for

all the PMU tensors to train the model, i.e., η2 = 1. The results

of average testing accuracy are shown in Fig. 7a and 7b.

Based on the plots, we have the following observations. (1)
Training with extra unlabeled data significantly improves the

accuracy, which has been explained before. (2) KTDC-Se can

efficiently utilize the limited labels. For example, when η2 =
0.1, the testing accuracy is still higher than 94%. This implies

that KTDC-Se can filter information and group data by event

labels in the feature space. Such a good result comes from the

joint learning process to generate compact and discriminative

features. (3) As η2 increases, the testing accuracy of KTDC-Se

gradually increases up to the optimal accuracy. Further, with

only 30% of the labeled data, KTDC-Se can bring an accuracy

almost close to the optimal one. This again indicates the high

efficiency of KTDC-Se to utilize limited labels.

E. Tensor-based Framework Enables Fast Inference

The model efficiency can be evaluated via the training and

testing time. We utilize the simulated data in Section VI-C

and report the computational time of all methods on the

testing dataset in Table IV. Based on the results, we have the

following conclusions. (1) SSLN has the largest computational

time due to its largest size with ladder networks, decoders, and

encoders. (2) KTDC-Se has the second largest computational

time since each KTDC-Se is a binary classifier and we utilize

multiple binary models to create the final decision. Thus, the

total training time for multiple models is higher. (3) The total

training time of KTDC-Se is still comparable to other models.

This is because training each binary model requires much

smaller computations than other benchmark methods. More

specifically, the input dataset for each KTDC-Se model only

covers two event classes and has a much smaller size. (4)
Resnet, MixMatch, and FixMatch have relatively close training

times since they have the same input data processed via PCA

and similar DNN models for classification. (5) KTDC-Se-L

has the smallest training time since it only utilizes labeled

data.

We further find that KTDC-Se has the second lower testing

time, which demonstrates its efficiency. Further, KTDC-Se-L

has the lowest time because it uses less data (i.e., only labeled

data) for training. Thus, the test kernel matrix has a much

smaller size compared to that in KTDC-Se. According to the

prediction function in Equation (18), KTDC-Se-L has a lower

testing time compared to KTDC-Se.

However, if we utilize both labeled and unlabeled data,

KTDC-Se is much more efficient to do the inference than

other methods. The reason is that KTDC-Se employs tensor

decomposition to explore cross-dimension correlations and

obtain a very compact core tensor for tests, but other methods

utilize PCA to compress data, which needs more features to

achieve the best accuracy. Secondly, other methods utilize

a deep model to extract non-linear features, requiring more

computational time. Thirdly, Resnet, FixMatch, and MixMatch
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TABLE III: The testing accuracy (%) for each event type.

LABEL KTDC-SE RESNET KTDC-SE-L MIXMATCH FIXMATCH SSLN

LT1 96.8 81.5 86.3 84.5 85.2 92.6

LT2 97.2 81.7 87.2 84.2 84.9 93.1

GT1 98.3 82.3 87.4 85.1 85.4 94.2

GT2 97.8 83.2 86.8 84.0 84.9 92.5

SP1 95.7 80.6 84.6 82.5 83.3 89.8

SP2 96.1 81.0 84.8 82.7 83.6 91.3

PP1 96.5 81.5 85.2 83.1 84.5 90.6

PP2 97.2 81.2 85.4 82.6 85.1 91.5

TP1 98.5 85.1 88.7 86.2 87.2 92.6

TP2 99.3 85.7 87.9 87.4 87.7 93.0

TABLE IV: The average training/testing time (s) of the training/testing dataset for different methods.

KTDC-SE RESNET KTDC-SE-L MIXMATCH FIXMATCH SSLN

TRAINING TIME 359.6 325.7 45.8 333.6 345.4 431.3

TESTING TIME 1.3 3.8 0.4 3.8 3.7 6.4

(a) Sensitivity analysis for the 200-bus system. (b) Sensitivity analysis for the 500-bus system.

Fig. 7: Results of the sensitivity analysis with respect to labeled data ratios.

share the same DNN architecture and consume close time for

testing. On the other hand, the ladder network in SSLN has a

larger size and needs more time to predict the label.

F. Non-linear Kernelization Largely Increases the Accuracy

In this subsection, we study the effectiveness of kerneliza-

tion to the capacity of the classifier. Specifically, we report

the testing accuracy for the 200-bus system when η1 = 0.1
and η2 = 0.3. Other results are similar and ignored due to the

space limit. Then, we study the case with a constant kernel

(e.g., d = 1 for the polynomial kernel) and cases with different

non-linear kernels. When kernel is a polynomial function, we

vary d ∈ {1, 2, 3}. When kernel is a RBF function, we vary

λ ∈ {0.05, 0.1, 0.15}.

The results are shown in Table V. First, if we compare

the constant kernels with other kernels, we find that adding

non-linear kernels can significantly increase the accuracy.

This is because the PMU measurements have high non-linear

correlations. Secondly, the polynomial kernel can lead to

an accuracy 95.5% when d ≥ 2. For the RBF kernel, the

accuracy is around 94.7% when λ ≥ 0.1. This shows that

the polynomial kernel, especially when d = 2, is better than

others. The partial reason is that the quadratic correlations

largely lie in the power flow equations.

TABLE V: The testing accuracy (%) (mean ± standard devi-

ation) for different kernels.

KERNEL NAME d OR λ ACCURACY

POLYNOMIAL 1 89.22± 0.6

POLYNOMIAL 2 95.7 ± 0.3

POLYNOMIAL 3 95.4± 0.2

RBF 0.05 93.3± 0.6

RBF 0.1 94.7± 0.3

RBF 0.15 94.6± 0.5

VII. CONCLUSION

The increasing placement of PMUs leads to better power

system situational awareness and event identification. Specifi-

cally, the ML-based methods can fast identify the event types

and locations. However, the high volume, complex correlations

of PMU measurements cause inefficiency to existing ML

methods. Secondly, recent approaches focus on supervised

learning while many event data are unlabeled. The inability

to utilize rich unlabeled data hurt the model robustness to
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diversified loading conditions. To tackle these challenges, we

propose our Kernelized Tensor Decomposition and Classifica-

tion with Semi-supervision (KTDC-Se). Specifically, we treat

PMU measurements as tensors and employ an advanced tensor

decomposition to remove redundant information and save

useful event features, significantly boosting model efficiency.

Simultaneously, labeled data in the core tensors are input to

a classification model with kernels for accurate classification,

and unlabeled data contribute to the decomposition process.

This guarantees the model robustness and accuracy. Numer-

ically, we show that KTDC-Se achieves the best accuracy

compared to other semi-supervised learning methods in both

synthetic systems and real-world systems.
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