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Abstract—The increasing uncertainty of distributed energy
resources promotes the risks of transient events for power
systems. To capture event dynamics, Phasor Measurement Unit
(PMU) data is widely utilized due to its high resolutions. Notably,
Machine Learning (ML) methods can process PMU data with
feature learning techniques to identify events. However, existing
ML-based methods face the following challenges due to salient
characteristics from both the measurement and the label sides: (1)
PMU streams have a large size with redundancy and correlations
across temporal, spatial, and measurement type dimensions. Nev-
ertheless, existing work cannot effectively uncover the structural
correlations to remove redundancy and learn useful features. (2)
The number of event labels is limited, but most models focus
on learning with labeled data, suffering risks of non-robustness
to different system conditions. To overcome the above issues, we
propose an approach called Kernelized Tensor Decomposition
and Classification with Semi-supervision (KTDC-Se). Firstly, we
show that the key is to tensorize data storage, information
filtering via decomposition, and discriminative feature learning
via classification. This leads to an efficient exploration of struc-
tural correlations via high-dimensional tensors. Secondly, the
proposed KTDC-Se can incorporate rich unlabeled data to seek
decomposed tensors invariant to varying operational conditions.
Thirdly, we make KTDC-Se a joint model of decomposition
and classification so that there are no biased selections of
the two steps. Finally, to boost the model accuracy, we add
kernels for non-linear feature learning. We demonstrate the
KTDC-Se superiority over the state-of-the-art methods for event
identification using PMU data.

Index Terms—Event identification, large PMU streams, limited
labels, tensor learning, semi-supervised learning, kernel method.

I. INTRODUCTION

Modern power systems significantly incorporate highly un-
certain generations and loads to facilitate clean and low-
cost productions and consumptions. To better accommodate
the growing uncertainty and maintain the system stability,
the power system requires advanced tools for system event
identification. To capture the event dynamics, Phasor Mea-
surement Units (PMUs) provide synchronized phasor mea-
surements with high-granularity (e.g., 30 or 60 samples per
second) [1], [2]. Therefore, the PMU-based power system
event identification is one of the central topics to improve
the system reliability. With synchrophasors to record system
dynamics, many efforts analyze measurement patterns and
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identify when, where, and what type of events are. To find the
event initialization time, methods like change point detection
[3] can detect abnormal intervals that imply events. However,
to know more information about event types and locations,
how to analyze PMU streams in the best way becomes
challenging.

One idea to find event types and locations is to use expert
information. For example, one can use signal transformation
or filtering to map the time series data into some physi-
cally meaningful domain for comparing with some predefined
thresholds. These methods use wavelet transformation [4],
Kalman filtering [5], and Swing Door Trending (SDT) [6],
etc. For example, [6] utilizes a swing door to compress data
with a pre-defined door width, and the detectable events must
have a certain level of slope rate. However, as these methods
need to pre-define some measures or thresholds, the usage
may be biased because of the specific design and test cases.
Therefore, can we have a general model?

For obtaining a general form, previous work proposes to
use existing events and their labels to train in a Supervised
Learning (SL) manner. Such Machine Learning (ML) models
typically extract features for minimizing the loss function. For
instance, Decision Tree (DT) [7] treats each measurement as
a factor to determine the final decision. Although transpar-
ent, such a method is inefficient to make use of complex
measurement correlations. Therefore, [8] proposes Support
Vector Machine (SVM) to assign each input measurement
a weight to form the final feature. There are also more
complex and powerful models such as Convolutional Neural
Network (CNN) [9] and Graph Neural Network (GNN) [1].
They consider the spatial correlations with square and graph
convolutions, respectively. One can also couple the temporal
information in Long Short-Term Memory (LSTM) units. For
example, [10] uses LSTM to extract periodic patterns and data
inertia in time. However, for PMU data, it’s desirable to simul-
taneously consider correlations among spatial, temporal, and
measurement type dimensions. So, one can keep on increasing
the model complexity. But, PMU streams accumulate quickly
into terabyte (TB) level for training due to high volumes, large
dimensionality, and complex correlations among the space,
time, and measurement type (e.g., voltage magnitude, angle,
frequency, etc.) dimensions.

To make the computation feasible, e.g., for real-time analy-
sis, past work pre-processes PMU data with various dimension
reduction techniques before the learning phase [11], [12], e,g.,
Principal Component Analysis (PCA) [13] and Independent
Component Analysis (ICA) [14]. The pre-processing can also
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Fig. 1: KTDC-Se flowchart to tackle data (1) correlation, (2) volume, and (3) unlabeled processing.

select core statistics. For instances, [15] selects the mean
values of segments via Symbolic Aggregation approXimation
(SAX). [16] converts PMU signals to wavelet basis coeffi-
cients via Discrete Wavelet Transformation (DWT). These two
methods filter information along with the time domain. On
the other hand, [9] finds the compact vectors by considering
both the time and the space domains using Markov Transition
Field (MTF). However, they not only ignore the dimension
of measurement type but also have their biases on how to
compress the data.

In this paper, we propose to merge the two steps of
dimension reduction and supervised learning into one step to
avoid bias and improve efficiency. The key idea is to define a
structure to hold key information in different dimensions, e.g.,
the measurement types ignored by [9], [15], [16]. Based on
such an idea, we design a tensor learning framework to extract
physically meaningful features with simple computations. Fig.
1 shows the design that easily includes the temporal, spatial,
and measurement type dimensions. The classification process
in the tensor learning can directly provide the classification
results while the dimension reduction process for efficiency
is done inexplicitly. This is because the tensor unfolding can
covert the decomposed core tensor to vectors for classification,
enabling an end-to-end model in Fig. 1. While such a process
can extract key information quickly and systematically, we
also want to preserve the nice property of nonlinear feature
extraction, like the property in CNN and LSTM. For such
a purpose, we mathematically derive kernalization of the
classifier to process non-linear physical relationships in power
systems.

While the proposed model is highly efficient, many realistic
cases do not have enough labels for training. For example, [17]
notes that out of 1,013 PMU events recorded by a utility, only
84 events are labeled. But, limited labeled data will decrease
the learning accuracy. One idea is to employ Semi-supervised
learning for taking advantages of widely available unlabeled
data in power systems, shown in the middle part of Fig. 1. But,
there are challenges of integrating Semi-supervised learning
and kernel-based tensor learning. For example, we need to re-
strict the same decomposition model for labeled and unlabeled
data. We achieve the integration by aggregating all 3-D PMU
tensors into a 4-D tensor. Then, a direct tensor decomposition
of the 4-D tensor can maintain the same decomposition param-
eters for all 3-D tensors, no matter if the data is with a label or
not. To train the proposed Kernelized Tensor Decomposition
and Classification with Semi-supervision (KTDC-Se) from the

above, we develop an efficient coordinate descent method.
Finally, when the tensor number is significantly large, we
modify our training method based on a mini-batch-based
training scheme to save the computational storage.

For the numerical verification, the KTDC-Se method is
tested extensively at various conditions on the Illinois 200-
bus system, South Carolina 500-bus system [18], [19], and
realistic data sets from our utility partners. These conditions
include different loading conditions and PMU penetrations,
etc. The benchmark methods include various supervised and
semi-supervised learning approaches and cross-validation is
used for evaluating model accuracy. The results show that our
proposed method can efficiently obtain highly accurate event
identification and localization in large systems with many data
streams coming from PMUs. In general, we have the following
contributions:

e We design KTDC-Se model to incorporate massive la-
beled and unlabeled PMU streams, where we employ
tensors to uncover the complex multi-dimensional cor-
relations and create compact and informative features to
identify events.

e We derive a fast coordinate descent algorithm and its
variational mini-batch version to train our KTDC-Se.

« We implement extensive experiments to demonstrate the
high performance of KTDC-Se over other models with
synthetic and real-world datasets.

To emphasize our contributions, we summarize the basic
principles of our designs as follows. (1) The proposed model
employs tensors to explore high-dimensional correlations and
create more compact and informative features for accurate
and fast inference. (2) The proposed model is a unified
framework for dimension reduction and supervised learning,
which prevents the bias induced by separate steps and metrics.
(3) The proposed model can take in rich unlabeled data for
better performance.

The remainder of the paper is organized as follows: Section
II introduces the notations and tensor preliminaries for the
model. Section III defines the problem. Section IV proposes
our KTDC-Se. SectionV illustrates the learning algorithm.
Section VI conducts experiments for baselines and KTDC-Se,
and Section VII concludes the paper.

II. NOTATIONS AND PRELIMINARIES

To integrate PMU data reduction and machine learning in
one tensorized framework, we first introduce basics of tensor
algebra [20] and the corresponding notations. To summarize,



TABLE I: Overview of tensor notations and operators.

Notation Interpretation

@ scalar

a vector

A matrix

X tensor, set, or space

X(n) unfolding of tensor X along mode n
o outer product

Xn mode-n product

® Kronecker product

l2 norm of a vector
lo Frobenius norm of a matrix or a high-order tensor

[I-ll2
Il e

Table I presents the basic notations for different types of
variables and operations.

A. Tensor Notations

Multi-mode data can be stored in the so-called tensor [21],
the multi-dimensional arrays. The number of dimensions for
a tensor is referred to as order. For example, scalar (0-order
tensor), vector (1-order tensor) and matrix (2-order tensor).
Then, for a D-order tensor X, I; x I X --- x Ip are denoted
as the dimensions, i.e., X € Ritxf2xxIp op ylixIax--xIp
where I; (V1 < ¢ < D) is the dimensionality of the ith
dimension of X.

B. Tensor Operations

There are many types of operations for a tensor like fold-
ing, unfolding, product, etc. This subsection provides some
operations used in the KTDC-Se method.
mode-n unfolding of a tensor. A tensor can be unfolded
to a matrix, a process that is also known as matrization.
Specifically, for xX71*12xxIp one can unfold it along the
n-dimension (mode) to obtain X ,,) € R Tliz1in It Math-
ematically, the result is:

X(i1,d2,- -+ ,ip) = X (n)(in, J),

D k—1
=1+ > (k=D Jo= [ Im
k=1,k#n m—1,m#n
where X (i1, ,i,) is denoted as the (i1, -- ,i,)" entry of
tensor X.

n-mode product. For a tensor X € RI1x[2XxIb and a
matrix U € RE*In the n-mode product is denoted as:

(X Xn U)(Zh ainflykainJrh'" 7iD)
I,

= Z X(il7i2a" . 7iD)U(k7in)a
in=1

where X x, U € Rl X In-1xKXInp1XIN g 3 tensor.

Tensor Tucker Decomposition. For a D-order tensor X' €
RI1X*Ip "one key research topic is to find the approximation
using a set of small tensors. For example, PMU data is of
high volume and low rank [22]. Thus, the low-rank approxi-
mation is preferred to efficiently represent the PMU data and
remove the redundant information. The target can be achieved

via tensor decomposition. Specifically, the so-called Tucker
decomposition is [20]:

X’»::gxlUl ><2U2"'><DUD

Ry Rp
s T
~ g g g(rl’...7rD)ullo...ouDD’
7‘1:1 7‘,]:1

where G € RFf1xxEp g a core tensor in the factorization,
and U; € RI*%i js a base matrix along mode 4. u]' is the
7" column of U; and o is the outer product.

Finally, the Tucker decomposition can be rewritten in a
matrix format:

X =U,GyUp® + @Up1 @U,_1®---0U,) ",

where ® is the so-called Kronecker product and T repre-
sents the matrix transpose. In summary, the introduced tensor
operations lay foundations for our integrated model with
certain physical interpretations. Specifically, tensor decompo-
sition provides efficient feature extraction while maintaining
certain physical structures in the core tensor G. Further, tensor
unfolding converts G to vectors that can be input to a classifier,
which enables an end-to-end model of decomposition and
classification.

III. PROBLEM FORMULATION

In this section, we define the target problem using the above
notation. Before introducing the formulation, we first identify
the study scope with the following points.

Data Preparation of PMU Tensors. For PMU streams,
we follow the idea of [1], [15], [23] to extract a window
of PMU signals with sufficient information to indicate the
event dynamics for training a classifier. As shown in Fig. 2,
each window of data can be formalized into a PMU tensor
X' e RT*LxM where T denotes the number of time slots for
each window, L denotes the number of PMUs, and M denotes
the number of measurement types (e.g., Voltage Magnitude
(VM), Voltage Angle (VA), Frequency (F), etc.). Further, with
a slight abuse of notation, the total N PMU tensors are denoted
as the total event tensor X € RN*TXEXM and assume the first
H (H < N) sub-tensors along the first dimension have labels.
Correspondingly, the label vector is denoted as y € ZH*1,
In addition, to make the tensor data comparable between
different measurement types, we implement normalization to
restrict each entry of the tensor within the range [0, 1]. More
specifically, the normalization happens for each entry of the
tensor in the total N tensors in Fig. 2. Then, among the N
values, the maximum value of the specific entry is assigned
to be 1, the minimum value is assigned to be 0, and the
intermediate value is corresponding transformed to be an entry
within (0, 1).

Data Labels: Event Types and Locations. We focus on
the tasks of distinguishing event types and locating events.
Since we are proposing data-driven approaches without the
requirement of domain knowledge, a diversified set of system
event types and locations can be considered. For example,
in the experiment, we consider five event types, including
line trip, generator trip, single-phase-to-ground fault, phase-
to-phase fault, and three-phase fault. Further, for each event



type, we randomly create 2 different locations in the system.
Similar treatments are implemented in many related studies
[15], [16], [18], [23].

Treatment for Multiple Events: Our proposed method can
handle multiple events. First, we admit that in the following
modeling process, each of our trained classifier is binary
to make better use of kernel methods with hinge loss for
high accuracy, which is similar to Support Vector Machine
(SVM) [24]. Nevertheless, power system event identification
is essentially a multi-class classification problem, i.e., each
unique combination of an event type and an event location
can indicate a unique label. Thus, the one-against-one method
is utilized to train multiple classifiers. Specifically, we train
multiple binary models at the same time, and their majority
vote leads to the final event label that can be an arbitrary
integer. One can refer to [25] for this method which has better
performances than other multi-class SVMs.

Treatment for New Data. If other types of events come
without label information and if they never appear in the
historical dataset, our model can not directly output the event
type and location since this scenario is beyond our study scope.
However, we can assign these new events a new label that
means “to be determined”. By doing this, we can view these
new events as labeled data and input them into our model.
This procedure is helpful in providing guidance.

Treatment for Imbalanced Dataset. Our model can suc-
cessfully handle the imbalanced dataset due to the following
reasons. First, as described above, each of our proposed
models is binary with the focus on two classes of events.
Thus, in the training process, we only select the data of two
different labels for training. This mitigates the data-imbalance
issue across different classes. Namely, the binary classifier will
not be affected too much as long as the selected two classes of
events have similar data numbers. Second, if the selected two
classes of events are imbalanced to train the binary model,
our proposed hinge loss can still guide the learning of an
accurate decision boundary. This is because by minimizing
hinge loss, the formulation of the decision boundary will
only be determined by the so-called support vectors. These
support vectors are data points that lie close to the decision
boundary and can determine the equations of the boundary.
However, for many interior points that are far from the decision
boundary, they don’t affect the final decision. To summarize,
for imbalanced datasets, the hinge loss enables a small group
of data to determine the parameters for the decision boundary,
which resolves the issue of the imbalanced dataset.

Above notations and treatments summarize the common
scenarios for power system event identification and how our
proposed model can handle them. In general, we define our
problem as follows.

« Problem type: semi-supervised event identification using
PMU data.

o Given: a total event tensor X’ and a label vector y.

o Find: an abstract mapping f(X') = y to compress the
information in X and use the compressed information to
identify event labels in y.
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Fig. 2: Tllustration of the moving window-based division to
generate PMU tensors.

IV. PROPOSED MODEL

The design of the above mapping f can be diversified.
However, existing work suffers a key challenge of biased
selections of data compression and event identification without
proper integration. In this section, we design an end-to-end
model that makes full use of tensor structure to achieve
fast computations, physical interpretations, high capacity with
non-linear feature extractions, and high accuracy under semi-
supervision.

A. An Integrated Model with Efficiency and Physical Mean-
ings

For an efficient model, we need to remove the redundancy
in PMU measurements. Section I shows the drawback of tradi-
tional methods: they can hardly explore the high-dimensional
correlations. Further, Section II illustrates that tensor is a
natural container of high-dimensional data and tensor Tucker
decomposition is an excellent approach to uncover the cross-
dimension correlations. However, it is still unclear how we can
design an efficient model to remove redundancy and capture
event information for different PMU event tensors, and how we
can guarantee the model robustness by tackling some labeled
and rich unlabeled tensors.

For a detailed design, we show the motivation in Fig. 3.
We utilize different colors to represent different components
of data. More specifically, we utilize light blue to represent
tensor data X and G. Then, we utilize orange, blue, red,
and green colors to represent the decomposed parameter
matrices A, B, C and D, respectively. These colors can help
to distinguish the types of decomposed tensors. Second, to
emphasize the dimension of the decomposed tensors, we bold
the corresponding lines in G " and utilize different colors in B,
C, and D to distinguish the bold lines. Then, the reader can
easily understand how the dimensions match. (3) We change
the figures for output y;, y2, and y;3 to circles, where the solid
line represents y; = 1, the two types of dotted lines represent
yo = —1 and y3 =7 (i.e., unknown).

For each PMU tensor X', the left part of Fig. 3 visualizes
the process of a Tucker decomposition into base matrices
B, C, and D and a core tensor G. G can maintain the
structure as the PMU tensor X', leading to specific physical
interpretations. Specifically, the base matrices can be viewed
as the bases along different dimensions, and the core tensor G
represents the interactions among these bases [12]. Thus, we
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Fig. 3: The motivation of the KTDC-Se model.

can assume bases for different PMU tensors are similar as long
as the number of bases is sufficiently enough. In contrast, the
interaction tensor G contains discriminative event information.

Then, to maximally remove the redundancy, we directly
keep the same bases B, C, and D for different PMU tensors
during the decomposition, shown in the middle part of Fig.
3. Namely, we utilize a direct Tucker decomposition for a 4-
D total event tensor X'. Then, B, C, and D are naturally
kept to be the same. Further, we want the core tensor G
to contain distinguished event information. Therefore, we
employ the event labels to conduct a supervised learning-
based classification for dissimilarity maximization. The above
procedure is for labeled tensors. For unlabeled tensors, only
the decomposition procedure is implemented to increase the
model robustness to different loading conditions. The concrete
mathematical model of joint optimization is formulated in the
following subsection.

B. Semi-supervised Optimization for the Joint Model

In the semi-supervised learning setting, the 4-D total event
tensor X in Section IV-A contains all labeled and unlabeled
data. Mathematically, we implement the Tucker decomposition
for X' as follows:

X%gxlAXQBX3CX4D
N R2 R3 R4

~ Z Z Z E :g(rlar277"3,7"4)a” ob™oc"™ od™,

ri=1lro=1rg=1ry=1
(1

where G € RNXR2xRsXRs g the core tensor, i.e., the com-
pressed tensor with small information redundancy. The matri-
ces to scale the core tensors are A € RV*XN B ¢ RTxERz,
C € REXBs and D € RMXRa gm p™2 ¢ and d™
are the 7", ri* ri* and ri" columns of A, B, C, and
D, respectively. Ro < T, R3 < L, and Ry < M are the
pre-defined dimensions of the reduced tensors to achieve the
information compression.

In the decomposition of Equation (1), the first dimension is
fixed of the core tensor G to be N so that the decomposition
can still bring IV features to represent different PMU tensors.
Furthermore, the decomposition can be rewritten as:

X1y~ AGH(DeC®B)', )

where X () € RVX(T'L'M) and Gy € RN*(HzBsfa)
represent the mode-1 unfolding matrix of tensors X and G, re-
spectively. Clearly, columns in G'(;) represent the compressed

features that can be utilized for the classifier training. Under
semi-supervision, we utilize the labeled tensors with labels for
the classification. Then, we propose a joint decomposition-
classification model.

J=‘|X—QX1AX2BX3CX4D||%‘
J1, Reconstruction Loss

+ 1 UEGq) - w+by)+y ||wl3 ,
~——

min
G),A,B,C,Dw,b

Ja, Classification Loss J3, l2 Norm

3)
where J, Ji, Jo, and J3 denote the total loss, reconstruction
loss, classification loss and regularization terms, respectively.
E = [17*H oHx(N=H)] ¢ REXN denotes a selection matrix
to select the first H feature instances (i.e., the instances with
labels) in G'(1) for the classification. ||-||r and ||-||> denote the
Frobenius norm and the /5 norm, respectively. {(-, -) represents
the classification loss function. The hinge loss of Support Vec-
tor Machine (SVM) is considered in this paper, i.e., Z(EG(l) .
w,y) = S [y w D)), where f, € RO R Ru) <1
is the i*" instance of the transformed features and y; is the
it" label in y. Namely, F = [f, fy, -, fu]' = EG).
Further, the hinge loss is defined as [1 —t]; = max(0,1—t)?.
Usually, one can treat p = 1 or p = 2 for [1- or [;-SVM
[11], respectively. 1 and -y, are positive hyper-parameters to
reweight the three terms in Equation (3).

C. Efficient Kernelization for Powerful Non-linear Feature
Extractions

In the last two subsections, we successfully merge the data
reduction and machine learning model into one optimization
under semi-supervision. However, many PMU measurements
have non-linear correlations. It is challenging to add non-
linearity due to the computational cost. For example, adding
sigmoid or polynomial functions to the loss function [ in
Equation (3) significantly increases the computations. This
motivates the usage of kernel trick for nonlinear feature
calculations [26]. Specifically, () the kernel trick shows that
we can find a kernel function k(f, f,) such that k(f,, f5) =
o(£1)To(fy) = g(f] fo). The inner product computations,
i.e., the main calculation procedure for the loss in Equation
(3), can be conducted in the original feature space rather
than the features transformed from polynomial or sigmoid
functions. (i¢) Further, the input features of the classifier
in Equation (3) is a feature vector f with the dimension
r = Ry - R3 - Ry. Then, if we consider to utilize d-degree



polynomial features to represent the original features, we can
obtain a r¢-dimensional feature vector ¢(f). Then, the inner
product over the r?-dimensional features can incorporate 724
multiplications and r?? — 1 summations. In general, we need
or2d _ 1 operations, which is expensive. (iii) However, the
kernel trick enables another procedure of computations with
a much smaller computational cost. Basically, let f; and f,
denote two r-dimensional features. Then, one only need to
consider the inner product within the original r-dimensional
space with 72 multiplications and 72 — 1 summations. Then,
based on the kernel trick, only extra d multiplications are
needed to bring the same result as in (ii). In general, the
total operation number is 2r2 — 1 + d, which saves a lot
of computational resources compared to the computations in
(#i). Thus, we propose to utilize kernel function to lift the
data to high-dimensional or even infinite-dimensional feature
space, and the kernel trick can enable the calculation to happen
in the original data space, which easily maintains efficient
calculations [27].

Specifically, due to the Representer theorem [28], the inner
product of the classification model can be rewritten as f ' w =
Zil a;k(f, f;), where k(-,-) is the kernel function and f €
Rtz Rs-Ra)x1 jg 3 variable in the feature space. Based on this
equation, the kernelized learning process is:

J =X =G x; A xy B x3C x4 D|%

J1, Reconstruction Loss

[1 - y%(Z ajk(f;, fj) + b)]+

1=

min
G(l) ,A,B,C,D,QJJ

+7

Jz, Classification Loss

H H
+ 72 ZZaiajk(fi, £,

i=1 j=1

Js, Regularization

“)
where « is the vector of all o;s. Eventually, we re-emphasize
the nice properties of KTDC-Se by (1) using tensors to capture
multi-dimensional correlations, (2) proposing a joint model for
decomposition and classification, (3) introducing kernels for
non-linear features, and (4) conveniently tackling both labeled
and unlabeled data.

V. LEARNING ALGORITHM

The optimization in Equation (4) is non-convex. Thus,
an alternative optimization algorithm is proposed to update
the individual variable in the optimization while fixing other
variables, i.e., the so-called coordinate descent method. This
method is prevailing in the domain of tensor learning due
to its efficiency and good convergence property [11], [20],
[29]. Further, to calculate the gradient and avoid the non-
differentiable scenario, the 5 SVM [11], [30] is utilized, i.e.,
p = 2 in the loss function [(+, -). Then, to update each variable,
KTDC-Se only needs to calculate the gradients with respect
to every single variable and utilize the gradient descent for
updating. Thus, the calculation of the gradients is shown as
follows.

A. Gradients of Matrices A, B, C, and D

Gradient of A. Based on matrix format of Tucker decompo-

sition and for the convenience of later derivations, we define

H, = G(1)(D ® C ® B)". Then, the gradient of the loss

function in Equation (4) is calculated with respect to A.

Mathematically, the gradient is:

VaJ =VaJi =Vatr((Xq) — AH,)" - (X 1) — AH,))
=2(AH\H| - X)H/),

&)
where tr(-) represents the operation to obtain the matrix trace.
Gradients of B, C, and D. By symmetry, Hy = G(5)(D ®
C®A)T, H; = G(g)(D@B@A)T, and H, = G(4)(C®
B® A)T can be defined. Then, VgJ, V¢J, and VpJ are
calculated as follows:

VpJ =2(BH H; — XH,),
Vel =2(CH3H; — X 3)Hj), (6)
VpJ=2(DH.H| — X y»H)]).

B. Gradient of Mode-1 Unfolding Matrix G 1y of the Core
Tensor

To update G(y), the following gradients are separately
derived. For the reconstruction loss, H = (D ® C @ B) '
is denoted. Then, the gradient is:

Vau = Vau,t((Xq) — AGuH)" - (X 1) — AG)H))

—2ATAG HH' —ATXH').
)
For the classification loss, §; = Zf:l ajk(f;, f;) +b
is denoted for simplification. Based on the chain rule, the
gradient is:

. H Ok(fif;)
2(i = yi) 2ojmr 57

Vd2 = 4200 0,05 — u) eI ity <1
0, if y;9; > 1.

®)

To elaborate on the above equation, polynomial and Radial

Basis Function (RBF) kernels are utilized as examples. For

the polynomial kernel k(f;, f;) = (f;rfj +¢)4, where c is a

constant and d is the degree of the polynomial function, then

Ok(fi, f;) d(fi fi+0) Ny, i,

—aF = )]
of: Qd(f:fj+c)d*1f“ ifi=j.

For the RBF kernel k(f;, f;) = exp(—=A||f;—f;|3), where
A is a positive constant:

Ti] :2>‘k(fi7fj)(fj *fz) (10)
Recall that F = [fy,fy, -, fu)’ = EGq)

VrJo = [Vg,J2, Vg, Jo, - ,VfHJQ]T can be obtained.
Thus, VG(I)JQ = [VfIJQ,Vf2J27"' ,VfHJQ,O,"‘ ,O]T.



For the Regularization term, the result is:

i (f17f +2a Z Y fl’fj)'

Vg Js = (11)
Similarly, Vg, J3 = [Vfng,Vf2J3, <, V5. J3,0

can be obtained. Summing the gradients of the

three loss functions can bring the total gradient, i.e.,

Ve, J =Veau, i +11Vay J2 +72Va,, Js.

C. Gradients of Classifier Parameters o and b

Gradient of o. The learning weight o is coupled with the
classification loss and the regularization. For the classification
loss, then
H
Z] 1 2(

) (fzvf) 1fy1ﬂz<1>

Va,J2 = 12)

0, if y;9; > 1.

Note that §; can be explicitly expressed by o, ie., §; =
kTa—i—b where k; is the 3" column vector of the kernel matrix
K and the kernel matrix is defined as K (i, j) = k(f;, f;).
Thus, the above equation can be written to a matrix format.
Specifically, if y;5; < 1, Vo, Jo = 2k; - Ka+2k; - (b—y;)1
can be written, where 1 is an all-one column vector. Further,
one can obtain a general format:

Valds =2KI'(Ka + b1 —y), (13)
where I° satisfies
1, ifi=jand y;9; <1,
I°(i,5) = (14)
0, otherwise.
Further, for the regularization, it’s easy to find that
Vads =2Ka. (15)

Finally, the total gradient is Vo J = 71V dJa + 12V o Js.
Gradient of b. Similarly, we calculate the gradient with
respect to b:

Vi =171 — y), (16)

where g is the vector of all g;s. With the above derivations,
the final learning algorithm and flowchart are presented in
Algorithm 1 and Fig. 4.

D. Training on Mini-batches

The above learning process may suffer storage issues when
the number of training data N is large. Specifically, when
updating B, C, and D in Equations (6), the Kronecker product
to calculate H5, H3, and H 4 requires a large cost of storage
as A € RV*N for alarge N. To mitigate this issue, we modify
Algorithm 1 to train on mini-batches to save the memory [31].

Mathematically, we divide the training tensor X and labels
y into K mini-batches {X*}K | and {y'}X,, respectlvely
Each X’ contains some labeled data with labels to be 3’
and many unlabeled data. Then, in each iteration, we up-
date the mini-batch-independent weights A,B,C,D and b.
A € RV*N s the matrix along the first dimension of each

Algorithm 1 Train-KTDC-Se(X, y).

Input: Training tensor A’ and labels y.
Hyper-parameters: number of labeled data H, core tensor

’O]Tdimensions Ry, Rs3, and Ry, regularization parameters -y

and -, polynomial kernel parameters d and ¢, RBF kernel
parameters A, and learning rate [r.
Qutput: Parameters Gé“l), A B,C,D,q, and b.
1: Initialize G (1), A, B,C, D, «, and b.

2: repeat

3: Calculate VaJ, VpJ, VeJ, and V pJ by Equations (5)
and (6).

4: AZA—ZT-VAJ.

5: B=B—1Ilr-VpgJ.

6: C=C—1Ir-V¢gl.

7. D=D —1Ir-Vpd.

8: Calculate VG(1>J1 by Equation (7).

9: for i =1to H do

10:  Calculate V¢ Jo and V¢ J3 by Equations (8) and (11)
while fixing other parameters.

11: end for

12: Formalize VG(1>J2 and V(;“)Jg. Then, obtain VG(UJ.

13: G(l) = G(l) —Ir- VG(l)J

14: Build matrix I° by Equation (14).

15: Calculate V4 J2 and V4 J3 by Equations (13) and (15).
Then, obtain V,J.

16: a=a—Ir-Val.

17: Calculate VJ by Equation (16).

18: b=b—Ir-VJ.

19: until convergence

| Input tensor X and label Y |

| Create mini-batch X and yi

!

| Calculate V4 J, V], V], and V] |

Output: Parameters G(kl), A, B, C,
D, a,and 3.

| end

| Update A, B, C,D |

Calculate VG(1)1~ |

}

Calculate V/, and V, /3. |

¥ v

i=i+1 | | Calculate a, B. |
[

l Evaluate loss | |

| Calculate Vy,J, and Vy, /3 | |

Fig. 4: The Flowchart of the KTDC-SE algorithm.



mini-batch tensor, where N = | N/K| and |-| represents the
floor function. Notably, keeping A the same for different mini-
batches is an additional restriction to maintain similarity of
A, which doesn’t appear in the direct training of Algorithm 1.
However, this restriction further guarantees that the discrimi-
native information is contained in core tensors.

Further, KTDC-Se uses mini-batch-dependent parameters

{1y € RVx(F2-Fia-Ra) and o' for the i*" mini-batch, where
o' € RY*Y and H = |H/K]|. Especially, G}, is a
sub-block of G1y, ie., Gy = [(G{y)", -+ (G(1)T]".
Correspondingly, we have F = [(F')T, .. - (EK)~T}T, where
F' = E'G{;) and E' [[H>H H>x(N=H)]  Egsen-
tially, o’ is a sub vector of the final weight vector a =
(@)™, (@)

Then, for the 7t mini-batch, our training algorithm should
obtain features Gfl), check the support vectors in Fhese
features, and update their corresponding weights in . To
maintain the coupling between Gfl)(ai) and the rest G%l)s
(a?s), where j # i, all the information in F', y and «
should be utilized to obtain VGW:l Ja, Vgil J3, Vgida, and
Vaids by Equations (8), (11), (13), and (15), respectively.
Then, we can fix the correspondingly gradients with respect
to support vectors in other mini-batches to 0s. Consequently,
the complete algorithm can be seen in Algorithm 2.

Algorithm 2 Train-mini-batch-KTDC-Se(X, y).

Input: Training tensor X = {X*}X | and labels y =

{y' {ir ) -
Output: Parameters {Gfl)}fil, A,B,C,D,qa, and b.

1: repeat

2: for i =1 to K do

3:  Utilize the complete information in G, y, and « and
the mini-batch data to obtain: Gfl), A,B.C,D,a',b=
Train-KTDC-Se(X*, y'|F, y, o).

4: F = [(Fl)T7"' 7(FK)T]T'
5 a = [(al)Ta"' a(aK)T]T'
6: end for

7:

until convergence

E. Testing on Mini-batches

For the cross-validation process or online testing, we have
another total test tensor X € RNXTXIXM that needs to
experience the decomposition and classification to obtain the
label y € ZN*1 where we fix N to be the number of PMU
tensors in one mini-batch. The reason of fixing N is that our
mini-batch training yields a parameter matrix A € RV*N that
must be utilized for the test tensor decomposition. Therefore,
there should be N PMU tensors in the total test tensor. For
real-time testing, if the testing PMU tensor number is not
sufficient, we can repeat the testing tensor or utilize some data
from the historical dataset to complete the testing mini-batch.
Thus the testing procedures are as follows.

Obtain Test Feature Matrix G (1)- To obtain G (1), we utilize
the learned parameters A, B, C and D. By setting the gradient
in Equation (7) to 0, we can obtain

Guy=(A A (A XyH )-(HH )™, (7D
where X (1) represents mode-1 unfolding of tensor X.
Predict label vector y. Based on the Representer theorem,
we need the learned weights ¢ and b, historical features in
F = G(y). and test features in G(l) = [}I, ,}—I\E,]T to
predict labels. Specifically, we can first calculate a test kernel
matrix K (i,j) = k(}’i,fj), where f, € é(l) and f, € F.
Then, the predicted label can be obtained by:

y=Ka+b. (18)

VI. EXPERIMENTS

For validation, we test over synthetic data sets such as the
Illinois 200-bus system South Carolina 500-bus system [18].
We also test our result with realistic data from our utility
partners.

A. Dataset Description

We utilize Illinois 200-bus system and South Carolina 500-
bus system [18] to generate event data. Five event types are
considered, including line trip, generator trip, single-phase-to-
ground fault, phase-to-phase fault, and three-phase fault. For
each event type, we consider 2 different event locations. Thus,
there are 10 unique combinations of event types and locations,
i.e., 10 event labels.

Then, we vary the loading conditions for the simulation to
generate diversified event files. Totally, we have 80 event files
each of which has 10s event data. Further, we consider the
data resolution to be 60 samples per second, yielding 600
samples for each event file. To extract tensors from these
streams, we utilize the moving window with the length to be
0.5s (i.e., 30 samples) and the moving gap to be 0.083s (i.e., 5
samples) to cut the PMU streams. We utilize a small moving
window to obtain data points. In our experiment, each window
covers 0.5s (i.e., 30 samples of PMU measurements). Fig. 5
illustrates why we select 0.5s as an appropriate window length.
Specifically, the plot is a visualization of the PMU streams
over time, where the x-axis represents the time and the y-axis
represents the measurements (VM denotes voltage magnitude,
VA denotes voltage angle, and F denotes frequency). We
find that using 0.5s as the window length can appropriately
include partial event information to identify events. Next, the
length is not too long to prevent fast and real-time detection.
Finally, the determination of the window length can be further
studied by treating the window length as a hyper-parameter
and conducting the cross-validation. However, this won’t affect
our main result and we treat this procedure as future work.
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Fig. 5: The demonstration for window length selection.

Therefore, we have 5840 PMU tensors in total. For each
PMU tensor, we have 7' = 30 for the time dimension,
L = 200m; or L = 500m; for the 200-bus and the 500-
bus system, respectively, where 71 € {0.05,0.1,0.15,0.2}
represents the PMU penetrations for the grid. For each fixed
11, PMU locations are randomly chosen for 5 times. Then,
we set M = 3 for the measurement types, i.e., voltage mag-
nitude, voltage angle, and frequency. To summarize, we have
X € ROBA0X30x200m X3 o ¢ RE840X30x50001 X3 for training
and testing. To mimic a semi-supervised setting, we consider
labeled data with the ratio of 1, = {0.1,0.2,0.3,0.4,0.5},
leading to a label vector y € Z5840m2x1,

Finally, we also test our proposed method using real-world
PMU data from our partner in Arizona, USA. These files
totally have 5 labels covering 3 types of line faults at 2
locations. After tensorization of data in 35 PMUSs, we can
obtain X € RB511x30x35%3 a4 y € 75111

Software For the simulation, we employ a commercial-
grade simulator, Positive Sequence Load Flow (PSLF) [32]
from General Electric (GE) company. For the model develop-
ment and validation, we use Python with Pycharm IDE.

Summary of data and feature dimensions

o For Illinois 200-bus system, the total event tensor is
X € R5840x30x200m %3 anq the input data dimensions are
{900, 1800, 2700, 3600}. Subsequently, we set Ry = 6,
R; € {5,5,6,8}, and Ry = 2, and the feature dimen-
sions are {60, 60,72,96}. For other benchmark methods,
we employ PCA to reduce the dimensionality of the
raw data and obtain features with the dimension of
{120, 140, 150, 180}.

o For South Carolina 500-bus system, the total event tensor
is X € RO840x30x500mx3 and the input data dimen-
sions are {2250, 4500, 6750,9000}. Subsequently, we set
Ry =6, R3 € {5,6,8,10}, and R4 = 2, and the feature
dimensions are {60, 72,96,120}. For other benchmark
methods, we employ PCA to reduce the dimensionality
of the raw data and obtain features with the dimension
of {140, 180, 200, 240}.

o For datasets of the utility in Arizona, USA, the total
event tensor is X € RO1IX30x35X3 and the input data

dimension is 3150. Subsequently, we set Ry = 6, R3 = 6,
and R4 = 2, and the feature dimension is 72. For
other benchmark methods, we employ PCA to reduce the
dimensionality of the raw data and obtain features with
the dimension of 160.

B. Benchmark Methods

First, we train our KTDC-Se within the labeled data as a
benchmark to demonstrate the impacts of the unlabeled data.
Further, we employ state-of-the-art Semi-Supervised Learning
(SSL) methods as benchmarks. The details of these methods
are shown as follows.

o Deep Residual Network (Resnet) [33]: Resnet is an
efficient deep learning model for classification. For this
supervised learning model, we utilize only labeled data as
comparison. As PMU data have high dimensionality (e.g.,
9000 for the 500-bus system with 7; = 0.2), Principal
Component Analysis (PCA) is utilized to pre-process data
before training the Resnet.

o KTDC-Se-L: KTDC-Se-L is to train a KTDC-Se model
with only labeled data by setting N = H in the model,
which demonstrates the effectiveness of employing unla-
beled data for training a classifier.

o MixMatch [34]: MixMatch can guess low-entropy labels
for unlabeled instances with data augmentation. Then,
MixMatch develops a probabilistic procedure to mix
the labeled and unlabeled data to train a deep learning
classifier. Similarly, we employ PCA to reduce the di-
mensionality of the mixed dataset from MixMatch and
input them into a Resnet [33] as the final classifier. For
a fair comparison, the Resnet has the same architecture
as the first benchmark.

o FixMatch [35]: FixMatch first generates pseudo labels
for data with weak data augmentation. Then, FixMatch
develops a criterion to decide the pseudo label is retained
or not. Finally, data with retained pseudo labels experi-
ence a strong data augmentation for the classifier training.
Similar to MixMatch, we utilize PCA + Resnet as the
final classifier. For fair comparison, the Resnet has the
same architecture as the first benchmark.

o Semi-supervised Ladder Network (SSLN) [36]: SSLN
combines supervised and unsupervised learning in deep
neural networks with a joint loss function in a ladder
network with an auto-encoder model structure. Similarly,
we pre-process the data with the PCA method.

During the testing, the hyper-parameters for all models are
fine-tuned in the 3-fold cross-validation to achieve the best
accuracy. In general, by comparing the testing accuracy of
KTDC-Se with Resnet, and KTDC-Se-L, we can illustrate
the effectiveness of using unlabeled data. By comparing the
testing accuracy of KTDC-Se and other methods, we can
evaluate the performance of using an integrated model and
two-stage models. Especially, Resnet, MixMatch, FixMatch,
and SSLN have two separate steps of data pre-processing and
learning, which have their biased selections. By comparing the
label predicting time of KTDC-Se and other methods, we can
evaluate the efficiency of the methods for real-time inference.



TABLE II: Testing accuracy (%) (mean =+ standard deviation) for real-world PMU data.

KTDC-SE RESNET KTDC-SE-L MIXMATCH FIXMATCH SSLN
ACCURACY 92.3+0.8 77.1+£0.6 80.5+ 1.1 82.6 £ 0.8 83.3+1.6 83.5+2.1
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Fig. 6: Performances of event identification using different methods.

Finally, by comparing the choice of kernel selection, we can
understand how the non-linear kernels boost the performance.

C. Joint Optimization of KTDC-Se is Better Than Two-stage
Models

In this subsection, we evaluate the integration design by
comparing our KTDC-Se and other two-stage models. Thanks
to the integration without biased selection for the two-stage
compression and classification, our model performs much
better than benchmarks. Specifically, we report the results of
simulated and real-world data as follows.

For the simulated data, we first fix e = 0.3 to divide the
labeled and unlabeled datasets for training and testing. Fig. 6a
and 6b demonstrate the results for the two systems. Since for
each 7; of one system, we conduct 5 times randomization and
3-fold cross validation of the PMU location selection, there
can be multiple different values of the testing accuracy for
each testing scenario. Thus, we present the box plot in Fig.
6a and 6b to show the average and the variance.

We find that our KTDC-Se has an average accuracy pro-
motion of 13.3%, 13.6%, and 9.3%, compared to MixMatch,
FixMatch, and SSLN, respectively. Notably, the latter 3 bench-
mark models utilize PCA to pre-process data so that they

can be trained with a reasonable cost. Even though these
4 methods utilize the same labeled and unlabeled data for
training, the better performance of KTDC-Se shows that an
integrated model can be better than the two-stage models.
This is because that the integrated model avoids the biased
selection of the two separate models. Further, the joint model
enables the identification of discriminative core tensors that
are sensitive to the event labels.

In our experiment, we implement 5 times random sampling
for PMU locations for a given PMU penetration 7; for two
systems. Intuitively, if the PMUSs are closer to the event, the
accuracy should be higher. Then, for a fixed 7; and fixed
event locations, the relative PMU locations with respect to the
event location cause the accuracy variance. Therefore, 500-
bus system usually has higher accuracy variance than that of
200-bus system since 500-bus system has a larger range.

This information is also validated from Fig. 4 in the
manuscript when 1, € {0.05,0.1,0.15}. However, when
n2 = 0.2, we find that the 500-bus system has a higher
accuracy mean and lower accuracy variance. After careful
checking, we find the reason is that 5 is a small number
for random sampling of PMU locations. Specifically, when
12 = 0.2, there are 4 out of 5 tests in the 500-bus system to



have PMU locations close to the event location. However, for
the 200-bus system, there are only 2 tests when PMU locations
are close to the event locations. This shows that we may meet
the situation when the 500-bus system data brings a better
performance.

We also utilize F1 score to evaluate the performance for
200- and 500-bus systems. F1 score is the harmonic mean
of precision and recall metrics, which gives a much better
evaluation for datasets of imbalanced classes than accuracy
[37]. Under this setting, we re-evaluate Section VI-D using
F1 score. Fig. 6¢c and 6c¢ illustrate that our proposed KTDC-
Se model still has the best performance in different scenarios
under F1 score, which demonstrates the superiority of our
model. Compared to test accuracy, the result of F1 score for
all methods is relatively lower. This is because F1 score has
an overall consideration of the precision and the recall rate.
However, under the metric of F1 score, KDTC-Se is still the
best method.

For the real-world data, we report the testing accuracy in
Table II. We observe that the average accuracy promotions of
KTDC-Se are 9.7%, 9%, and 8.8%, compared to MixMatch,
FixMatch, and SSLN, respectively. This still supports the
advantage of using an integrated model.

We further evaluate the accuracy for each event type for
the 200-bus system with 777 = 0.1. The results can be seen
in Table IIl. Other scenarios can bring similar results. We
denote LT to represent line trip, GT to represent generator trip,
SP to represent single-phase fault, PP to represent phase-to-
phase fault, and TP to represent three-phase fault. Next, the
numbers 1 and 2 represent the two different locations. The
result illustrates that three-phase faults are easier to identify
since they are more severe than others. On the other hand, the
single-phase and phase-to-phase faults have lower accuracy
since they have similar fault behaviors.

D. Semi-supervised Learning Boosts KTDC-Se Model Perfor-
mance

In this subsection, we compare KTDC-Se, Resnet, and
KTDC-Se-L to illustrate the effectiveness of semi-supervised
learning. Specifically, for synthetic data, the average accuracy
promotions are 18% and 13.3%, compared to Resnet and
KTDC-Se-L, respectively. For real-world data, the correspond-
ing accuracy promotions are 15.2% and 11.8%. These results
show that there is a significant improvement when using
unlabeled data.

The performance can be explained as follows. First, we can
compare KTDC-Se and KTDC-Se-L. When doing the tensor
decomposition of the PMU tensors, the unlabeled tensors
in KDTC-Se enable the core tensors to understand differ-
ent loading conditions and maintain similarity for different
conditions as long as the event label is the same. Then, the
trained classifier can successfully tackle different operational
scenarios. Second, we can compare KTDC-Se-L and Resnet.
We find that Resnet has an even worse performance as Resnet
also employs PCA to pre-process data. As illustrated in Section
VI-C, the two-stage model performs worse.

To further understand how many labeled data are needed for
a good performance of KTDC-Se, we utilize the simulated data

to test and fix n; = 0.1 and vary n, € {0.1,0.2,0.3,0.4,0.5}
for the number of labeled data. As a comparison, we also
implement KTDC-Se-L for the labeled data. Further, we also
present the optimal testing accuracy via employing labels for
all the PMU tensors to train the model, i.e., 72 = 1. The results
of average testing accuracy are shown in Fig. 7a and 7b.

Based on the plots, we have the following observations. (1)
Training with extra unlabeled data significantly improves the
accuracy, which has been explained before. (2) KTDC-Se can
efficiently utilize the limited labels. For example, when 7, =
0.1, the testing accuracy is still higher than 94%. This implies
that KTDC-Se can filter information and group data by event
labels in the feature space. Such a good result comes from the
joint learning process to generate compact and discriminative
features. (3) As 75 increases, the testing accuracy of KTDC-Se
gradually increases up to the optimal accuracy. Further, with
only 30% of the labeled data, KTDC-Se can bring an accuracy
almost close to the optimal one. This again indicates the high
efficiency of KTDC-Se to utilize limited labels.

E. Tensor-based Framework Enables Fast Inference

The model efficiency can be evaluated via the training and
testing time. We utilize the simulated data in Section VI-C
and report the computational time of all methods on the
testing dataset in Table IV. Based on the results, we have the
following conclusions. (1) SSLN has the largest computational
time due to its largest size with ladder networks, decoders, and
encoders. (2) KTDC-Se has the second largest computational
time since each KTDC-Se is a binary classifier and we utilize
multiple binary models to create the final decision. Thus, the
total training time for multiple models is higher. (3) The total
training time of KTDC-Se is still comparable to other models.
This is because training each binary model requires much
smaller computations than other benchmark methods. More
specifically, the input dataset for each KTDC-Se model only
covers two event classes and has a much smaller size. (4)
Resnet, MixMatch, and FixMatch have relatively close training
times since they have the same input data processed via PCA
and similar DNN models for classification. (5) KTDC-Se-L
has the smallest training time since it only utilizes labeled
data.

We further find that KTDC-Se has the second lower testing
time, which demonstrates its efficiency. Further, KTDC-Se-L
has the lowest time because it uses less data (i.e., only labeled
data) for training. Thus, the test kernel matrix has a much
smaller size compared to that in KTDC-Se. According to the
prediction function in Equation (18), KTDC-Se-L has a lower
testing time compared to KTDC-Se.

However, if we utilize both labeled and unlabeled data,
KTDC-Se is much more efficient to do the inference than
other methods. The reason is that KTDC-Se employs tensor
decomposition to explore cross-dimension correlations and
obtain a very compact core tensor for tests, but other methods
utilize PCA to compress data, which needs more features to
achieve the best accuracy. Secondly, other methods utilize
a deep model to extract non-linear features, requiring more
computational time. Thirdly, Resnet, FixMatch, and MixMatch



TABLE III: The testing accuracy (%) for each event type.

LABEL KTDC-SE RESNET KTDC-SE-L MIXMATCH FIXMATCH SSLN
LT1 96.8 81.5 86.3 84.5 85.2 92.6
LT2 97.2 81.7 87.2 84.2 84.9 93.1
GTI1 98.3 82.3 87.4 85.1 85.4 94.2
GT2 97.8 83.2 86.8 84.0 84.9 92.5
SP1 95.7 80.6 84.6 82.5 83.3 89.8
SP2 96.1 81.0 84.8 82.7 83.6 91.3
PP1 96.5 81.5 85.2 83.1 84.5 90.6
PP2 97.2 81.2 85.4 82.6 85.1 91.5
TP1 98.5 85.1 88.7 86.2 87.2 92.6
TP2 99.3 85.7 87.9 87.4 87.7 93.0

TABLE IV: The average training/testing time (s) of the training/testing dataset for different methods.

KTDC-SE RESNET KTDC-SE-L MIXMATCH FIXMATCH SSLN
TRAINING TIME 359.6 325.7 45.8 333.6 345.4 431.3
TESTING TIME 1.3 3.8 0.4 3.8 3.7 6.4
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(b) Sensitivity analysis for the 500-bus system.

Fig. 7: Results of the sensitivity analysis with respect to labeled data ratios.

share the same DNN architecture and consume close time for
testing. On the other hand, the ladder network in SSLN has a
larger size and needs more time to predict the label.

F. Non-linear Kernelization Largely Increases the Accuracy

In this subsection, we study the effectiveness of kerneliza-
tion to the capacity of the classifier. Specifically, we report
the testing accuracy for the 200-bus system when 7; = 0.1
and 7y = 0.3. Other results are similar and ignored due to the
space limit. Then, we study the case with a constant kernel
(e.g., d = 1 for the polynomial kernel) and cases with different
non-linear kernels. When kernel is a polynomial function, we
vary d € {1,2,3}. When kernel is a RBF function, we vary
A € {0.05,0.1,0.15}.

The results are shown in Table V. First, if we compare
the constant kernels with other kernels, we find that adding
non-linear kernels can significantly increase the accuracy.
This is because the PMU measurements have high non-linear
correlations. Secondly, the polynomial kernel can lead to
an accuracy 95.5% when d > 2. For the RBF kernel, the
accuracy is around 94.7% when A > 0.1. This shows that
the polynomial kernel, especially when d = 2, is better than

others. The partial reason is that the quadratic correlations
largely lie in the power flow equations.

TABLE V: The testing accuracy (%) (mean + standard devi-
ation) for different kernels.

KERNEL NAME  d OR A\ ACCURACY
POLYNOMIAL 1 89.22 + 0.6
POLYNOMIAL 2 95.7 + 0.3
POLYNOMIAL 3 95.4+0.2
RBF 0.05 93.3+0.6
RBF 0.1 94.7+£0.3
RBF 0.15 94.6 £ 0.5

VII. CONCLUSION

The increasing placement of PMUs leads to better power
system situational awareness and event identification. Specifi-
cally, the ML-based methods can fast identify the event types
and locations. However, the high volume, complex correlations
of PMU measurements cause inefficiency to existing ML
methods. Secondly, recent approaches focus on supervised
learning while many event data are unlabeled. The inability
to utilize rich unlabeled data hurt the model robustness to



diversified loading conditions. To tackle these challenges, we
propose our Kernelized Tensor Decomposition and Classifica-
tion with Semi-supervision (KTDC-Se). Specifically, we treat
PMU measurements as tensors and employ an advanced tensor
decomposition to remove redundant information and save
useful event features, significantly boosting model efficiency.
Simultaneously, labeled data in the core tensors are input to
a classification model with kernels for accurate classification,
and unlabeled data contribute to the decomposition process.
This guarantees the model robustness and accuracy. Numer-
ically, we show that KTDC-Se achieves the best accuracy
compared to other semi-supervised learning methods in both
synthetic systems and real-world systems.
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